66,820 research outputs found

    A Temporal Logic Based Theory of Test Coverage and Generation

    Get PDF
    This paper presents a theory of test coverage and generation from specifications written in extended finite state machines (EFSMs). We investigate a family of coverage criteria based on the information of control flow and data flow in EFSMs and characterize them using the temporal logic CTL. We discuss the complexity of minimal cost test generation and describe a simple heuristic which uses the capability of model checkers to construct counterexamples. Our approach extends the range of applications of model checking from automatic verification of finite state systems to automatic test generation from finite state systems

    Test generation from P systems using model checking

    Get PDF
    This paper presents some testing approaches based on model checking and using different testing criteria. First, test sets are built from different Kripke structure representations. Second, various rule coverage criteria for transitional, non-deterministic, cell-like P systems, are considered in order to generate adequate test sets. Rule based coverage criteria (simple rule coverage, context-dependent rule coverage and variants) are defined and, for each criterion, a set of LTL (Linear Temporal Logic) formulas is provided. A codification of a P system as a Kripke structure and the sets of LTL properties are used in test generation: for each criterion, test cases are obtained from the counterexamples of the associated LTL formulas, which are automatically generated from the Kripke structure codification of the P system. The method is illustrated with an implementation using a specific model checker, NuSMV. (C) 2010 Elsevier Inc. All rights reserved

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts

    Development of a framework for automated systematic testing of safety-critical embedded systems

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In this paper we introduce the development of a framework for testing safety-critical embedded systems based on the concepts of model-based testing. In model-based testing the test cases are derived from a model of the system under test. In our approach the model is an automaton model that is automatically extracted from the C-source code of the system under test. Beside random test data generation the test case generation uses formal methods, in detail model checking techniques. To find appropriate test cases we use the requirements defined in the system specification. To cover further execution paths we developed an additional, to our best knowledge, novel method based on special structural coverage criteria. We present preliminary results on the model extraction using a concrete industrial case study from the automotive domain

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience
    corecore