2 research outputs found

    Job Shop Scheduling with Routing Flexibility and Sequence-Dependent Setup Times

    Get PDF
    This paper presents a meta-heuristic algorithm for solving a job shop scheduling problem involving both sequence dependent setup-times and the possibility of selecting alternative routes among the available machines. The proposed strategy is a variant of the Iterative Flattening Search (IFS ) schema. This work provides three separate results: (1) a constraint-based solving procedure that extends an existing approach for classical Job Shop Scheduling; (2) a new variable and value ordering heuristic based on temporal flexibility that take into account both sequence dependent setup-times and flexibility in machine selection; (3) an original relaxation strategy based on the idea of randomly breaking the execution orders of the activities on the machines with a activity selection criteria based on their proximity to the solution\u27s critical path. The efficacy of the overall heuristic optimization algorithm is demonstrated on a new benchmark set which is an extension of a well-known and difficult benchmark for the Flexible Job Shop Scheduling Problem

    Lateness minimization with Tabu search for job shop scheduling problem with sequence dependent setup times

    Get PDF
    We tackle the job shop scheduling problem with sequence dependent setup times and maximum lateness minimization by means of a tabu search algorithm. We start by defining a disjunctive model for this problem, which allows us to study some properties of the problem. Using these properties we define a new local search neighborhood structure, which is then incorporated into the proposed tabu search algorithm. To assess the performance of this algorithm, we present the results of an extensive experimental study, including an analysis of the tabu search algorithm under different running conditions and a comparison with the state-of-the-art algorithms. The experiments are performed across two sets of conventional benchmarks with 960 and 17 instances respectively. The results demonstrate that the proposed tabu search algorithm is superior to the state-of-the-art methods both in quality and stability. In particular, our algorithm establishes new best solutions for 817 of the 960 instances of the first set and reaches the best known solutions in 16 of the 17 instances of the second se
    corecore