
Job Shop Scheduling with Routing Flexibility and
Sequence Dependent Setup-Times

Angelo Oddi1, Riccardo Rasconi1, Amedeo Cesta1, and Stephen F. Smith2

1 Institute of Cognitive Science and Technology, CNR, Rome, Italy
angelo.oddi,riccardo.rasconi,amedeo.cesta@istc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA sfs@cs.cmu.edu

Abstract. This paper presents a meta-heuristic algorithm for solving a job shop
scheduling problem involving both sequence dependent setup-times and the pos-
sibility of selecting alternative routes among the available machines. The pro-
posed strategy is a variant of the Iterative Flattening Search (IFS) schema. This
work provides three separate results: (1) a constraint-based solving procedure
that extends an existing approach for classical Job Shop Scheduling; (2) a new
variable and value ordering heuristic based on temporal flexibility that take into
account both sequence dependent setup-times and flexibility in machine selec-
tion; (3) an original relaxation strategy based on the idea of randomly breaking
the execution orders of the activities on the machines with a activity selection
criteria based on their proximity to the solution’s critical path. The efficacy of the
overall heuristic optimization algorithm is demonstrated on a new benchmark set
which is an extension of a well-known and difficult benchmark for the Flexible
Job Shop Scheduling Problem.

1 Introduction

This paper describes an iterative improvement approach to solve job-shop scheduling
problems involving both sequence dependent setup-times and the possibility of select-
ing alternative routes among the available machines. Over the last years there has been
an increasing interest in solving scheduling problems involving both setup-times and
flexible shop environments [3, 2]. This fact stems mainly from the observation that in
various real-word industry or service environments there are tremendous savings when
setup times are explicitly considered in scheduling decisions. In addition, the possibility
of selecting alternative routes among the available machines is motivated by interest in
developing Flexible Manufacturing Systems (FMS) [25] able to use multiple machines
to perform the same operation on a job’s part, as well as to absorb large-scale changes,
in volume, capacity, or capability.

The proposed problem, called in the rest of the paper Flexible Job Shop Scheduling
Problem with Sequence Dependent Setup Times (SDST-FJSSP) is a generalization
of the classical Job Shop Scheduling Problem (JSSP) where a given activity may be

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms for Solv-
ing Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37835528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processed on any one of a designated set of available machines and there are no setup-
times. This problem is more difficult than the classical JSSP (which is itself NP-hard),
since it is not just a sequencing problem; in addition to deciding how to sequence ac-
tivities that require the same machine (involving sequence-dependent setup-times), it
is also necessary to choose a routing policy, i.e., deciding which machine will process
each activity. The objective remains that of minimizing makespan.

Despite this problem is often met in real manufacturing systems, not many papers
take into account sequence dependent setup-times in flexible job-shop environments.
On the other hand, a richer literature is available when setup-times and flexible job-
shop environments are considered separately. In particular, on the side of setup-times
a first reference work is [7], which relies on an earlier proposal presented in [6]. More
recent works are [28] and [13], which propose effective heuristic procedures based on
genetic algorithms and local search. In these works, the introduced local search proce-
dures extend an approach originally proposed by [19] for the classical job-shop sched-
uling problem to the setup times case. A last noteworthy work is [5], which extends the
well-known shifting bottleneck procedure [1] to the setup-time case. Both [5] and [28]
have produced reference results on a previously studied benchmark set of JSSP with
sequence dependent setup-times problems initially proposed by [7]. About the Flexible
Job Shop Scheduling FJSSP an effective synthesis of the existing solving approaches is
proposed in [14]. The core set of procedures which generate the best results include the
genetic algorithm (GA) proposed in [10], the tabu search (TS) approach of [16] and the
discrepancy-based method, called climbing depth-bound discrepancy search (CDDS),
defined in [14]. Among the papers dealing with both sequence dependent setup times
and flexible shop environments there is the work [23], which considers a shop type
composed of pools of identical machines as well as two types of setup times: one mod-
eling the transportation times between different machines (sequence dependent) and the
other one modeling the required reconfiguration times (not sequence dependent) on the
machines. The other work that deals with sequence dependent setup times and routing
flexibility is [24], which considers a flow-shop environment with multi-purpose ma-
chines such that each stage of a job can be processed by a set of unrelated machines
(the processing times of the jobs depend on the machine they are assigned to). [26] con-
siders a problem similar to the previous one, where the jobs are composed by a single
step, but setup-times are both sequence and machine dependent. Finally, [27] considers
a job-shop problem with parallel identical machines, release times and due dates but
sequence independent setup-times.

This paper focuses on a family of solving techniques referred to as Iterative Flat-
tening Search (IFS). IFS was first introduced in [8] as a scalable procedure for solving
multi-capacity scheduling problems. IFS is an iterative improvement heuristic designed
to minimize schedule makespan. Given an initial solution, IFS iteratively applies two-
steps: (1) a subset of solving decisions are randomly retracted from a current solution
(relaxation-step); (2) a new solution is then incrementally recomputed (flattening-step).
Extensions to the original IFS procedure were made in two subsequent works [17, 12]
and more recently [20] have performed a systematic study aimed at evaluating the effec-
tiveness of single component strategies within the same uniform software framework.
The IFS variant that we propose relies at its core on a constraint-based solver. This

2

procedure is an extension of the SP-PCP procedure proposed in [21]. SP-PCP generates
consistent orderings of activities requiring the same resource by imposing precedence
constraints on a temporally feasible solution, using variable and value ordering heuris-
tics that discriminate on the basis of temporal flexibility to guide the search. We extend
both the procedure and these heuristics to take into account both sequence dependent
setup-times and flexibility in machine selection. To provide a basis for embedding this
core solver within an IFS optimization framework, we also specify an original relaxation
strategy based on the idea of randomly breaking the execution orders of the activities on
the machines with a activity selection criteria based on their proximity to the solution’s
critical path.

The paper is organized as follows. Section 2 defines the SDST-FJSSP problem
and Section 3 introduces a CSP representation. Section 4 describes the core constraint-
based search procedure while Section 5 introduces details of the IFS meta-heuristics.
An experimental section (Section 6) describes the performance of our algorithm on a
set of benchmark problems, and explains the most interesting results. Some conclusions
end the paper.

2 The Scheduling Problem

The SDST-FJSSP entails synchronizing the use of a set of machines (or resources)
R = {r1, . . . , rm} to perform a set of n activities A = {a1, . . . , an} over time. The set
of activities is partitioned into a set of nj jobs J = {J1, . . . , Jnj}. The processing of a
job Jk requires the execution of a strict sequence of nk activities ai ∈ Jk and cannot be
modified. All jobs are released at time 0. Each activity ai requires the exclusive use of a
single resource ri for its entire duration chosen among a set of available resourcesRi ⊆
R. No preemption is allowed. Each machine is available at time 0 and can process more
than one operation of a given job Jk (recirculation is allowed). The processing time pir
of each activity ai depends on the selected machine r ∈ Ri, such that ei − si = pir,
where the variables si and ei represent the start and end time of ai. Moreover, for each
resource r, the value strij represents the setup time between two generic activities ai
and aj (aj is scheduled immediately after ai) requiring the same resource r, such that
ei + strij ≤ sj . As is traditionally assumed in the literature, the setup times strij satisfy
the so-called triangular inequality (see [7, 4]). The triangle inequality states that, for any
three activities ai, aj , ak requiring the same resource, the inequality strij ≤ strik + strkj
holds. A solution S = {(s1, r1), (s2, r2), . . . , (sn, rn)} is a set of pairs (si, ri), where
si is the assigned start time of ai, ri is the selected resource for ai and all the above
constraints are satisfied. Let Ck be the completion time for the job Jk, the makespan is
the value Cmax = max1≤k≤nj{Ck}. An optimal solution S∗ is a solution S with the
minimum value of Cmax. The SDST-FJSSP is NP-hard since it is an extension of the
JSSP problem [11].

3 A CSP Representation

There are different ways to model the problem as a Constraint Satisfaction Problem
(CSP) [18]; here we use an approach similar to [21]. In particular, we focus on assigning

3

resources to activities, a distinguishing aspect of SDST-FJSSP and on establishing
sequence dependent setup time constraints between pairs of activities that require the
same resource, so as to eliminate all possible conflicts in the resource usage.

Let G(AG, J,X) be a graph where the set of vertices AG contains all the activities
of the problem together with two dummy activities, a0 and an+1, respectively, repre-
senting the beginning (reference) and the end (horizon) of the schedule. Each activity
ai is labelled with the set of available resource choices Ri. J is a set of directed edges
(ai, aj) representing the precedence constraints among the activities (job precedences
constraints) and are labelled with the set of processing times pir (r ∈ Ri) of the edge’s
source activity ai. The set of undirected edges X represents the disjunctive constraints
among the activities requiring the same resource r; there is an edge for each pair of ac-
tivities ai and aj requiring the same resource r (Ri = Rj = {r}) and the related label
represents the set of possible ordering between ai and aj : ai � aj or aj � ai. Hence,
in CSP terms, there are two sets of decision variables: (1) a variable xi is defined for
each activity ai to select one resource for its execution, the domain of xi is the set of
available resource Ri: (2) A variable oijr is defined for each pair of activities ai and aj
requiring the same resource r (xi = xj = r), which can take one of two values ai � aj
or aj � ai. It is worth noting that in considering either ordering we have to take into ac-
count the presence of sequence dependent setup times, which must be included when an
activity ai is executed on the same resource before another activity aj . As we will see in
the next sections, if the setup times satisfy the triangle inequality, the previous decisions
for xijr can be represented as the following two temporal constraints: ei + strij ≤ sj
(i.e. ai � aj) or ej + strji ≤ si (i.e. aj � ai).

To support the search for a consistent assignment to the set of decision variables
xi and oijr, for any SDST-FJSSP we define the directed graph Gd(V,E), called dis-
tance graph, which is an extended version of the graph G(AG, J,X). The set of nodes
V represents time points, where tp0 is the origin time point (the reference point of
the problem), while for each activity ai, si and ei have their usual meaning. The set
of edges E represents all the imposed temporal constraints, i.e., precedences and du-
rations. In particular, for each activity ai we impose the interval duration constraint
ei − si ∈ [pmin

i , pmax
i], such that pmin

i (pmax
i) is the minimum (maximum) processing

time according to the set of available resources Ri. Given two time points tpi and tpj ,
all the constraints have the form a ≤ tpj − tpi ≤ b, and for each constraint speci-
fied in the SDST-FJSSP instance there are two weighted edges in the graph Gd(V,E);
the first one is directed from tpi to tpj with weight b and the second one is directed
from tpj to tpi with weight−a. The graph Gd(V,E) corresponds to a Simple Temporal
Problem (STP) and its consistency can be efficiently determined via shortest path com-
putations; the problem is consistent if and only if no closed paths with negative length
(or negative cycles) are contained in the graph Gd [9]. Thus, a search for a solution to a
SDST-FJSSP instance can proceed by repeatedly adding new precedence constraints
into Gd(V,E) and recomputing shortest path lengths to confirm that Gd(V,E) remains
consistent.

A solution S is given as a affine graph GS(AG, J,XS), such that each undirected
edge (ai, aj) in X is replaced with a directed edge representing one of the possible
orderings between ai and aj : ai � aj or aj � ai. In general the directed graph GS rep-

4

resents a set of temporal solutions (S1, S2, . . . , Sn) that is, a set of assignments to the
activities’ start times which are consistent with the set of imposed constraints XS . Let
d(tpi, tpj) (d(tpj , tpi)) designate the shortest path length in graphGd(V,E) from node
tpi to node tpj (from node tpj to node tpi); then, the constraint −d(tpj , tpi) ≤ tpj −
tpi ≤ d(tpi, tpj) is demonstrated to hold [9]. Hence, the interval [lbi, ubi] of time values
associated with a given time variable tpi respect to the reference point tp0 is computed
on the graph Gd as the interval [−d(tpi, tp0), d(tp0, tpi)]. In particular, given a STP,
the following two sets of value assignments Slb = {−d(tp1, tp0),−d(tp2, tp0), . . . ,
−d(tpn, tp0)} and Sub = {d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the STP vari-
ables tpi represent the so-called earliest-time solution and latest-time solution, respec-
tively.

4 Basic Constraint-based Search

The proposed procedure for solving instances of SDST-FJSSP integrates a Precedence
Constraint Posting (PCP) one-shot search for generating sample solutions and an Iter-
ative Flattening meta-heuristic that pursues optimization. The one-shot step, similarly
to the SP-PCP scheduling procedure (Shortest Path-based Precedence Constraint Post-
ing) proposed in [21], utilizes shortest path information inGd(V,E) to guide the search
process. Shortest path information is used in a twofold fashion to enhance the search
process: to propagate problem constraints and to define variable and value ordering
heuristics.

4.1 Propagation Rules

The first way to exploit shortest path information is by introducing conditions to re-
move infeasible values from the domains of the decision variables xi, representing the
assignment of resources to activities. Namely, for each activity ai we relax the dis-
junctive duration constraint into the interval constraint ei − si ∈ [pmin

i , pmax
i], such

that pmin
i (pmax

i) is the minimum (maximum) processing time according to the set of
available resources Ri (i.e., the domain of the decision variable xi). As the search pro-
ceeds, as soon as the interval of distance between the start time and the end time of ai
[−d(si, ei), d(ei, si)] is updated, the duration pir 6∈ [−d(si, ei), d(ei, si)] is removed
from the domain of xi and a new interval [pmin

i , pmax
i] is recomputed accordingly. In

case the domain of the decision variable xi becomes empty, the search reaches a failure
state.

The second way to exploit shortest path is by introducing new Dominance Condi-
tions (which adapt those presented in [21] to the setup times case), through which prob-
lem constraints are propagated and mandatory decisions for promoting early pruning of
alternatives are identified. The following concepts of slack(ei, sj) and co-slack(ei, sj)
(complementary slack) play a central role in the definition of such new dominance con-
ditions. Given two activities ai, aj both assigned to resource r, and the related interval
of distances [−d(sj , ei), d(ei, sj)] on the graph Gd, they are defined as follows:

– slackr(ei, sj) = d(ei, sj) − strij is the difference between the maximal distance
d(ei, sj) and the setup time strij . Hence, it provides a measure of the degree of

5

sequencing flexibility between ai and aj 3 taking into account the setup time con-
straint ei + strij ≤ sj . If slackr(ei, sj) < 0, then the ordering ai � aj is not
feasible.

– co-slackr(ei, sj) = −d(sj , ei)−strij is the difference between the minimum possi-
ble distance between ai and aj ,−d(si, ej), and the setup time strij ; if co-slackr(ei, sj) ≥
0, then there is no need to separate ai and aj , as the setup time constraint ei+strij ≤
sj is already satisfied.

In order not to overload the notation, in the rest of the paper the slack and co−slack
elements will be presented without the resource r superscript.

For any pair of activities ai and aj that can compete for the same resource r (Ri∩
Rj 6= ∅), given the corresponding durations pir and pjr, the Dominance Conditions,
describing the four main possible cases of conflict, are defined as follows:

1. slack(ei, sj) < 0 ∧ slack(ej , si) < 0
2. slack(ei, sj) < 0 ∧ slack(ej , si) ≥ 0 ∧ co-slack(ej , si) < 0
3. slack(ei, sj) ≥ 0 ∧ slack(ej , si) < 0 ∧ co-slack(ei, sj) < 0
4. slack(ei, sj) ≥ 0 ∧ slack(ej , si) ≥ 0

Condition 1 represents an unresolvable conflict. There is no way to order ai and aj
taking into account the setup times strij and strji, without inducing a negative cycle in
the graph Gd(V,E). When Condition 1 is verified there are four different interesting
sub-cases generated on the basis of the cardinality of the domain sets Ri and Rj .

a. |Ri| = |Rj | = 1: the search has reached a failure state;
b. |Ri| = 1 ∧ |Rj | > 1: the resource requirement r can be removed from Rj ;
c. |Ri| > 1 ∧ |Rj | = 1: the resource requirement r can be removed from Ri;
d. |Ri| > 1 ∧ |Rj | > 1: the activities ai and aj cannot use the same resource r.

Conditions 2, and 3, alternatively, distinguish uniquely resolvable conflicts, i.e.,
there is only one feasible ordering of ai and aj when both the activities require r, and the
decision of which constraint to post is thus unconditional. In the particular case where
|Ri| = |Rj | = 1 the decision aj � ai is mandatory; if Condition 2 is verified, only
aj � ai leavesGd(V,E) consistent. It is worth noting that the presence of the condition
co-slack(ej , si) < 0 entails that the minimal distance between the end time ej and the
start time si is shorter than the minimal required setup time strji; hence, we still need to
impose the constraint ej + strji ≤ si. In other words, the co-slack condition avoids the
imposition of unnecessary precedence constraints for trivially solved conflicts. Condi-
tion 3 works similarly, and entails that only the ai � aj ordering is feasible. In case
there is at least one activity with more than one resource option (|Ri| > 1 ∨ |Rj | > 1),
it is still possible to choose different resource assignments for ai and aj , and avoid
posting a precedence constraint. Condition 3 works similarly, and entails that only the
ai � aj ordering is feasible when |Ri| = |Rj | = 1.

Condition 4 designates a class of resolvable conflicts with more search options. In
this case, when |Ri| = |Rj | = 1 both orderings between ai and aj remain feasible, and

3 Intuitively, the higher is the degree of sequencing flexibility, the larger is the set of feasible
assignments to the start times of ai and aj .

6

it is therefore necessary to perform a search decision. When there is at least one activity
ai or aj with more than one resource option (|Ri| > 1 ∨ |Rj | > 1), then there is also
the possibility of choosing different resource assignment to ai and aj , and avoid to post
a precedence constraint.

4.2 Heuristic Analysis
Shortest path information in Gd can also be exploited to define variable and value or-
dering heuristics for the decision variables xi and oijr in all cases where no mandatory
decisions are deduced from the propagation phase. The idea is to evaluate both types
of decision variables (xi and oijr) and select the one (independently of type) with the
minimum heuristic evaluation. The selection of the variables is based on the most con-
strained first (MCF) principle and the selection of values follows the least constraining
value (LCV) heuristic.
Ordering decision variables. We start to analyze the case of selecting an ordering de-
cision variables oijr, under the hypothesis that both the activity ai and aj use the same
resource r ∈ Ri ∩ Rj . As stated above, in this context slack(ei, sj) and slack(ej , si)
provide measures of the degree of sequencing flexibility between ai and aj . More
precisely, given a variable oijr, related to the pair (ai, aj), its heuristic evaluation is
V arEval(ai, aj) =min{ slack(ei,sj)√

S
,
slack(ej ,si)√

S
} if slack(ei, sj) ≥ 0 ∧ slack(ej , si) ≥ 0

slack(ej , si) if slack(ei, sj) < 0 ∧ slack(ej , si) ≥ 0
slack(ei, sj) if slack(ei, sj) ≥ 0 ∧ slack(ej , si) < 0.

where S =
min{slack(ei,sj),slack(ej ,si)}
max{slack(ei,sj),slack(ej ,si)}

4. The variable ordering heuristic attempts to
focus first on the most constrained conflict (ai, aj), that is, on the conflict with the least
amount of temporal flexibility (i.e., the conflict that is closest to previous Condition 1.a).

As opposed to variable ordering, the value ordering heuristic attempts to resolve the
selected conflict (ai, aj) by simply choosing the activity pair sequencing that retains the
highest amount of temporal flexibility (least constrained value). Specifically, ai � aj is
selected if slack(ei, sj) > slack(ej , si) and aj � ai is selected otherwise.

Resource decision variables. Decision variables xi are also selected according to the
MCF principle. Initially, all pairs of activities (ai, aj), such that (|Ri| > 1 ∨ |Rj | > 1
and Ri ∩ Rj 6= ∅)) undergo a double-key sorting, where the primary key is a heuris-
tic evaluation based on resource flexibility and computed as Fij = 2(|Ri| + |Rj |) −
|Ri ∩ Rj |, while the secondary key is the known V arEval(ai, aj) heuristic, based
on temporal flexibility5. Then, we select the pair (a∗i , a

∗
j) with the lowest value of the

4 The
√
S bias is introduced to take into account cases where a first conflict with the overall

min{slack(ei, sj), slack(ej , si)} has a very large max{slack(ei, sj), slack(ej , si)}, and
a second conflict has two shortest path values just slightly larger than this overall minimum.
In such situations, it is not clear which conflict has the least temporal flexibility.

5 The resource flexibility Fij increases with the size of the domains Ri and Rj , and decreases
with the size of the set Ri ∩ Rj , which is correlated to the possibility of creating resource
conflicts.

7

pair 〈Fij , V arEval(ai, aj)〉, where V arEval(ai, aj) is computed for each possible
resource r ∈ Ri ∩Rj . Finally, between x∗i and x∗j we select the variable whose domain
of values has the lowest cardinality.

Value ordering on the decision variables xi is also accomplished by using temporal
flexibility measures. If Ri is the domain of the selected decision variable xi, then for
each resource r ∈ Ri, we consider the set of activities Ar already assigned to resource
r and calculate the value Fmin(r) = minak∈Ar

{V arEval(ai, ak)}. Then, for each
resource r we evaluate the flexibility associated with the most critical pair (ai, ak),
under the hypothesis that the resource r is assigned to ai. The resource r∗ ∈ Ri which
maximizes the value Fmin(r), and therefore allows ai to retain maximal flexibility, is
selected.

PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableDecisions(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseDecisionVariable(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. vc← ChooseValueConstraint(S, C)
15. PostConstraint(S, vc)
16. end
17. end
18. end-loop
19. return S

Fig. 1. The PCP one-shot algorithm

4.3 The PCP Algorithm

Figure 1 gives the basic overall PCP solution procedure, which starts from an empty
solution (Step 1) where the graphs Gd is initialized according to Section 3. Also, the
procedure accepts a never-exceed value (Cmax) of the objective function of interest,
used to impose an initial global makespan to all the jobs. The PCP algorithm shown
in Figure 1 analyses the decision variables xi and oijr and, respectively, decides their
values in terms of imposing a duration constraint on a selected activity or a setup time
constraint (i.e., ai � aj or aj � ai, see Section 3). In broad terms, the procedure
in Figure 1 interleaves the application of Dominance Conditions (Steps 4 and 7) with
variable and value ordering (Steps 10 and 14 respectively) and updating of the solution
graph Gd (Steps 8 and 15) to conduct a single pass through the search tree. At each

8

IFS(S,MaxFail, γ)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤MaxFail) do
4. RELAX(S, γ)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter← 0
9. else
10. counter← counter + 1
11. return (Sbest)
end

Fig. 2. The IFS schema

cycle, a propagation step is performed (Step 3) by the function Propagate(S), which
propagates the effects of posting a new solving decision (i.e., a setup time constraint) in
the graph Gd. In particular, Propagate(S) updates the shortest path distances on the
graph Gd. A solution S is found when the PCP algorithm finds a feasible assignment
of resources ri ∈ Ri to activities ai (i = 1 . . . n) and when none of the four domi-
nance conditions is verified on S. In fact, when none of the four Dominance Conditions
is verified (and the PCP procedure exits with success), for each resource r, the set of
activities Ar assigned to r represents a total execution order. In addition, as the graph
Gd represents a consistent Simple Temporal Problem (see Section 3), one possible so-
lution to the problem is the earliest-time solution, such that S = {(−d(s1, tp0), r1), (-
d(s2, tp0), r2), . . . , (−d(sn, tp0), rn)}.

5 The Optimization Metaheuristic

Figure 2 introduces the generic IFS procedure. The algorithm basically alternates relax-
ation and flattening steps until a better solution is found or a maximal number of itera-
tions is executed. The procedure takes three parameters as input: (1) an initial solution
S; (2) a positive integer MaxFail, which specifies the maximum number of consec-
utive non makespan-improving moves that the algorithm will tolerate before terminat-
ing; (3) a parameter γ, representing the selection probability of an activity for removal
(relaxing factor), as explained in 5.1. After the initialization (Steps 1-2), a solution is
repeatedly modified within the while loop (Steps 3-10) by applying the RELAX proce-
dure (as explained in the following section), and the PCP procedure shown in Figure 1
used as flattening step. At each iteration, the RELAX step reintroduces the possibility of
resource contention, and the PCP step is called again to restore resource feasibility. In
the case a better makespan solution is found (Step 6), the new solution is saved in Sbest

and the counter is reset to 0. If no improvement is found within MaxFail moves, the
algorithm terminates and returns the best solution found.

9

5.1 Relaxation Procedure

The first part of the IFS cycle is the relaxation step, wherein a feasible schedule is
relaxed into a possibly resource infeasible, but precedence feasible, schedule by retract-
ing some scheduling decisions. Here we use a strategy similar to the one in [12] and
called chain-based relaxation. Given the graph representation described above, each
scheduling decision is either a setup time constraint between a pair of activities that
are competing for the same resource capacity and/or a resource assignment to one ac-
tivity. The strategy starts from a solution S and randomly breaks some total orders (or
chains) imposed on the subset of activities requiring the same resource r. The relax-
ation strategy requires an input solution as a graph GS(A, J,XS) which (Section 3) is
a modification of the original precedence graph G that represents the input scheduling
problem. GS contains a set of additional general precedence constraints XS which can
be seen as a set of chains. Each chain imposes a total order on a subset of problem
activities requiring the same resource.

The chain-based relaxation proceeds in two steps. Firstly, a subset of activities ai is
randomly selected from the input solution S, according to some criteria that will be ex-
plained below. The selection process is generally driven by a parameter γ ∈ (0, 1) that
indicates the probability that each activity has to be selected (γ is called the relaxing
factor). For each selected activity, the resource assignment is removed and the original
set of available options Ri is re-estabilished. Secondly, a procedure similar to CHAIN-
ING – used in [22] – is applied to the set of unselected activities. This operation is in
its turn accomplished in three steps: (1) all previously posted setup time constraints XS

are removed from the solution S; (2) the unselected activities are sorted by increasing
earliest start times of the input solution S; (3) for each resource r and for each unse-
lected activity ai assigned to r (according to the increasing order of start times), ai’s
predecessor p = pred(ai, r) is considered and the setup time constraint related to the
sequence p � ai is posted (the dummy activity a0 is the first activity of all the chains).
This last step is iterated until all the activities are linked by the correct setup time con-
straints. Note that this set of unselected activities still represents a feasible solution to
a scheduling sub-problem, which is represented as a graph GS in which the randomly
selected activities float outside the solution and thus re-create conflict in resource usage.

As anticipated above, we implemented two different mechanisms to perform the
random activity selection process, respectively called Random and a Slack-based.

Random selection According to the random selection approach, at each solving cycle
of the IFS algorithm in Figure 2, a subset of activities ai is randomly selected from the
input solution S, with each activity having an uniformly distributed selection probabil-
ity equal to γ. It is of great importance to underscore that according to this approach,
the activities to be relaxed are randomly picked up from the solution S with the same
probability which, as we will see shortly, entails a relaxation characterized by a greater
disruption on S, compared to the following selection approach.

Critical Path-biased selection As opposed to the random selection, at each iteration the
critical path-biased selection approach restricts the pool of the relaxable activities to the
subset containing those activities that are closer to the critical path condition (critical

10

path set). As known, an activity ai belongs to the critical path (i.e., meets the critical
path condition) when, given ai’s end time ei and its feasibility interval [lbi, ubi], the
condition lbi = ubi holds. For each activity ai, the smaller the difference ubi − lbi
computed on ei, the closer is ai to the critical path condition. At each IFS iteration,
the critical path set is built so as to contain any activity ai with a probability directly
proportional to the γ parameter and inversely proportional to the ubi − lbi value. For
obvious reasons, the critical path-biased relaxation entails a smaller disruption on the
solution S, as it operates on a smaller set of activities; the activities that are farther
from the critical path condition will have a minimum probability to be selected. As
explained in the following section, this difference has important consequences on the
experimental behavior.

6 Experimental Analysis

The empirical evaluation has been carried out on a SDST-FJSSP benchmark set syn-
thesized on purpose out of the first 20 instances of the edata subset of the FJSSP HU-
data testbed from [15], and will therefore be referred to as SDST-HUdata. Each one
of the SDST-HUdata instances has been created by adding to the original HUdata in-
stance one Setup-Time matrix str(nJ × nJ) for each present machine r, where nJ is
the number of present jobs. Without loss of generality, the same randomly generated
Setup-Time matrix was added for each machine of all the benchmark instances. Each
value stri,j in the Setup-Time matrix models the setup time necessary to reconfigure the
r-th machine to switch from job i to job j. Note that machine reconfiguration times are
sequence dependent: setting up a machine to process a product of type j after process-
ing a product of type i can generally take a different amount of time than setting up the
same machine for the opposite transition. The elements stri,j of the Setup-Time matrix
satisfy the triangle inequality [7, 4], that is, for each three activities ai, aj , ak requiring
the same machine, the inequality strij ≤ strik + strkj holds. The 20 instances taken from
HUdata (namely, the instances la01-la20) are divided in four groups of five (nJ ×nA)
instances each, where nJ is the number of jobs and nA is the number of activities per
job for each instance. More precisely, group la01-la05 is (10 × 5), group la06-la10 is
(15×5), group la11-la15 is (20×5), and group la16-la20 is (10×10). In all instances,
the processing times on machines assignable to the same activity are identical, as in the
original HUdata set. The algorithm used for these experiments has been implemented
in Java and run on a AMD Phenom II X4 Quad 3.5 Ghz under Linux Ubuntu 10.4.1.

Results. Table 1 and table 2 show the obtained results running our algorithm on the
SDST-HUdata set using the Random or Slack-based procedure in the IFS relaxation step,
respectively. Both tables are composed of 10 columns and 23 rows (one row per problem
instance plus three data wrap-up rows). The best column lists the shortest makespans
obtained in the experiments for each instance; underlined values represent the best val-
ues obtained from both tables (global bests). The columns labeled γ = 0.2 to γ = 0.9
(see Section 4) contain the results obtained running the IFS procedure with a different
value for the relaxing factor γ. For each problem instance (i.e., for each row) the values
in bold indicate the best makespan found among all the tested γ values (γ runs).

11

Table 1. Results with random selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 772 731 728 726 729 726 729 740
la02 749 785 785 749 749 749 749 749 768
la03 652 677 658 658 658 652 652 658 675
la04 673 673 673 673 689 689 680 680 690
la05 603 613 613 603 605 605 606 607 632
la06 950 965 950 954 954 971 997 995 1020
la07 916 946 916 925 919 947 950 987 1000
la08 954 973 961 964 954 963 958 1000 1001
la09 1002 1039 1002 1039 1020 1042 1020 1045 1068
la10 977 1017 977 1022 977 1027 1008 1042 1048
la11 1265 1265 1312 1285 1282 1345 1332 1372 1368
la12 1088 1088 1114 1130 1167 1165 1199 1209 1198
la13 1255 1255 1255 1255 1300 1280 1300 1316 1315
la14 1292 1292 1315 1344 1346 1362 1351 1345 1372
la15 1298 1298 1302 1338 1355 1352 1367 1388 1429
la16 1012 1028 1012 1012 1012 1012 1012 1012 1023
la17 864 881 885 885 864 888 864 864 902
la18 985 1021 1007 1029 999 985 985 985 985
la19 956 1006 992 975 956 956 978 959 981
la20 997 1008 1010 997 997 997 997 997 999
B (N) 12 6(1) 7(5) 6(4) 8(5) 6(5) 7(5) 5(3) 1(1)
Av.C. 20149 17579 14767 11215 10950 9530 7782 7588
Av.MRE 19.34 18.29 18.66 18.37 19.42 19.43 20.60 22.44

For each γ run, the last three rows of both tables show respectively (up-bottom):
(1) the number B of best solutions found locally (i.e., within the current table) and,
underlined within round brackets, the number N of best solutions found globally (i.e.,
between both tables); (2) the average number of utilized solving cycles (Av.C.), and
(3) the average mean relative error (Av.MRE)6 with respect to the lower bounds of
the original HUdata set (i.e., without setup times), reported in [16]. For all runs, a
maximum CPU time limit was set to 800 seconds.

One significant result that the tables show is the difference in the average of uti-
lized solving cycles (Av.C. row) between the random and the slack-based relaxation
procedure. In fact, it can be observed that on average the slack-based approach uses
more solving cycles in the same allotted time than its random counterpart (i.e., the
slack-based relaxation heuristic is faster in the solving process). This is explained by
observing that the slack-based relaxation heuristic entails a less severe disruption of the
current solution at each solving cycle compared to the random heuristic, as the former
generally relaxes a lower number of activities (given the same γ value). The lower the
disruption level of the current solution in the relaxation step, the easier it is to re-gain
solution feasibility in the flattening step. In addition of this efficiency issue, the slack-
based relaxation approach also provides the extra effectiveness deriving from operating
in the vicinity of the critical path of the solution, as demonstrated in [8].

The good performance exhibited by the slack-based heuristic can be also observed
by inspecting the B(N) rows in both tables. Clearly, the slack-based approach finds a

6 The individual MRE of each solution is computed as follows: MRE = 100 × (Cmax −
LB)/LB, where Cmax is the solution makespan and LB is the instance’s lower bound

12

Table 2. Results with slack-based selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 739 736 726 726 726 726 726 726
la02 749 785 749 749 749 749 749 749 749
la03 652 658 658 658 658 658 652 658 658
la04 673 686 686 686 673 686 680 673 680
la05 603 613 603 613 605 603 604 603 605
la06 960 963 963 971 960 963 962 970 970
la07 925 941 966 941 925 931 946 972 1000
la08 948 983 963 948 964 993 967 994 973
la09 1002 1020 1020 1002 1002 1040 1069 1052 1042
la10 985 993 991 1007 1022 1022 1017 985 1024
la11 1256 1256 1257 1295 1295 1308 1318 1324 1332
la12 1082 1082 1097 1098 1159 1152 1188 1163 1207
la13 1215 1222 1240 1240 1223 1215 1311 1301 1311
la14 1285 1308 1285 1285 1311 1295 1335 1372 1345
la15 1291 1333 1291 1330 1302 1311 1383 1389 1412
la16 1007 1012 1012 1012 1007 1012 1012 1012 1012
la17 858 889 868 893 895 888 858 859 872
la18 985 1019 1025 1021 1007 985 985 985 985
la19 956 1006 976 987 984 956 980 956 959
la20 997 997 1033 997 997 997 1003 997 997
B (N) 17 3(3) 4(4) 5(5) 8(6) 7(7) 5(5) 8(7) 4(4)
Av.C. 21273 18068 15503 13007 10643 10653 8639 8575
Av.MRE 18.67 18.09 18.26 18.19 18.14 19.58 19.44 20.16

higher number of best solutions (17 against 12), which is confirmed by comparing the
number of locally found bests (B) with the global ones (N), for each γ value, and for
both heuristics.

Another interesting aspect can be found analyzing the γ values range where the
best performances are obtained (Av.MRE row). Inspecting the Av.MRE values, the
following can in fact be stated: (1) the slack-based heuristic finds solutions of higher
quality w.r.t. the random heuristic over the complete γ variability range; (2) in the ran-
dom case, the best results are obtained in the [0.3, 0.5] γ range, while in the slack-based
case the best γ range is wider ([0.3, 0.6]).

7 Conclusions

In this paper we have proposed the use of Iterative Flattening Search (IFS) as a means of
effectively solving the SDST-FJSSP. The proposed algorithm uses as its core solving
procedure an extended version of the SP-PCP procedure proposed by [21] and a new
relaxation strategy targeted to the case of SDST-FJSSP. The effectiveness of the pro-
cedure was demonstrated on 20 modified instances of the edata subset of the FJSSP
HUdata testbed from [15], a well known and difficult Flexible Job Shop Scheduling
benchmark set. In particular, we show as the new slack-based relaxation strategy ex-
hibits better performance than the random selection one. Further improvement of the
current algorithm may be possible by incorporating additional heuristic information
and search mechanisms. One of the next steps will be the collection of the benchmarks
proposed in the cited works [23, 24, 26, 27], although no one of the problems proposed

13

in these papers coincides with the SDST-FJSSP, basically they can be seen as slight
variations of this problem, hence the proposed IFS procedure can be adapted to solve an
interesting and large class of flexible manufacturing scheduling problems. This will be
the focus of our future work together the realization of a web repository to collect all
the interesting benchmark sets.

Acknowledgments

CNR authors are partially supported by EU under the ULISSE project (Contract FP7.218815),
and MIUR under the PRIN project 20089M932N (funds 2008).

References

1. J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop schedul-
ing. Management Science, 34(3):391–401, 1988.

2. A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov. A survey of scheduling problems with
setup times or costs. European Journal of Operational Research, 187(3):985–1032, 2008.

3. A. Allahverdi and H. Soroush. The significance of reducing setup times/setup costs. Euro-
pean Journal of Operational Research, 187(3):978–984, 2008.

4. C. Artigues and D. Feillet. A branch and bound method for the job-shop problem with
sequence-dependent setup times. Annals OR, 159(1):135–159, 2008.

5. E. Balas, N. Simonetti, and A. Vazacopoulos. Job shop scheduling with setup times, dead-
lines and precedence constraints. Journal of Scheduling, 11(4):253–262, 2008.

6. P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics, 49(1-3):107–127, 1994.

7. P. Brucker and O. Thiele. A branch & bound method for the general-shop problem with
sequence dependent setup-times. OR Spectrum, 18(3):145–161, 1996.

8. A. Cesta, A. Oddi, and S. F. Smith. Iterative Flattening: A Scalable Method for Solving
Multi-Capacity Scheduling Problems. In AAAI/IAAI. 17th National Conference on Artificial
Intelligence, pages 742–747, 2000.

9. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, 1991.

10. J. Gao, L. Sun, and M. Gen. A hybrid genetic and variable neighborhood descent algorithm
for flexible job shop scheduling problems. Computers & Operations Research, 35:2892–
2907, 2008.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

12. D. Godard, P. Laborie, and W. Nuitjen. Randomized Large Neighborhood Search for Cumu-
lative Scheduling. In Proceedings of ICAPS-05, pages 81–89, 2005.

13. M. A. González, C. R. Vela, and R. Varela. A Tabu Search Algorithm to Minimize Lateness
in Scheduling Problems with Setup Times. In Proceedings of the CAEPIA-TTIA 2009 13th
Conference of the Spanish Association on Artificial Intelligence, 2009.

14. A. B. Hmida, M. Haouari, M.-J. Huguet, and P. Lopez. Discrepancy search for the flexible
job shop scheduling problem. Computers & Operations Research, 37:2192–2201, 2010.

15. J. Hurink, B. Jurisch, and M. Thole. Tabu search for the job-shop scheduling problem with
multi-purpose machines. OR Spectrum, 15(4):205–215, February 1994.

16. M. Mastrolilli and L. M. Gambardella. Effective neighbourhood functions for the flexible
job shop problem. Journal of Scheduling, 3:3–20, 2000.

14

17. L. Michel and P. Van Hentenryck. Iterative Relaxations for Iterative Flattening in Cumulative
Scheduling. In Proceedings of ICAPS-04, pages 200–208, 2004.

18. U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture
Processing. Information Sciences, 7:95–132, 1974.

19. E. Nowicki and C. Smutnicki. An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling, 8(2):145–159, 2005.

20. A. Oddi, A. Cesta, N. Policella, and S. F. Smith. Iterative flattening search for resource
constrained scheduling. J. Intelligent Manufacturing, 21(1):17–30, 2010.

21. A. Oddi and S. Smith. Stochastic Procedures for Generating Feasible Schedules. In Pro-
ceedings 14th National Conference on AI (AAAI-97), pages 308–314, 1997.

22. N. Policella, A. Cesta, A. Oddi, and S. Smith. From Precedence Constraint Posting to Partial
Order Schedules. AI Communications, 20(3):163–180, 2007.

23. A. Rossi and G. Dini. Flexible job-shop scheduling with routing flexibility and separable
setup times using ant colony optimisation method. Robotics and Computer-Integrated Man-
ufacturing, 23(5):503–516, 2007.

24. R. Ruiz and C. Maroto. A genetic algorithm for hybrid flowshops with sequence dependent
setup times and machine eligibility. European Journal of Operational Research, 169(3):781
– 800, 2006.

25. A. K. Sethi and S. P. Sethi. Flexibility in manufacturing: A survey. International Journal of
Flexible Manufacturing Systems, 2:289–328, 1990. 10.1007/BF00186471.

26. E. Vallada and R. Ruiz. A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times. European Journal of Operational Research,
211(3):612 – 622, 2011.

27. V. Valls, M. A. Perez, and M. S. Quintanilla. A tabu search approach to machine scheduling.
European Journal of Operational Research, 106(2-3):277 – 300, 1998.

28. C. R. Vela, R. Varela, and M. A. González. Local search and genetic algorithm for the job
shop scheduling problem with sequence dependent setup times. Journal of Heuristics, 2009.

15

