
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/257581234

Lateness	minimization	with	Tabu	search	for	job
shop	scheduling	problem	with	sequence
dependent	setup	times

ARTICLE		in		JOURNAL	OF	INTELLIGENT	MANUFACTURING	·	AUGUST	2013

Impact	Factor:	1.14	·	DOI:	10.1007/s10845-011-0622-5

CITATIONS

14

DOWNLOADS

36

VIEWS

66

4	AUTHORS:

Miguel	Ángel	González	Fernández

University	of	Oviedo

17	PUBLICATIONS			95	CITATIONS			

SEE	PROFILE

Camino	Rodríguez	Vela

University	of	Oviedo

62	PUBLICATIONS			287	CITATIONS			

SEE	PROFILE

Ines	Gonzalez	Rodriguez

Universidad	de	Cantabria

41	PUBLICATIONS			146	CITATIONS			

SEE	PROFILE

Ramiro	Varela	Arias

University	of	Oviedo

66	PUBLICATIONS			283	CITATIONS			

SEE	PROFILE

Available	from:	Ines	Gonzalez	Rodriguez

Retrieved	on:	10	July	2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Oviedo

https://core.ac.uk/display/71829453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.researchgate.net/publication/257581234_Lateness_minimization_with_Tabu_search_for_job_shop_scheduling_problem_with_sequence_dependent_setup_times?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/257581234_Lateness_minimization_with_Tabu_search_for_job_shop_scheduling_problem_with_sequence_dependent_setup_times?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Miguel_Angel_Gonzalez_Fernandez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Miguel_Angel_Gonzalez_Fernandez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Oviedo?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Miguel_Angel_Gonzalez_Fernandez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Camino_Vela?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Camino_Vela?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Oviedo?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Camino_Vela?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Ines_Gonzalez_Rodriguez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Ines_Gonzalez_Rodriguez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Universidad_de_Cantabria?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Ines_Gonzalez_Rodriguez?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Ramiro_Arias?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Ramiro_Arias?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Oviedo?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Ramiro_Arias?enrichId=rgreq-e2e4d66c-b54d-4643-97e8-1129ba6cb7cf&enrichSource=Y292ZXJQYWdlOzI1NzU4MTIzNDtBUzoxNTAyOTE5MzY3MTQ3NTRAMTQxMjg0Mzc5ODUwNQ%3D%3D&el=1_x_7

Journal of Intelligent Manufacturing manuscript No.
(will be inserted by the editor)

Lateness Minimization with Tabu Search for Job Shop
Scheduling Problem with Sequence Dependent Setup Times

Miguel A. González · Camino R. Vela · Inés
González-Rodríguez · Ramiro Varela

Received: date / Accepted: date

Abstract We tackle the job shop scheduling problem with sequence dependent setup times
and maximum lateness minimization by means of a tabu search algorithm. We start by defin-
ing a disjunctive model for this problem, which allows us to study some properties of the
problem. Using these properties we define a new local search neighborhood structure, which
is then incorporated into the proposed tabu search algorithm. To assess the performance of
this algorithm, we present the results of an extensive experimental study, including an anal-
ysis of the tabu search algorithm under different running conditions and a comparison with
the state-of-the-art algorithms. The experiments are performed across two sets of conven-
tional benchmarks with 960 and 17 instances respectively. The results demonstrate that the
proposed tabu search algorithm is superior to the state-of-the-art methods both in quality
and stability. In particular, our algorithm establishes new best solutions for 817 of the 960
instances of the first set and reaches the best known solutions in 16 of the 17 instances of
the second set.

Keywords scheduling · tabu search · setup times · lateness minimization · computational
experiments.

A preliminary version of the tabu search method was presented at the 13th Conference of the Spanish Asso-
ciation for Artificial Intelligence, CAEPIA2009, held in Seville, Spain, in 2009 (González et al, 2009)

Camino R. Vela ·Miguel A. González · Ramiro Varela
Computing Technologies Group, Department of Computing, Artificial Intelligence Center,
University of Oviedo, Spain. Campus de Viesques, 33271 Gijón.

Miguel A. González
E-mail: mig@uniovi.es

Camino R. Vela
E-mail: crvela@uniovi.es

Ramiro Varela
E-mail: ramiro@uniovi.es

Inés González-Rodríguez
Department of Mathematics, Statistics and Computing. University of Cantabria, Spain.
Los Castros s/n, 39005 Santander. E-mail: ines.gonzalez@unican.es

Ines
Texto escrito a máquina
Journal of Intelligent Manufacturing (2013), 24(4): 741--754DOI: 10.1007/s10845-011-0622-5, SpringerAccepted authors' version; the final publication is available at link.springer.com

2 Miguel A. González et al.

1 Introduction

In this paper we confront the Job Shop Scheduling Problem with Sequence Dependent Setup
Times (SDST-JSP) and maximum lateness minimization. This is a variant of the classical
Job Shop Scheduling Problem (JSP) of great interest that has been considered in a number
of surveys and research works, (Ovacik and Uzsoy, 1994; Balas et al, 2008; Artigues and
Feillet, 2008; Oddi et al, 2009). This kind of problems arise, for instance, in automobile,
printing, semiconductor, chemical or pharmaceutical industries (Allahverdi et al, 2008). For
instance, (Ovacik and Uzsoy, 1994) presented an extensive study of a digital testing facility
of large semiconductor manufacturing, where numerous integrated circuits are tested and
the test workcenters have sequence dependent setup times. A benchmark inspired on these
problems was proposed therein which has since then been used by a number of researches.
Another example is described in (Pinedo, 2008) regarding a paper bag factory producing
bags for different uses. The production process consists of three stages (printing, gluing and
sewing) and setup times are required when a machine switches from one bag to another, their
values depending on the similarity between bags (color, size, etc.). Setup considerations are a
relevant characteristic that changes the nature of scheduling problems, so well-known results
and techniques for the JSP are not directly applicable to the SDST-JSP. Some extensions are
however possible, as done for the case of makespan minimization in (Brucker and Thiele,
1996; Vela et al, 2010).

In the sequel, we propose to exploit neighbourhood structures to deal with lateness min-
imization for the SDST-JSP. We start by defining a new disjunctive graph representation
for the SDST-JSP with lateness minimization which is similar to other representations pro-
posed for the classical JSP, for example for lateness minimization (Mehta and Uzsoy, 1998)
or considering deadlines and makespan minimization (Balas and Lancia, 1998). Given this
new graph, we extend a neighborhood structure proposed for makespan minimization in
(González et al, 2008). The resulting structure, denoted NS

L , is then incorporated to a Tabu
Search (TS) algorithm, T S−NS

L . For the experimental study we consider the benchmarks
proposed in (Ovacik and Uzsoy, 1994) and in (Brucker and Thiele, 1996), and compare
T S−NS

L with state-of-the-art approaches from (Balas et al, 2008) and (Oddi et al, 2009),
illustrating the good performance of our proposal and obtaining new best-known values in
some cases.

Setup considerations in scheduling started almost four decades ago in (Wilbrecht and
Prescott, 1969), where the authors discovered through a simulation study that sequence-
dependent setup times play a critical role in the performance of a job shop operating near full
capacity. Since then, a number of approaches to scheduling problems have been proposed
that take into account setup times. These have been reviewed in (Armentano and Filho,
2007); more recent work on a variety of scheduling problems involving setup times can
be found, for example, in (Ying et al, 2011; Fleszar et al, 2011; Huang et al, 2011). The
SDST-JSP with makespan minimization was first considered in (Brucker and Thiele, 1996),
where the authors proposed a branch and bound algorithm and experimented on the BT
set. More recently, in (Vela et al, 2010; González et al, 2008) two hybrid approaches have
been proposed that combine a genetic algorithm with local search procedures, obtaining the
best-known solutions for the largest instances of the BT set.

In (Uzsoy and Velásquez, 2008) the authors make it clear the relevance of lateness as
optimization criteria, motivating the formulation of the shop-floor scheduling problem as
that of minimizing maximum lateness (Lmax), “since this will avoid making some jobs early
at the expense of others being extremely delayed”. In this paper, the authors establish a
relationship between both optimization criteria, Lmax and Cmax. In fact, their local search

Lateness Minimization with TS for SDST-JSP 3

algorithm, termed MEDD, attempts to reduce the makespan at an intermediate step, and this
reduction is expected to lead a further reduction in Lmax as well.

The SDST-JSP with maximum lateness minimization has been considered in a number
of research works. For instance, (Ovacik and Uzsoy, 1994) proposed a family of heuristics
that use global information to make local decisions at the machine level and experimented
with the above mentioned instances, inspired by semiconductor industry. Their results were
later improved in (Balas et al, 2008) with the algorithm SB-GLS. More recently, in (Oddi
et al, 2009) the authors have proposed an Iterative-Sampling Search (ISS) method, which
consists of a constraint-based search embedded within an iterative sampling framework.

Many solving methods for combinatorial optimization use heuristic techniques. One of
the most popular heuristics is Tabu Search (TS) (Glover, 1989), with a solid record of good
empirical performance in problem solving. In particular, in the field of scheduling, the first
TS algorithm for the JSP with makespan minimization was proposed in (Taillard, 1993), out-
performing earlier methods based on simulated annealing or shifting bottleneck heuristics.
In (Dell’ Amico and Trubian, 1993) new neighborhood structures were introduced and used
used in a TS algorithm, using new elements such as makespan estimations, a dynamic tabu
list which only stores inverted arcs instead of complete solutions or a simple mechanism
to avoid cycles. In (Nowicki and Smutnicki, 1996), the authors proposed the TSAB algo-
rithm, introducing the elite solution stack. This algorithm was improved and combined with
path-relinking in (Nowicki and Smutnicki, 2005), resulting in the method termed i-TSAB.
This has recently been combined with a constructive search procedure in (Beck et al, 2010).
In (Grabowski and Wodecki, 2005), some new properties of critical blocks were analyzed
and exploited in a TS algorithm. In (Zhang et al, 2008), TS was combined with simulated
annealing to introduce new solutions in the elite solution stack; this algorithm and i-TSAB
are among the best algorithms for the JSSP with makespan minimization. In (Watson et al,
2006), a thorough study of the i-TSAB algorithm was carried out showing that it is the
combination of all the elements of i-TSAB that yields so good results.

TS has also been applied to formal scheduling problems other than JSP with makespan
minimization: the parallel machine scheduling problem with setup times and tardiness min-
imization (Bilge et al, 2004), the JSP with release dates and time lags (DeBontridder, 2005)
or the one machine sequencing problem with setup times (Stecco and Cordeau, 2009), to
name just a few. Moreover, real scheduling problems have also been solved by means of TS
algorithms. For example, in (Yan et al, 2003), the authors propose a solution to an integrated
planning and scheduling problem in automobile assembling lines that optimizes several ob-
jective functions. In (Meeran and Morshed, 2011), TS is combined with a genetic algorithm
and this hybrid approach is able to solve a number of real-life job shop problems.

The rest of the paper is organized as follows. In Section 2 we formulate the SDST-
JSP and introduce the notation used across the paper. Then, in Sections 3 and 4, the TS
algorithm and the neighborhood structure are described. Section 5 reports results from the
experimental study. Finally, in Section 6 we summarize the main conclusions and propose
ideas for future work.

2 Description of the problem

The SDST-JSP consists in scheduling a set of jobs {J1, . . . ,Jn} on a set {M1, . . . ,Mm} of
machines. Each job Ji consists of a sequence of m operations (oi1, . . . ,oim) where operation
oi j has a processing time of pi j time units and requires a machine µi j ∈ {M1, . . . ,Mm}. A
solution to the problem is a schedule, i.e. a starting time for each one of the operations,

4 Miguel A. González et al.

that is subject to a set of constraints. There are predecence constraints, so the operations of
each job must be sequentially scheduled and capacity constraints, whereby each operation
requires the uninterrupted and exclusive use of the machine for its whole processing time.
A time may be needed to adjust a machine between two consecutive operations oi j and okl ,
which is called a setup time and denoted si jkl . Here, we consider sequence-dependent setup
times, meaning that the machine’s setup time for a particular operation is determined by not
only by that operation but also by the previous operation that the machine is currently setup
for. Job Ji may also have a due date, denoted di, a deadline before which all operations of Ji
should be completed. The objective is to find a schedule, which, besides being feasible (i.e.
all constraints hold), is optimal according to some criterion, in this paper that the maximum
lateness is minimal.

Let p, µ and s denote matrices representing processing times, machine requirements
and setup times respectively, and let σ be a feasible operation processing order, i.e., a lineal
ordering of operations which is compatible with a processing order of operations that may
be carried out so that all constraints hold. A feasible schedule may be derived from σ using a
semi-active schedule builder as follows. Let Ci(σ , p,ν ,s) denote the completion time of job
Ji and let Ti j(σ , p,µ,s) and Ci j(σ , p,µ,s) denote respectively the starting and completion
times of operation oi j, i = 1, . . . ,n, j = 1, . . . ,m. These times may be obtained as follows:

Ci(σ , p,µ,s) =Cim(σ , p,µ,s) (1)

Ti j(σ , p,µ,s) = max{Ci,(j−1)(σ , p,µ,s),Crs(σ , p,µ,s)+ srsi j} (2)

Ci j(σ , p,µ,s) = Ti j(σ , p,µ,s)+ pi j (3)

where rs in equation (2) denotes the indices of the operation preceding oi j in its machine
according to the processing order σ . Ci0(σ , p,µ,s) is assumed to be zero and, analogously,
Crs(σ , p,µ,s) is taken to be zero if oi j is the first operation to be processed in the corre-
sponding machine. The maximum lateness is the maximum delay of jobs beyond their due
dates:

Lmax(σ , p,µ,s) = max
1≤i≤n

{Ci(σ , p,µ,s)−di} (4)

For the sake of a simpler notation we may write, for instance, Lmax(σ) when the problem
(hence p, µ , and s) is fixed or even Lmax when no confusion is possible regarding the opera-
tion order.

This problem is denoted by J|si j|Lmax according to the α|β |γ notation proposed in (Gra-
ham et al, 1979).

2.1 The disjunctive graph model representation

The disjunctive graph is a common representation in scheduling, its exact definition depend-
ing on the particular problem. For the J|si j|Lmax problem, we propose that it be represented
by a directed graph G = (V,A∪E ∪ I1∪ I2∪ I3). Each node in set V represents an operation
of the problem, with the exception of the dummy nodes ‘start’, endi 1 ≤ i ≤ n and ‘end’,
which represent fictitious operations. Arcs in A are called conjunctive arcs and represent
precedence constraints while arcs in E are called disjunctive arcs and represent capacity
constraints. Set E is partitioned into subsets Ei, with E =∪ j=1,...,mE j, where E j corresponds
to machine M j and includes two directed arcs (v,w) and (w,v) for each pair v, w of opera-
tions requiring that machine. Each arc (v,w) in A is weighted with the processing time of the
operation at the source node, represented by pv, and each arc (v,w) of E is weighted with

Lateness Minimization with TS for SDST-JSP 5

o11,M1 o12,M2 o13,M3 end1

start o21,M1 o22,M3 o23,M2 end2 end

o31,M2 o32,M1 o33,M3 end3

4 3 2

3 4 3

3 3 3

-22

-11

-15

1

3 + 2
4 + 1

1

3 + 2

3 + 2

1
4 + 1

3 + 2

Fig. 1 A feasible schedule to a problem with 3 jobs and 3 machines. Bold face arcs show a critical path
whose length, i.e. the maximum lateness, is 2.

pv+svw where svw denotes the setup time between the operations represented by nodes v and
w. Set I1 includes arcs of the form (start,v) for each operation v of the problem, weighted
with s0v. Set I2 includes arcs (u,endi), being u the node representing operation oim, 1≤ i≤ n,
weighted with pu. Finally, arcs in I3 are of the form (endi,end) and are weighted with −di.
This model for the problem J|si j|Lmax is a natural extension of the disjunctive models pro-
posed in (Mehta and Uzsoy, 1998) and (Vela et al, 2010) for the problems J||Lmax and
J|si j|Cmax respectively.

A feasible operation processing order is represented by an acyclic subgraph Gs of G,
Gs = (V,A∪H ∪ L1 ∪ I2 ∪ I3), where H = ∪ j=1...mH j, H j being a minimal subset of arcs
of E j defining a processing order for all operations requiring M j and where L1 consists of
arcs (start,v j), j = 1 . . .m, v j being the first operation of H j. Finding a solution can thus be
reduced to discovering compatible orderings H j, or partial schedules, that translate into a
solution graph Gs without cycles. Figure 1 shows a solution to a problem with 3 jobs and
3 machines; continuous arcs belong to A or I2, discontinuous arcs belong to H or L1 and
dotted arcs correspond to I3.

The maximum lateness of the schedule is the cost of a critical path in Gs, i.e., a directed
path in Gs from node ‘start’ to node ‘end’ having maximum cost. Nodes and arcs in a
critical path are also termed critical. A critical path may be represented as a sequence of the
form ‘start’, b1, . . . ,br, endi, ‘end’, 1 ≤ i ≤ n, where each bk, 1 ≤ k ≤ r, is a critical block,
a maximal subsequence of consecutive operations in the critical path requiring the same
machine. The concepts of critical path and critical block are of major importance for job
scheduling problems due to the fact that most formal properties and solution methods rely
on them. Indeed, according to the so-called so-called properties of elimination for classical
JSP, in order to obtain a processing order with lower makespan at least one of the operations
in a critical block of the current schedule has to be moved before (after) the first (last)
operation of the block (Grabowski and Wodecki, 2005). These properties have given rise
to a number of neighborhood structures based on exchanging the order of either adjacent
operations (Matsuo et al, 1988; Taillard, 1993; Van Laarhoven et al, 1992; Nowicki and
Smutnicki, 1996) or non adjacent operations (Dell’ Amico and Trubian, 1993; Balas et al,
2008) requiring the same machine.

In order to simplify expressions, we define the following notation for a feasible schedule.
Given a solution graph Gs, the head of an operation v, denoted rv, is the cost of the longest
path from node ‘start’ to node v, i.e., the starting time of v in the schedule represented
by Gs. The tail qv is the cost of the longest path from node v to node ‘end’, minus the
processing time of operation in node v. Let PJv and SJv denote respectively the predecessor

6 Miguel A. González et al.

and successor of v in the job sequence, and PMv and SMv the predecessor and successor of
v in its machine sequence. We take node ‘start’ to be PJv for the first operation of every job
and PMv for the first operation to be executed in each machine; note that pstart = 0. Then,
the head of every operation may be computed as follows:

rstart = 0

rv = max(rPJv + pPJv ,rPMv + pPMv + sPMvv) (5)

rendi = rv + pv, (v,endi) ∈ I2,1≤ i≤ n

rend = max
1≤i≤n

{rendi −di}

Similarly, for 1≤ i≤ n, we take node ‘end’ as SJendi for every job i, node endi as SJv for the
last task of job i, and pendi = −di (note that pend = 0). Then, the tail of every operation is
computed as follows:

qend = qendi = 0

qv =

{
max(qSJv + pSJv ,qSMv + pSMv + svSMv) if SMv exists
qSJv + pSJv otherwise

(6)

qstart = max
v∈SMstart

{qv + pv +S0v}

A node v is critical if and only if Lmax = rv + pv +qv.
With the proposed graph representation the maximum lateness minimization may be

transformed into a makespan minimization one. Indeed, if we give the arcs (endi,end) null
weight instead of −di, this results into a disjunctive graph equivalent to the one defined for
makespan minimization. Also, we shall see that neighborhood structures relying on moves
in a critical path initially defined for makespan may be naturally extended to the maximum
lateness problem.

3 Tabu Search for the SDST-JSP

Tabu search (TS) is an advanced local search technique which can escape from local optima
by temporarily selecting non-improving neighbors. To avoid revisiting recently visited so-
lutions and explore new promising regions of the search space, it maintains a tabu list with
a set of moves which are not allowed when generating the new neighborhood. With a solid
record of good empirical performance in problem solving, to our knowledge it has never
been used to tackle the SDST-JSP with lateness minimization.

Algorithm 1 shows the tabu search algorithm considered herein, where T L, CL and
ESL denote, respectively, the Tabu List, the Cycle List and the Elite Solution Stack. The
general scheme is similar to other tabu search algorithms from the literature (Nowicki and
Smutnicki, 1996), (Dell’ Amico and Trubian, 1993). In the first step the initial solution
is generated and evaluated. Then, it iterates over a number of steps. In each iteration, the
neighborhood of the current solution is built and one of the neighbors is selected for the
next iteration. After a number of iterations without improvement, the search is restarted
from a previous solution taken from the elite solution stack, ESL. The tabu search finishes
either after a number of iterations maxGlobalIter, or when the elite solution stack becomes
empty, returning the best solution reached so far. In the remaining of this section we describe
the algorithm in more detail, while the neighborhood structure will be described in depth in
the next section.

Lateness Minimization with TS for SDST-JSP 7

Input A SDST-JSP instance P
Output An operation processing order σ for P

σ0← Initialsolution; σ ← σ0; σB← σ ; LB
max← Lmax(σB);

globalIter, improveIter← 0; T L,CL← /0; ESL← σ ;
while globalIter < maxGlobalIter do

if improveIter = maxImproveIter then
if ESL = /0 then

return σB and LB
max,

else
σ ← pop(ESL); improveIter← 0; T L,CL← /0;

globalIter← globalIter+1; improveIter← improveIter+1;
σ∗← argmin{Lmax(σ ′),σ ′ ∈ NS

L(σ)∧AspirationC(σ ′)∨
¬Tabu(σ ′,T L)∧¬Cycle(σ ′,CL))};

Update T L and CL accordingly; σ ← σ∗;
if Lmax(σ∗)< LB

max then
σB← σ∗; LB

max← Lmax(σ∗); improveIter← 0; push(σ∗,ESL);
return σB and LB

max;

Algorithm 1: The Tabu Search Algorithm

We propose to start the search from a randomized semiactive schedule, generated using
the Serial Schedule Generation Scheme (SerialSGS) from (Artigues et al, 2005). This sched-
ule builder chooses one of the available operations at random and assigns to it the earliest
starting time satisfying all constraints with respect to the previous scheduled operations. An
operation is available when its predecessor in the job sequence and its predecessor in the
machine sequence has already been scheduled. The process continues until all operations
are scheduled. SerialSGS produces active schedules, provided that the triangular inequality
for the setup times holds, i.e. suv + svw ≥ suw for all operations u, v and w requiring the same
machine, otherwise it can produce even non semi-active schedules. Since one of the bench-
marks used in our experimental study does not satisfy this property, we have opted to use
the following repair algorithm after SerialSGS in order to transform the generated schedule
into a semiactive one: the operations are visited in ascending processing time order and ev-
ery one is rescheduled at the earliest processing time possible without delaying any other
operation.

The above way of generating the initial solution is simpler than that used by TSAB (Now-
icki and Smutnicki, 1996), but more sophisticated than the priority rule used in (Serifoglu
and Ulusoy, 1999). It presents the advantage of quickly obtaining solutions with acceptable
quality and variability, a fact illustrated by the experimental results in Section 5.

The selection rule chooses the neighbor with the lowest estimated maximum lateness,
discarding suspect-of-cycle and tabu neighbors. Instead of storing actual solutions in the tabu
list, it stores those arcs which have been reversed to generate a neighbor. A new neighbor
is thus marked as tabu if it requires reversing at least one arc from the tabu list, unless the
aspiration criterion is satisfied, i.e. if the estimated maximum lateness is less than that of the
current best solution.

The length of the tabu list is usually of critical importance, since it allows for an equilib-
rium between intensification and diversification in the short term. All TS algorithms try to
manage this equilibrium with different proposals based on controlling the number of itera-
tions for which a solution can keep its tabu status. Several studies, for instance in (Hao et al,
1998), show that a dynamic handling usually yields better results than a static one. Indeed,
we have conducted some preliminary experiments which confirm this. Some authors, such
as (Nowicki and Smutnicki, 1996), (Bilge et al, 2004) or (Serifoglu and Ulusoy, 1999), pro-
pose to vary the number of iterations for which a move is tabu depending on the number of

8 Miguel A. González et al.

iterations for which the solution has not improved. Other authors, for example (Dell’ Am-
ico and Trubian, 1993), propose to use a tabu list of dynamic length for this purpose, an
schema we have adopted herein. Additionally, we use a a cycle checking mechanism based
on witness arcs similar to that proposed in that same paper.

In order to manage long term intensification, we propose to use long term memory
which allows to recover elite solutions. This is a standard strategy, proposed in (Nowicki
and Smutnicki, 1996) for the TSAB algorithm and widely used with some changes since
then, for instance in (Bilge et al, 2004) or (Serifoglu and Ulusoy, 1999). In our case, after
maxImproveIter iterations without improvement, the current best solution is replaced with
one extracted from L. We set maxImproveIter = maxGlobalIter/Size(ESL) which is large
enough for the elite solution stack not to get empty before maxGlobalIter iterations.

4 The neighborhood structure.

A key component of any tabu search algorithm is the neighborhood structure used therein. In
the following we define for the SDST-JSP with lateness minimization a new neighborhood
structure, denoted NS

L . It adapts to this problem the structure termed NS in (González et al,
2008), which was defined for the SDST-JSP with makespan minimization and was in turn
based on previous structures for the standard JSP.

It is well-known that the concepts of critical arc and critical block play a central role in
the definition of neighborhood structures for the JSP. For example, the neighborhood defined
in (Van Laarhoven et al, 1992) is motivated by the following two results: (1) reversing a
critical arc in a solution graph G cannot lead to a cycle, and (2) if the reversal of a non critical
arc in G leads to an acyclic graph G′, a longest path in G′ cannot be shorter than a longest
path in G. Also, the local search proposed in (Nowicki and Smutnicki, 1996) is based on
a neighborhood defined in (Matsuo et al, 1988) that avoids non-improving neighbors based
on other results given in (Van Laarhoven et al, 1992), namely (3) reversing an arc inside
a critical block cannot lead to an improving solution. On the other hand, in (Grabowski
and Wodecki, 2005), it is suggested that this last neighborhood is so small that tabu search
requires too many iterations to converge. It is easy to prove that the result (2) above holds
for the the SDST-JSP if the setup times fulfill the triangular inequality, but if the triangular
inequality does not hold it is possible to obtain an improving schedule by reversing a non
critical arc. However, considering all non critical arcs as candidates for reversal would be
extremely time consuming. At the same time, we assume that in real scenarios it is expected
that the condition suv + svw ≥ suw holds for the majority of triplets of operations u, v and w
requiring the same machine. For these reasons, in the proposed neighborhood structure we
will restrict the move choices to critical arcs only. Finally, result (1) above does not hold
as a trivial consequence of Theorem 1 given below and, from the Theorem 2, the result (3)
above is not true for SDST-JSP.

Given these considerations, we have defined a neighborhood for the SDST-JSP with
lateness minimization that in principle has to consider a very large number of moves, but
where a great number of them can be discarded due to non-feasibility or non-improving
conditions. Given a solution, its neighborhood is built by considering all critical blocks
within each critical path and attempting to alter the relative order of operations within every
block. In principle, for a block b, every operation in this block should be moved to any other
position in b, including the begin and the end of the block. However some of these possible
moves may lead to non-improving or even unfeasible neighbors.

Lateness Minimization with TS for SDST-JSP 9

SJ

SJ

SJ

Fig. 2 Potential alternative paths between two operations v and w in a critical block that could lead to a cycle
after moving operation w before operation v.

Suppose that, for the initial solution, there are two operations v and w in a critical block,
v preceding w, and there also exists an alternative path in the solution graph from v to w
through PJw. In this case, if the move shifts w before v, a cycle will appear in the graph
for the resulting neighbor, making it unfeasible. The following result provides a sufficient
condition for feasibility after a move.

Theorem 1 Given a critical block of the form (b1 v b2 w b3), where bi are sequences of
operations and Bi the set of operations of bi, 1≤ i≤ 3, if the following condition is satisfied

∀u ∈ {v}∪B2, rPJw < rSJu + pSJu +min{sxy/(x,y) ∈ E,x ∈ SUCJ(u)} (7)

then an alternative path from v to w does not exist. Here, SUCJ(u) denotes the set of opera-
tions after u in the job sequence.

Proof Let us denote b2 = (u1 . . .ui . . .un). The only alternative paths from v to w are those
indicated in Figure 2 and these paths would exist after moving w to v as well. Since each
potential alternative path includes at least a setup time, none of these paths can exist if
condition (7) holds.

Notice that a necessary condition for feasibility is that no cycles exist in the resulting
solution graph, i.e., that none of the alternative paths shown in Figure 2 exist. However, a
thorough check of the existence of such paths may turn to be computationally very expen-
sive. It is therefore preferable to establish and test a sufficient condition for feasibility which
can be easily evaluated, despite the possibility of discarding some feasible neighbours as
well. In particular, the condition provided by equation (7) can be evaluated in constant time
for each pair of operations v and w. Moreover, in just one iteration from w to the begin (end)
of the critical block, all feasible positions to insert w can be calculated. This iteration fin-
ishes when an unfeasible position is reached. Hence, all candidate neighbours are obtained
in polynomial time.

Additionally, computing the lateness value for each neighbor is time consuming. It is
therefore interesting to establish easy-to-evaluate conditions for non-improvement that allow

10 Miguel A. González et al.

to discard uninteresting neighbors beforehand at low cost. The following result provides a
necessary condition for non-improvement.

Theorem 2 Let Gs be a solution graph and (b1 v b2 w b3) a critical block thereof, where bi,
1≤ i≤ 3, are sequences of operations of the form bi = (ui1 . . .uini) with n1,n3 ̸= 0. Assuming
the solution G′s obtained from Gs by moving w just before v is feasible, G′s does not improve
Gs if the following condition holds

su1n1 v + su2n2 w + swu31 ≤ su1n1 w + swv + su2n2 u31 . (8)

If n2 = 0, u2n2 should be substituted by v in (8).

Proof Condition (8) derives easily from a single comparison of longest paths through
node u31 before and after the move. Notice that after the move the paths from node ‘start’ to
b1 and from b3 to node ‘end’ do not change. The only changes take place in the path from
b1 to b3 and they are due to the differences in the added and removed setup times.

Given the above results, the neighborhood structure NS
L is defined as follows.

Definition 1 (NS
L) For a given solution, let b be a critical block of any critical path and let

v be an operation within block b. In a neighboring solution, v is moved to another position
in b, provided that condition (8) does not hold and that the sufficient condition of feasibility
(7) is preserved.

4.1 Maximum lateness estimation.

For the sake of efficiency, the selection rule is based on estimating rather than actually
computing the maximum lateness of all neighbors. For this purpose, we adapt the proce-
dure lpathS given in (Vela et al, 2010) for makespan estimation, which in turn extends the
lpath rule given for the JSP in (Taillard, 1993). This procedure takes as input a sequence
(Q1 . . .Qq) of operations obtained after a move, all of them requiring the same machine, and
where (Q1 . . .Qq) is a permutation of the sequence (O1 . . .Oq) before the move. For each
i = 1, . . . ,q, lpathS estimates the cost of the longest path from node ‘start’ to node ‘end’
through Qi. The maximum of these values is taken as the estimate of the maximum lateness
for the neighboring schedule. In particular, for NS

L , if w is moved before v in a block of the
form (b1 v b2 w b3), the input sequence for lpathS should be (w v b2).

The procedure lpathS produces very good estimates of the maximum lateness after a
move. To assess this feature we have evaluated 3000000 neighbors, observing that the esti-
mate coincided with the exact value in 96% of the cases, it was smaller in 3% of the cases
and it was larger only in 1% of the cases.

5 Experimental Study

The purpose of this section is to assess the proposed T S−NS
L algorithm and compare it with

state-of-the-art algorithms from the literature, namely SB-GLS (Balas et al, 2008) and ISS
(Oddi et al, 2009).

First, we shall adopt the instances proposed in (Ovacik and Uzsoy, 1994), well-known
for being hard to solve. They are categorized in six different benchmark sets: i305, i315,
i325, i605, i615, and i625, according to the parameters used to generate due date values: τ ,
called tardiness, and R, called spread. The first represents the percentage of jobs expected

Lateness Minimization with TS for SDST-JSP 11

to be tardy with values equal to 0.3 and 0.6, corresponding to loose and tight due dates
respectively. The latter models different due date variation levels, with values equal to 0.5,
1.5 or 2.5. Each benchmark contains 160 problem instances, divided in 8 subclasses of 20
instances each, according to the number of machines (m ∈ {5,10,15,20}) and jobs (n ∈
{10,20}) involved. In total there are 960 instances.

For a longer series of experiments (with the so called multi-run version), in (Balas et al,
2008) the authors considered the benchmark set proposed by Brucker and Thiele (Brucker
and Thiele, 1996) containing a total of 17 instances (the so called BT set). As these instances
do not define due-dates, they are taken to be 0. Thus, minimizing the maximum lateness is
equivalent to minimizing the makespan. BT instances are divided in three groups depending
on its size: small instances, t2-ps01 to t2-ps05, are 10×5, medium instances, t2-ps06 to t2-
ps10, are 15×5, and large instances, t2-ps11 to t2-ps15, t2-pss12 and t2-pss13, are 20×5.

The time given to T S−NS
L (coded in C++) was similar to the time taken by SB-GLS

as reported in (Balas et al, 2008). In order to establish this time, we have run the SB-GLS
implementation from http://www.andrew.cmu.edu/ neils/tsp (coded in C) on our machine
(Intel Core 2 Duo at 2.6GHz, gcc 3.4.4 compiler and Windows XP) and registered the time
taken for each subfamily of instances. Then, we have parameterized T S−NS

L in such a way
that it takes equivalent or less time for all instances on the same machine. In average, we have
given T S−NS

L about 60% of the time taken by SB-GLS and in no case was the time given
to T S−NS

L longer than the time taken by SB-GLS. The algorithm ISS was implemented in
Allegro Common LISP 6.0 and run on a 0.9 Ghz machine, with runtimes between 40 and
3200 seconds, making it harder to establish equivalent runtimes.

5.1 Calibration of the TS algorithm

Calibration is often one of the most important steps to obtain good results. One of the
main advantages of the algorithm proposed in Section 3 is that it does not require too
much effort for parameter tuning, as maxGlobalIter is calculated from the time limit and
maxImproveIter is fixed to maxGlobalIter/Size(ESL). Therefore, we only have to analyze
the size of the elite solution stack and the length of the tabu list. To do that, we have ex-
perimented across the largest instances of the BT set with maxGlobalIter = 60000: 30 runs
were done for each instance and the average of the best solutions considered. Five different
values have been tested for the stack size (0, 5, 10, 20 and 40). With little difference for the
five values under consideration, the best results were obtained for size 10 (1412.86) and the
worse ones, for size 40 (1418.43). Three different values were considered for the length of
the tabu list (3, 8 and 16) with fixed length, as well as testing dynamic length. In this case,
dynamic length was clearly the best option (1412.86 vs. 1442.71).

In order to further assess the chosen parameters, we have analyzed the convergence pat-
tern of T S−NS

L algorithm across the iterations. Some results of these experiments are shown
in Figure 3 (a) and (b). The first represents the evolution of T S−NS

L in a single run for in-
stance i305_141, while the latter represents the evolution averaged across 30 runs. Both
illustrate a proper convergence pattern with improvement along the search process. We can
also see that the generated initial solution is already quite good, as mentioned in Section 3.
Finally, the evolution of the current solution displays a convergent but not monotone trajec-
tory. Such gradual and nonmonotone improvement is characteristic of the general behavior
of TS.

12 Miguel A. González et al.

(a) One run (b) Average of 30 runs

Fig. 3 Evolution of the current and best solutions of T S−NS
L for the instance i305_141.

5.2 Relative Errors

The aim of the following experiments is to assess how close the algorithm comes to pro-
ducing an optimal schedule, measured as percent error versus the optimal solution value.
However, as far as we know, there are neither satisfactory lower bounds nor statistical esti-
mates of the optimum for these instances, so we use the best-known solutions (BKS) instead.
As source of BKS, we shall use the best values reported so far in the literature together with
the values obtained with long runs (106 iterations, see below) of our method, as this of-
ten yields better solutions than those from the literature. The same BKS has been used to
calculate relative errors for all three methods.

An added difficulty of dealing with maximum lateness is that objective values may be
negative. To cope with this, when calculating relative errors, we add the minimum due date
to lateness values in both numerator and denominator of ratios (since at least the lateness the
job with minimum due date will not be negative). Notice that this transformation understates
the percent error of heuristic solutions. However, since this is the case for the three methods
considered, comparisons among them should not be affected.

Table 1 summarizes the results reported for SB-GLS (column 6), ISS (column 7), and
our method T S−NS

L when it is run for an equivalent time to SB-GLS (columns 8 and 9 for
the average and best result respectively across 30 runs). These results are obtained across
the 960 instances and averaged for each group of 160 instances. The reason to include best
and average values for T S−NS

L is that both SB-GLS and ISS are also approximate methods
and it is not clear whether the reported values are actually sample means. Figure 4 shows
the results given in Table 1 averaged for each one of the six families of instances defined by
the same values of parameters τ and R.

Table 1: Average percent errors.
SB-GLS ISS T S−NS

L
Group τ R M N Avg. Best.
i305 0.3 0.5 5 10 3.95 4.80 0.59 0.06

20 10.19 21.50 2.33 0.81
10 10 3.72 4.44 1.11 0.08

20 11.38 19.91 2.27 0.53
15 10 2.81 3.55 0.85 0.11

Lateness Minimization with TS for SDST-JSP 13

Table 1: Average percent errors (continued).
SB-GLS ISS T S−NS

L
Group τ R M N Avg. Best.

20 10.13 22.59 2.99 0.70
20 10 2.71 3.02 0.77 0.12

20 8.46 29.43 3.86 1.55
i315 0.3 1.5 5 10 2.06 1.96 0.83 0.04

20 13.42 11.95 1.98 0.10
10 10 1.56 2.23 0.59 0.08

20 8.05 4.72 2.41 0.63
15 10 2.71 2.27 0.94 0.02

20 9.14 8.65 4.34 1.70
20 10 1.60 2.24 1.29 0.10

20 8.77 17.63 7.45 3.05
i325 0.3 2.5 5 10 1.36 2.48 0.30 0.40

20 1.27 5.93 0.85 0.09
10 10 1.20 2.36 1.94 0.18

20 2.23 2.50 0.67 0.11
15 10 1.62 0.86 1.13 0.01

20 4.33 3.06 1.98 0.37
20 10 1.08 0.63 0.86 0.05

20 4.54 3.32 3.17 0.92
i605 0.6 0.5 5 10 5.41 4.44 0.79 0.16

20 7.91 20.17 2.01 0.64
10 10 3.12 4.31 1.04 0.16

20 9.37 20.79 2.10 0.33
15 10 2.81 3.93 0.87 0.03

20 7.86 23.76 2.72 0.95
20 10 2.95 4.11 1.38 0.29

20 9.14 28.95 3.64 1.26
i615 0.6 1.5 5 10 5.22 4.60 0.64 0.00

20 12.84 19.04 2.68 0.77
10 10 2.54 3.57 0.81 0.08

20 12.21 19.85 2.68 0.47
15 10 2.34 2.65 1.47 0.29

20 10.17 20.22 4.13 1.25
20 10 2.33 2.71 1.09 0.13

20 9.49 28.71 5.05 1.98
i625 0.6 2.5 5 10 3.93 4.13 0.64 0.05

20 6.86 11.52 1.3 0.32
10 10 1.87 2.72 0.98 0.13

20 7.97 5.48 2.07 0.38
15 10 2.27 2 1.09 0.27

20 8.65 9.21 3.96 1.23
20 10 2.05 1.44 0.9 0.12

20 9.1 18.23 5.91 2.39
Overall average 9.35 5.56 1.99 0.53
Overall worst 48.04 47.84 13.47 6.46
Overall best 0.00 0.00 0.00 0.00

From the results it is clear that the proposed TS algorithm outperforms the other two
methods in solution quality, yielding sensibly better results even in the worst case. Taking
the mean values obtained with T S−NS

L , the error reduction w.r.t. SB-GLS is in average
58.5% (32% for one family of instances and over 50% in the rest). Compared to ISS, T S−NS

L
reduces the error 65.43% in average, and over 75% in three of the six families. The relevance
of our proposal would even be greater if the results reported in (Balas et al, 2008) and (Oddi
et al, 2009) were referred to best values; in this case, taking the best values produced by
T S−NS

L , the relative error reduction w.r.t. both methods would be more than 90%.
For a better insight into the behavior across the 960 instances, we have recorded the

number of instances where T S−NS
L obtains better, equal or worse results than ISS and SB-

14 Miguel A. González et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

i305 i315 i325 i605 i615 i625

ISS
SB-GLS
TS(avg)
TS(best)

Fig. 4 Errors from each method averaged for the six families of instances

Table 2 Percent errors w.r.t. problem parameters for all algorithms.

ISS SB-GLS Avg TS Best TS
n = 10 2.98 2.63 0.95 0.12
n = 20 15.71 8.48 3.02 0.94
m = 5 9.38 6.20 1.25 0.29
m = 10 7.74 5.44 1.56 0.26
m = 15 8.56 5.40 2.21 0.58
m = 20 11.70 5.19 2.95 1.00
R = 0.5 13.73 6.37 1.83 0.49
R = 1.5 9.56 6.53 2.40 0.67
R = 2.5 4.74 3.77 1.73 0.44
τ = 0.3 7.58 4.93 1.90 0.49
τ = 0.6 11.11 6.18 2.08 0.57

GLS, with the average (best) values obtained by T S−NS
L improving the other algorithms in

87.4% (90.5%) and 80.0% (84.0%) of the instances respectively.
Additionally, we have computed 95% confidence intervals for the relative errors ob-

tained with the three algorithms, and the interval upper bound for T S−NS
L (1,99 + 0,12=

2,11) is noticeably smaller than the interval lower bounds for ISS and SB-GLS (9.35 - 0.61
= 8.74 and 5.56 - 0.32 = 5.24 respectively). These results confirm that T S−NS

L is superior
to ISS and SB-GLS both in quality and stability.

5.3 Sensitivity to Problem Parameters

Table 2 provides more detail on the effect of every parameter (n, m, R and τ) of the instances
from (Ovacik and Uzsoy, 1994) on each algorithm performance, with average errors per
algorithm for each possible parameter value. For the same reason as above, we also report
data for the best solutions found with T S−NS

L .
According to Table 2, parameter values have considerably less impact on T S−NS

L than
on SB-GLS and ISS. This is also illustrated in Figure 5. Regarding the number of machines
m, for m = 5 T S−NS

L obtains the best results and the greatest error reduction with respect
to the other two methods: 87% less than ISS and 80% less than SB-GLS. For T S−NS

L the
error increases with the number of machines, unlike for SB-GLS.

Regarding the number of jobs n, all algorithms obtain the smallest errors for n = 10.
T S−NS

L obtains an average error reduction w.r.t. ISS of 74%, reaching 81% for the largest

Lateness Minimization with TS for SDST-JSP 15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ISS SB-GLS TS-NL

S

n = 10

n = 20

(a) Number of jobs (N)

 0

 2

 4

 6

 8

 10

 12

 14

 16

ISS SB-GLS TS-NL

S

R = 0.5

R = 1.5

R = 2.5

(b) Spread (R)

Fig. 5 Interaction between parameters and algorithms, with the error w.r.t. BKS on the Y axis

number of jobs. Compared to SB-GLS, the error reduction is 64%. As for tardiness τ , the
smallest error rates are for τ = 0.3, suggesting that the difficulty in problem instances in-
creases with the number of expected tardy jobs. The greatest reduction in error rate is ob-
tained by T S−NS

L when problem instances seem to be more difficult (τ = 0.6): 81% w.r.t.
ISS and 66% w.r.t. SB-GLS. Finally, regarding spread R, all methods obtain the smallest
average error rates for R = 2.5, which suggests that problems are easier for the greatest
width of the interval from which due dates are taken. The improvement of T S−NS

L for the
remaining values of R is clear, with an error reduction of 75−87% w.r.t. ISS and 63−71%
w.r.t. SB-GLS.

In all cases, the analysis takes as reference the average error value for T S−NS
L , not

the best performance value; obviously, the difference in performance would be greater if
we were to compare these best values. Additionally, we have run several statistical tests to
assess the interaction between parameters and algorithms: Shapiro-Wilk, Barlett, t-test and
ANOVA tests have been applied; when normality or homoscedasticity hypothesis required
to apply ANOVA did not hold, non-parametric Krukal-Wallis test has been used instead.
When appropriate, Tukey tests have been applied to analyse multiple-pairwise interactions.

Since parameters τ and n can only take two different values, a t-test has been run for
each method and parameter. The results show that differences exist between both values in
all cases except in the T S−NS

L algorithm where there is no evidence to assume differences
between values of τ (p-value=0.14).

Regarding the number of machines, m, for all algorithms we have used Kruskal-Wallis
test as we cannot assume neither normality nor homoscedasticity. For ISS, the existence of
differences for each value of m is rejected (ANOVA has given p-value=0.00 indicating that
interactions exist). The influence of m in SB-GLS is also rejected, whereas for T S−NS

L both
ANOVA and Kruskal-Wallis indicate that the probability that the value of m has no effect
on the average error is practically null. Furthermore, the Tukey test shows that there are
differences in average errors for each pair of values, except for 10 and 5 machines, where
T S−NS

L obtains the best results and the greatest error reductions with respect to the other
two methods.

Finally, for the spread value, R, the Kruskal-Wallis tests show that for all algorithms
there are differences in the relative errors obtained for each group of instances. Tukey tests
have also been run concluding that there are differences between average values of relative
errors, with only two exceptions: the pair 2.5−0.5 for T S−NS

L (where this method obtains
the smallest average error rates) and 1.5− 0.5 for SB-GLS. Figure 6 shows the confidence

16 Miguel A. González et al.

−10 −8 −6 −4

2
.5

 −
 1

.5
2
.5

 −
 0

.5
1
.5

 −
 0

.5

(

(

(

)

)

)

●

●

●

Linear Function

(a) ISS

−3 −2 −1 0 1

2
.5

 −
 1

.5
2
.5

 −
 0

.5
1
.5

 −
 0

.5

(

(

(

)

)

)

●

●

●

Linear Function

(b) SB-GLS

−1.0 −0.5 0.0 0.5 1.0

2
.5

 −
 1

.5
2
.5

 −
 0

.5
1
.5

 −
 0

.5

(

(

(

)

)

)

●

●

●

Linear Function

(c) T S−NS
L

Fig. 6 Confidence intervals of the pairwise analysis of parameter R for the three algorithms. All three pairs
of R-values: 2.5− 1.5, 2.5− 0.5 and 1.5− 0.5 are considered in the Y-axis. X-axis shows the differences in
errors

Table 3 Results from T S−NS
L for the short vs. long analysis

Problem Short Long
family Avg±SD Time Avg±SD Time
i305 1.85±1.26 3.38 0.62±0.62 58.08
i315 2.48±2.74 2.38 0.71±1.07 41.12
i325 1.36±1.96 1.36 0.68±1.44 27.21
i605 1.82±1.18 3.69 0.61±0.64 60.10
i615 2.32±1.75 3.55 0.75±0.77 54.13
i625 2.11±2.17 2.67 0.56±0.71 43.51

intervals of the pairwise analysis of R for (a)ISS, (b)SB-GLS, and (c) T S−NS
L and comple-

ments the information given in Figure 5(b). As we can observe, the differences in average
errors (X-axis) are much lower for T S−NS

L than they are for both ISS and SB-GLS. This is
clear if we are aware of the ranges of X-axis in Figure 6(a), (b) and (c).

From this experimental analysis, we conclude that T S−NS
L is both efficient and robust

with respect to parameter setting. For all combinations of the parameters, T S−NS
L is the

most efficient and robust of the three algorithms evaluated. Also, ISS seems to be the most
variable algorithm, although in the worst case it is SB-GLS the algorithm with the largest
dependency on the parameters.

5.4 Further Analysis of Tabu Search

In a second set of experiments, T S−NS
L was run for a larger number of iterations, in order

to evaluate its capability to improve with longer runtimes. Table 3 contains a summary of
results obtained with the short runs, under equivalent conditions to SB-GLS, and long runs,
with 106 iterations. The relative error values are averaged across the instances in each family
and across the 30 runs of the tabu search algorithm. The standard deviation of the mean
relative error and the time taken in average on a single run are also included in each case.
Detailed results on the 960 instances both for short and long executions are given in Online
Resource 1.

The standard deviation values in the short experiments already suggest that there is
room for improvement if T S−NS

L is given longer runtime. This is confirmed with clearly
better average and standard deviation values for the long runs, suggesting that the increase
in number of iterations not only yields better but also more stable results.

Lateness Minimization with TS for SDST-JSP 17

Table 4 Results across BT instances. Srun stands for single run SB-GLS, while Mrun stands for multi-run
SB-RGLS10

SB-GLS T S−NS
L Short T S−NS

L Long
Instance Srun Mrun Best Avg Time Best Avg Time
t2-ps01 815 798* 798* 798.0* 0.20 798* 798.0* 65.02
t2-ps02 807 784* 784* 784.0* 0.20 784* 784.0* 65.85
t2-ps03 771 749* 749* 749.7 0.21 749* 749.0* 67.66
t2-ps04 738 730* 730* 732.8 0.18 730* 730.0* 59.83
t2-ps05 693 693 691* 692.9 0.20 691* 691.0* 68.67
t2-ps06 1027 1018 1026 1026.0 0.90 1013 1025.3 116.61
t2-ps07 1022 1003 970* 972.3 0.84 970* 970.0* 110.94
t2-ps08 1013 975 966 971.7 0.86 963 963.2 111.00
t2-ps09 1101 1060 1060 1060.0 0.94 1060 1060.0 122.07
t2-ps10 1051 1018* 1018* 1019.3 0.96 1018* 1018.0* 124.69
t2-ps11 1572 1470 1451 1467.5 3.51 1443 1449.9 173.86
t2-ps12 1369 1305 1274 1306.6 3.40 1274 1278.3 168.74
t2-ps13 1439 1439 1415 1426.7 3.51 1415 1415.0 174.67
t2-ps14 1602 1485 1492 1496.2 4.27 1492 1492.0 213.03
t2-ps15 1542 1527 1504 1524.7 3.51 1485 1500.4 174.18
t2-pss12 1305 1290 1269 1280.8 3.59 1259 1268.3 178.54
t2-pss13 1409 1398 1370 1385.9 3.69 1370 1374.1 184.40
*: optimal value, bold: best value

We have also compared our algorithm with the multi-run version proposed in (Balas
et al, 2008). This version uses a variant of SB-GLS termed SB-RGLS10 and implements a
two-phase procedure: the first phase is the algorithm SB-GLS, and the second one is a mod-
ified version of SB-GLS, where the bottleneck machine is chosen at random from a uniform
distribution and which is repeated 40 times, therefore being much more time-consuming
than SB-GLS.

Table 4 summarizes the results of SB-GLS (Srun) and multi-run SB-RGLS10 (Mrun)
versions, together with results of T S−NS

L with short and long runs. The times given to
T S−NS

L in short and long runs are equivalent to the times taken by SB-GLS and multi-
run SB-RGLS10 respectively, considering for the latter the longest among the experiments
reported in (Balas et al, 2008). For the short runs, T S−NS

L was thus run for 9000 iterations
for instances t2-ps01 to t2-ps05, 23000 iterations for instances t2-ps06 to t2-ps10, and 60000
for the remaining instances. For the long runs, T S−NS

L was run for 3000000 iterations.
Regarding the short runs, the average solutions reached by T S−NS

L are better than those
reached by SB-GLS in all 17 instances. For the long runs, both methods reach the same
solution in 6 instances—where the optimal solutions are obtained— T S−NS

L is better than
multi-run SB-RGLS10 in 9 instances (including 6 of the 7 largest instances), and only in 2
instances is T S−NS

L worse (in average) than multi-run SB-RGLS10. Also, in 15 of the 17
instances the average value of the long run is better than the best value of the short run.

6 Conclusions and Future Work

We have proposed a method, T S−NS
L , to solve the SDST-JSP with maximum lateness min-

imization. We have presented a series of experiments which show that T S−NS
L outperforms

SB-GLS - one of the best methods in the literature, under equivalent running times. It also
improves the results of ISS, although in this case we have to be aware of the difference in the
running conditions. Additionally, we have shown the robustness of our method to changes
in the parameters used to define problem instances from (Ovacik and Uzsoy, 1994). Finally,
we have seen how the results can be further improved when T S−NS

L is given longer running
time. Indeed, in our experiments, T S−NS

L has established new best-known solutions for 817

18 Miguel A. González et al.

of the 960 instances in this difficult benchmark, which should serve as reference for future
research.

We may conclude that T S−NS
L has proved to be a highly competitive method for the

SDST-JSP with maximum lateness minimization. We believe the strongest points of T S−
NS

L to be the powerful tabu search algorithm, already successful in other similar problems
(Dell’ Amico and Trubian, 1993; Nowicki and Smutnicki, 1996) as well as the neighborhood
structure NS

L . This structure has been specifically designed for this problem and is therefore
very well adapted to its characteristics, in particular, to setup times (even those not fulfilling
the triangular inequality) and the objective function (maximum lateness). In principle, NS

L
requires exploring a large number of moves. However, the theoretical results in Theorems 1
and 2 allow to discard a great number of candidate neighbors which either are not feasible
or cannot improve the current schedule, so the number of actual neighbors in NS

L can be
managed efficiently. Additionally, the algorithm given in Section 4.1 is very efficient and
accurate in estimating the maximum lateness of a new neighbor, giving T S−NS

L the chance
of selecting one of the best neighbors. Given the specialization of the defined neighborhood,
the algorithm would require a series of modifications in order to solve other versions of this
problem with different characteristics or objective functions. In particular, a new disjunctive
model would be required that accurately represents these characteristics and new formal
results should be established to devise a new efficient neighborhood structure.

A first task for future work is to analyze the advantages and disadvantages of incorpo-
rating to our TS algorithm different strategies for handling long term memory, such as those
used by two of the most competitive algorithms for classical JSP: path relinking of i-TSAB
from (Nowicki and Smutnicki, 2005) or simulated annealing from (Zhang et al, 2008). In
particular, it will be necessary to study its effectiveness when faced with the increase in com-
plexity caused by setup times. We also intend to combine T S−NS

L with a genetic algorithm,
expecting that the combined approach will further improve the solutions. Additionally, we
plan to extend our approach to other variants or extensions of classical JSP which are closer
to real environments and usually result harder to solve. For example the JSP with uncertain
durations (González Rodríguez et al, 2010) or the JSP with other objective functions such
as total flow time (Sierra and Varela, 2010) or weighted tardiness, as well as multiobjective
problems.

Acknowledgements This work has been supported by the Spanish Ministry of Science and Education under
research grant MEC-FEDER TIN2010-20976-C02-02 and by the Principality of Asturias under grant FICYT-
BP07-109. The authors would also like to thank the Unidad de Consultoría Estadística from the Scientific and
Technical Services of the University of Oviedo for their support in the statistical analysis of the experimental
results.

References

Allahverdi A, Ng C, Cheng T, Kovalyov M (2008) A survey of scheduling problems with
setup times or costs. European Journal of Operational Research 187:985–1032

Armentano V, Filho M (2007) Minimizing total tardiness in parallel machine scheduling
with setup times: An adaptive memory-based grasp approach. European Journal of Oper-
ational Research 183:100–114

Artigues C, Feillet D (2008) A branch and bound method for the job-shop problem with
sequence-dependent setup times. Annals of Operations Research 159(1):135–159

Lateness Minimization with TS for SDST-JSP 19

Artigues C, Lopez P, Ayache P (2005) Schedule generation schemes for the job shop prob-
lem with sequence-dependent setup times: Dominance properties and computational anal-
ysis. Annals of Operations Research 138:21–52

Balas E, Lancia G (1998) Job shop scheduling with deadlines. Journal of Combinatorial
Optimization 1:329–353

Balas E, Simonetti N, Vazacopoulos A (2008) Job shop scheduling with setup times, dead-
lines and precedence constraints. Journal of Scheduling 11:253–262

Beck JC, Feng T, Watson JP (2010) Combining constraint programming and local search
for job-shop scheduling. Informs Journal on Computing DOI: 10.1287/ijoc.1100.0388

Bilge U, Kiraç F, Kurtulan M, PekgÂÿn P (2004) A tabu search algorithm for parallel ma-
chine total tardiness problem. Computers & Operations Research 31:397–414

Brucker P, Thiele O (1996) A branch and bound method for the general-job shop problem
with sequence-dependent setup times. Operations Research Spektrum 18:145–161

DeBontridder K (2005) Minimizing total weighted tardiness in a generalized job shop. Jour-
nal of Scheduling 8:479–496

Dell’ Amico M, Trubian M (1993) Applying tabu search to the job-shop scheduling problem.
Annals of Operations Research 41:231–252

Fleszar K, Charalambous C, Hindi KS (2011) A variable neighborhood descent heuristic for
the problem of makespan minimisation on unrelated parallel machines with setup times.
Journal of Intelligent Manufacturing DOI: 10.1007/s10845-011-0522-8

Glover F (1989) Tabu search–part I. ORSA Journal on Computing 1(3):190–206
González MA, Vela C, Varela R (2008) A new hybrid genetic algorithm for the job shop

scheduling problem with setup times. In: Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling (ICAPS-2008), AAAI Press, Sidney,
pp 116–123

González MA, Vela CR, Varela R (2009) A tabu search algorithm to minimize lateness in
scheduling problems with setup times. In: Proceedings of CAEPIA 2009, pp 115–124

González Rodríguez I, Vela CR, Puente J (2010) A genetic solution based on lexicographical
goal programming for a multiobjective job shop with uncertainty. Journal of Intelligent
Manufacturing 21 (1):65 – 73

Grabowski J, Wodecki M (2005) A very fast tabu search algorithm for job shop problem,
Operations Research/Computer Science Interfaces Series, vol 30, Springer, US, pp 117–
144

Graham R, Lawler E, Lenstra J, Rinnooy Kan A (1979) Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics
5:287–326

Hao J, Dorne R, Galinier P (1998) Tabu search for frequency assignment in mobile radio
networks. Journal of Heuristics 4(1):47–62

Huang J, Suer G, Urs S (2011) Genetic algorithm for rotary machine scheduling with de-
pendent processing times. Journal of Intelligent Manufacturing DOI: 10.1007/s10845-
011-0521-9

Matsuo H, Suh C, Sullivan R (1988) A controlled search simulated annealing method for
the general jobshop scheduling problem. Working paper 03-44-88, Graduate School of
Business, University of Texas

Meeran S, Morshed M (2011) A hybrid genetic tabu search algorithm for solving job
shop scheduling problems: a case study. Journal of Intelligent Manufacturing DOI:
10.1007/s10845-011-0520-x

Mehta S, Uzsoy R (1998) Predictable scheduling of a job shop subject to breakdowns. IEEE
Transactions on Robotics and Automation 14(3):365–378

20 Miguel A. González et al.

Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop scheduling
problem. Management Science 42:797–813

Nowicki E, Smutnicki C (2005) An advanced tabu search algorithm for the job shop prob-
lem. Journal of Scheduling 8:145–159

Oddi A, Rasconi R, Cesta A, Smith S (2009) Iterative-sampling search for job shop sched-
uling with setup times. In: COPLAS 2009 Proceedings of the Workshop on Constraint
Satisfaction Techniques for Planning and Scheduling Problems, pp 27–33

Ovacik I, Uzsoy R (1994) Exploiting shop floor status information to schedule complex job
shops. Journal of Manufacturing Systems 13(2):73–84

Pinedo M (2008) Scheduling. Theory, Algorithms, and Systems. Springer, third edition
Serifoglu F, Ulusoy G (1999) Parallel machine scheduling with earliness and tardiness

penalties. Computers & Operations Research 26:773–787
Sierra M, Varela R (2010) Best-first search and pruning by dominance for the job shop

scheduling problem with total flow time. Journal of Intelligent Manufacturing 21(1):111–
119

Stecco G, Cordeau JF (2009) A tabu search heuristic for a sequence-dependent and time-
dependent scheduling problem on a single machine. Journal of Scheduling 12:3–16

Taillard E (1993) Parallel taboo search techniques for the job shop scheduling problem.
ORSA Journal on Computing 6:108–117

Uzsoy R, Velásquez J (2008) Heuristics for minimizing maximum lateness on a single ma-
chine with family-dependent set-up times. Computers and Operations Research 35:2018–
2033

Van Laarhoven P, Aarts E, Lenstra K (1992) Job shop scheduling by simulated annealing.
Operations Research 40:113–125

Vela CR, Varela R, González MA (2010) Local search and genetic algorithm for the job shop
scheduling problem with sequence dependent setup times. Journal of Heuristics 16:139–
165

Watson J, Howe A, Whitley L (2006) Deconstructing Nowicki and Smutnicki’s i-TSAB
tabu search algorithm for the job-shop scheduling problem. Computers and Operations
Research 33:2623–2644

Wilbrecht J, Prescott W (1969) The influence of setup times on job shop performance. Man-
agement Science 16(4):391–401

Yan H, Xia Q, Zhu M, Liu X, Guo Z (2003) Integrated production planning and scheduling
on automobile assembly lines. IIE Transactions 35(8):711–725

Ying KC, Lee ZJ, Lin SW (2011) Makespan minimization for scheduling unrelated parallel
machines with setup times. Journal of Intelligent Manufacturing DOI: 10.1007/s10845-
010-0483-3

Zhang C, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algorithm for the job shop sched-
uling problem. Computers and Operations Research 35:282–294

