98 research outputs found

    Federated description logics for the semantic web

    Get PDF
    The thesis deals with a family of federated description logics for creating modular ontologies in the semantic web. All these logics share modularity, the possibility to reuse concept names and role names by importing, and context-sensitive interpretation of all logical connectives. Apart from the main basic language F-ALCI, we present a lattice-based extension LF-ALCI, a probabilistic extension PF-ALCI and an extension that employs knowledge operators F-ALCIK. All languages are based on the ordinary well-known description logic ALCI

    A Semantic Importing Approach to Reusing Knowledge from Multiple Autonomous Ontology Modules

    Get PDF
    We present the syntax and semantics of a modular ontology language \logic{SHOIQP} to accomplish knowledge integration from multiple ontologies and knowledge reuse from context-specific points of view. Specifically, a \logic{SHOIQP} ontology consists of multiple ontology modules (each of which can be viewed as a \logic{SHOIQ} ontology) and concept, role and nominal names can be shared by ``importing\u27\u27 relations among modules. The proposed language supports contextualized interpretation, i.e., interpretation from the point of view of a specific package. We establish the necessary and sufficient constraints on domain relations (i.e., the relations between individuals in different local domains) to preserve the satisfiability of concept formulae, monotonicity of inference, and transitive reuse of knowledge

    Proceedings of the Automated Reasoning Workshop (ARW 2019)

    Get PDF
    Preface This volume contains the proceedings of ARW 2019, the twenty sixths Workshop on Automated Rea- soning (2nd{3d September 2019) hosted by the Department of Computer Science, Middlesex University, England (UK). Traditionally, this annual workshop which brings together, for a two-day intensive pro- gramme, researchers from different areas of automated reasoning, covers both traditional and emerging topics, disseminates achieved results or work in progress. During informal discussions at workshop ses- sions, the attendees, whether they are established in the Automated Reasoning community or are only at their early stages of their research career, gain invaluable feedback from colleagues. ARW always looks at the ways of strengthening links between academia, industry and government; between theoretical and practical advances. The 26th ARW is affiliated with TABLEAUX 2019 conference. These proceedings contain forteen extended abstracts contributed by the participants of the workshop and assembled in order of their presentations at the workshop. The abstracts cover a wide range of topics including the development of reasoning techniques for Agents, Model-Checking, Proof Search for classical and non-classical logics, Description Logics, development of Intelligent Prediction Models, application of Machine Learning to theorem proving, applications of AR in Cloud Computing and Networking. I would like to thank the members of the ARW Organising Committee for their advice and assis- tance. I would also like to thank the organisers of TABLEAUX/FroCoS 2019, and Andrei Popescu, the TABLEAUX Conference Chair, in particular, for the enormous work related to the organisation of this affiliation. I would also like to thank Natalia Yerashenia for helping in preparing these proceedings. London Alexander Bolotov September 201

    Integrated distributed description logics

    Get PDF
    zimmermann2007aInternational audienceWe propose a Description-Logics-based language that extends standard DL with distributed capabilities. More precisely, it offers the possibility to formally describe the semantic relations that exist between two ontologies in a networked knowledge-based system. Contrary to Distributed Description Logics, it is possible to compose correspondences (or bridge rules), while still being able to hide some of the discrepancies between ontologies. Moreover, when ontologies have no nominals, no A-Box axioms, and correspondences are restricted to cross-ontology subsumption, the satisfiability of a local ontology is not influenced by ontology alignments and other ontologies, i.e., local deduction is invariant to the change of the outer system. Although we do not have a complete reasoning procedure, we provide inference rules and semantic properties, and a discussion on reasoning in this formalism

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Chord sequence patterns in OWL

    Get PDF
    This thesis addresses the representation of, and reasoning on, musical knowledge in the Semantic Web. The Semantic Web is an evolving extension of the World Wide Web that aims at describing information that is distributed on the web in a machine-processable form. Existing approaches to modelling musical knowledge in the context of the Semantic Web have focused on metadata. The description of musical content and reasoning as well as integration of content descriptions and metadata are yet open challenges. This thesis discusses the possibilities of representing musical knowledge in the Web Ontology Language (OWL) focusing on chord sequence representation and presents and evaluates a newly developed solution. The solution consists of two main components. Ontological modelling patterns for musical entities such as notes and chords are introduced in the (MEO) ontology. A sequence pattern language and ontology (SEQ) has been developed that can express patterns in a form resembling regular expressions. As MEO and SEQ patterns both rewrite to OWL they can be combined freely. Reasoning tasks such as instance classification, retrieval and pattern subsumption are then executable by standard Semantic Web reasoners. The expressiveness of SEQ has been studied, in particular in relation to grammars. The complexity of reasoning on SEQ patterns has been studied theoretically and empirically, and optimisation methods have been developed. There is still great potential for improvement if specific reasoning algorithms were developed to exploit the sequential structure, but the development of such algorithms is outside the scope of this thesis. MEO and SEQ have also been evaluated in several musicological scenarios. It is shown how patterns that are characteristic of musical styles can be expressed and chord sequence data can be classified, demonstrating the use of the language in web retrieval and as integration layer for different chord patterns and corpora. Furthermore, possibilities of using SEQ patterns for harmonic analysis are explored using grammars for harmony; both a hybrid system and a translation of limited context-free grammars into SEQ patterns have been developed. Finally, a distributed scenario is evaluated where SEQ and MEO are used in connection with DBpedia, following the Linked Data approach. The results show that applications are already possible and will benefit in the future from improved quality and compatibility of data sources as the Semantic Web evolves.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore