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Integrated Distributed Description Logics

(extended abstract)

Antoine Zimmermann

INRIA Rhône-Alpes

Abstract. We propose a Description-Logics-based language that extends stan-

dard DL with distributed capabilities. More precisely, it offers the possibility to

formally describe the semantic relations that exist between two ontologies in a

networked knowledge-based system. Contrary to Distributed Description Logics

[2], it is possible to compose correspondences (≈ bridge rules), while still being

able to hide some of the discrepancies between ontologies. Moreover, when on-

tologies have no nominals, no A-Box axioms, and correspondences are restricted

to cross-ontology subsumption, the satisfiability of a local ontology is not influ-

enced by ontology alignments and other ontologies, i.e., local deduction is in-

variant to the change of the outer system. Although we do not have a complete

reasoning procedure, we provide inference rules and semantic properties, and a

discussion on reasoning in this formalism.

1 Introduction

Description Logics (DL) have been widely used in knowledge-based systems and serve

as the foundation for the accepted standard language of the semantic web, viz., OWL

[4]. However, in their basic form, DL are not so much appropriate when used in a

strongly distributed environment like peer to peer systems, semantic web, or other net-

worked, heterogeneous knowledge-based systems. In distributed environments, ontol-

ogy engineers want to reuse third party ontologies or, even more, parts of existing

ontologies, while maintaining consistency, at least in their local knowledge representa-

tion.

We offer an extension of the DL formalism (Integrated Distributed Description Log-

ics, or IDDL) which comply with the requirements of a distributed knowledge represen-

tation. The main advantages of our approach, compared to others, are (1) its separation

of local semantics (which is standard DL), and global semantics; and (2) it allows com-

position of ontology mappings.

First item means that it is conceptually in accordance with the notion of semantic

integration: local knowledge and reasoning should not be disturbed when embedded

in a network of ontologies. Several research initiative have been launched to define

languages specifically adapted to these issues. Some of them are based on DL. Sect. 2

presents these formalisms, and compares them to our approach. Sect. 3 presents the

syntax and semantics of our new formalism. In Sect. 4, we discuss reasoning in this

formalism by listing the inference rules added to standard DL reasoning, and explain

the particularities (advantages and drawbacks) of the approach.



2 Related work

In this section, we do not investigate distributed knowledge-based formalism in its gen-

erality. We focus on DL-related work. The use of DL as a basis for a semantic web

representation language was envisage early, and OWL supports “imports” of ontologies

from a distant server. So, to a limited extend, OWL is a language for distributed archi-

tectures. However, since the “import” statement only copies the content of the identified

ontology (using its URI as a URL), it does not so well comply with the specificities of

an evolving, heterogeneous environment like the Web.

[2] defines a semantics for Distributed Description Logics (DDL), based on the

same idea as DFOL [3]. It is built around the idea of contextualizing knowledge. More

precisely, each ontology in a system relates other ontologies to itself in a directional

way, enabling an ontology to “translate” others’ knowledge in its own context. It is di-

rectional because the context to which knowledge is transfered determines how things

are interpreted. Technically, each local ontology has its own domain of interpretation,

and a domain relation defines how information is translated from one ontology to the

other. These relations are not necessarily symmetric. The main disadvantage, with re-

spect to this semantics, is the impossibility to compose so-called “bridge rules”, e.g., if

local concept C1 of ontology O1 is seen (from O1’s context) as a subclass of foreign

concept C2 in ontology O2, and C2 is seen (from O2’s context) as a subclass of concept

C3 in ontology O3, it not possible to deduce that C1 is a subclass of C3 (from O1’s

point of view). So relations between two foreign ontologies are not really taken into

account. Only the relations between foreign ontologies and the local ontology count in

the interpretation of one given context.

Another possible approach, which has good features with respect to modularity of

ontologies, is found in Package-based Description Logics (P-DL) [1]. In this DL-based

formalism, local ontologies (or “package”) can import not just full ontologies but rather

named concepts or roles from foreign ontologies. Each ontology is interpreted in a local

domain, but instead of relating it to others, they simply overlap on the imported terms

interpretation. So there is no difference between the interpretation of a concept from the

importing and the imported ontologies. The biggest problem is that it obliges the whole

network of ontologies to be quite homogeneous.

In [5], a more abstract formalism has been used to compare different approaches in-

terpreting distributed systems. DDL corresponds to what authors called a contextualized

semantics, and they prove that it does not comply with ontology alignment composi-

tion. P-DL would rather correspond to simple semantics, which is tied to homogeneous

and consistent systems. Finally, they propose a third formalism that is conceptually well

suited for heterogeneous ontology integration and comply with alignment composition.

In the present paper, we instantiate it by giving it a concrete DL-based semantics.

3 Syntax and Semantics

A IDDL knowledge base contains two components: a family of local DL ontologies,

and a family of ontology alignments. In Sect. 3.1, we define many DL constructors but

the formalism is appropriate for any subset of them, e.g., AL, ALC, ALCN , SHIQ,

SHOIN , etc.



3.1 DL Syntax and Semantics

IDDL ontologies have the same syntax and semantics as in standard DL. More precisely,

a DL ontology is composed of concepts, roles and individuals, as well as axioms built

out of these elements. A concept is either a primitive concept A, or, given concepts C,

D, role R, individuals a1, . . . , ak, and natural number n, ⊥, ⊤, C ⊔D, C ⊓D, ∃R.C,

∀R.C, ≤ nR.C, ≥ nR.C, ¬C or {a1, . . . , ak}. A role is either a primitive role P , or,

given roles R and S, R ⊔ S, R ⊓ S, ¬R, R−, R ◦ S and R+.

Interpretations are pairs 〈∆I , ·I〉, where ∆I is a non-empty set (the domain of

interpretation) and ·I is the functon of interpretation such that for all primitive con-

cepts A, AI ⊆ ∆I , for all primitive roles P , P I ⊆ ∆I × ∆I , and for all indi-

viduals a, aI ∈ ∆I . Interpretations of complex concepts and roles is inductively de-

fined by ⊥I = ∅, ⊤I = ∆I , (C ⊔ D)I = CI ∪ DI , (C ⊓ D)I = CI ∩ DI ,

(∃R.C)I = {x|∃y.y∈CI ∧ 〈x, y〉 ∈RI}, (∀R.C)I = {x|∀y.〈x, y〉 ∈RI ⇒ y∈CI},
(≤ nR.C)I = {x|♯{y ∈CI |〈x, y〉 ∈RI} ≤ n}, (≥ nR.C)I = {x|♯{y ∈CI |〈x, y〉 ∈
RI} ≥ n}, (¬C)I = ∆I \ CI , {a1, . . . , ak} = {aI

1, . . . , a
I
k}, (R ⊔ S)I = RI ∪ SI ,

(R ⊓ S)I = RI ∩ SI , (¬R)I = (∆I × ∆I) \ RI , (R−)I = {〈x, y〉|〈y, x〉 ∈ RI},
(R ◦ S)I = {〈x, y〉|∃z.〈x, z〉∈RI ∧ 〈z, y〉∈SI} and (R+)I is the reflexive-transitive

closure of RI .

Axioms are either subsumption C ⊑ D, sub-role axioms R ⊑ S, instance asser-

tions C(a), role assertions R(a, b) and individual identities a = b, where C and D are

concepts, R and S are roles, and a and b are individuals. An interpretation I satisfies

axiom C ⊑ D iff CI ⊆ DI ; it satisfies R ⊑ S iff RI ⊆ SI ; it satisfies C(a) iff

aI ∈CI ; it satisfies R(a, b) iff 〈aI , bI〉∈RI ; and it satisfies a = b iff aI = bI . When I

satisfies an axiom α, it is denoted by I |= α.

An ontology O is composed of a set of terms (primitive concepts/roles and individ-

uals) called the signature of O and denoted by Sig(O), and a set of axioms denoted by

Ax(O). An interpretation I is a model of an ontology O iff for all α∈Ax(O), I |= α.

In this case, we write I |= O. The set of all models of an ontology O is denoted by

Mod(O). A semantic consequence of an ontology O is a formula α such that for all

I∈Mod(O), I |= α.

3.2 Distributed Systems

A Distributed System (DS) is composed of a set of ontologies, interconnected by on-

tology alignments. An ontology alignment describes semantic relations between two

ontologies.

Syntax: An ontology alignment is composed of a set of correspondences. A corre-

spondence can be seen as an axiom that asserts a relation between concepts, roles or

individuals of two distinct ontologies. They are homologous to bridge rules in DDL.

We use a notation similar to DDL in order to identify in which ontology a concept, role

or individual is defined. If a concept/role/individual E belongs to ontology i, then we

write it i :E. The 6 possible types of correspondences between ontologies i and j are:

Definition 1 (Correspondence). A correspondence between two ontologies i and j is

one of the following formula:



− i :C
⊑
←→ j :D is a cross-ontology concept subsumption;

− i :R
⊑
←→ j :S is a cross-ontology role subsumption;

− i :C
⊥
←→ j :D is a cross-ontology concept disjunction;

− i :R
⊥
←→ j :S is a cross-ontology role disjunction;

− i :a
∈
←→ j :C is a cross-ontology membership;

− i :a
=
←→ j :b is a cross-ontology identity.

An ontology alignment is simply a set of correspondences. Together with DL on-

tologies, they form the components of a Distributed System in IDDL.

Definition 2 (Distributed System). A Distributed System (DS for short), is a pair

〈O,A〉 such that O is a set of ontologies, and A = (Aij)i,j∈O is a family of align-

ments relating ontologies of O.1

Semantics: Distributed systems semantics depends on local semantics, but does not in-

terfere with it. A standard DL ontology can be straightforwardly used in IDDL system.

Informally, interpreting a IDDL system consists in assigning a standard DL interpre-

tation to each local ontology, then correlating the domains of interpretation thanks to

what we call an equalizing function.

Definition 3 (Equalizing function). Given a family of local interpretations I, an equal-

izing function ǫ is a family of functions indexed by I such that for all Ii∈I, ǫi : ∆Ii →
∆ǫ where ∆ǫ is called the global domain of interpretation of ǫ.

A distributed interpretation assigns a standard DL interpretation to each ontology

in the system, as well as an equalizing function that correlate local knowledge into a

global domain of interpretation.

Definition 4 (Distributed interpretation). Let S = 〈O,A〉 be a DS. A distributed

interpretation of S is a pair 〈I, ǫ〉 where I is a family of interpretations indexed by O, ǫ

is an equalizing function for I, such that for all i∈O, Ii interprets i and ǫi : ∆Ii → ∆ǫ.

While local satisfiability is the same as standard DL, correspondence satisfaction

involves the equalizing function.

Definition 5 (Satisfaction of a correspondence). Let S be a DS, and i, j two ontolo-

gies of S. Let I = 〈I, ǫ〉 be a distributed interpretation. We define satisfaction of a

correspondence c (denoted by I |=d c) as follows:

− I |=d i :C
⊑
←→ j :D iff ǫi(C

Ii) ⊆ ǫj(D
Ij );

− I |=d i :R
⊑
←→ j :S iff ǫi(R

Ii) ⊆ ǫj(S
Ij );

− I |=d i :C
⊥
←→ j :D iff ǫi(C

Ii) ∩ ǫj(D
Ij ) = ∅;

− I |=d i :R
⊥
←→ j :S iff ǫi(R

Ii) ∩ ǫj(S
Ij ) = ∅;

1 We consistently use bold face to denote a mathematical family of elements. So, O denotes

(Oi)i∈I where I is a set of indices.



− I |=d i :a
∈
←→ j :C iff ǫi(a

Ii)∈ǫj(C
Ij );

− I |=d i :a
=
←→ j :b iff ǫi(a

Ii) = ǫj(b
Ij ).

Additionally, for all local formula i :φ, I |=d i :φ iff Ii |= φ (i.e., local satisfaction

implies global satisfaction). A distributed interpretation I satisfies an alignment A iff

it satisfies all correspondences of A (denoted by I |=d A) and it satisfies an ontology

Oi iff it satisfies all axioms of Oi (denoted by I |=d Oi). When all ontologies and all

alignments are satisfied, the DS is satisfied by the distributed interpretation. In which

case we call this interpretation a model of the system.

Definition 6 (Model of a DS). Let S = 〈O,A〉 be a DS. A distributed interpretation

I is a model of S (denoted by I |=d S), iff:

− for all Oi∈O, I |=d Oi;

− for all Aij ∈A, I |=d Aij .

The set of all models of a DS is denoted by Mod(S). A formula α is a consequence

of a DS (S |=d α) iff ∀M ∈ Mod(S),M |=d α. This model-theoretic semantics offers

special challenge to the reasoning infrastructure, that we discuss in next section.

4 Reasoning in IDDL

Reasoning in IDDL is a tricky task because there are two levels of interpretation, which

are separated yet interdependent. Local DL inferences are valid in IDDL, but correspon-

dences add new inference rules. Also, we show in Sect. 4.2 how to transpose knowledge

of a DS into a localized ontology. However, this process does not guarantee complete-

ness in general.

4.1 Inference Rules

Correspondences and axioms from several ontologies are used to deduce new axioms

or correspondences, as shown in Fig. 1.

It is easy to prove that these rules lead to correct reasoning2 but completeness is still

under investigation. Rule 14 is a special case because it requires the introduction of a

new individual that does not appear in any other axioms. This is due to the fact that DL

does not provide any means to assert that there exists an unnamed instance of a concept.

Rules 7, 8, 9, 10 and 11 show that it is possible to compose correspondences. Rule 15

shows that alignments can produce inconsistencies, independently of ontologies. It must

be remarked that several seemingly intuitive results are not true in IDDL. For instance,

i :A
⊑
←→ j :¬B does not imply, nor is implied by i :A

⊥
←→ j :B, because injectivity of

the equalizing function is not required. Moreover, if i :A
⊑
←→ i :B (resp. i :a

=
←→ i :b,

resp. i :a
∈
←→ i :A), it is not possible to infer i :A ⊑ B (resp. i :a = b, resp. i :A(a)).

2 See http://www.inrialpes.fr/exmo/people/zimmer/DL2007Proof.pdf

for formal proofs.



i :A ⊑ B

i :A
⊑
←→ i :B

(1)

i :A(a)

i :a
∈
←→ i :A

(3)

i :a
=
←→ j :b

j :b
=
←→ i :a

(5)

i :A
⊑
←→ j :B j :B

⊑
←→ k :C

i :A
⊑
←→ k :C

(7)

i :a
∈
←→ j :B j :B

⊑
←→ k :C

i :a
∈
←→ k :C

(9)

i :A
⊑
←→ j :B j :B

⊥
←→ k :C

i :A
⊥
←→ k :C

(11)

i :A
⊥
←→ j :B i :a

∈
←→ j :B

i :¬A(a)
(13)

i :a = b

i :a
=
←→ i :b

(2)

i :A
⊑
←→ j :B i :A

′ ⊑
←→ j :B

′

i :A ⊔ A
′ ⊑
←→ j :B ⊔ B

′
(4)

i :A
⊥
←→ j :B

j :B
⊥
←→ i :A

(6)

i :a
=
←→ j :b j :b

=
←→ k :c

i :a
=
←→ k :c

(8)

i :a
=
←→ j :b j :b

∈
←→ k :C

i :a
∈
←→ k :C

(10)

i :A
⊥
←→ j :B i :A

′ ⊑
←→ j :B

i :A ⊑ ¬A
′ (12)

i :a
∈
←→ j :B

j :B(x) i :a
=
←→ j :x

(14)

i :a
∈
←→ j :B j :B

⊥
←→ j :B

⊓⊔
(15)

Fig. 1. Inference rules in IDDL.

It is interesting to note that when the ontologies have no A-Box and do not use

nominals, and when moreover correspondences are limited to cross-ontology subsump-

tions, it is not possible to deduce new local axioms with outer knowledge (only rules

1, 4 and 7 apply). Therefore, in this particular case, local reasoning is not disturbed

by the surrounding DS. This is a particularly interesting feature when the network of

ontologies is constantly evolving. Yet, it does not mean that embedding an ontology in

a DS does not provide interesting knowledge. Indeed, the global semantics level is very

much influenced, and this is crucial in ontology integration. Next section shows how a

DS can be used to define a new DL ontology that integrate the knowledge from all the

system.

4.2 Localizing Distributed Knowledge

Here, we show how to interpret a DS as a standard DL ontology, by building a standard

DL interpretation out of a distributed one. The multiple signatures of the DS ontologies

can be gathered into one vocabulary in the following way.

Definition 7. The integrated vocabulary VS of a distributed system S = 〈O,A〉 is

defined as follows:

− for all primitive concept (resp. primitive role, resp. individual) Xi in ontology Oi,

there exists a primitive concept (resp. primitive role, resp. individual) X→i in VS;



− for all constructed concept (resp. constructed role) Xi of ontology Oi appearing

in the axioms or alignments of S, there exists a primitive concept (resp. primitive

role) X→i in VS .

The integrated vocabulary can be interpreted by a standard DL interpretation. An

integrated interpretation is a specific DL interpretation defined out of a given distributed

interpretation. Informally, it can be described as the mathematical composition of the

local interpretation functions and the equalizing function.

Definition 8. Given a distributed interpretation I = 〈I, ǫ〉 of a system S, the integrated

interpretation I→ built out of I is a DL interpretation of VS defined as follows:

− for all primitive concept C→i of VS , (C→i )I
→

= {ǫi(x);x ∈ CIi

i };

− for all primitive role C→i of VS , (R→i )I
→

= {〈ǫi(x), ǫi(y)〉; 〈x, y〉 ∈ RIi

i };

− for all individual a→i of VS , (a→i )I
→

= ǫi(a
Ii

i ).

Of course, this interpretation can be extended to interpret constructed concepts like

∃R→.C→. Be careful not to confuse complex concept ∃R→.C→ and the primitive con-

cept (∃R.C)→. See Sect. 4 for details.

Deduction in the integrated vocabulary: Since integrated interpretations are standard

DL interpretations, they may satisfy DL axioms over the integrated vocabulary. Theo. 1

shows how distributed satisfaction influence integrated interpretation satisfaction.

Theorem 1. Let I = 〈I, ǫ〉 be a distributed interpretation of a DS which contains
concepts Ci, Di, roles Ri, Si, individuals ai, bi, o1, . . . , on in ontology Oi and concept
Cj , role Rj , individual aj in ontology Oj .

Ii |= i :Ci(ai) =⇒ I
→
|= C

→
i (a

→
i ) I |= i :Ci

⊑
←→ j :Cj =⇒ I

→
|= C

→
i ⊑ C

→
j

Ii |= i :Ri(ai, bi) =⇒ I
→
|= R

→
i (a

→
i , b

→
i ) I |= i :Ri

⊑
←→ j :Rj =⇒ I

→
|= R

→
i ⊑ R

→
j

Ii |= i :Ci ⊑ Di =⇒ I
→
|= C

→
i ⊑ D

→
i I |= i :Ci

⊥
←→ j :Cj =⇒ I

→
|= C

→
i ⊑ ¬(C

→
j )

Ii |= i :ai = bi =⇒ I
→
|= a

→
i = b

→
i I |= i :Ri

⊥
←→ j :Rj =⇒ I

→
|= R

→
i ⊑ ¬(R

→
j )

I |= i :ai
=
←→ j :bj =⇒ I

→
|= a

→
i = a

→
j I |= i :ai

∈
←→ j :Cj =⇒ I

→
|= C

→
j (a

→
i )

Moreover, the following assertions hold:

I
→
|= C

→
i ⊔D

→
i ⊑ (Ci ⊔Di)

→
I
→
|= R

→
i ⊔ S

→
i ⊑ (Ri ⊔ Si)

→

I
→
|= (Ci ⊔Di)

→
⊑ C

→
i ⊔D

→
i I

→
|= (Ri ⊔ Si)

→
⊑ R

→
i ⊔ S

→
i

I
→
|= C

→
i ⊓D

→
i ⊑ (Ci ⊓Di)

→
I
→
|= R

→
i ⊓ S

→
i ⊑ (Ri ⊓ Si)

→

I
→
|= (∃Ri.Ci)

→
⊑ ∃(R

→
i ).(C

→
i ) I

→
|= (R

−
i )

→
⊑ (R

→
i )

−

I
→
|= ∃R

→
i .⊤ ⊑ (∃Ri.⊤)

→
I
→
|= (R

→
i )

−
⊑ (R

−
i )

→

I
→
|= ({o1, . . . , on})

→
⊑ {o

→
1 , . . . , o

→
n } I

→
|= (R

+

i )
→
⊑ (R

→
i )

+

I
→
|= {o

→
1 , . . . , o

→
n } ⊑ {(o1, . . . , on})

→
I
→
|= (Ri ◦ Si)

→
⊑ R

→
i ◦ S

→
i

Each of the previous assertions is quite easy to prove, but fastidious. Therefore, we

do not reproduce them here but interested readers can find them online.3 For all other

3 http://www.inrialpes.fr/exmo/people/zimmer/DL2007Proof.pdf



constructors and subsumptions, counter examples can be found where the interpretation

does not satisfy them. This can also be found online.

This theorem allows compiling axioms that are satisfied by all the models of a DS.

Therefore, it is possible to build a new ontology that integrate knowledge from dis-

tributed ontologies and alignments. Such an ontology correctly represents knowledge

of the system, but might not be complete. Nonetheless, Theo. 1 can be used as the basis

of a compilation algorithm which integrate aligned ontologies in a modular way. The

compiled ontology itself could be embedded in a distributed system.

5 Conclusion and further work

We have proposed a new formalism for distributed systems composed of ontologies

and ontology alignments. Its semantics has the advantage of being able to compose

correspondences (i.e., to deduce a new alignment from a chain of alignments exists

from the first to the second ontology). Given some restrictions, it also offers strong

robustness, since the absence of A-Box and nominals, together with only cross-ontology

subsumption correspondences, guarantee that local deduction is invariant to the change

of the outer system (i.e., alignments and other ontologies). Finally, it seems to be a

good candidate semantics for ontology integration and modularization, because of its

two-level semantics.

However, it still needs theoretical investigation. The most important work in the

continuity of what is proposed here is the design of a deduction procedure. This pa-

per already provides correct deductive rules, but completeness is not guaranteed in the

general case. Developing a tableau-like algorithm is hard because the two levels of se-

mantics interact with each others, although they are not processable together by usual

methods. Such a procedure would open the way to implementation and tests.
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