7 research outputs found

    TV-Stokes And Its Variants For Image Processing

    Get PDF
    The total variational minimization with a Stokes constraint, also known as the TV-Stokes model, has been considered as one of the most successful models in image processing, especially in image restoration and sparse-data-based 3D surface reconstruction. This thesis studies the TV-Stokes model and its existing variants, proposes new and more effective variants of the model and their algorithms applied to some of the most interesting image processing problems. We first review some of the variational models that already exist, in particular the TV-Stokes model and its variants. Common techniques like the augmented Lagrangian and the dual formulation, are also introduced. We then present our models as new variants of the TV-Stokes. The main focus of the work has been on the sparse surface reconstruction of 3D surfaces. A model (WTR) with a vector fidelity, that is the gradient vector fidelity, has been proposed, applying it to both 3D cartoon design and height map reconstruction. The model employs the second-order total variation minimization, where the curl-free condition is satisfied automatically. Because the model couples both the height and the gradient vector representing the surface in the same minimization, it constructs the surface correctly. A variant of this model is then introduced, which includes a vector matching term. This matching term gives the model capability to accurately represent the shape of a geometry in the reconstruction. Experiments show a significant improvement over the state-of-the-art models, such as the TV model, higher order TV models, and the anisotropic third-order regularization model, when applied to some general applications. In another work, the thesis generalizes the TV-Stokes model from two dimensions to an arbitrary number of dimensions, introducing a convenient form for the constraint in order it to be extended to higher dimensions. The thesis explores also the idea of feature accumulation through iterative regularization in another work, introducing a Richardson-like iteration for the TV-Stokes. Thisis then followed by a more general model, a combined model, based on the modified variant of the TV-stokes. The resulting model is found to be equivalent to the well-known TGV model. The thesis introduces some interesting numerical strategies for the solution of the TV-Stokes model and its variants. Higher order PDEs are turned into inhomogeneous modified Helmholtz equations through transformations. These equations are then solved using the preconditioned conjugate gradients method or the fast Fourier transformation. The thesis proposes a simple but quite general approach to finding closed form solutions to a general L1 minimization problem, and applies it to design algorithms for our models.Doktorgradsavhandlin

    Optimal Control based Image Sequence Interpolation

    Get PDF
    This thesis includes my three-year doctoral research in the field of image sequence interpolation. The introduced interpolation methods are mainly based on fnding an appropriate optical flow field, with which the objects in an initial image can be transported and warped to a certain time. To identify the optical flow field the interpolation problem is considered in the framework of optimal control governed by the transport equation. To improve the interpolation quality, the models are introduced so that the edges of the optical flow are preserved, the forward and backward interpolation are locally selected. Basically the smooth version of total variation and the active contours for segmentation are used. In the theoretical part, the solution theory of transport equation is investigated under different settings on the regularity of the optical flow, and applied in the proof of the existence of a minimizer to the associated minimization problems

    A TV-Stokes denoising algorithm

    No full text
    Abstract. In this paper, we propose a two-step algorithm for denoising digital images with additive noise. Observing that the isophote directions of an image correspond to an incompressible velocity field, we impose the constraint of zero divergence on the tangential field. Combined with an energy minimization problem corresponding to the smoothing of tangential vectors, this constraint gives rise to a nonlinear Stokes equation where the nonlinearity is in the viscosity function. Once the isophote directions are found, an image is reconstructed that fits those directions by solving another nonlinear partial differential equation. In both steps, we use finite difference schemes to solve. We present several numerical examples to show the effectiveness of our approach.
    corecore