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Zusammenfassung

Die vorliegende Arbeit entstand im Rahmen einer dreijährige Promo-

tionsforschung im Bereich der Interpolation einer Bildsequenz. Die

vorgestellten Interpolationsmethoden sind hauptsächlich auf der Suche

nach einem passenden optischen Flussfeld, mit dem die Objekte im An-

fangsbild zu einem bestimmten Zeitpunkt
”
transportiert“ und

”
verz-

errt“ werden können. Um das optische Flussfeld zu identifizieren, wird

das Interpolationsproblem im Rahmen der optimalen Steuerung mit

Hilfe der Transportgleichung gesteuert. Um die Qualität der Interpola-

tion zu verbessern, werden die Modellen vorgestellt, so dass die optis-

chen Flusskanten bleiben erhalten und die Vorwärts- bzw. Rückwärts-

Interpolation lokal ausgewertet werden können. Grundlegend dabei ist

die Verwendung einer geglätteten Version der totalen Variation und der

aktiven Konturen für die Segmentierung. Aus theoretischer Sicht wird

die Lösungstheorie der Transportgleichung unter verschiedenen Regu-

laritätsvoraussetzungen an den optischen Fluss untersucht. Die resul-

tierenden Ergebnisse ermöglichen dann den Nachweis der Existenz eines

Minimierers des geweiligen Minimierungsproblems.



Abstract

This thesis includes my three-year doctoral research in the field of im-

age sequence interpolation. The introduced interpolation methods are

mainly based on finding an appropriate optical flow field, with which

the objects in an initial image can be “transported” and “warped” to a

certain time. To identify the optical flow field the interpolation prob-

lem is considered in the framework of optimal control governed by the

transport equation. To improve the interpolation quality, the models

are introduced so that the edges of the optical flow are preserved, the

forward and backward interpolation are locally selected. Basically the

smooth version of total variation and the active contours for segmenta-

tion are used. In the theoretical part, the solution theory of transport

equation is investigated under different settings on the regularity of the

optical flow, and applied in the proof of the existence of a minimizer to

the associated minimization problems.
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Chapter 1

Introduction

Image sequence interpolation is the generation of intermediate images between two

given consecutive images, a process which is, for example, relevant if the image

acquisition is slow or expensive and has broad applications in the fields of video

compression, medical imaging and so on. In video compression, the knowledge of

motions helps to remove the non-moving parts of images and compress video se-

quences with high compression rates. For example in the MPEG format, motion

estimation is the most computationally expensive portion of the video encoder and

normally solved by mesh-based matching techniques [57]. While decompressing

a video, intermediate images are generated by warping the image sequence with

motion vectors. In the field of medical imaging image sequence interpolation is

also desired. For example, the diagnostic requires a point-by-point correspondence

between the same tissue from the image sequence taken at different time [50]. Simi-

larly, in disease diagnostics an image of a patient’s tissue may need to be compared

with a healthy tissue [31]. This is an example of how image sequence interpola-

tion in some cases can be used to solve the problem normally classified as image

registration. In addition, image sequence interpolation is also able to improve the

quality of historic movies by increasing the frame-rate to the modern standard.

1.1 Outline of the Thesis

We divide this thesis into 6 chapters. In the second chapter we give a brief introduc-

tion of functions of bounded variation, for short BV , and introduce some important
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properties of BV . Then we introduce the concept of mollifiers and their approxi-

mate properties, in particular we prove the convergence of a mollified sequence in

the Lp-norm defined in the whole domain. Finally, we consider two-dimensional

Stokes equations and propose the mixed finite element method for solving them.

In the third chapter we propose the first model of image sequence interpolation

in the framework of optimal control governed by a transport equation. According

to the classic solution theory of transport equations we model the cost functional

regularized by an H3-term of optical flow, and we prove the existence of a minimizer

to the associated minimization problem. In the application we substitute the H3-

regularization with anH1-regularization and propose two different segregation loops

for solving the first-order optimality conditions system.

Since the H1-regularization is too smooth to preserve the discontinuities of the

optical flow, we introduce in Chapter 4 the ε-smooth total variation to regularize the

optical flow in the cost functional. According to the theory of DiPerna and Lions

the transport equation is still well-posed if the optical flow enjoys the Sobolev

regularity. Thanks to this solution theory of transport equations we are able to

prove the existence of a minimizer to the associated minimization problem.

The last model we propose in Chapter 5 combines the segmentation by active

contours with the previous model such that the domain is divided into the covered

parts and disclosed parts, which are suitable for the forward image interpolation

and backward image interpolation, respectively. We also prove the existence of a

minimizer to the associated minimization problem and evaluate our model with the

experiments based on human visual perception.

1.2 Optical Flow

The optical flow plays a decisive role in our modeling of image sequence interpola-

tion, so we give here a brief overview of it. As mentioned in [8], we are not able to

measure the 2d motion field (the projection on the image plane of the 3d velocity

of the scene), what we are able to perceive is just an apparent motion, also called

the optical flow. By apparent, we mean that this 2d motion is observable only

through intensity variations. Although the optical flow and the 2d motion field are

quantitatively different, they often share the same motion discontinuities, and the

optical flow gives a rich source of information about real 3d kinematic behavior of



1.2. Optical Flow 3

objects.

Horn and Schunck are the first who proposed a variational method based on

gradients to estimate the optical flow in their celebrated work [36]. The optical flow

constraint equation

ut + b · ∇u = 0 (1.1)

derived from a Taylor expansion of the conservation equation

u(t, x) = u0(x− bt), (1.2)

where u0 is an initial image, b := (v, w) is the optical flow, and u is image intensity

function defined in time and space. Define that Ω is a bounded domain of R2, and

λ is the regularization parameter to trade off the fidelity term and regularization

term, combined (1.1) with a global smoothness term to constrain the estimated flow

field b, minimizing ∫
Ω

(ut + b · ∇u)2 dx+ λ

∫
Ω

|∇v|2 + |∇w|2 dx

yields the first-order optimality conditions system⎧⎪⎨⎪⎩
Δv − 1

λ

(
u2xv + uxuyw + uxut

)
= 0,

Δw − 1

λ

(
u2yw + uxuyv + uyut

)
= 0.

Until now, the gradient-based methods for optical flow estimation have been widely

developed. For instance, in [14] the local Lukas & Kanade method , is combined with

the Horn & Schunck method, because the local differential method has advantage

of robustness against noises and the global differential method is able to produce

a dense optical flow. Since the Horn & Schunck method penalizes the optical flow

in a quadratic way, it does not allow discontinuities in the flow field, and it does

not handle outliers in the fidelity term robustly. To overcome these limitations, the

TV-L1 model [59, 58] was proposed such that the TV constraint makes the optical

flow piece-wise constant, and the fidelity term endowed with the L1-norm can be

regarded as applying methods from robust statistics where outliers are penalized

less severely than in quadratic methods [14]. Finally, it is worthy mentioning the
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work of Ito et al. [11]. They estimated the optical flow in the framework of optimal

control governed by the transport equation (3.1). The cost functional is defined as

1

2
‖u(T )− uT‖2L2(Ω)

+

T∫
0

∫
Ω

α

2
Φ(|∂tb|2) + β

2
Ψ(|∇v|2 + |∇w|2) + γ

2
|divb|2 dxdt

where uT is another given image at time T , and α, β, γ are positive regularization

parameters, and Φ, Ψ are specially chosen functions which make the optical flow

smooth in time and piece-wise smooth in space (see [11] for details). Using the

optimal control makes the optical flow estimation more stable compared to the

Horn & Schunck method and this method is also quite similar to our image sequence

interpolation methods [22] to be proposed.

For visualization of the optical flow we use the color coding scheme proposed in

[9] (see Figure 1.1).

Figure 1.1: Color coding map of the optical flow: Direction is coded by hue,
length is coded by saturation.

1.3 Recent Results of Image Sequence Interpola-

tion

There are several existing variational methods to interpolate the missing interme-

diate images. In [39] the variational method penalized by the elastic regularization
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is considered:

Jrigid(u, b) =

∫
[0,T ]×Ω

(ut + b · ∇u)2 + λ |∇b′ +∇b|2 dxdt, (1.3)

where b′ is the transpose of b. Minimizing (1.3) gives the interpolated images with

maximal rigidity, and has applications in the field of medical image registration, e.g.

registration of magnetic resonance images. In [34] the authors keep the conservation

equation (1.2) without differentiating it and apply the time dependent Horn &

Schunck functional:

Jcons(b) =
λ

2

T∫
0

‖u(t)− uT‖2L2(Ω) dt+
1

2

T∫
0

∫
Ω

|∇b|2 dxdt,

where u(0) = u0 and uT are the given two images. After calculating the time-

dependent optical flow one can warp the initial image u0 to a certain time.

Different from the global variational methods, some introduce the per-pixel-

wise methods. In [42] the path-based interpolation sequence method is considered.

They search where every pixel comes from and trace out the path of every pixel from

the given two images. To stabilize the interpolation they have to post-process the

occlusions by means of verification of the displacement flow. The group Compute

Graphics at TU Braunschweig introduced another per-pixel-wise method, namely

the perception-based interpolation [51, 52]. They simulate human visual perception

in the following way: To begin with, they detect the edges and homogeneous region,

and then they estimate the translets by matching edges, finally they use the forward

warping and feather the interpolated images.





Chapter 2

Basic Theory

2.1 Total Variation

In this section we give the concept of functions of bounded variation (BV ) and list

some important properties of BV which will be applied in the following chapters.

For the literature of BV we refer to [8, 7, 30, 5].

Definition 2.1. Let Ω be a bounded open subset of Rd and f be a function in L1(Ω).

We say a function f has bounded variation if

∫
Ω

|Df | := sup

⎧⎨⎩
∫
Ω

fdivϕdx

∣∣∣∣∣∣ ϕ ∈ C1
0(Ω)

d, ‖ϕ‖L∞(Ω)d ≤ 1

⎫⎬⎭ <∞,

where C1
0(Ω)

d is the space of continuously differential functions with compact support

in Ω, endowed with the uniform norm ‖ϕ‖L∞(Ω)d =
(∑d

i=1 supx∈Ω |ϕi(x)|2
)1/2

.

An important example is the case f = χA, the characteristic function of a subset

A of Rd:

∫
Ω

|Df | = sup

⎧⎨⎩
∫
A

divϕdx

∣∣∣∣∣∣ ϕ ∈ C1
0(Ω)

d, ‖ϕ‖L∞(Ω)d ≤ 1

⎫⎬⎭ .
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If this supremum is finite, A is called a set of finite perimeter in Ω, and we write∫
Ω

|DχA| = PerΩ(A).

If ∂A is smooth, then PerΩ(A) coincides with classical length (d = 2) or surface

area (d = 3).

Definition 2.2. We define BV (Ω), the space of functions of bounded variation, as

BV (Ω) =

⎧⎨⎩f ∈ L1(Ω)

∣∣∣∣∣∣
∫
Ω

|Df | <∞
⎫⎬⎭ .

The associated BV norm of an f ∈ BV (Ω) is given by

‖f‖BV (Ω) = ‖f‖L1(Ω) +

∫
Ω

|Df |.

The Sobolev space W 1,1(Ω) is a closed subspace of BV (Ω). Indeed, unlike

Sobolev functions the BV functions are piecewise continuous, i.e. allow discontinu-

ities in hypersurfaces of dimension d− 1. Due to such advantage BV has been very

successfully applied in many subfields of image processing, such as image denoising

[48], image deblurring [21], image inpainting [19] and so on.

Every BV function can be approximated by C∞ functions but not in BV norm,

since the closure of of the set of C∞ functions in this norm is W 1,1(Ω). However,

the weak* topology of BV defined as

fn
∗−−−−⇀

BV (Ω)
f ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
fn −→ f in L1(Ω),∫
Ω

ϕDfn −→
∫
Ω

ϕDf for all ϕ in C0(Ω)
d,

possesses good compactness properties. Assume that Ω is a bounded open subset

of Rd and ∂Ω is Lipschitz in the following context of this chapter. We give another

characterization of the weak* topology of BV in the following theorem:

Theorem 2.1. Let (fn) ⊂ BV (Ω). Then (fn) converges weakly* to f in BV (Ω) if

and only if (fn) is uniformly bounded in BV (Ω) and converges to f in L1(Ω).
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The compactness properties of BV in the weak* topology is concluded in the

following theorem:

Theorem 2.2. Let (fn) be uniformly bounded in BV (Ω). Then there exists a sub-

sequence (fnk
) of (fn) and f ∈ BV (Ω) with 1 ≤ p < d

d−1
such that

fnk
−→ f in Lp(Ω),∫

Ω

ϕDfnk
−→

∫
Ω

ϕDf for all ϕ in C0(Ω)
d.

Moreover, BV (Ω) is continuously embedded in Lp(Ω) with p = ∞ if d = 1, and

p = d
d−1

otherwise.

The lower semi-continuity of total variation of BV functions is often used to

prove the existence of a minimizer to a total variation minimization problem.

Corollary 2.1. Let (fn) ⊂ BV (Ω) and (fn) converge to f in L1(Ω). Then∫
Ω

|Df | ≤ lim inf
n→∞

∫
Ω

|Dfn|.

We also want to introduce the generalized Gauss-Green theorem of BV (Ω).

Theorem 2.3. There exists a bounded linear mapping

K : BV (Ω)→ L1(∂Ω;Hd−1)

such that ∫
Ω

fdivϕdx = −
∫
Ω

ϕdDf +

∫
∂Ω

(ϕ · ν)Kf dHd−1,

for all f ∈ BV (Ω), ϕ ∈ C1(Rd)d and ν denoting the unit outer normal to ∂Ω. The

function Kf , which is uniquely defined up to sets of d − 1 dimensional Hausdorff

measure Hd−1 equal to zero, is called the trace of f on ∂Ω.
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2.2 Mollifier

Definition 2.3 (Mollifier). Define a C∞ function η : Rd → R as follows:

η(x) =

⎧⎪⎨⎪⎩
c exp

(
1

|x|2 − 1

)
if |x| < 1,

0 if |x| ≥ 1,

the constant c is chosen such that∫
Rd

η(x) dx = 1.

Let ε > 0 and then define

ηε(x) =
1

εd
η
(x
ε

)
, x ∈ R

d,

here ηε denotes the standard mollifier. Let us define the convolution of the mollifier

ηε and a function f as

fε(x) = ηε ∗ f(x) =
∫
Ω

ηε(x− y)f(y) dy. (2.1)

We list some important properties of mollifier [30, 8] in the following theorem:

Theorem 2.4. Let 1 ≤ p <∞ and f ∈ Lp(Ω). Then

1. ηε ∗ f ∈ C∞(Ω);

2. ηε ∗ f → f a.e. as ε→ 0;

3. ‖ηε ∗ f‖Lp(Ω) ≤ ‖f‖Lp(Ω) ;

4. lim
ε↓0
‖f ∗ ηε − f‖Lp(Ω) = 0.

In view of these properties, mollifiers are also called approximate identities. The

convergence property of mollifiers in norm is normally given in a subset of Ω. We

want to verify it in Ω with definition (2.1):
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Proof. We prove the convergence property in Lp-nom. First of all, we use without

proof the result that Cc(Ω) is dense in Lp(Ω). It means that for every τ > 0 there

exists g ∈ Cc(Ω) with ‖f − g‖Lp(Ω) < τ . Let us check the statement for g first:

∫
Ω

|ηε ∗ g(x)− g(x)|p dx =

∫
Ω

∣∣∣∣∣
∫
Ω

ηε(x− y)g(y) dy

−
∫
Ω

ηε(x− y)g(x) dy −
∫

Rd\Ω

ηε(x− y)g(x) dy

∣∣∣∣∣
p

dx.

Lemma 2.1≤ 2p−1

(∫
Ω

∣∣∣∣∣
∫
Ω

ηε(x− y)(g(y)− g(x)) dy

∣∣∣∣∣
p

dx

+

∫
Ω

∣∣∣∣∣
∫

Rd\Ω

ηε(x− y)g(x) dy

∣∣∣∣∣
p

dx

)
. (2.2)

Consider the second summand of the right-hand side of (2.2):

∫
Ω

∣∣∣∣∣∣∣
∫

Rd\Ω

ηε(x− y)g(x) dy

∣∣∣∣∣∣∣
p

dx

≤
∫
Ω

|Bε(x)|p|g(x)|pdx

= |Bε|p ‖g‖pLp(Ω) ,

where Bε(x) denotes the set of all points y ∈ R
d such that |x − y| < ε. Consider

the first summand of the right-hand side of (2.2):

∫
Ω

∣∣∣∣∣∣
∫
Ω

ηε(x− y)(g(y)− g(x)) dy

∣∣∣∣∣∣
p

dx =

∫
Ω

∣∣∣∣∣∣∣
∫

Bε(x)∩Ω

ηε(x− y)(g(y)− g(x)) dy

∣∣∣∣∣∣∣
p

dx

≤ sup
|x−y|<ε

|g(y)− g(x)|p
∫
Ω

∣∣∣∣∣∣∣
∫

Bε(x)∩Ω

ηε(x− y) dy

∣∣∣∣∣∣∣
p

dx

≤ sup
|x−y|<ε

|g(y)− g(x)|p |Bε(x) ∩ Ω|p |Ω|.
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Since g has compact support and it is uniformly continuous, one has

lim
ε→0

‖ηε ∗ g − g‖Lp(Ω) = 0. (2.3)

Finally,

‖ηε ∗ f − f‖Lp(Ω) ≤ ‖ηε ∗ g − g‖Lp(Ω) + ‖ηε ∗ (f − g)− (f − g)‖Lp(Ω)

≤ ‖ηε ∗ g − g‖Lp(Ω) + 2 ‖f − g‖Lp(Ω)

Since Cc(Ω) is dense in Lp(Ω), together with (2.3) we derive the statement:

Lemma 2.1. The following inequality is valid for every a, b ∈ R and p ∈ R
+

|a+ b|p ≤ 2p−1(|a|p + |b|p).

2.3 Saddle Point Problems

We consider a simplified model of two dimensional Stokes equations [12]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δu+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.

(2.4)

Here, u and p can be regarded as the velocity and the pressure of a viscous flow.

In view of the fact that the pressure part of the solution is unique only up to a

constant, we choose for p the space

Q :=

⎧⎨⎩q ∈ L2(Ω)

∣∣∣∣∣∣
∫
Ω

q dxdy = 0

⎫⎬⎭ .

Define V = H1
0 (Ω)

2. Then, the variation problem of (2.4) is formulated as: Find a

weak solution (u, p) ∈ V ×Q satisfying⎧⎨⎩ a(u, v) + b(v, p) = (f, v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q,
(2.5)
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where the bilinear forms are defined by

(f, v) =

∫
Ω

f · v dxdy, v ∈ V,

a(u, v) =

∫
Ω

∇u : ∇v dxdy, u, v ∈ V,

b(v, p) = −
∫
Ω

(divv) p dxdy, v ∈ V, p ∈ Q,

where ∇u : ∇v represents the component-wise scalar product of matrix. In order

to prove the existence and uniqueness of a solution, the so-called inf-sup condition

is required: There exists a constant β > 0 so that

inf
p∈Q

sup
v∈V

b(v, p)

‖v‖V ‖p‖Q
� β. (2.6)

For a proof we refer to the seminal work [13]. Next we want to illustrate why the

inf-sup condition is so important to the solvability of the Stokes equations in the

discrete case. Using some finite element method we can discretize the variation

problem (2.5) into the block form(
A B′

B 0

)(
uN
pM

)
=

(
fN
0

)
.

The coefficient vectors uN , pM , fN of u, p, f are calculated with respect to some

finite element basics. Unfortunately, the matrix of the block form is not positive

definite. These problems are called mixed problems, or saddle point problems,

and performing a block-wise Gaussian elimination we obtain the pressure Schur

complement

BA−1B′pM = BA−1fN .

Since A−1 is invertible in this case, we only need to consider whether BB′ is invert-

ible. For BB′ to be invertible it requires that

kernel(B′) = 0.
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It means that B′ must have full column rank and it is equivalent to requiring that

max
vN

(vN , B
′pM) = max

vN
(BvN , pM) > 0, ∀pM �= 0. (2.7)

The natural translation of (2.7) into the framework of the finite element method is

max
v∈Vh

(∇ · v, ph)
‖v‖Vh

‖ph‖Qh

> 0, ph ∈ Qh. (2.8)

The finite element spaces Vh, Qh are specified introduced in next section. The con-

dition (2.8) allows BB′ to degenerate towards a singular system as the spatial

resolution h → 0 and this does not lead to optimal error estimates. The stricter

version of (2.8), namely the inf-sup condition (2.6) ensures that BB′ does not

degenerate towards zeros as h vanishes.

2.4 Mixed Finite Element Method for Stokes Equa-

tions

Applying some finite element method we derive the following discrete variation

problem: find (uh, ph) ∈ Vh ×Qh such that⎧⎨⎩ a(uh, v) + b(v, ph) = (f, v), ∀v ∈ Vh ⊂ V,

b(uh, q) = 0, ∀q ∈ Qh ⊂ Q.
(2.9)

The discrete variation problem (2.9) is also carefully investigated by Brezzi and

Fortin in [13]. In order to guarantee the existence and uniqueness of solutions to

(2.9), we have to specify adequate finite element subspaces Vh and Qh such that the

inf-sup condition (2.6) is fulfilled. As introduced in [13, 28], we choose the P2-P1

approximation, so-called Taylor and Hood elements (see Figure 2.1). The velocity

u and pressure p are approximated respectively by polynomial of second order (P2)

and first order (P1). Let the domain Ω be discretized by a triangulation Th, i.e.

there exists a sequence of triangles �k ∈ Th, k = 1 · · ·K satisfying⋃
k

�k = Ω and �l ∩�m = ∅ with l �= m ∀ l,m ∈ {1, · · · , K} .
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The approximation of u and p are carried out in every triangle of the triangulation

Th and the finite element spaces Vh and Qh are characterized in the following:

Vh :=
{
v ∈ C0(Ω)2

∣∣ v|	k
∈ P2(Ω)

2, ∀�k ∈ Th
} ∩H1

0 (Ω)
2,

Qh :=

⎧⎨⎩q ∈ C0(Ω)

∣∣∣∣∣∣ q|	k
∈ P1(Ω), ∀�k ∈ Th and

∫
Ω

q dxdy = 0

⎫⎬⎭ .

Suppose that the inf-sup condition is fulfilled, the following error estimate is valid

[32]: When (u, p) belongs to (Hm+1(Ω)2∩H1
0 (Ω)

2)×(Hm(Ω)∩Q) with 1 ≤ m <∞,

we have the error bounds

‖u− uh‖H1(Ω)2 + ‖p− ph‖L2(Ω) ≤ Chm
(
‖u‖Hm+1(Ω)2 + ‖p‖Hm(Ω)

)
,

‖u− uh‖L2(Ω)2 ≤ Chm+1
(
‖u‖Hm+1(Ω)2 + ‖p‖Hm(Ω)

)
.

Figure 2.1: P2-P1

Let the set {Φi, 1 ≤ i ≤ N} be a basic of Vh and the set {ψi, 1 ≤ i ≤M} be

a basic of Qh. Then, the solution (uh, ph) ∈ Vh × Qh to (2.9) has the following

decomposition

uh =
N∑
i=1

αiΦi, ph =
M∑
i=1

γiψi.

Define further

AN×N = (ai,j), ai,j = a(Φi,Φj),

BM×N = (bi,j), bi,j = b(ψi,Φj),

fN = (fi), fi = (f,Φi),

uN = (αi),

pM = (γi).
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The discretization of variation problem (2.9) using previously introduced finite el-

ement method produces a linear system of the form(
A B′

B 0

)(
uN
pM

)
=

(
fN
0

)
. (2.10)

The matrix in (2.10) is sparse and symmetric, but not positive definite. Suppose

that every triangle of Th is isosceles right with length 2h and N,M are the number

of measurement points of velocity and pressure. Let the two dimensional basic

function Φi of Vh in each dimension be made of basic function ϕi. It follows

a

((
ϕi

0

)
,

(
ϕj

0

))
=

∫
Ω

∇ϕi · ∇ϕj dxdy, i, j = 1, · · · , N,

a

((
ϕi

0

)
,

(
0

ϕj

))
= 0, i = 1, · · · , N ; j = N + 1, · · · , 2N,

a

((
0

ϕi

)
,

(
ϕj

0

))
= 0, i = N + 1, · · · , 2N ; j = 1, · · · , N,

a

((
0

ϕi

)
,

(
0

ϕj

))
=

∫
Ω

∇ϕi · ∇ϕj dxdy, i, j = N + 1, · · · , 2N.

The stiffness matrix A has the following block form

A =

(
A1 0

0 A1

)
,

where A1 =
(∫

Ω
∇ϕi · ∇ϕj dxdy

)
, i, j = 1, · · · , N. The matrix B′ has also a block

form

B′ =
(
B′

1

B′
2

)
,

B′
1 =

⎧⎨⎩−
∫
Ω

∂ϕi

∂x
ψj dxdy, i = 1, · · · , N ; j = 1, · · · ,M

⎫⎬⎭ ,

B′
2 =

⎧⎨⎩−
∫
Ω

∂ϕi

∂y
ψj dxdy, i = 1, · · · , N ; j = 1, · · · ,M

⎫⎬⎭ .
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1

(0, 0)

2

(2h, 0)

3
(0, 2h)

4

56

Figure 2.2: A basic triangulation element, denoted by E.

We create now the basic functions on the triangular elements, the procedure
refers to [60]. In a basic triangulation element E (see Figure 2.2) the basic functions
of Vh are given by

ϕ1(x, y) =
(
1− x

h
− y

h

)(
1− x

2h
− y

2h

)
,

ϕ2(x, y) =
x

2h

(x
h
− 1

)
,

ϕ3(x, y) =
y

2h

(y
h
− 1

)
,

ϕ4(x, y) =
x

h

(
2− x

h
− y

h

)
,

ϕ5(x, y) =
xy

h2
,

ϕ6(x, y) =
y

h

(
2− x

h
− y

h

)
satisfying ϕi(xj, yj) = δi,j where (xj, yj) is the coordinate of node j in element E in
Figure 2.2. Analogously, the basic functions of Qh in element E are given by

ψ1(x, y) = 1− x

2h
− y

2h
,

ψ2(x, y) =
x

2h
,

ψ3(x, y) =
y

2h
.

The element stiffness matrix is

AE
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
6

1
6 − 2

3 0 − 2
3

1
6

1
2 0 − 2

3 0 0

1
6 0 1

2 0 0 − 2
3

− 2
3 − 2

3 0 8
3 − 4

3 0

0 0 0 − 4
3

8
3 − 4

3

− 2
3 0 − 2

3 0 − 4
3

8
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The matrix B′
1 and B′

2 consist of element matrix bE1 and bE2 given by

bE1 =

⎛⎜⎜⎝
0 0 0 0 − 2

3h
2
3h

0 − 1
3h 0 1

3h − 1
3h

1
3h

1
3h 0 0 − 1

3h − 1
3h

1
3h

⎞⎟⎟⎠
′

, bE2 =

⎛⎜⎜⎝
0 0 − 1

3h
1
3h − 1

3h
1
3h

0 0 0 2
3h − 2

3h 0

1
3h 0 0 1

3h − 1
3h − 1

3h

⎞⎟⎟⎠
′

.

The vector f = (f1, f2)
′ is composed of the scalarproducts (f1, ϕi) and (f2, ϕi) for

i = 1, · · · , N . We derive the interpolation polynomial of f1, f2 with respect to the

basic

fh
1 =

N∑
i=1

f1(xi)ϕi,

fh
2 =

N∑
i=1

f2(xi)ϕi,

where xi is the corresponding measurement point of ϕi. Consequently,

fi = (fh
1 , ϕi) =

N∑
j=1

f1(xj)

∫
Ω

ϕjϕi dxdy, i = 1, · · · , N,

fi = (fh
2 , ϕi) =

N∑
j=1

f2(xj)

∫
Ω

ϕjϕi dxdy, i = N + 1, · · · , 2N.

The vector f is made of the entries of the element mass matrix

MassE = h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
15 − 1

90 − 1
90 0 − 2

45 0

− 1
90

1
15 − 1

90 0 0 − 2
45

− 1
90 − 1

90
1
15 − 2

45 0 0

0 0 − 2
45

16
45

8
45

8
45

− 2
45 0 0 8

45
16
45

8
45

0 − 2
45 0 8

45
8
45

16
45

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The entries of matrix MassE consist of the scalarproducts

mi,j =

∫
Ω

ϕiϕj dxdy.
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Figure 2.3: Numbering a mesh with the time new roman font for nodes and the
italics font for triangle elements.

The main computational issue is to ensure that the element contributions are
put into the correct locations in the stiffness matrix A,B′, B and vector fN . The
simplest way of implementing the process is to represent the mapping between
local and global entities using a connectivity matrix. In connectivity matrix P (k, i)
specifies the global node number of local node i in triangle k. And for each row
of P the global numbers form the same orientation corresponding to the nodes
number 1, · · · , 6 in element E. Then, we are able to find for each triangle the right
contributions for global node P (k, i) and add them together. For example, the
connectivity matrix P of the triangulation in Figure (2.3) is given by

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 13 1 12 7 6

3 1 13 2 7 8

3 5 13 4 9 8

15 13 5 14 9 10

11 13 21 12 17 16

23 21 13 22 17 18

23 25 13 24 19 18

15 13 25 14 19 20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The element stiffness matrix AE
1 can be assembled into the global stiffness matrix

using a set of nested loops described in the following pseudocode:
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for k = 1 : 8

for i = 1 : 6

for j = 1 : 6

A(P (k, i), P (k, j)) = A(P (k, i), P (k, j)) + AE
1 (i, j)

end

end

end

In similar way we can also assemble the stiffness matrices bE1 , b
E
2 and MassE into

global matrices B′
1, B

′
2 and the right-hand side fN .



Chapter 3

Lipschitzian Flow based Optimal

Control

3.1 Modeling

We are interested in finding an optical flow field, which is suitable for image sequence

interpolation, especially, instead of minimizing the optical flow constraint equation

(1.1) directly, since the linearization of (1.2) is only valid in the case that the

displacement between two images is small. Thus, more naturally we utilize the

transport equation to fit a given image u0 to another given image uT in the sense

of some predefined norm.

Let us model the optimal control problem governed by the transport equation.

Consider the Cauchy problem for the transport equation in [0, T ] × Ω, Ω ⊂ R
d

(generally d = 2):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0 in ]0, T ]× Ω,

u(0, x) = u0(x) in Ω,

un(x) = 0 on [0, T ]× ∂Ω.

(3.1)

Here b : [0, T ]×Ω −→ R
d is an optical flow field, u0 is a given initial condition and

u is an unknown function depending on t and x. The normal derivative un of u is

not essential in our context, since we will assume later that b vanishes on ∂Ω for
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a.e. t ∈ [0, T ]. We define the nonlinear solution operator of (3.1)

G : X × Y −→ Z,

(u0, b) �−→ u,

where X, Y, Z are normed spaces to be specified. Then, we define a linear “obser-

vation operator” ET : u �→ u(T ), which observes the value of u at time T . By the

chain (u0, b) �→ u �→ u(T ) we have the “control-to-state” operator S := ET ◦ G,
namely

S : X × Y −→ U,

(u0, b) �−→ u(T ). (3.2)

The space U is a subspace of Z, which does not involve time. Our intention is to find

a flow field b such that the corresponding image S(u0, b) matches the image uT as

well as possible. This motivates us to minimize the functional 1
2
‖S(u0, b)− uT‖2U .

However, this problem is ill-posed, and hence we add an additional regularization

term in the cost functional. In addition, we add the divergence-free constraint of

b. Thus, this regularized optimal control problem is formulated as the following

minimization problem for a given λ > 0:

inf
b∈Y

J(b) =
1

2
‖S(u0, b)− uT‖2U +

λ

2
‖b‖2Y , (3.3)

subject to divb = 0. (3.4)

In the framework of optimal control [41, 55] we call b the control and u the state. Ac-

cording to the conservation law [35] and the divergence theorem [47], the divergence-

free constraint of b makes the flow volume conserving, smooth and varying not too

much inside the flow field of a moving object. At least the last two properties are

desirable for computation of the optical flow. Moreover, the divergence-free con-

straint is a somehow technical assumption as it implies that the equation for the

dual variable of u is also a transport equation (see Section 3.5 for details), and

hence simplifies the numerical implementation. Such constraint is not new for opti-

cal flow estimation and was similarly introduced as a regularization constraint, e.g.

in [53, 37, 11]. However, note that a divergence-free constraint excludes sources and
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sinks in the flow field and the feature of volume preservation may be undesirable.

We emphasize, that our model is considerably different from the Horn & Schunck

method which is based on the optical flow constraint. There one has a given image

u and a given derivative ∂tu (both at time t0) and one finds a flow field b := (v, w)

by minimizing ∫
Ω

(∂tu+ b · ∇u)2dx+
∫
Ω

|∇v|2 + |∇w|2dx.

The main conceptual difference between this approach and ours is that Horn and

Schunck just considered one time t0 and matched the flow field only to that time.

Hence, it is unclear in what sense the produced flow field could be useful to match

a given image with another one. Our approach uses two given images and tries to

find a flow field b which transports the first image as close as possible to the second

image. The “optical flow constraint equation” now enters as a constraint to the

optimization problem and is not in the cost functional itself.

In the next chapters we will investigate the solution theory of transport equations

and choose adequate spaces for u and b. Especially, we are interested in images u0

and uT which are of bounded total variation. Hence, we introduce the solution

theory of transport equations equipped with a smooth flow field and a BV image as

the initial value. Especially, we need to work out conditions under which the BV -

regularity is propagated by the optical flow. Then, we will analyze the existence of

a minimizer to (3.3) restricted to (3.1) and (3.4).

3.2 Solution Theory of Ordinary Differential Equa-

tions

The classic solution theory of transport equations is based on the characteristics

[29], which are derived from the associated ordinary differential equation (ODE).

Gaining the uniqueness of the characteristics requests normally that the velocity

field of the transport equation needs to enjoy the Lipschitz regularity in space. We

give next a brief introduction of solution theory of ODEs [33, 24, 6]. We consider
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the following ODE which characterizes the characteristic γ(t) related to b:⎧⎨⎩ γ̇(t) = b(t, γ(t)), t ∈ I,

γ(a) = x0 in Ω.
(3.5)

Regarding the solution theory of (3.5), the existence and uniqueness of a solution is

derived by the theorem of Picard-Lindelöf [33], if b is Lipschitz continuous in space

and uniformly continuous in time. We can also relax the assumption on b with

respect to t to be integrable by the Carathéodory theorem [6], which is a general

version of the Picard-Lindelöf theorem:

Theorem 3.1 (Carathéodory). Define I = [a, c] and Ω is a bounded subset in R
d.

Suppose that b : I × Ω→ R
d satisfies

1. t→ b(t, x) is measurable in I for every x ∈ Ω;

2. There exists a C ≥ 0 with |b(t, x) − b(t, x′)| ≤ C|x − x′| for a.e. t ∈ I and

every x, x′ ∈ Ω;

3. b(t, x) = 0 for a.e. t ∈ I and every x ∈ ∂Ω;

4. The function m(t) = |b(t, x0)| is integrable in I for x0 ∈ Ω.

Then there exists a unique solution

γ∗ : [a, c]→ Ω

to the Cauchy problem (3.5).

Proof. We choose the interval I with q := C|c − a| < 1, where C is the Lipschitz

constant of b, and α > 0 with qα + C ‖m‖L1([a,c]) ≤ α. Assume X := C0(I; Ω)

endowed with the supremum norm. Consider the closed subset Y of X

Y := {γ ∈ X | γ(a) = x0} ∩
⋂

s,t∈I,s<t

⎧⎨⎩γ ∈ X
∣∣∣∣∣∣ |γ(s)− γ(t)| ≤

t∫
s

m(x) + α dx

⎫⎬⎭ .

Let us define

Rγ(t) = x0 +

t∫
a

b(s, γ(s)) ds, t ∈ I, (3.6)
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the operator R maps X into X, since b is equal to zero on ∂Ω and by Lusin’s

theorem [30] the measurable function t→ b(t, x) is continuous a.e. in [a, c], taking

the integral over t derives the continuity of the right-hand side of (3.6). Let us

verify the operator R is a contraction in Y . If γ ∈ Y , then

|(Rγ)′(t)| = |b(t, γ(t))|
≤ |b(t, γ(a))|+ C|γ(t)− γ(a)|
= |b(t, x0)|+ C|γ(t)− γ(a)|
≤ m(t) + C|γ(t)− γ(a)|

≤ m(t) + C

t∫
a

m(τ) + α dτ

≤ m(t) + C

c∫
a

m(τ) dτ + Cα|c− a|

= m(t) + C ‖m‖L1([a,c]) + Cα|c− a|
= m(t) + C ‖m‖L1([a,c]) + qα

≤ m(t) + α.

Hence, by the Lebesgue differentiation theorem [30] one has R maps Y into Y .

Moreover,

sup
t∈I
|Rγ1(t)−Rγ2(t)| ≤ sup

t∈I

t∫
a

|b(s, γ1(s))− b(s, γ2(s))| ds

≤ C sup
t∈I

t∫
a

|γ1(s)− γ2(s)| ds

≤ C|c− a| sup
s∈I
|γ1(s)− γ2(s)|,

and since C|c − a| < 1, we apply the Banach fixed point theorem [49] to get the

existence of a unique fixed point γ∗ ∈ Y such that Rγ∗ = γ∗. That is the unique

solution to (3.5).

Remark 3.1. As a consequence of the proof, the flow γ∗(t) is absolutely continuous
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in [a, c]. Generally, if we consider the solution in [0, T ] with T > c, we can restart γ∗

at (c, γ∗(c)) until the unique continuous solution arrives at time T . The backward

flow is the special case when the time t is smaller than the initial time a, and the

uniqueness of the backward flow is obvious by Theorem 3.1.

We want to choose an appropriate function space for b, which is easy to be

applied in the control problem. Actually, the space of Lipschitz functions and

W 1,∞(Ω) are equivalent under some assumptions of Ω explained in the following

theorem [5]:

Theorem 3.2. Let Ω ⊂ R
d be a bounded, convex, open set, and f : Ω→ R. Then,

f ∈ W 1,∞(Ω) if and only if

Lip(f,Ω) := sup

{ |f(x)− f(y)|
|x− y|

∣∣∣∣ x �= y, x, y ∈ Ω

}
<∞,

and ‖∇f‖L∞(Ω) = Lip(f,Ω).

However, the norm of W 1,∞ is not well suited as a penalty term since it is

difficult to determine the necessary conditions system in this situation. Thus, we

assume additionally that the domain Ω enjoys the strong local Lipschitz condition

[2], then H3
0 (Ω)

2 is continuously embedded into W 1,∞(Ω)2 when d = 2. We want a

priori to set the flow field b divergence-free and we denote that

H3,div
0 (Ω)2 =

{
f ∈ H3

0 (Ω)
2
∣∣ divf = 0

}
.

Adjusting the assumption on the time of b in Theorem 3.1 and previous conditions

on Ω, we assume that

– Ω ⊂ R
2 is a bounded, convex, open set, which satisfies the strong local Lipschitz

condition;

– b ∈ L2(0, T ;H3,div
0 (Ω)2),

throughout this chapter. In order to formulate the solution to transport equations

in a convenient way, we give the concept of classical flow [24].

Definition 3.1 (Classical flow of a vector field). The classical flow of the vector

field b is a map

Φ(t, x) : [0, T ]× Ω −→ Ω,
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which satisfies ⎧⎪⎨⎪⎩
∂Φ

∂t
(t, x) = b(t,Φ(t, x)) in (0, T ]× Ω,

Φ(0, x) = x in Ω.

(3.7)

The classical flow is a generalization of the flow, whose initial value can be

varied. For every fixed x ∈ Ω the flow Φ(·, x) is uniquely determined by Theorem

3.1 and the solution is given by

Φ(t, x) = x+

t∫
0

b(s,Φ(s, x)) ds.

In the following we gain some helpful properties of Φ.

Corollary 3.1. The mapping Φ(t, ·) : Ω→ Ω is bijective for every t ∈ [0, T ].

Proof. The injectivity is derived from the uniqueness of the backward flow: If the

flow Φ starts from two points x1 �= x2 and arrives at some t in the same point

Φ(t, x1) = Φ(t, x2) = x, then the backward flow starting from (t, x) is not unique.

Regarding the surjectivity: for every point y ∈ Ω we can find a backward flow

starting from (t, y) such that

γ(t′) = y +

t′∫
t

b(s, γ(s)) ds = x ∈ Ω,

in the case t′ = 0 implies that Φ(t, x) = y.

Here Φ−1 denotes the backward flow of Φ, and Φ−1(t, ·)(x) maps to the initial

value, from which Φ arrives in point x at time t. Now we will discuss the regularity

of Φ in x. As a preparation we need Gronwall’s inequality.

Lemma 3.1 (Gronwall’s lemma). Let f and g be real-valued continuous functions

defined on [a, c]. If f is differentiable and satisfies the differential inequality

f
′
(t) ≤ g(t)f(t), t ∈ [a, c],
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then f is bounded by

f(t) ≤ f(a) exp

⎛⎝ t∫
a

g(s) ds

⎞⎠
for all t ∈ [a, c].

Corollary 3.2 (Lipschitz regularity of Φ). Φ(t, ·) is Lipschitz continuous.
Proof. The following inequality is valid for every t ∈ [0, T ] and x, y ∈ Ω:

∂

∂t
|Φ(t, x)− Φ(t, y)|2 = 2 〈b(t,Φ(t, x))− b(t,Φ(t, y)),Φ(t, x)− Φ(t, y)〉

≤ 2C |Φ(t, x)− Φ(t, y)|2 ,

where C is the Lipschitz constant of b. According to Gronwall’s lemma, it implies

|Φ(t, x)− Φ(t, y)|2 ≤ |x− y|2 e2Ct.

Then it yields

Lip(Φ(t, ·)) ≤ eCt.

Besides the Lipschitz regularity, we can say more about the differentiability of

Φ in x, which deals with the spatial regularity of b.

Corollary 3.3. The mapping Φ(t, ·) : Ω→ Ω is a diffeomorphism.

Proof. Since the Lipschitz continuity gives only the local C1-regularity, for the C1-

regularity of Φ(t, ·) in Ω one follows the result in [24], which states that if b has the

C1-regularity in space, then the flow Φ(t, ·) is also C1 in space. In fact, H3
0 (Ω)

2 is

continuously embedded into C1(Ω)2 and Φ(t, ·),Φ−1(t, ·) have the same regularity,

then together with the bijectivity of Φ(t, ·) we derive the statement.

3.3 Solution Theory of Transport Equations with

Smooth Setting

In this section we consider the transport equation with an initial value in BV .

However, the propagation of BV regularity is a delicate matter. We first formulate
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the solution to the transport equation with a smooth initial value.

Corollary 3.4. Let u0 ∈ C1(Ω). Then

u(t, x) := u0 ◦ Φ−1(t, ·)(x) (3.8)

is the unique solution to (3.1).

Proof. Let us test the equation (3.1) along the characteristics (t,Φ(t, x)):

0 =
∂u

∂t
(t,Φ(t, x)) + b(t,Φ(t, x)) · ∇u(t,Φ(t, x))

=
∂u

∂t
(t,Φ(t, x)) +

∂Φ

∂t
(t, x) · ∇u(t,Φ(t, x))

=
∂

∂t
(u(t, ·) ◦ Φ(t, x)).

This implies that every solution is constant along the characteristics. Adjusting the

initial value we derive that (3.8) is a solution to (3.1) and the uniqueness follows

immediately from the uniqueness of Φ.

Equipped with a non-differentiable initial value, the classic solution (3.8) breaks

down. Thus, we give the definition of the solution to the transport equation in the

weak sense.

Definition 3.2 (Weak solution). If b and u0 are summable functions and b is

divergence-free in space, then we say that a function u : [0, T ]×Ω→ R is a weak so-

lution to (3.1) if the following identity holds for every function ϕ ∈ C∞
c ([0, T [×Ω) :

T∫
0

∫
Ω

u (∂tϕ+ b · ∇ϕ) dxdt = −
∫
Ω

u0(x)ϕ(0, x) dx. (3.9)

To prove that (3.8) is a weak solution to (3.1) it is common to use the technique

of mollifiers introduced in Chapter 2. In short, we smooth the initial value with a

mollifier ηε with variance ε, let ε converge to zero and investigate the convergence of

the solution with a smooth initial value to a non-smooth initial value. This process

is clarified in the next theorem:

Theorem 3.3. Assume u0 ∈ BV (Ω), ϕ and ϕ−1 are diffeomorphisms in Ω. Then,

the sequence ((u0 ∗ ηε) ◦ ϕ) converges to u0 ◦ ϕ in the weak*-topology of BV (Ω).
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Proof. Let us verify first the L1-convergence of ((u0 ∗ ηε) ◦ ϕ) and set ϕ(x) = y∫
Ω

|(u0 ∗ ηε) ◦ ϕ(x)− u0 ◦ ϕ(x)| dx

=

∫
Ω

|u0 ∗ ηε(y)− u0(y)|
∣∣det∇ϕ−1(y)

∣∣ dy
≤ ‖u0 ∗ ηε − u0‖L1(Ω)

∥∥det∇ϕ−1
∥∥
L∞(Ω)

.

Let L be the Lipschitz constant of ϕ−1, i.e. L = ‖∇ϕ−1‖L∞(Ω)4 , then ‖det∇ϕ−1‖L∞(Ω)

is bounded from above by 2L2. Together with the approximation property of molli-

fiers it gives the L1-convergence. Regarding the weak*-convergence of Radon mea-

sures (∇(u0 ∗ ηε)) we observe that for every ψ ∈ C∞
c (Ω)2 it holds that∫

Ω

∇((u0 ∗ ηε) ◦ ϕ)ψ dx

= −
∫
Ω

(u0 ∗ ηε) ◦ ϕdivψ dx

= −
∫
Ω

(u0 ∗ ηε)(y)div(ψ ◦ ϕ−1(y))| det∇ϕ−1(y)| dy

= −
∫
Ω

⎛⎝∫
Ω

ηε(y − s)u0(s) ds

⎞⎠ div(ψ ◦ ϕ−1(y))| det∇ϕ−1(y)| dy

= −
∫
Ω

⎛⎝∫
Ω

ηε(y − s)div(ψ ◦ ϕ−1(y))| det∇ϕ−1(y)| dy
⎞⎠u0(s) ds

= −
∫
Ω

ηε ∗
(
div(ψ ◦ ϕ−1)| det∇ϕ−1|) (s)u0(s) ds. (3.10)

Since ϕ−1 is continuously differentiable, the convolved term belongs to L2(Ω). Recall

that in the two dimensional case BV (Ω) is continuously embedded into L2(Ω),

then utilizing the approximate property of mollifiers implies that the weak L2-

convergence holds. It means that (3.10) converges to

−
∫
Ω

div(ψ ◦ ϕ−1(s))| det∇ϕ−1(s)|u0(s) ds
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ϕ(ξ)=s
= −

∫
Ω

divψ(ξ)u0(ϕ(ξ)) dξ

=

∫
Ω

ψD(u0 ◦ ϕ).

The last equality is valid due to the Gauss-Green formula of the BV functions

introduced in Chapter 2.

Remark 3.2. Under the same assumptions of Theorem 3.3 one can derive from

Theorem 2.1 that ((u0 ∗ ηε) ◦ ϕ) is uniformly bounded in BV (Ω) and converges to

u0 ◦ϕ in L1(Ω), actually also in Lp(Ω) with p < 2 and weakly in L2(Ω) when d = 2

[1].

We gain in the following lemma the regularity in time of the solution to the

transport equation with a smoothed BV -initial value.

Lemma 3.2. Assume that u0 ∈ BV (Ω), ϕ(t, ·), ϕ−1(t, ·) are diffeomorphisms in Ω

for every t ∈ [0, T ], and ϕ(·, x) is absolutely continuous in [0, T ] for every x ∈ Ω.

Define

uε(t, x) = (u0 ∗ ηε) ◦ ϕ(t, x).

Then, uε ∈ C([0, T ];BV (Ω)).

We skip the proof of Lemma 3.2, since it is a trivial result utilizing the substitu-

tion technique introduced in the proof of Theorem 3.3. Now, we are able to prove

the existence and uniqueness of the weak solution to (3.1).

Theorem 3.4. If u0 ∈ BV (Ω), then there exits a unique weak solution

ū(t, x) := u0 ◦ Φ−1(t, ·)(x) (3.11)

to (3.1) belonging to L∞(0, T ;BV (Ω)).

Proof. Consider the transport equation with the initial value u0 convolved with

mollifier ηε ⎧⎨⎩ ∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0 in ]0, T ]× Ω,

u(0, x) = u0 ∗ ηε(x) in Ω.
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Corollary 3.4 implies that there exists a unique solution uε of the form

uε(t, x) = (u0 ∗ ηε) ◦ Φ−1(t, ·)(x).

Theorem 3.3 gives that ū(t, ·) ∈ BV (Ω) for every t ∈ [0, T ]. By Remark 3.2 it

follows that uε(t, ·) converges to ū(t, ·) in L2(Ω) as ε→ 0 and (uε(t, ·)) is uniformly

bounded in BV (Ω). And according to Lemma 3.2, it yields that (uε) is uniformly

bounded in L∞(0, T ;BV (Ω)), which is continuously embedded into L2(0, T ;L2(Ω)).

Hence, there exists a subsequence (uεk) of (uε) such that

uεk ⇀ ū in L2(0, T ;L2(Ω)) (3.12)

and ū ∈ L∞(0, T ;BV (Ω)). Due to the weak convergence of (uεk) in L
2(0, T ;L2(Ω)),

one derives for every ϕ ∈ C∞
c ([0, T [×Ω) that

T∫
0

∫
Ω

uεk (∂tϕ+ b · ∇ϕ) dxdt −→
T∫
0

∫
Ω

ū (∂tϕ+ b · ∇ϕ) dxdt

= =

− ∫
Ω

u0 ∗ ηεkϕ(0, x) dx −→ − ∫
Ω

u0ϕ(0, x) dx.

The upper convergence is valid since b ∈ L2(0, T ;L2(Ω)2) and thanks to (3.12). The

lower convergence is derived from the property of approximate identity. The left

equality is valid for a smooth initial value according to Corollary 3.4, and hence all

of them imply the right equality.

Regarding the uniqueness of weak solution, it is shown in [4] that the continuity

equation, which is turned into the transport equation in the case that divb = 0, has

a unique solution in the Cauchy-Lipschitz framework, i.e. b ∈ L1(0, T ;W 1,∞(Rd)d).

Definitely, it is also valid under our assumption on b.

Because of the uniqueness of the weak solution, the convergence of subsequence

(uεk) in the previous proof can be proceeded to the whole sequence (uε).
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3.4 Existence of a Minimizer with BV -initial Value

The goal of this subsection is to equip the cost functional (3.3) with some reasonable

norm and investigate the existence of a minimizer to (3.3) restricted to (3.1) and

(3.4). First of all, we give the norm of the penalty term of (3.3) concerning b.

According to [2] an equivalent norm of H3
0 is

‖b‖H3
0 (Ω)2 =

⎛⎝∑
|α|=3

‖∂αb‖2L2(Ω)2

⎞⎠1/2

.

We find out that
∫
Ω
|∇Δb|2dx is equal to the norm ‖b‖H3

0 (Ω)2 , since∫
Ω

|∇Δb|2 dx = ‖∂xxxb‖2L2(Ω)2 + ‖∂xxyb‖2L2(Ω)2 + ‖∂xyyb‖2L2(Ω)2 + ‖∂yyyb‖2L2(Ω)2

+ 2

∫
Ω

∂xxxb∂xyyb dx+ 2

∫
Ω

∂xxyb∂yyyb dx

= ‖∂xxxb‖2L2(Ω)2 + 3 ‖∂xxyb‖2L2(Ω)2 + 3 ‖∂xyyb‖2L2(Ω)2 + ‖∂yyyb‖2L2(Ω)2

=
∑
|α|=3

‖∂αb‖2L2(Ω)2 .

Considering the regularity of b in time we give the equivalent norm of

L2(0, T ;H3
0 (Ω)

2):

‖b‖2L2(0,T ;H3
0 (Ω)2) =

T∫
0

‖∇Δb(t, ·)‖2L2(Ω)4 dt. (3.13)

As discussed above, we assume that u0 and uT are BV functions. Hence, BV seems

to be a proper choice for the space U . Since BV is continuously embedded in L2(Ω)

for d = 2, we use U = L2(Ω). Hence, our cost functional is

J(b) =
1

2
‖S(u0, b)− uT‖2L2(Ω) +

λ

2

T∫
0

‖∇Δb(t, ·)‖2L2(Ω)4 dt. (3.14)

To prove the existence of a minimizer of minimizing (3.14) restricted to (3.1) and
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(3.4), we have to deal with the weak sequential closeness of the solution operator of

the transport equation. Before we are able to handle that, we gain first some useful

properties of the solution to the transport equation with a smooth initial value in

the following lemmas:

Lemma 3.3. If (ϕn) and (ϕ−1
n ) are sequences of diffeomorphisms in Ω and the

Jacobian determinant (det∇ϕn) is uniformly bounded in L∞(Ω) by the upper bound

C, then ((u0 ∗ ηε) ◦ ϕ−1
n ) is uniformly bounded in BV (Ω) with respect to n.

Proof. It is easy to check that (u0 ∗ ηε) is uniformly bounded in BV (Ω) according

to Theorem 2.1 and Theorem 3.3. Suppose that its upper bound in BV (Ω) is C̃.

Let us verify the L1-norm by setting y = ϕ−1
n (x)∫

Ω

|(u0 ∗ ηε) ◦ ϕ−1
n | dx

=

∫
Ω

|(u0 ∗ ηε)(y)|| det∇ϕn(y)| dy

≤ C

∫
Ω

|(u0 ∗ ηε)(y)| dy

≤ CC̃.

Regarding the total variation we have∫
Ω

|∇(u0 ∗ ηε) ◦ ϕ−1
n | dx

=

∫
Ω

|∇(u0 ∗ ηε)(y)|| det∇ϕn(y)| dy

≤ C

∫
Ω

|∇(u0 ∗ ηε)(y)| dy

≤ CC̃.

Lemma 3.4. If (bn) is uniformly bounded in L2(0, T ;H3(Ω)2) and u0 ∈ BV (Ω).

Define un,ε = (u0 ∗ ηε) ◦ Φ−1
n and utn,ε = un,ε(t). Then, there exists a subsequence
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(unk,ε) such that (unk,ε) converges to some limit uε in L2(0, T ;Lp(Ω)) with p < 2

and weakly to uε with p = 2. (utnk,ε
) converges to uε(t) in Lp(Ω) with p < 2 and

weakly to uε(t) with p = 2.

Proof. Recall that for each bn there is a corresponding Φn s.t. Φn(t, ·) ∈ W 1,∞(Ω)2

and ‖∇Φn(t, ·)‖L∞(Ω)4 = Lip(Φn(t, ·)). The Lipschitz continuity is implied from

Gronwall’s lemma:

Lip(Φn(t, ·)) ≤ exp

⎛⎝ t∫
0

Lip(bn(s, ·)) ds
⎞⎠ . (3.15)

The boundedness of (bn) in L2(0, T ;H3(Ω)2) gives the upper bound for (3.15).

Hence, the Jacobian determinant (det∇Φn(t, ·)) is also uniformly bounded in L∞(Ω).

According to Lemma 3.3, this implies that (utn,ε) is uniformly bounded in BV (Ω)

with respect to n. Then, there exists a subsequence (utnk,ε
) of (utn,ε) such that (utnk,ε

)

converges to utε in L
p(Ω) with p < 2 (weakly for p = 2). To derive the convergence

of (unk,ε) to uε in L
2(0, T ;Lp(Ω)) with p < 2, we consider the integral over time:

lim
nk→∞

T∫
0

∥∥utnk,ε
− utε

∥∥2
Lp(Ω)

dt =

T∫
0

lim
nk→∞

∥∥utnk,ε
− utε

∥∥2
Lp(Ω)

dt→ 0

with p < 2. The exchange of the limit is valid since the integrand is bounded.

The weak convergence of (unk,ε) in L2(0, T ;L2(Ω)) is also valid, because (unk,ε) is

uniformly bounded in L2(0, T ;L2(Ω)) and (utnk,ε
) converges weakly to uε(t) in L

2(Ω)

for a.e t ∈ [0, T ].

Now we consider the minimization problem

inf
b∈L2(0,T ;H3,div

0 (Ω)2)

J(b) (3.16)

with J of the form (3.14). The existence of minimizers is usually achieved by the

direct method [8], and the main part lies in the weak sequential closeness of the

solution operator G with respect to u0 and b.

Theorem 3.5 (Weak sequential closeness). Suppose that (bn) ⊂ L2(0, T ;H3,div
0 (Ω)2)

is uniformly bounded and converges weakly to b in L2(0, T ;H3(Ω)2). Let un be
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the corresponding weak solutions to (3.1) with the flow field bn and initial value

u0, i.e. un = G(u0, bn). Suppose that (un) converges to ū in L2(0, T ;L1(Ω)) and

ū ∈ L2(0, T ;L2(Ω)), then ū = G(u0, b).

Proof. Since (bn) converges weakly to b in L2(0, T ;H3(Ω)2), it is also valid that

bn ⇀ b in L2(0, T ;L2(Ω)2). (3.17)

Let us consider the difference between the weak solution un and ū applying a test

function ϕ ∈ C∞
c ([0, T [×Ω):∣∣∣∣∣∣

T∫
0

∫
Ω

un(∂tϕ+ bn · ∇ϕ)− ū(∂tϕ+ b · ∇ϕ) dxdt
∣∣∣∣∣∣

=

∣∣∣∣∣
T∫

0

∫
Ω

∂tϕ(un − ū) dxdt+

T∫
0

∫
Ω

∇ϕ · (unbn − ūb) dxdt

∣∣∣∣∣.
(3.18)

The first summand of the right-hand side of (3.18) converges to zero, since un → ū

in L2(0, T ;L1(Ω)). Regarding the second summand we derive that

T∫
0

∫
Ω

∇ϕ · (unbn − ūb) dxdt

=

T∫
0

∫
Ω

∇ϕ · bn(un − ū) dxdt+

T∫
0

∫
Ω

ū∇ϕ · (bn − b) dxdt

≤ ‖∇ϕ‖L∞(0,T×Ω)2 ‖bn‖L2(0,T ;L∞(Ω)2) ‖un − ū‖L2(0,T ;L1(Ω))

+

T∫
0

∫
Ω

ū∇ϕ · (bn − b) dxdt.

Since (bn) is uniformly bounded in L2(0, T ;H3(Ω)2), it is also uniformly bounded

in L2(0, T ;L∞(Ω)2). The convergence of (un) in L2(0, T ;L1(Ω)) and (3.17) imply

that the right-hand side of the last inequality converges to zero.

Since un is the weak solutions to (3.1) for every n ∈ N, the limit ū is also a weak

solution to (3.1), i.e. ū = G(u0, b).
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Theorem 3.6 (Existence of a minimizer). Suppose that u0 ∈ BV (Ω), then the

minimization problem (3.16) has a solution.

Proof. Let (bn) ⊂ L2(0, T ;H3,div
0 (Ω)2) be a minimizing sequence of the cost func-

tional. The coercivity of (3.14) is a natural property subject to the norm (3.13). By

the coercivity, (bn) is uniformly bounded in L2(0, T ;H3(Ω)2), then there is a subse-

quence (bnk
) of (bn) converging weakly to b in L2(0, T ;H3(Ω)2). For each bn there

exits a unique flow Φ−1
n , which is a diffeomorphism in Ω and absolutely continuous

in [0, T ]. Define

un,ε = (u0 ∗ ηε) ◦ Φ−1
n .

According to Lemma 3.4 there exists a subsequence (unk,ε), which converges to

uε ∈ L2(0, T ;L2(Ω)) in L2(0, T ;L1(Ω)) and converges for every t ∈ [0, T ] weakly to

uε(t) in L
2(Ω). Theorem 3.5 implies that uε = (u0 ∗ ηε) ◦Φ−1. Hence, it yields that

∫
Ω

utnk,ε
ϕdx −→ ∫

Ω

utεϕdx

←− ←−

∫
Ω

utnk
ϕdx −→ ∫

Ω

utϕdx

for every ϕ ∈ L2(Ω). We just verified the upper convergence in the diagram, and

the left and right convergences in the diagram are valid due to the property of

approximate identities. By Theorem 3.3, it implies that ut = u0 ◦ Φ−1(t, ·). Hence,
(utnk

) converges weakly to ut in L2(Ω) for every t ∈ [0, T ].

The weak lower semi-continuity of the first term in (3.14) is easily derived from

the fact uTnk
− uT ⇀ uT − uT in L2(Ω). And the weak lower semi-continuity of the

second term of (3.14) is valid due to the norm-continuity of b.

3.5 First-order Optimality Conditions System

We use the Lagrangian technique to compute the first-order optimality conditions of

minimizing (3.14) restricted to (3.1) and (3.4). Let us define the Lagrange functional



38 Chapter 3. Lipschitzian Flow based Optimal Control

with Lagrange multipliers p and q:

L(u, b, p, q) = J(u, b) +

T∫
0

∫
Ω

(ut + b · ∇u)p dxdt+
T∫

0

∫
Ω

qdivb dxdt. (3.19)

To eliminate the boundary terms by computing the functional derivative of (3.19)

in b, we need the boundary conditions for b on ∂Ω such that

b = 0, ∇nb = 0, Δb = 0. (3.20)

According to the characterization of H3
0 (Ω), we know that there are two equivalent

formulations [41, 55]:

H3
0 (Ω) := C∞

0 (Ω)‖·‖H3(Ω)

=

{
f ∈ H3(Ω)

∣∣∣∣ f = 0,
∂f

∂n
= 0,

∂2f

∂n2
= 0 on ∂Ω

}
=

{
f ∈ H3(Ω)

∣∣∣∣ f = 0, ∇f = 0, Δf = 0 on ∂Ω

}
.

Deriving (3.20) from the previous characterizations is not straightforward. However,

we prove it in the following lemma.

Lemma 3.5. If f ∈ H3
0 (Ω), then f = 0,∇nf = 0,Δf = 0 on the boundary of Ω.

Proof. Deriving ∂f/∂n = 0 from ∇f = 0 is trivial, let us prove the opposite

statement. Since f is equal to zero on ∂Ω, then the tangential derivative of f is

equal to zero on ∂Ω. Due to the fact that the normal derivative of f is equal to

zero, then one obtains that the gradient of f vanishes on ∂Ω, since the tangential

vector and the normal vector are orthogonal each other and the gradient of f can

be expressed as a linear combination of the normal and orthogonal vectors.

Computing the functional derivatives of (3.19) in u, b and setting them to 0 yield
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the first-order necessary optimality conditions of the control problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + b · ∇u = 0 in (0, T ]× Ω, u(0) = u0 in Ω,

pt + b · ∇p = 0 in [0, T )× Ω, p(T ) = −(u(T )− uT ) in Ω,

divb = 0 in [0, T ]× Ω,

λΔ3b+∇q = p∇u in [0, T ]× Ω,
, b = 0,∇nb = 0,Δb = 0 on ∂Ω.

(3.21)

3.6 Numerical Aspects

In this section we will present some efficient numerical algorithms to discretize the

optimality conditions system. The last equation of (3.21) is a triharmonic equation

which stems from the use of space H3
0 as penalty term in (3.14). There are few

articles about its numerical schemes, e.g. [25]. However, the algorithms are either

not efficient or difficult to be applied directly. Hence, we modify this equation as

follows: The motivation of introducing the H3
0 -term is that b has to be Lipschitz

continuous to obtain a unique flow Φ. If we apply some smooth initial flow b0 in

the discrete form of (3.21), then replacing Δ3 with Δ in (3.21) still leads to smooth

enough b. Indeed, under this setting b is in H1 and according to Theorem 4.3 the

L2-regularity of u0 is propagated to every time. Finally, if b is not only H1 but also

Lipschitz continuous, we still transport BV images to BV images. Thus, in our

context we can also work with the cost functional

J̃(b) =
1

2
‖S(u0, b)− uT‖2L2(Ω) +

λ

2

T∫
0

‖∇b(t, ·)‖2L2(Ω)4 dt, (3.22)

and the corresponding optimality conditions system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut + b · ∇u = 0 in (0, T ]× Ω, u(0) = u0 in Ω,

pt + b · ∇p = 0 in [0, T )× Ω, p(T ) = −(u(T )− uT ) in Ω,

divb = 0 in [0, T ]× Ω,

λΔb+∇q = p∇u in [0, T ]× Ω,
, b = 0 on ∂Ω.

(3.23)
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We remark that the assumption u0, uT ∈ BV does not appear in this model. But

one could easily use U = BV and the BV -norm for the difference u(T )−uT in (3.22),

since this would only affect the right-hand side of the adjoint equation. However,

in this case we would have to ensure that the flow field b is Lipschitz-continuous.

In numerical experiments we found, that the use of the BV -norm for the difference

u(T ) − uT did not alter the results too much, and hence we use the optimality

conditions system (3.23).

With a divergence-free initial value b0, we propose a segregation loop in the

spirit of [11] to interpolate the intermediate image at time t:

Segregation loop I.

Suppose that n = 1, · · · , Nloop and Nloop is the iteration number. Given u0, uT ,

bn−1(t), λn−1. The iteration process for solving (3.23) on iteration n proceeds as

follows:

1. Compute un−1(t),∇un−1(t) and un−1(T ) by the forward transport equation

using u0 and bn−1(t).

2. Compute pn−1(t) by the backward transport equation using −(un−1(T )− uT )
and bn−1(t).

3. Compute bn(t) by the Stokes equations with the right-hand side pn−1(t)∇un−1(t)

and λn.

After Nloop iterations the intermediate image uNloop(t) approximates u(t). Moreover,

we use a monotonically decreasing sequence (λn), which converges to a final λ∗.

Thanks to the theory of Stokes equations [32], we know that

‖b(t)‖H1(Ω) ≤
C

λ
‖p(t)∇u(t)‖H−1(Ω) , a.e. t ∈ [0, T ]. (3.24)

In practice, we find out that if we choose (λn) such that the norm of the right-hand

side of (3.24) is monotonically increasing, then the value of b(t) is also increasing.

However, the final λ∗ cannot be chosen too small so that the minimizing process of

(3.22) becomes ill-posed.

Moreover, since the system (3.23) is a necessary condition of minimizing func-

tional (3.22), one expects that the term ‖u(T )− uT‖L2(Ω) is not very small. But
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since this is one of our final goals, we propose a modification of segregation loop I,

which poses no requirement for choosing a specific sequence (λn) and gives better

approximation of intermediate images. We modify segregation loop I as follows:

Segregation loop II.

Suppose that n = 1, · · · , Nloop and Nloop is the iteration number. Given u0, uT ,

bn−1(t), λ. The iteration process on iteration n proceeds as follows:

1. Compute un−1(t),∇un−1(t) and un−1(T ) by the forward transport equation

using u0 and bn−1(t).

2. Compute pn−1(t) by the backward transport equation using −(un−1(T )− uT )
and bn−1(t).

3. Compute the solution to the Stokes equations with the right-hand side

pn−1(t)∇un−1(t) and λ, and denote it by δbn−1(t) .

4. bn(t) = bn−1(t) + δbn−1(t).

In segregation loop II we utilize the system (3.23) to estimate the update of the

flow field and update the flow field in step 4. This point of view is different from

the original problem (3.23), but interestingly this modification actually solves the

necessary conditions of another minimizing problem. If the segregation loop II

converges, then the update δbn−1(t) converges to zero. Since the initial value b0 is

divergence-free and in each iteration the update flow δbn−1(t) is divergence-free, the

limit of (bn(t)) is also divergence-free.

We denote by u∗, p∗, b∗, q∗ the limits of particular sequences and in this case

δb∗ = 0. Setting the limits into (3.23) we derive⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u∗t + b∗ · ∇u∗ = 0 in (0, T ]× Ω, u∗(0) = u0 in Ω,

p∗t + b∗ · ∇p∗ = 0 in [0, T )× Ω, p∗(T ) = −(u∗(T )− uT ) in Ω,

divb∗ = 0 in [0, T ]× Ω, b∗ = 0 on ∂Ω,

∇q∗ = p∗∇u∗ in [0, T ]× Ω.

(3.25)

Actually, (3.25) is the optimality conditions system of another constrained mini-
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mization problem, namely

inf
b∗

1

2
‖u∗(T )− uT‖2L2(Ω) (3.26)

subject to ⎧⎨⎩ u∗t + b∗ · ∇u∗ = 0 in (0, T ]× Ω, u∗(0) = u0 in Ω,

divb∗ = 0 in [0, T ]× Ω, b∗ = 0 on ∂Ω.
(3.27)

Compared to (3.14) or (3.22) the functional (3.26) is not regularized. But if we stop

the segregation loop II on time, i.e. the interpolation error does not vary too much,

then it is not surprising that segregation loop II gives good approximation results.

From the point of view of regularization theory, one may see the segregation loop II

as a kind of a Landweber method for minimizing ‖u(T )−uT‖2L2(Ω) which is inspired

by a Tikhonov-functional.

In most cases the forward interpolation from u0 to uT and the backward inter-

polation from uT to u0 are complementary, since the flow is only able to transport

objects from one place to another place, but not able to create some new objects.

If, in the forward case, some new objects appear, then in the backward case the

new objects disappear, implying that backward interpolation is more suitable in

this case. In practice, we take the average of forward and backward interpolations

to achieve better interpolation results.

3.6.1 Hierarchical Method

In order to get a start value b0 for the optimality conditions system, the hierarchical

processing is a good approach [10]:

1. Down-sample the images into level l.

2. Solve system (3.23) in level l out and get bl.

3. Up-sample the optical flow into level l − 1 and get bl−1.

The estimated optical flow bl−1 is a start value of the hierarchical method in level

l − 1. In coarsest level we assume the start value to be zero. The down- and up-

sampling methods are decisive, i.e. it is important to preserve the local structures
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and small objects as well as possible while down- and up-sampling the images or

the optical flow.

In practice, we apply bicubic interpolation [45] for the sampling, since it has

fewer interpolation artifacts than bilinear interpolation or nearest-neighbor inter-

polation. Compared to the Gaussian pyramid [15] the down-sampled images by

bicubic interpolation do not look as blurred.

3.6.2 Numerical Schemes

To discretize the Stokes equations in (3.23) we apply the P2-P1 finite element

method introduced in Chapter 2. To discretize the transport equations we employ

two approaches: The first one follows [35, 40, 11] and it is a second-order total-

variation diminishing scheme (TVD scheme). The second one is utilizing the method

of characteristics. Both are also applicable for the backward transport equation,

since we can reformulate it as a forward problem by setting t′ := T − t:

pt′ − b · ∇p = 0, p(0) = −(u(0)− uT ).

For the sake of completeness, we present the TVD scheme from [11]: Suppose

that the image size is N × M , h and Δt are the mesh sizes in space and time,

respectively with mesh index i = 1, · · · , N, j = 1, · · · ,M in space and k = 1, · · · , K
in time. Setting b = (v, w), the stability condition of the scheme, usually called CFL

condition [8], is

σCFL := max(|v|max, |w|max)
Δt

h
≤ 1.

In practice we choose Δt such that σCFL = 0.1. The TVD scheme of the forward

transport equation is given by

ut|ki,j =
uk+1
i,j − uki,j

Δt
,

−vux|ki,j =
v+i,j
h

[
1 +

1

2
χ(r+

i− 1
2
,j
)− 1

2

χ(r+
i− 3

2
,j
)

r+
i− 3

2
,j

]
(uki−1,j − uki,j)

− v−i,j
h

[
1 +

1

2
χ(r−

i+ 1
2
,j
)− 1

2

χ(r−
i+ 3

2
,j
)

r−
i+ 3

2
,j

]
(uki+1,j − uki,j),
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where v+i,j = max(vi,j, 0), v
−
i,j = min(vi,j, 0) and the flux difference ratios are defined

as

r+
i− 1

2
,j
=
uki+1,j − uki,j
uki,j − uki−1,j

, r+
i− 3

2
,j
=

uki,j − uki−1,j

uki−1,j − uki−2,j

,

r−
i+ 1

2
,j
=
uki,j − uki−1,j

uki+1,j − uki,j
, r−

i+ 3
2
,j
=

uki+1,j − uki,j
uki+2,j − uki+1,j

.

In a similar way we can discretize the term −wuy. The super-bee limiter function

is given by

χ(r) = max(0,min(2r, 1),min(r, 2)).

To compute the spatial derivatives of images we use the standard three-point for-

mula:

pux|i,j = 1

2h
(−ui−1,j + ui+1,j)pi,j,

puy|i,j = 1

2h
(−ui,j−1 + ui,j+1)pi,j.

Another way for solving the transport equation is to utilize the characteristic solu-

tion. From (3.8) we know that the key point is to solve the backward flow starting

from (t, x) ⎧⎪⎨⎪⎩
∂Φ

∂s
= b(s,Φ) in [0, t[×Ω,

Φ(t, x) = x in Ω.

(3.28)

To solve (3.28) numerically efficiently we use Runge-Kutta 4th order method [45].

We discretize [0, t] with time step Δt = 0.1 and utilize a constant flow b over [0, t] to

save memory and computational cost. In this scheme we have to interpolate the flow

b(t, x) with some non-integer x, since only the flow b(t, ·) with integer coordinates is

given. For this we use bilinear interpolation (a bicubic interpolation leads to almost

the same results). Then, we warp the image u0 with the coordinates calculated by

(3.28) using the cubic spline predefined in Matlab to approximate u(t, x).
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3.6.3 Experiments

To illustrate the effect of our intermediate interpolated images, we apply the inter-

polation error (IE) introduced in [9]. The IE measures the root-mean-square (RMS)

difference between the ground-truth image uGT and the interpolated image u:

IE =

(
1

NM

N∑
i=1

M∑
j=1

(u(xi, yj)− uGT(xi, yj))
2

) 1
2

,

where N ×M is the image size. We test our methods on the datasets generated by

Middlebury College1 with public ground-truth interpolations:

– Dimetrodon with size 584× 388;

– Venus with size 420× 380.

Every dataset is composed of three images and the mid-image is the ground-truth

interpolation at time T/2 if we assume the evolution process of three images lasts

time T = 1. To evaluate the interpolation we can compare our interpolation re-

sults with the ground-truth by means of the IE measure. The interpolation results

calculated by segregation loop I and II are shown in Table 3.1. As mentioned in

[9], the Pyramid LK method and MediaplayerTM are significantly better for im-

age sequence interpolation than for ground-truth motion estimation. Because, e.g.

MediaplayerTM, tends to overly extend the flow into textureless regions, which are

not significantly affected by image sequence interpolation. According to Table 3.1

segregation loop II works better than some classic methods and more accurately

than segregation loop I. The places where the interpolation errors take place are

plotted in Figure 3.2. As a result, our methods, especially segregation loop II, work

in image sequence interpolation effectively.

Dealing with the convergence history of the proposed methods we can expect

that segregation loop I minimizes the cost functional (3.22) and segregation loop

II minimizes the data error ‖u(T )− uT‖L2(Ω) according to the explanation in Sec-

tion 3.6. In Figure 3.3 we observe this phenomenon for the test image sequence

Dimetrodon from Figure 3.1. Segregation loop I reduces the value of the cost func-

tional considerably in the first iterates (see subfigure (a)) while the data error is

1http://vision.middlebury.edu/flow/data/
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Dimetrodon Venus

Segregation loop I 2.25 6.67
Segregation loop II 1.95 3.63
Stich et al. 1.78 2.88
Pyramid LK 2.49 3.67
Bruhn et al. 2.59 3.73
Black and Anandan 2.56 3.93
MediaplayerTM 2.68 4.54
Zitnick et al. 3.06 5.33

Table 3.1: Interpolation errors calculated by our methods with comparison to the
ground-truth interpolation of Middlebury datasets, and the other IE results taken
from [51].

only reduced mildly (see subfigure (b)). Segregation loop II reduces the value of

the data error faster and this is responsible for the quality of image interpolation

(see subfigure (c)).

In addition to the accuracy, we demonstrate in Figures 3.4 and 3.5 how segre-

gation loop II deals with noisy images. In Figure 3.4 the same images as in Figure

3.1 are polluted with salt and pepper noises with density 0.5. Compared to the in-

terpolation results without noises we can distinguish that in subfigure (d) of Figure

3.5 are mainly only the noises left. Hence, this method works stably with respect

to perturbation by noises.

In another kind of tests, we tried segregation loop II with nonrigid objects and

large displacements. Figure 3.6 demonstrates an artificially warped hand and the

zoomed-in regions of the hand is viewed in Figure 3.7. Compared to the blend

method, i.e. the mean values of u0 and uT , we can observe that our method is

able to generate reasonable intermediate images without ghosting-effect, which is

characterized by using the blend method. The reason is that the divergence-free flow

preserves only the volume but not the shape. Thus, the objects in the interpolated

image can be warped by the optical flow.

Finally, even a more challenging problem, we test our method with images with

varying illumination. We tried to interpolate between two different head sections

with different geometry. Here the assumption that the image intensity is constant

along the characteristics generated by the optical flow breaks down. We can not
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create the new pixels, which belong to uT , but do not belong to u0.Viewing Fig-

ure 3.8 we can observe this phenomenon, but we still get a reasonable registered

image. It means that the warped contours of the template image (a) match the

contours of target image (c) well. From this point of view our interpolation method

is deemed to be useful in image registration. Actually, this kind of illumination

varying interpolation can be classified into image morphing. To get the morphing-

like interpolation we apply the forward interpolation from time 0 to T/2 and the

backward interpolation from time T to T/2. Then, we take the mean values of the

forward and backward interpolation at time T/2. We demonstrate the morphing-

like interpolation in Figure 3.9.

(a) (b)

(c) (d)

Figure 3.1: Dataset Dimetrodon. (a) u0. (b) uT . (c) The absolute difference
between (a) and (b). (d) The ground-truth interpolation at time T/2.
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(a) (b)

(c) (d)

Figure 3.2: (a) The generated interpolation at time T/2 by segregation loop I. (b)
The generated interpolation at time T/2 by segregation loop II. (c) The absolute
difference between (a) and the ground-truth. (d) The absolute difference between
(b) and the ground-truth.

n
5 10 15 20

J̃(bn)

0.5 · 108

1 · 108

1.5 · 108

0

(a)

n
5 10 15 20

‖un(T )− uT ‖

2 · 103

2.2 · 103

2.4 · 103

2.6 · 103

2.8 · 103

(b)

n
5 10 15 20

‖un(T )− uT ‖

1.2 · 103

1.3 · 103

1.4 · 103

1.5 · 103

(c)

Figure 3.3: Applied on dataset Dimetrodon. (a) Values of the cost functional for
segregation loop I. (b) Values of the data error for segregation loop I. (c) Values of
the data error for segregation loop II.
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(a) (b)

(c) (d)

Figure 3.4: (a) Noisy u0. (b) Noisy uT . (c) u(T/2) calculated by segregation loop
II. (d) Absolute difference between (c) and the ground-truth without noise.

(a) (b)

(c) (d)

Figure 3.5: (a) The optical flow of dataset Dimetrodon. (b) The intensities of (a).
(c) The optical flow of dataset noisy Dimetrodon. (d) The intensities of (c).
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(a) (b)

(c) (d)

Figure 3.6: (a) u0. (b) uT . (c) u(T/2) calculated by the blend method. (d) u(T/2)
calculated by segregation loop II.

(a) (b) (c) (d)

Figure 3.7: Zoomed-in regions of Figure 3.6. (a) Zoomed-in region of (a). (b)
Zoomed-in region of (b). (c) Zoomed-in region of (c). (d) Zoomed-in region of (d).
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(a) (b) (c)

Figure 3.8: Illumination varying brain. (a) The template image. (b) The target
image. (c) The registered image.

(a) (b) (c)

Figure 3.9: Illumination varying brain. (a) u0. (b) The morphed image at time
T/2. (c) uT .





Chapter 4

TVε-Flow based Optimal Control

4.1 Problem Statement and Modeling

In the last chapter we introduced the image sequence interpolation method in the

framework of optimal control governed by an H1 optical flow. However, the H1-

regularization produces a homogeneous smooth flow field, i.e. the flow field is

equally penalized across the flow edges. As a result, the shape of objects in the image

sequence may not be preserved well in the case that objects are moving faster or

slower than the background. To deal with such problem, it is common to substitute

the H1-regularization with the TV-regularization. As introduced in Chapter 2,

the space of bounded variation involves functions which are discontinuous across

hypersurfaces, i.e. a line in 2 dimension. Thus, the minimizer to TV regularization

problem is piece-wise constant, i.e. the smoothing is not permitted to cross flow

edges. Since the solution operator of transport equations is non-linear with respect

to the optical flow, it is difficult to utilize the projection method [17] to solve the

TV minimization problem. To get ride of that we relax the BV semi-norm with

the ε-smooth total variation functional introduced in Section 4.2, and the non-

differentiable BV semi-norm becomes differentiable with this relaxation.

Let us model image interpolation using the ε-smooth total variation in the frame-

work of optimal control. We assume that

u0, uT ∈ L∞(Ω), (4.1)

b ∈ L2(0, T ;W 1,1+τ
0 (Ω)d), (4.2)
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with a sufficient small τ , i.e. τ > 0 satisfies for an f ∈ W 1,1+τ
0 (Ω) and a given ε > 0

|Ω| τ
1+τ ‖∇f‖L1+τ (Ω)d ≤

∫
Ω

√
|∇f |2 + ε dx, (4.3)

where the constant |Ω| τ
1+τ is the norm of the embedding operator from L1+τ (Ω) to

L1(Ω). Then, we consider the minimization problem

inf J(b) =
1

2
‖u(T )− uT‖2L2(Ω) + λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt (4.4)

restricted to

divb = 0, (4.5)⎧⎨⎩ ∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0 in (0, T ]× Ω,

u(0, x) = u0(x) in Ω.
(4.6)

To analyze the control problem we apply the existing theory of transport equations

with non-Lipschitz flow introduced in Section 4.4. To make it possible, we shall

extend the range of u0, uT , b in R
d \Ω with 0 extension in this chapter if necessary.

4.2 Introduction of TVε

The BV semi-norm, or total variation is defined by

J0(u) = sup
v∈V

∫
Ω

−udivv dx, (4.7)

where Ω is a bounded open subset of Rd and the set of test functions

V :=
{
v ∈ C1

0 (Ω)
d
∣∣∣ ‖v(x)‖L∞(Ω)d ≤ 1

}
.

In the case that u belongs to C1 (Ω), then
∫
Ω
udivv dx = − ∫

Ω
v ·∇u dx and J0(u) =
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∫
Ω
|∇u(x)| dx. We define an extension of J0(u):

Jε(u) =

∫
Ω

√
|∇u|2 + ε dx, (4.8)

which is called the ε-smooth total variation functional and notice that it is not a

semi-norm. Based on the concept of bidual formulation we gain an another way to

represent a convex functional.

Definition 4.1. Let X be a real Banach space and f : X → R. Then f ∗ : X∗ → R,

defined by

f ∗(y) = sup
x∈X

{y(x)− f(x)}

is called the Fenchel transform of f . f ∗∗ : X → R defined by

f ∗∗(x) = sup
y∈X∗

{y(x)− f ∗(y)}

is called second conjugate of f .

Example 4.1. We denote by V a norm space endowed with norm ‖·‖ and V ∗ its

topological dual endowed with norm ‖·‖∗. We define F : V → R by

F (x) = ϕ (‖x‖) , with ϕ(t) = 1

α
|t|α and α ∈]1,∞[,

then the Fenchel transform of F gives

F ∗(y) = ϕ∗(‖y‖∗), with ϕ∗(t) =
1

α∗ |t|α
∗
and

1

α
+

1

α∗ = 1.

Proof.

F ∗(y) = sup
x∈V

{< y, x > −ϕ(‖x‖)}

= sup
t≥0

sup
x∈V
‖x‖=t

{< y, x > −ϕ(‖x‖)}

= sup
t≥0
{t ‖y‖∗ − ϕ(t)}

ϕ even
= sup

t∈R

{
t ‖y‖∗ −

1

α
|t|α
}
.
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The last expression has a maximum at t = ‖y‖α∗−1
∗ , and hence ϕ∗(‖y‖∗) = 1

α∗ ‖y‖α
∗

∗ .

Remark 4.1. If f is a lower semi-continuous convex functional, then f ∗∗ = f . The

details of the proof refer to [26].

Given a continuous and convex function f(x) =
√|x|2 + ε, the Fenchel trans-

form of f yields

f ∗(y) = −
√
ε (1− |y|2), |y| ≤ 1,

the second conjugate of f yields

f ∗∗(x) = sup
y∈R

{
xy +

√
ε
(
1− |y|2) ∣∣∣ |y| ≤ 1

}
, (4.9)

and it is equal to f(x) due to Remark 4.1. Motivated by this and (4.8) we define

J∗∗
ε (u) = sup

v∈V

∫
Ω

−udivv +
√
ε
(
1− |v (x)|2)dx.

The question on under which assumption Jε(u) = J∗∗
ε (u) is answered in the

following theorem [1].

Theorem 4.1. If u ∈ W 1,1 (Ω), then Jε(u) = J∗∗
ε (u).

Proof. Since C1(Ω) is dense in W 1,1 (Ω), it suffices to show that the statement is

valid for u ∈ C1(Ω). For any v ∈ V yields∫
Ω

−udivv +
√
ε
(
1− |v|2) dx =

∫
Ω

∇u · v +
√
ε
(
1− |v|2) dx

≤
∫
Ω

√
|∇u|2 + ε dx.

The last inequality holds due to (4.9). Taking the supremum of both sides over

v ∈ V yields

J∗∗
ε (u) ≤

∫
Ω

√
|∇u|2 + ε dx.
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Regarding the reserve inequality we take v = ∇u/√|∇u|2 + ε, and get∫
Ω

∇u · v +
√
ε
(
1− |v|2)dx =

∫
Ω

√
|∇u|2 + ε dx (4.10)

and v ∈ C(Ω)d with |v(x)| < 1 for all x ∈ Ω. Multiplying v by a suitable charac-

teristic function compactly supported in Ω and then mollifying, denoted by v, one

obtains v ∈ V ∩ C∞
0 (Ω)d for which the left-hand side of (4.10) substituting v with

v is arbitrarily close to
∫
Ω

√|∇u|2 + ε dx.

Theorem 4.2. Let (un) converge weakly to u in Lp(Ω) for 1 < p < ∞. Then,

(Jε(un)) is weakly lower semi-continuous for any ε ≥ 0.

Proof. For any v ∈ V, divv ∈ C(Ω) we have∫
Ω

−udivv +
√
ε
(
1− |v|2) dx = lim

n→∞

∫
Ω

−undivv +
√
ε
(
1− |v|2) dx

= lim inf
n→∞

∫
Ω

−undivv +
√
ε
(
1− |v|2) dx

Theorem 4.1≤ lim inf
n→∞

Jε(un).

Taking supremum over v ∈ V gives Jε(u) ≤ lim inf
n→∞

Jε(un).

We can also extend Theorem 4.2 to the case that the weak lower semi-continuity

of (Jε(un)) involves time.

Corollary 4.1. Assume that 1 < p < ∞ and (un) converges weakly to u in

L2(0, T ;Lp(Ω)), then

T∫
0

Jε(u(t)) dt ≤ lim inf
n→∞

T∫
0

Jε(un(t)) dt.

Proof. By the weak convergence of (un) we can deduce that

Jε(u(t)) ≤ lim inf
n→∞

Jε(un(t)) (4.11)
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for a.e. t ∈ (0, T ). Taking the integral of (4.11) over t and applying the Fatou’s

lemma [30] derives the statement.

4.3 Solution Theory of Transport Equation with

H1-Flow

We consider the transport equation in [0, T ]× R
d

⎧⎨⎩ ∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0 in (0, T ]× R
d,

u(0, x) = u0(x) in R
d.

(4.12)

According to the theorem of Picard-Lindelöf, the well-posedness of (4.12) needs that

b enjoys at least Lipschitz regularity in space. In this case, the transport equation

propagates the regularity of u0 to t ∈ [0, T ] according to the solution theory of

the transport equation with the smooth setting introduced in Chapter 3. However,

the well-posedness of the transport equation related to weakly differentiable vector

field was an open problem until DiPerna and Lions published the celebrated work

[27]. They introduced the notion of renormalized solution, roughly speaking, the

solution enjoys the chain rule. They relaxed the assumption on b to W 1,p
loc

(
R

d
)d

in

space, as a result the transport equation does not propagate the BV regularity. As

a counterexample we refer to [23]. Recently, Ambrosio extended the assumption on

b to BVloc
(
R

d
)d

in space, such that the solution to the transport equation is still

unique. More details refer to [3, 4].

Applying the theory of DiPerna and Lions to obtain the uniqueness of the solu-

tion to the transport equation, the chain rule plays a decisive role. To explain this

we argue first formally: Multiplying (4.12) by 2u and applying the chain rule yields

∂tu
2 + b · ∇u2 = 0.

Assume divb = 0 and integrating over Ω gives

d

dt

∫
Ω

u2(t, x) dx = −
∫
Ω

divb(t, x)u2(t, x) dx = 0. (4.13)
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To obtain the uniqueness, it suffices to show that if the initial value u0 = 0, then

the only solution u = 0. This is clear from (4.13). However, the formal argument

has two gaps. Firstly, in the case that the solutions to (4.12) are not smooth, so we

can not use the chain rule

∂tu
2 = 2u∂tu and ∇u2 = 2u∇u.

Secondly, applying (4.13) to show that ‖u(t, ·)‖L2(Ω) = 0 for every t, we need to

know that

‖u(t, ·)‖L2(Ω) → ‖u0‖L2(Ω) .

However, the continuity in norm can not be deduced only from the weak formula-

tion [24].

To face the uniqueness issue, DiPerna and Lions introduced the notion of renor-

malized solution [4, 27]:

Definition 4.2 (Renormalized solution). Let b be a locally summable vector field

such that divb is locally summable. We say that u ∈ L∞(0, T ;Lp(Rd)) is a renor-

malized solution to a transport equation if the following equation holds in the sense

of distributions
∂

∂t
β(u) + b · ∇β(u) = 0

for all β ∈ C1(R).

The importance of the renormalized solution is summarized in the following the-

orems, which corresponds to the rough statement “the vector field b which gives the

renormalized solution to (4.12), implies the well-posedness of (4.12)”. We assume

first that

b ∈ L1(0, T ;W 1,1
loc

(
R

d
)d
), divb ∈ L1(0, T ;L∞(Rd)), (4.14)

|b(t, x)|
1 + |x| ∈ L

1(0, T ;L1(Rd)d) ∩ L1(0, T ;L∞(Rd)d). (4.15)

Under the assumption (4.2) it is clear that b belongs to L1(0, T ;W 1,1(Rd)d), and

since b is divergence-free, (4.14) is satisfied. Furthermore, b satisfies (4.15) because b

is assumed to have the trivial extension in R
d\Ω and b belongs to L1(0, T ;L∞(Ω)d),

then from the fact 0 < 1/(1 + |x|) ≤ 1 we derive this statement.
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Theorem 4.3. We assume (4.14) and (4.15).

1. (Consistency). Let u ∈ L∞(0, T ;Lp(Rd)) and let b ∈ L1(0, T ;Lp(Rd)d) with

1 ≤ p ≤ ∞. If u is a renormalized solution to (4.12), then u is a solution to

(4.12). If u is a solution to (4.12) and b ∈ L1(0, T ;W 1,q
loc (R

d)d) with 1
p
+ 1

q
= 1,

then u is a renormalized solution.

2. (Existence and uniqueness). Let u0 ∈ Lp(Rd), then there exists a unique

renormalized solution u to (4.12) in C([0, T ];Lp(Rd)) for 1 ≤ p ≤ ∞.

Due to the settings (4.1), (4.2), and (4.5) of b. The observing state u(T ) ∈ L2(Ω)

makes sense, since u ∈ C([0, T ];L∞(Rd)) and u(T ) ∈ L∞(Ω), which is continuously

embedded into L2(Ω). Next, we establish the stability results of the renormalized

solution to (4.12) with respect to b.

Theorem 4.4 (Stability). Let bn ∈ L1(0, T ;L1
loc

(
R

d
)d
), divbn ∈ L1(0, T ;L1

loc

(
R

d
)
)

and (bn), (divbn) converge to b, divb where b satisfies (4.14) and (4.15). Let u0 ∈
Lp(Rd) and (un) be bounded sequence in L∞(0, T ;Lp

loc

(
R

d
)
) such that un is a renor-

malized solution to (4.12) with b replaced by bn corresponding to u0, and u is a

renormalized solution to (4.12). Then, (un) converges to u in C([0, T ];Lp
loc

(
R

d
)
).

4.4 Existence of a Minimizer

Lemma 4.1 (Maximum Principle). Let b and u0 be smooth and let u be a smooth

solution to (4.6). Then, ‖u(t, ·)‖L∞(Rd) ≤ ‖u0‖L∞(Rd).

Proof. The lemma is a trivial consequence of the method of characteristics. Indeed,

arguing as u(t, x) = u0(Φ
−1(t, x)), where Φ is the solution to the ODE corresponding

to b.

Now, we are able to prove the existence of a minimizer to (4.4) restricted to

(4.5) and (4.6) in the following theorem:

Theorem 4.5. Assume that u0, uT satisfy (4.1) and b satisfies (4.2). Then, the

minimization problem (4.4) governed by (4.5) and (4.6) has a solution.
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Proof. Define a minimizing sequence (bn) ⊂ L2(0, T ;W 1,1+τ
0 (Ω)d) with divbn = 0.

The coercivity of (4.4) in L2(0, T ;W 1,1+τ
0 (Rd)d) is clear under the assumption (4.3),

then one obtains that (bn) is uniformly bounded in L2(0, T ;W 1,1+τ
0 (Ω)d). Then, one

deduces that there exist a b ∈ L2(0, T ;W 1,1+τ
0 (Ω)d) and of a subsequence (bnj

) such

that (bnj
) converges weakly to b in L2(0, T ;W 1,1+τ

0 (Ω)d).

The weak lower semi-continuity of the regularization term of (4.4) is clear from

Corollary 4.1. The weak lower semi-continuity of the data term of (4.4) we argue

in the following:

Since b belongs to L2(0, T ;W 1,1+τ
0 (Rd)d) with divb = 0, and u0 belongs to

L∞(Rd), according to Theorem 4.3 there exists a unique (renormalized) solution

u ∈ C([0, T ];L∞(Rd)). Let ρε be a convolution kernel on R
d and ηε be a convolu-

tion kernel on R
d+1. We define uε0 = u0 ∗ ρε, bεnj

= bnj
∗ ηε and uεnj

is the unique

solution to ⎧⎨⎩ ∂tu(t, x) + bεnj
(t, x) · ∇xu(t, x) = 0 in (0, T ]× R

d,

u(0, x) = uε0(x) in R
d.

(4.16)

Due to the fact that uεnj
is smooth and supported in a bounded domain, and ac-

cording to Lemma 4.1 we deduce that for every t ∈ [0, T ]∥∥∥uεnj
(t, ·)

∥∥∥
L2(Rd)

≤
∥∥∥uεnj

(t, ·)
∥∥∥
L∞(Rd)

≤ ‖uε0‖L∞(Rd)

= esssup
x∈Rd

∫
Rd

u0(x− y)ρε(y) dy

≤ esssup
x∈Rd

esssup
y∈Rd

|u0(x− y)|
∫
Rd

ρε dy

≤ ‖u0‖L∞(Rd) .

Let ε converge to 0 and it follows that (unj
) is uniformly bounded in L∞(0, T ;L2(Rd)).

By Theorem 4.4 it is clear that (unj
) converges to u in C([0, T ];L2

loc

(
R

d
)
), and then

we derive the statement.
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4.5 First-order Optimality Conditions System

The Lagrange multiplier equation of (4.4) restricted to (4.6) and (4.5) is given by

L(u, b, p, q) =
1

2
‖u(T )− uT‖2L2(Ω) + λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt

+

T∫
0

∫
Ω

(∂tu+ b · ∇u) p dxdt+
T∫

0

∫
Ω

qdivb dxdt,

(4.17)

where p is the adjoint state of u and q is the adjoint state of b. We denote

|∇b|ε =
√
|∇b|2 + ε

in the following context. We derive the necessary optimality conditions system by

setting the functional derivatives of (4.17) in u, b, p, q equal to 0, and then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + b · ∇u = 0 in (0, T ]× Ω, u(0) = u0 in Ω,

pt + b · ∇p = 0 in [0, T )× Ω, p(T ) = −(u(T )− uT ) in Ω,

divb = 0 in [0, T ]× Ω,

λ∇ ·
( ∇b
|∇b|ε

)
+∇q = p∇u in [0, T ]× Ω,

, b = 0 on ∂Ω.

(4.18)

4.6 Numerical Aspects

4.6.1 Numerical Schemes

Numerically, the challenged part is how to discretize the TVε-Stokes equations

[54] in (4.18) effectively. We apply the time marching scheme, also called method

of gradient-descent, introduced in [54, 46] and it requires to solve the following



4.6. Numerical Aspects 63

unsteady-state equation with a long evolution time:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tb−∇ ·
( ∇b
|∇b|ε

)
− 1

λ
∇q = −1

λ
p∇u in (0,∞)× Ω,

b = 0 on ∂Ω,

b(0, ·) = 0 in Ω,

∂tq − divb = 0 in (0,∞)× Ω.

(4.19)

where |∇b|ε =
√|vx|2 + |vy|2 + |wx|2 + |wy|2 + ε. Actually, the TVε-Stokes equa-

tions of (4.18) is the steady state of (4.19). The algorithm uses the following iterative

procedure to update b and q on active iterative n+ 1 with given pn,∇un and time

step Δt:

bn+1 = bn +Δt

(
∇ ·

( ∇bn
|∇bn|ε

)
+

1

λ
∇qn − 1

λ
pn∇un

)
,

qn+1 = qn +Δt∇ · bn.
(4.20)

In [56] is shown that the explicit (forward Euler) time marching scheme is condi-

tionally stable, i.e. the time step Δt should be selected in a manner which gives

sufficient decrease in the functional (4.4). However, the forward scheme has rather

undesirable asymptotic convergence properties which may make it very inefficient.

Vogel and Oman introduced the lagged diffusivity fixed point iteration, denoted

by FP-iteration, in [56]. The FP-iteration linearizes the nonlinear diffusion part in

(4.20) on iteration n+ 1, i.e. we apply the diffusion operator

DF (bn)v := ∇ ·
( ∇v
|∇bn|ε

)
on the active iteration n+ 1. Hence, we can formulate it into an implicit scheme

(1−ΔtDF (bn)) bn+1 = z,

where z denotes the rest terms not involving bn+1. It is shown in [18] that this

algorithm is very robust and globally linearly convergent. The details of the scheme

concerning v read as follows, and similarly we can also derive the scheme concerning



64 Chapter 4. TVε-Flow based Optimal Control

w.

∂x

(
vn+1
x

|∇bn|ε

)
= ∂x

(|∇bn|−1
ε

)
vn+1
x +

vn+1
xx

|∇bn|ε
= − |∇bn|−3

ε

(
vnxv

n
xx + vny v

n
xy + wn

xw
n
xx + wn

yw
n
xy

)
vn+1
x +

vn+1
xx

|∇bn|ε
,

∂y

(
vn+1
y

|∇bn|ε

)
= ∂y

(|∇bn|−1
ε

)
vn+1
y +

vn+1
yy

|∇bn|ε
= − |∇bn|−3

ε

(
vnxv

n
xy + vny v

n
yy + wn

xw
n
xy + wn

yw
n
yy

)
vn+1
y +

vn+1
yy

|∇bn|ε
.

Altogether the implicit scheme of (4.20) in v yields

vn+1 +Δt |∇bn|−3
ε

(
vnxv

n
xx + vny v

n
xy + wn

xw
n
xx + wn

yw
n
xy

)
vn+1
x −Δt

vn+1
xx

|∇bn|ε
+Δt |∇bn|−3

ε

(
vnxv

n
xy + vny v

n
yy + wn

xw
n
xy + wn

yw
n
yy

)
vn+1
y −Δt

vn+1
yy

|∇bn|ε
= vn +

Δt

λ
qnx −

Δt

λ
pux.

4.6.2 Image Denoising

In the first experiment we use the imposed FP-iteration for discretizing the non-

linear diffusion operator to denoise an image. Given a noised image z(x) = u0(x)+

σ(x), where u0 denotes the uncontaminated image and σ denotes some additive

noise, we reconstruct u by minimizing the following functional

E(u) =
λ

2
‖u− z‖2L2(Ω) +

∫
Ω

|∇u|ε dx.

The necessary optimality condition is

λ (u− z)−∇ ·
( ∇u
|∇u|ε

)
= 0. (4.21)
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To solve (4.21) we also time-march the equation as we handled the TVε-Stokes

equations in (4.18), namely⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tu = ∇ ·

( ∇u
|∇u|ε

)
− λ (u− z) in (0,∞)× Ω,

u(0, x) = z(x) in Ω,

un(t, x) = 0 on ∂Ω.

(4.22)

If the diffusion process lasts long enough, then the noise will be removed and the

edges will be preserved by the property of TVε minimization. In practice, we choose

a monotonously decreasing sequence (εn) for iterations of the discrete system of

(4.22), since a large ε results in a fast convergence of the system but blurred edges

of the image, and a small ε results in a slow convergence of the system but preserving

the edges better. Thus, such a choice of (εn) is a good tradeoff between efficiency

and accuracy.

In Figure 4.1 we iterate the system 50 times, choose (εn) to be an equiv-distant

sequence from 1 to 0.01 and select Δt = 5, λ = 10−3.5. Because the FP-iteration is

unconditionally stable, we can select a large time step and a small iteration number

such that the whole computational cost keeps low.

(a) (b) (c)

Figure 4.1: (a) The uncontaminated image. (b) The image is perturbed by the
“salt and pepper” noise with density 0.4. (c) The denoised image by (4.22).
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4.6.3 Experiments

Let us denote the interpolation method (3.23) with segregation loop II by the

smooth method. Actually, the smooth method works better than the TVε method

in the smooth regions in which the displacement is not small. Because the image

gradient of this regions is small, the smooth diffusion has a fill-in effect such that

the motion of this regions can be recognized. To combine the advantage of both

methods we make a smooth diffusion at the coarsest level and step by step shorten

the diffusion time to get better interpolation of the non-smooth regions.

T T/2 T/2 merging

smooth 5.17 4.01 3.63
TVε 3.96 3.69 3.50

Table 4.1: IE of the interpolation at time T , T/2 and merging the forward &
backward interpolation at time T/2 by the smooth method and the TVε method
applied on dataset Venus.

To demonstrate the difference between the smooth method and the TVε method

we apply them on dataset Venus, see Figure 4.2. Viewing Figure 4.5 it is obvious

that the TVε method keeps the flow edges better than the smooth method. Con-

sequently, the shape of objects is preserved better in the case that the objects are

moving faster or slower than the background, see Figure 4.4. In Table 4.1 we ob-

serve that the smooth method works more inconsistent than the TVε method if the

interpolation time is larger. In contrast, the TVε method works more accurately

and more robustly over the time. In Table 4.2 and 4.3 we list the parameter setting

of both methods in this experiment. It is worth mentioning that the TVε method

does not require too many iterations on each level, since the long to short diffusion

time strategy from the coarse level to fine level is able to detect the optical flow

both in smooth regions and non-smooth regions, effectively.

We also demonstrate the merging at time T/2. It means that we merge the for-

ward interpolation that the interpolation starts from u0 to u(T/2), and the backward

interpolation that the interpolation starts from uT to u(T/2). From the results of

Table 4.1 we find out that the forward and backward interpolation are somehow

compatible. This phenomenon we will explain in next chapter and it shall arouse
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λ Nloop

L3 105.3 100
L2 105.5 100
L1 105.8 100
L0 106.7 10

Table 4.2: Parameters of the
smooth method.

λ Nloop Δt ε

L3 104.8 20 103 1
L2 104.4 20 102 1
L1 104.4 20 101 1
L0 104.2 20 100 1

Table 4.3: Parameters of the
TVε method.

us a new idea to improve the modeling.

(a) (b)

(c) (d)

Figure 4.2: (a) u0 (b) uT (c) The ground-truth interpolation uT/2 at time T/2. (d)
The absolute difference between u0 and uT .
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(a) (b)

Figure 4.3: (a) u(T/2) interpolated by the smooth method. (b) u(T/2)
interpolated by the TVε method.

(a) (b) (c)

(d) (e)

Figure 4.4: (a) The zoomed-in region of ground-truth. (b) The zoomed-in region of
(a) of Figure 4.3. (c) The zoomed-in region of (b) of Figure 4.3. (d) The absolute
difference between (a) and (b). (e) The absolute difference between (a) and (c).
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(a) (b)

(c) (d)

Figure 4.5: (a) The optical flow calculated by the smooth method. (b) The
intensity of the optical flow calculated by the smooth method. (c) The optical
flow calculated by the TVε method. (d) The intensity of the optical flow
calculated by the TVε method.





Chapter 5

TVε-Flow and Segmentation

based Optimal Control

5.1 Problem Statement

So far we used the forward interpolation in the smooth method and TVε method,

i.e. interpolation from time 0 to T . According to the introduced algorithms, we

generate the intermediate images by taking pixels only from u0 in the forward

interpolation process. Obviously, it is not nature since the new disclosed objects in

the evolution process are unknown with respect to u0 at time t > 0. We illustrate

this phenomenon more clearly in Figure 5.1. In the zoomed-in regions we can

observe that the disclosed black regions in the middle and upper right of subfigure

(d) are new with respect to subfigure (c).

Attentively, we find out that from subfigure (d) to subfigure (c) the black regions

in the middle and upper right of subfigure (d) are getting covered, not disclosed

any more. More precisely speaking, the backward interpolation is suitable for the

disclosed regions and the forward interpolation is suitable for the covered regions.

From this point of view some segmentation tool is desired to segment the domain

into disclosed parts and covered parts.
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(a) (b) (c) (d)

Figure 5.1: (a) u0. (b) uT . (c) The zoomed-in region of (a). (d) The zoomed-in
region of (b).

5.2 Introduction of Active Contours for Segmen-

tation

The classical active contours models or snakes [16, 38] are widely used in image

segmentation. However, in these models an edge detector related to the image

gradient is required to stop the evolving curve on the boundaries of objects. In [20]

Chan and Vese introduced a model based on active contours and the Mumford-Shah

segmentation model [43], which does not require an edge detector. Consequently,

this model is able to detect contours with or without gradient, i.e. objects with

discontinuous boundaries or even with very smooth boundaries. We give here a

brief overview of the model of active contours without edges.

Let us define a curve C as the boundary of an open subset ω of a bounded

domain Ω ⊂ R
2. Now we consider the following fitting term

F1(C) + F2(C) =

∫
ω

(u− c1)
2 dx+

∫
Ω\ω

(u− c2)
2 dx,

where u : Ω→ R, C segments the domain into ω and Ω\ω, and the constants c1, c2

depending on C, are the average of u inside C and outside of C, respectively. In

this case, the boundary C0 of the object minimizes the fitting term

inf
C

(F1(C) + F2(C)) ≈ 0 ≈ F1(C0) + F2(C0).

In the active contours model [20] some regularizing terms are appended to the

fitting term, namely the length of C and the area of the region ω segmented by C.
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Therefore,

F (c1, c2, C) = μ|C|+ ν|ω|+ λ1

∫
ω

|u− c1|2 dx+ λ2

∫
Ω\ω

|u− c2|2 dx, (5.1)

where μ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are the regularization parameters. To minimize (5.1)

one can reformulate it by means of the level set formulation. Suppose that C is

represented by the zero level set of a Lipschitz function φ : Ω→ R, such that⎧⎪⎪⎨⎪⎪⎩
C = ∂ω = {x ∈ Ω | φ(x) = 0} ,
ω = {x ∈ Ω | φ(x) > 0} ,
Ω \ ω = {x ∈ Ω | φ(x) < 0} .

Recall that the Heaviside function H and one-dimensional Dirac measure δ0 are

defined as

H(z) =

⎧⎨⎩1 if z ≥ 0

0 if z < 0
, δ0(z) =

d

dz
H(z). (5.2)

Then, we reformulate the terms of (5.1) by means of (5.2):

|C| =
∫
Ω

|∇H (φ(x))| dx

=

∫
Ω

δ0 (φ(x)) |∇φ(x)| dx,

|ω| =
∫
Ω

H (φ(x)) dx,

∫
ω

|u− c1|2 dx =

∫
Ω

|u− c1|2H (φ(x)) dx,

∫
Ω\ω

|u− c2|2 dx =

∫
Ω

|u− c2|2 (1−H (φ(x))) dx.

With this notation the cost functional (5.1) becomes
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F (c1, c2, φ) = μ

∫
Ω

δ0 (φ(x)) |∇φ(x)| dx+ ν

∫
Ω

H (φ(x)) dx

+ λ1

∫
Ω

|u− c1|2H (φ(x)) dx+ λ2

∫
Ω

|u− c2|2 (1−H (φ(x))) dx.

(5.3)

Keeping φ fixed and minimizing the energy F (c1, c2, φ) with respect to c1 and c2, it

is easy to express the constant functions by

c1(φ) =

∫
Ω
u(x)H (φ(x)) dx∫
Ω
H (φ(x)) dx

, (5.4)

if
∫
Ω
H (φ(x)) dx > 0, i.e. the curve C has a nonempty interior in Ω and

c2(φ) =

∫
Ω
u(x) (1−H (φ(x))) dx∫
Ω
(1−H (φ(x))) dx

, (5.5)

if
∫
Ω
(1−H (φ(x))) dx > 0, i.e. the curve C has a nonempty exterior in Ω. For

the corresponding degenerate cases, namely |ω| = 0 or |Ω \ ω| = 0, there are no

constraints on c1 or c2 respectively. Then, c1 and c2 are in fact given by{
c1(φ) = mean(u) in {x ∈ Ω | φ(x) ≥ 0} ,
c2(φ) = mean(u) in {x ∈ Ω | φ(x) < 0} .

In order to compute the associated Euler-Lagrange equation with respect to φ, we

choose the smooth approximation Hs and δs, which converge to H and δ as s→ 0.

Assume that Hs enjoys the C2(Ω) regularity and δs = H
′
s. We denote by Fs the

smooth version of (5.3) given by

Fs(c1, c2, φ) = μ

∫
Ω

δs (φ(x)) |∇φ(x)| dx+ ν

∫
Ω

Hs (φ(x)) dx

+ λ1

∫
Ω

|u− c1|2Hs (φ(x)) dx

+ λ2

∫
Ω

|u− c2|2 (1−Hs (φ(x))) dx.

Minimize Fs with respect to φ and we deduce the associated Euler-Lagrange equa-
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tion for φ and parameterize the descent direction by an artificial time t ≥ 0, the

equation in φ(t, x) with the initial contour φ(0, x) = φ0(x) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= δs(φ)

(
μdiv

( ∇φ
|∇φ|

)
− ν − λ1 (u− c1)

2 + λ2 (u− c2)
2

)
in (0,∞)× Ω,

φ(0) = φ0 in Ω,

δs(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω.

(5.6)

5.2.1 Algorithm

We introduce the smooth regularization of H

Hs(z) =
1

2

(
1 +

2

π
arctan

(z
s

))
, (5.7)

and its derivative

δs(z) =
1

sπ
cos2

(
arctan

(z
s

))
. (5.8)

The graphs of Hs and δs are illustrated in Figure 5.2.
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Figure 5.2: The graphs of the Heaviside function and its derivative with s = 1/π.

In the discretization of (5.6) we use the Neumann boundary condition of φ, since

it is a sufficient boundary condition of (5.6). The rest we follow the FP-iteration
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introduced in Chapter 4, and we list the algorithm of the active contours without

edges. Assume that N is the number of iterations and the procedure is

1. Initialize φ0 by φ0 as n = 0.

2. Compute c1 (φ
n) and c2 (φ

n) by (5.4) and (5.5).

3. Solve (5.6) and obtain φn+1.

4. If n < N , then go back to 2.

We gain the binary segmentation by modification of c1 and c2 for an x ∈ Ω:⎧⎨⎩c1(x) = 0 if φ(x) ≥ 0,

c2(x) = 1 if φ(x) < 0.

In Figure 5.3 we demonstrate the binary segmentation on dataset Eagle1. We set

φ0(x) = −100 on the boundary of the image and φ0(x) = 100 otherwise. It is worth

mentioning that we gain a reasonable segmentation of the corners while the edges

of the image near the corners are not clear.

(a) (b)

Figure 5.3: μ = 10, ν = 10, λ1 = λ2 = 100. (a) The original image. (b) The binary
segmented image.

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

BSDS300/html/dataset/images.html
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5.3 Modeling

Based on the phenomenon demonstrated in Section 5.1 we may divide the domain

into the covered domain and the disclosed domain. The covered domain refers to

the regions in which the characteristics of two different pixels starting at time 0 end

up at time T in a same place. Obviously, the covered domain is suitable for the

forward interpolation from 0 to T . In contrast, the disclosed domain refers to the

regions in which no characteristic of a pixel starting at time 0 ends up at time T .

Since our interpolation method under the framework of optimal control produces a

continuous optical flow, the disclosed domain will be filled-in with the neighboring

optical flow. The filling-in process in the forward interpolation normally “guesses”

wrong what actually happens in the disclosed domain. To overcome this drawback

we apply a backward interpolation from T to 0 in the disclosed domain, i.e. the

disclosed domain is turned to the covered domain in this case. In Figure 5.1 the

backward interpolation is supposed to be occurred to detect the disclosed black

color in the middle and upper right of the zoomed-in regions in the subfigures.

Combining the introduced active contours without edges and the TVε method,

we achieve this locally selecting process of the regions for the forward or backward

interpolation. Let us model the image sequence interpolation using the ε-smooth

total variation of optical flow and active contours in the framework of optimal

control. We assume that

u0, uT ∈ L∞(Ω), (5.9)

b ∈ L2(0, T ;W 1,1+τ
0 (Ω)d), (5.10)

with a sufficient small τ , i.e. τ > 0 satisfies for an f ∈ W 1,1+τ
0 (Ω) and a given ε > 0

|Ω| τ
1+τ ‖∇f‖L1+τ (Ω)d ≤

∫
Ω

√
|∇f |2 + ε dx, (5.11)

where the constant |Ω| τ
1+τ is the norm of the embedding operator from L1+τ (Ω) to

L1(Ω), and the evolving curve C in Ω is defined as the boundary of an open subset

ω of Ω. The cost functional is defined as

J(b, C, ω) =
1

2
‖û(T )− uT‖2L2(ω) +

1

2
‖ũ(0)− u0‖2L2(Ω\ω) + λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt
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+ μ |C|+ ν |ω| (5.12)

restricted to the forward transport equation⎧⎨⎩ ût + b · ∇xû = 0 in (0, T ]× Ω,

û(0) = u0 in Ω,
(5.13)

the backward transport equation⎧⎨⎩ ũt + b · ∇xũ = 0 in [0, T )× Ω,

ũ(T ) = uT in Ω,
(5.14)

and the divergence-free equation

divb = 0 in [0, T ]× Ω. (5.15)

The desired interpolation u at time t is estimated by

u(t, x) =

⎧⎪⎨⎪⎩
û(t, x) if x ∈ ω,

ũ(t, x) if x ∈ Ω \ ω.

5.4 Existence of a Minimizer

We investigate the existence of a minimizer of minimizing (5.12) restricted to

(5.13) − (5.15). First of all, we formulate (5.12) in terms of the characteristic

function χω of the set ω by the fact χω = H(φ):

J(b, χω) =
1

2

∫
Ω

|û(T )− uT |2 χω dx+
1

2

∫
Ω

|ũ(0)− u|2 (1− χω) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+ μ

∫
Ω

|Dχω|+ ν

∫
Ω

χω dx.

(5.16)

Besides b we also search for a characteristic function of ω with finite perimeter in Ω

(see Chapter 2), i.e. χω has bounded variation. Assume in the following contexts

that d = 2 and ∂Ω is Lipschitz.
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Theorem 5.1 (Existence of a minimizer). Suppose χω ∈ BV (Ω), then minimizing

(5.16) restricted to (5.13)− (5.15) has a minimizer under (5.9)− (5.11).

Proof. We define a minimizing sequence (bn, χωn) belonging to L2(0, T ;W 1,1+τ
0 (Ω)2)

and BV (Ω). The coercivity of (5.16) is obvious due to (5.10), (5.11) and the BV

norm of χω in the functional. From the coercivity we gain a minimizing subsequence(
bnk
, χωnk

)
, which converges to (b, χω) in the weak topology of L2(0, T ;W 1,1+τ

0 (Ω)2)

and the BV − w∗ topology respectively. The BV − w∗ convergence yields the L1-

convergence of (χωnk
), and hence if χω is not a characteristic function, then this

contradicts the fact of the L1-convergence of (χωnk
).

The weak lower semi-continuity of last two terms of (5.16) is clear in the BV −
w∗ topology. In Chapter 4 it is shown that the term of b is weakly lower semi-

continuous. The rest is to show the weak lower semi-continuity of the first two

terms in (5.16). The proof of both terms are similar, so we verify the first one:∫
Ω

|û(T )− uT |2 χω dx−
∫
Ω

|û(T )− uT |2 χωnk
dx

+

∫
Ω

|û(T )− uT |2 χωnk
dx−

∫
Ω

|ûnk
(T )− uT |2 χωnk

dx

≤
∫
Ω

|û(T )− uT |2 |χωnk
− χω| dx+

∫
Ω

∣∣|ûnk
(T )− uT |2 − |û(T )− uT |2

∣∣χωnk
dx

≤ ‖û(T )− uT‖2L∞(Ω)

∫
Ω

|χωnk
− χω| dx

+

∫
Ω

|ûnk
(T ) + û(T )− 2uT | |ûnk

(T )− û(T )| dx

≤ ‖û(T )− uT‖2L∞(Ω)

∥∥χωnk
− χω

∥∥
L1(Ω)

+ ‖ûnk
(T ) + û(T )− 2uT‖L2(Ω) ‖ûnk

(T )− û(T )‖L2(Ω) .

The second summand of the right-hand side of last inequality converges to zero,

since (ûnk
(T )) converges to û(T ) in L2(Ω) because of the stability of the solution to

the transport equation clarified in Chapter 4. The first summand converges to zero,

since in the BV − w∗ topology (χωnk
) converges to χω in L1(Ω) and u propagates

the L∞-regularity of u for all the time due to the propagation results of transport

equations given in Chapter 4.
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5.5 Smooth Minimization Functional

5.5.1 Level Set Formulation

Assume that C is the zero level set of φ introduced in Section 5.2. Applying the

Heaviside function we can reformulate (5.12) in terms of the level set:

J(b, φ) =
1

2

∫
Ω

|û(T )− uT |2H(φ) dx+
1

2

∫
Ω

|ũ(0)− u0|2 (1−H(φ)) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+ μ

∫
Ω

δ(φ) |∇φ| dx+ ν

∫
Ω

H(φ) dx. (5.17)

To make it computationally possible, we replace the Heaviside and its derivative

with the smooth version (5.7) and (5.8):

Js(b, φ) =
1

2

∫
Ω

|û(T )− uT |2Hs(φ) dx+
1

2

∫
Ω

|ũ(0)− u0|2 (1−Hs(φ)) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+ μ

∫
Ω

δs(φ) |∇φ| dx+ ν

∫
Ω

Hs(φ) dx.

(5.18)

5.5.2 Convergence Property of Smooth Minimization Func-

tional

We want to investigate under which assumptions (5.18) converges to (5.17) for every

b, φ as s→ 0. We give the concept of intermediate convergence of BV functions [5]:

Definition 5.1 (Intermediate convergence). Let (un) be a sequence in BV (Ω) and

u ∈ BV (Ω). We say that (un) converges to u in the sense of the intermediate

convergence if and only if

un → u in L1(Ω),∫
Ω

|Dun| →
∫
Ω

|Du|.

In [5] it is proven that the topology induced by the intermediate convergence

is finer than the topology induced by the weak* convergence of BV . Thus, from a
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in BV (Ω) bounded sequence (un) we only deduce that (Dun) converges weakly* to

Du, but we can not ensure that the total variation of (Dun) converges to the total

variation of Du. To gain this property we assume additionally that Hs = H ∗ ηs
and the level set function φ : Ω → K is a diffeomorphism, where K is a bounded

subset of R. Then, we have

Lemma 5.1.
∫
Ω
|D(Hs ◦ φ)| −→

∫
Ω
|D(H ◦ φ)| as s→ 0.

Proof. Theorem 2.4 implies that Hs → H almost everywhere as s → 0. Set y =

φ(x), then for every ϕ ∈ C1
c (Ω)

d with ‖ϕ‖L∞(Ω)d ≤ 1 gives∫
Ω

(H ∗ ηs) ◦ φ(x) divϕ(x) dx

=

∫
K

H ∗ ηs(y) divϕ(φ−1(y))
∣∣det (∇φ−1(y)

)∣∣ dy
→
∫
K

H(y) divϕ(φ−1(y))
∣∣det (∇φ−1(y)

)∣∣ dy
=

∫
Ω

(H ◦ φ(x)) divϕ(x) dx.

Taking supremum over ϕ gives the statement.

Theorem 5.2 (Point-wise convergence). Under (5.9)− (5.11) the functional (5.18)

converges point-wise to (5.17).

Proof. Subtracting the functionals point-wise we gain that

|Ls(b, φ)− L(b, φ)| ≤ 1

2

∫
Ω

|û(T )− uT |2 |Hs(φ)−H(φ)| dx

+
1

2

∫
Ω

|ũ(0)− u0|2 |Hs(φ)−H(φ)| dx

+ μ

∣∣∣∣∣∣
∫
Ω

|D (Hs ◦ φ)| −
∫
Ω

|D (H ◦ φ)|
∣∣∣∣∣∣

+ ν

∫
Ω

|Hs(φ)−H(φ)| dx.

(5.19)
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Since φ is a diffeomorphism, (Hs ◦ φ) is uniformly bounded in BV (Ω). The ap-

proximate properties of mollifiers yield that (Hs ◦ φ) converges to H ◦ φ in L1(Ω)

(similar to proof of Theorem 3.3). We know that the transport equation propagates

the L∞-regularity for every t ∈ [0, T ]. Then, together with Lemma 5.1 it is obvious

that the right-hand side of (5.19) converges to 0.

5.5.3 First-order Optimality Conditions System

The associated Lagrange equation of (5.18) restricted to (5.13)− (5.15) is given by

L(û, ũ, b, φ, p̂, p̃, q) =
1

2

∫
Ω

|û(T )− uT |2Hs(φ) dx+
1

2

∫
Ω

|ũ(0)− u0|2 (1−Hs(φ)) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+

T∫
0

∫
Ω

(ût + b · ∇û) p̂ dxdt

+

T∫
0

∫
Ω

(ũt + b · ∇ũ) p̃ dxdt+
T∫

0

∫
Ω

qdivb dxdt

+ μ

∫
Ω

δs(φ) |∇φ| dx+ ν

∫
Ω

Hs(φ) dx,

(5.20)

where p̂, p̃, q are the adjoint states of û, ũ, b respectively.

Compute the functional derivatives of (5.20) according to û, p̂, ũ, p̃, b, q, φ and

set them to 0, then we gain the first-order necessary optimality conditions system

and it consists of

1. The forward transport equation and its adjoint equation⎧⎨⎩ ût + b · ∇û = 0 in (0, T ]× Ω, û(0) = u0 in Ω,

p̂t + b · ∇p̂ = 0 in [0, T )× Ω, p̂(T ) = − (û(T )− uT )Hs(φ) in Ω;

(5.21)
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2. The backward transport equation and its adjoint equation⎧⎨⎩ ũt + b · ∇ũ = 0 in [0, T )× Ω, ũ(T ) = uT in Ω,

p̃t + b · ∇p̃ = 0 in (0, T ]× Ω, p̃(0) = (ũ(0)− u0) (1−Hs(φ)) in Ω;

(5.22)

3. The TVε-Stokes equations⎧⎪⎪⎨⎪⎪⎩
λ∇ ·

( ∇b
|∇b|ε

)
+∇q = p̂∇û+ p̃∇ũ in [0, T ]× Ω, b = 0 on ∂Ω,

divb = 0 in [0, T ]× Ω;

(5.23)

4. The equation for segmentation⎧⎪⎪⎪⎨⎪⎪⎪⎩
δs(φ)

(
μ∇ ·

( ∇φ
|∇φ|

)
− ν − 1

2
|û(T )− uT |2 + 1

2
|ũ(0)− u0|2

)
= 0 in Ω,

δs(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω.

(5.24)

5.6 Numerical Aspects

5.6.1 Segregation Loop

To solve the optimality conditions (5.21) − (5.24) at time t numerically, we ap-

ply a modified segregation loop similar to segregation loop II introduced in Chap-

ter 3. We suppose n = 1, · · · , Nloop and Nloop is the iteration number. Given

u0, uT , b
n−1(t), φn−1, λ, μ, ν, the iteration process on iteration n proceeds as follows:

1. Compute ûn−1(t),∇ûn−1(t) and ûn−1(T ) using u0 and bn−1(t).

2. Compute p̂n−1(t) using ûn−1(T ), uT and Hs(φ
n−1).

3. Compute ũn−1(t),∇ũn−1(t) and ũn−1(0) using uT and bn−1(t).

4. Compute p̃n−1(t) using ũn−1(0), u0 and Hs(φ
n−1).
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5. Compute the solution to the TVε-Stokes equations with right-hand side

p̂n−1(t)∇ûn−1(t) + p̃n−1(t)∇ũn−1(t), and denote it by δbn−1(t) .

6. Compute solution φn to (5.24) using û(T ), uT , ũ(0), u0 and φn−1 as the initial

value of the time-marching scheme.

7. bn(t) = bn−1(t) + δbn−1(t).

Set the initial value b0 divergence-free, and denote by û∗, ũ∗, p̂∗, p̃∗, b∗, q∗, φ∗ the

limits of particular sequences. In this case δb∗ = 0, and setting the limits into

(5.21)− (5.24) we derive

⎧⎨⎩ û∗t + b∗ · ∇û∗ = 0 in (0, T ]× Ω, û∗(0) = u0 in Ω,

p̂∗t + b∗ · ∇p̂∗ = 0 in [0, T )× Ω, p̂∗(T ) = − (û∗(T )− uT )Hs(φ
∗) in Ω;

(5.25)

⎧⎨⎩ ũ∗t + b∗ · ∇ũ∗ = 0 in [0, T )× Ω, ũ∗(T ) = uT in Ω,

p̃∗t + b∗ · ∇p̃∗ = 0 in (0, T ]× Ω, p̃∗(0) = (ũ∗(0)− u0) (1−Hs(φ
∗)) in Ω;

(5.26)

⎧⎨⎩∇q
∗ = p̂∗∇û∗ + p̃∗∇ũ∗ in [0, T ]× Ω,

divb∗ = 0 in [0, T ]× Ω, b∗ = 0 on ∂Ω;

(5.27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δs(φ

∗)
(
μ∇ ·

( ∇φ∗

|∇φ∗|
)
− ν − 1

2
|û∗(T )− uT |2 + 1

2
|ũ∗(0)− u0|2

)
= 0 in Ω,

δs(φ
∗)

|∇φ∗|
∂φ∗

∂n
= 0 on ∂Ω.

(5.28)

Although the segregation loop is different from the original problem, (5.25)− (5.28)

is actually the optimality conditions system of another constrained minimization
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problem when s = 0, namely

inf
(b∗,ω)

1

2
‖û∗(T )− uT‖2L2(ω) +

1

2
‖ũ∗(0)− u0‖2L2(Ω\ω)

subject to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
û∗t + b∗ · ∇û∗ = 0 in (0, T ]× Ω, û∗(0) = u0 in Ω,

ũ∗t + b∗ · ∇ũ∗ = 0 in [0, T )× Ω, ũ∗(T ) = uT in Ω,

divb∗ = 0 in [0, T ]× Ω, b∗ = 0 on ∂Ω.

From the point of view of regularization theory, one may see the segregation loop as a

kind of a Landweber method for minimizing 1
2
‖û(T )−uT‖2L2(ω)+

1
2
‖ũ(0)−u0‖2L2(Ω\ω),

which is inspired by a Tikhonov-functional.

5.6.2 Experiments

First of all, we compare the new introduced method, denoted by the TVε-segment

method, with the smooth method introduced in Chapter 3. To illustrate the differ-

ence we apply them on the dataset Mequon. In Figure 5.4 we can distinguish that

the flow field of the TVε-segment preserves the flow edges better than the smooth

method. Consequently, the interpolation by the TVε-segment keeps the boundary of

objects (shape) better than the smooth method. Additionally, the associated active

contours for segmentation are also shown in Figure 5.4. In Figure 5.5 we present

the interpolated image applied on Mequon at time T/2 by the smooth method and

TVε-segment method. In the associated zoomed-in subfigures in Figure 5.6 we can

observe that the TVε-segment method interpolated the disclosed black regions bet-

ter than the smooth method. Referring to its zoomed-in contours (see subfigure

(c)) we can coordinate the disclosed regions with the black color, which refers to

the regions where the backward interpolation occurred.

To evaluate our image sequence interpolation method we design an experiment

based on human visual perception. We choose 4 datasets (see Figure 5.7) from ftp:

//graphics.tu-bs.de/pub/public/people/lipski/stimuli/ and list 7 methods

introduced in [52] and [51] to be compared with. We design the experiment in

the follwing way: For each of the scenes we compare all 8 interpolation methods
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(a) (b) (c)

Figure 5.4: Experiment on Mequon. (a) The optical flow calculated by the smooth
method. (b) The optical flow calculated by the TVε-segment method. (c) The
active contours calculated by the TVε-segment method. The black refers to the
backward interpolation regions and the white refers to the forward interpolation
regions.

(a) (b)

Figure 5.5: Experiment on Mequon. (a) The interpolated frame calculated by the
smooth method at time T/2. (b) The interpolated frame calculated by the
TVε-segment method at time T/2.

(a) (b) (c)

Figure 5.6: (a) The zoomed-in region of (a) of Figure 5.5. (b) The zoomed-in
region of (b) of Figure 5.5. (c) The corresponding zoomed-in region of its contours
generated by the TVε-segment method.
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against each other (only AB, not AA and BA comparisons), yields a total of 4 · (8 ·
7/2) = 112 trials. We denote the number of participants by N and in each trial

the perceptually better image sequence gets 1 point. After all trials we divide the

score of every algorithm applied on each dataset by 7N and all datasets by 35N to

get the normalized score for every dataset and all datasets. The range of the score

is in [0, 1] and the image sequence with the higher score is better for human visual

perception.

Face Earth Bunny Dragon average

original 0.90 0.86 0.88 0.96 0.90
blend 0.24 0.14 0.32 0.26 0.24
opticalflow 0.01 0.02 0.02 0.02 0.02
nofeathering 0.49 0.50 0.35 0.50 0.46
nooptim 0.26 0.32 0.39 0.21 0.29
full 0.50 0.53 0.42 0.51 0.49
multiscale 0.82 0.82 0.84 0.82 0.82
TVε-segment 0.77 0.82 0.78 0.73 0.78

Table 5.1: The normalized score of every algorithm applied on every dataset and
the average of all scores of every algorithm.

We appreciate 17 participants took part in this experiment, and in Table 5.1 we

observe that the multiscale and TVε-segment methods perform visually perceptually

better than the other methods. We also give out the evaluation results by the

interpolation error in Table 5.2 and find out that the TVε-segment method does

not outperform the nooptim and full methods. The interpolation error measure can

not reveal human visual perception due to two reasons. Firstly, the human eyes

are sensitive for the shocks which are the common drawbacks of the opticalflow,

nofeathering, full methods (see Figure 5.11), and also sensitive for the ghosting

effects, which are characterized by the blend method. Secondly, the original dataset

can not be regarded as the ground-truth since the interpolation between two images

may not be unique.

We also test our algorithm in the field of image registration. Since image regis-

tration is one-way interpolation, we set μ, ν equal to 0 to avoid the segmentation.

Under this setting the TVε-segment method turns into the TVε method. In this

point of view we can also consider the TVε-segment method as a generalization of
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Face Earth Bunny Dragon average

blend 3.73 4.18 2.41 3.49 3.45
opticalflow 3.11 4.25 2.36 3.38 3.28
nofeathering 2.29 2.15 1.95 2.58 2.24
nooptim 1.72 1.52 1.40 2.02 1.67
full 1.72 1.52 1.40 2.02 1.67
multiscale 1.31 0.75 1.16 1.97 1.31
TVε-segment 2.08 1.91 1.65 2.40 1.99

Table 5.2: The interpolation error of every algorithm applied on every dataset and
the average of all interpolation errors of every algorithm.

the TVε method. As an example we apply a synthetically warped image [44] and

register it according to the unwarped image. In Figure 5.12 we find out that the

contours of the skull are matched well. However, the brain tissues are not well reg-

istered because the tissue edges are not significant and the locally varying optical

flow of every neighboring tissue segment influences each other.

(a) (b) (c) (d)

Figure 5.7: Datasets of Stich. (a) Face. (b) Earth. (c) Bunny. (d) Dragon.
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(a) (b) (c) (d) (e)

Figure 5.8: (a) Frame 9 of Earth. (b) Frame 12 of Earth. (c) The absolute
difference between (a) and (b). (d) The optical flow calculated by the
TVε-segment method. (e) The active contours calculated by the TVε-segment
method.

(a) (b) (c) (d) (e)

Figure 5.9: Frame 11 calculated by (a) the blend method, (b) the opticalflow
method, (c) the full method, (d) the multiscale method, (e) the TVε-segment
method.

(a) (b) (c) (d) (e)

Figure 5.10: (a) Frame 15 of Bunny. (b) Frame 18 of Bunny. (c) The absolute
difference of (a) and (b). (d) The optical flow calculated by the TVε-segment
method. (e) The active contours calculated by the TVε-segment method.
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(a) (b) (c) (d) (e)

Figure 5.11: Frame 16 calculated by (a) the blend method, (b) the optical flow
method, (c) the full method, (d) the multiscale method, (e) the TVε-segment
method.

(a) (b) (c) (d)

Figure 5.12: (a) The template frame. (b) The target frame. (c) The registered
frame calculated by the TVε-segment method. (d) The associated optical flow.
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Conclusion

In this work we investigate the image sequence interpolation problem with an opti-

mal control of the optical flow governing a transport equation. With a priori optical

flow we are able to utilize the transport equation to “transport” a given image to

a certain moment. To identify the optical flow we seek a interpolated image to fit

another given image in the sense of a cost functional and minimize it. Inspired by

the solution theory of transport equations, we first set up the optical flow enjoying

the Lipschitz regularity in space and the given images belong to BV . However, un-

der these assumptions the estimated flow are too smooth to show the local features

of the optical flow. To fix it we use the H1-regularization instead, which is not so

smooth and the transport equation still propagates the L2-regularity of the initial

image. Therefore, the validity term endowed with the L2-norm still makes sense.

In the second model we consider the ε-smooth total variation instead of the

H1-regularization. The ε-smooth total variation is “a little bit” smoother than

the TV-norm, and hence the minimizer to the associated minimization problem is

supposed to be “a little bit” smoother thanW 1,1, namely inW 1,1+τ where τ depends

on the smooth variable ε. As a result, the optical flow estimated by the ε-smooth

regularity has better edges preserving property than the H1-regularization. And

the well-posedness of transport equations under these settings still works according

to the theory of DiPerna-Lions [27].

Inspired by the experiments we find out that the forward interpolation is not

suitable in the disclosed regions. Thus, we utilize the active contours to segment the

domain into the covered regions and disclosed regions. Moreover, we add another

control, namely a level set function, whose zero level set is the contours segmenting
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the covered regions and disclosed regions. In the associated cost functional we add

the total variation of the level set function to regularize the level set function, hence

the minimizer of the level set function exists in BV .

The introduced image sequence methods in the frame work of optimal con-

trol have several advantages compared to the per-pixel-wise methods introduced in

Chapter 1: Firstly, our methods are stable, i.e. they avoid the shocks, ghosting

effects, which are typically characterized by the per-pixel-wise methods. Secondly,

they work robust against noise in the given images, because the optical flow field

is continuous, and hence the local oscillations in the optical flow created by noises

are dumped by the neighboring dominated optical flow. Thirdly, they solve a quite

large range of image sequence interpolation problems, simple rigid movements in-

terpolation and non-rigid movements interpolation are able to be handled.

On the other hand, our methods have also several disadvantages. The major

problem lies in the definition of optical flow, since it does not reveal the real motion

fields in 2d, it only figures an apparent motion field created by variation of image

intensities. Thus, we have to assume that the intensity of objects do not change

in time. If the images intensities of the background vary in time, then the flow

field estimated by our methods are not really true, it could lead to some non-sense

interpolation results. Thinking of the way out we may consider a transport equation

with right-hand side f , which is another control and describes the variation of image

intensities: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut + b · ∇xu = f in (0, T ]× Ω,

u(0) = u0 in Ω,

un = 0 on ∂Ω.

Regarding the modeling and the regularization theory we know that b and f affect

each other, since a strong weighted regularization of b leads to high-valued output

f and low-valued output b, and a mildly weighted regularization of b converses. But

what kind of combination of b and f creating the real interpolation is still not clear.

Secondly, although the ε-smooth total variation produces the optical flow with

better edge preserving properties, however in some cases it is still too smooth for

generating the intermediate images, since the discontinuous flow edges are impor-

tant to keep shape of the objects not warped near the edges. To our knowledge,

the effective methods solving the total variation minimization problems, e.g. [17]
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is only available to the linear problem and [18] is available in the case that the ad-

joint operator of (3.2) is known. Hence, it is still a challenge to solve our imposed

non-linear problems penalized by the total variation numerically.
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