21,811 research outputs found

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York

    SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression

    Full text link
    This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary variables, linked in a highly nonlinear fashion. The selection of a globally optimal subset using the branch and bound (BB) algorithm is limited to problems in very low dimension, tipically d<5, as the complexity of the problem increases exponentially with d. We introduce a bold pruning strategy in the BB algorithm that results in a significant reduction in computing time, at the price of a negligeable accuracy lost. The novelty of our algorithm is that the bounds at nodes of the BB tree come from pseudo-convexifications derived using a linearization technique with approximate bounds for the nonlinear terms. The approximate bounds are computed solving an auxiliary semidefinite optimization problem. We show through a computational study that our algorithm performs well in a wide set of the most difficult instances of the LTSE problem.Comment: 12 pages, 3 figures, 2 table

    Inexact Convex Relaxations for AC Optimal Power Flow: Towards AC Feasibility

    Full text link
    Convex relaxations of AC optimal power flow (AC-OPF) problems have attracted significant interest as in several instances they provably yield the global optimum to the original non-convex problem. If, however, the relaxation is inexact, the obtained solution is not AC-feasible. The quality of the obtained solution is essential for several practical applications of AC-OPF, but detailed analyses are lacking in existing literature. This paper aims to cover this gap. We provide an in-depth investigation of the solution characteristics when convex relaxations are inexact, we assess the most promising AC feasibility recovery methods for large-scale systems, and we propose two new metrics that lead to a better understanding of the quality of the identified solutions. We perform a comprehensive assessment on 96 different test cases, ranging from 14 to 3120 buses, and we show the following: (i) Despite an optimality gap of less than 1%, several test cases still exhibit substantial distances to both AC feasibility and local optimality and the newly proposed metrics characterize these deviations. (ii) Penalization methods fail to recover an AC-feasible solution in 15 out of 45 cases, and using the proposed metrics, we show that most failed test instances exhibit substantial distances to both AC-feasibility and local optimality. For failed test instances with small distances, we show how our proposed metrics inform a fine-tuning of penalty weights to obtain AC-feasible solutions. (iii) The computational benefits of warm-starting non-convex solvers have significant variation, but a computational speedup exists in over 75% of the cases

    On finding multiple pareto-optimal solutions using classical and evolutionary generating methods

    Get PDF
    In solving multi-objective optimization problems, evolutionary algorithms have been adequately applied to demonstrate that multiple and well-spread Pareto-optimal solutions can be found in a single simulation run. In this paper, we discuss and put together various different classical generating methods which are either quite well-known or are in oblivion due to publication in less accessible journals and some of which were even suggested before the inception of evolutionary methodologies. These generating methods specialize either in finding multiple Pareto-optimal solutions in a single simulation run or specialize in maintaining a good diversity by systematically solving a number of scalarizing problems. Most classical generating methodologies are classified into four groups mainly based on their working principles and one representative method from each group is chosen in the present study for a detailed discussion and for its performance comparison with a state-of-the-art evolutionary method. On visual comparisons of the efficient frontiers obtained for a number of two and three-objective test problems, the results bring out interesting insights about the strengths and weaknesses of these approaches. The results should motivate researchers to design hybrid multi-objective optimization algorithms which may be better than each of the individual methods

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Near-optimal loop tiling by means of cache miss equations and genetic algorithms

    Get PDF
    The effectiveness of the memory hierarchy is critical for the performance of current processors. The performance of the memory hierarchy can be improved by means of program transformations such as loop tiling, which is a code transformation targeted to reduce capacity misses. This paper presents a novel systematic approach to perform near-optimal loop tiling based on an accurate data locality analysis (cache miss equations) and a powerful technique to search the solution space that is based on a genetic algorithm. The results show that this approach can remove practically all capacity misses for all considered benchmarks. The reduction of replacement misses results in a decrease of the miss ratio that can be as significant as a factor of 7 for the matrix multiply kernel.Peer ReviewedPostprint (published version

    A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines

    Get PDF
    This paper addresses a highly challenging scheduling problem in the field of printed circuit board (PCB) assembly systems using Surface Mounting Devices (SMD). After describing some challenging optimization sub-problems relating to the heads of multi-head surface mounting placement machines, we formulate an integrated multi-objective mathematical model considering of two main sub-problems simultaneously. The proposed model is a mixed integer nonlinear programming one which is very complex to be solved optimally. Therefore, it is first converted into a linearized model and then solved using an efficient multi-objective approach, i.e., the augmented epsilon constraint method. An illustrative example is also provided to show the usefulness and applicability of the proposed model and solution method.PCB assembly. Multi-head beam-type placement machine. Multi-objective mathematical programming. Augmented epsilon-constraint method
    • …
    corecore