3 research outputs found

    Microservice-based Reference Architecture for Semantics-aware Measurement Systems

    Get PDF
    Cloud technologies have become more important than ever with the rising need for scalable and distributed software systems. A pattern that is used in many such systems is a microservice-based architecture (MSA). MSAs have become a blueprint for many large companies and big software systems. In many scientific fields like energy and environmental informatics, efficient and scalable software systems with a primary focus on measurement data are a core requirement. Nowadays, there are many ways to solve research questions using data-driven approaches. Most of them have a need for large amounts of measurement data and according metadata. However, many measurement systems still follow deprecated guidelines such as monolithic architectures, classic relational database principles and are missing semantic awareness and interpretation of data. These problems and the resulting requirements are tackled by the introduction of a reference architecture with a focus on measurement systems that utilizes the principles of microservices. The thesis first presents the systematic design of the reference architecture by using the principles of Domain-driven Design (DDD). This process ensures that the reference architecture is defined in a modular and sustainable way in contrast to complex monolithic software systems. An extensive scientific analysis leads to the core parts of the concept consisting of the data management and semantics for measurement systems. Different data services define a concept for managing measurement data, according meta data and master data describing the business objects of the application implemented by using the reference architecture. Further concepts allow the reference architecture to define a way for the system to understand and interpret the data using semantic information. Lastly, the introduction of a frontend framework for dashboard applications represents an example for visualizing the data managed by the microservices

    A Value-Driven Framework for Software Architecture

    Get PDF
    Software that is not aligned with the business values of the organization for which it was developed does not entirely fulfill its raison d’etre. Business values represent what is important in a company, or organization, and should influence the overall software system behavior, contributing to the overall success of the organization. However, approaches to derive a software architecture considering the business values exchanged between an organization and its market players are lacking. Our quest is to address this problem and investigate how to derive value-centered architectural models systematically. We used the Technology Research method to address this PhD research question. This methodological approach proposes three steps: problem analysis, innovation, and validation. The problem analysis was performed using systematic studies of the literature to obtain full coverage on the main themes of this work, particularly, business value modeling, software architecture methods, and software architecture derivation methods. Next, the innovation step was accomplished by creating a framework for the derivation of a software reference architecture model considering an organization’s business values. The resulting framework is composed of three core modules: Business Value Modeling, Agile Reference Architecture Modeling, and Goal-Driven SOA Architecture Modeling. While the Business value modeling module focuses on building a stakeholder-centric business specification, the Agile Reference Architecture Modeling and the Goal-Driven SOA Architecture Modeling modules concentrate on generating a software reference architecture aligned with the business value specification. Finally, the validation part of our framework is achieved through proof-of-concept prototypes for three new domain specific languages, case studies, and quasi-experiments, including a family of controlled experiments. The findings from our research show that the complexity and lack of rigor in the existing approaches to represent business values can be addressed by an early requirements specification method that represents the value exchanges of a business. Also, by using sophisticated model-driven engineering techniques (e.g., metamodels, model transformations, and model transformation languages), it was possible to obtain source generators to derive a software architecture model based on early requirements value models, while assuring traceability throughout the architectural derivation process. In conclusion, despite using sophisticated techniques, the derivation process of a software reference architecture is helped by simple to use methods supported by black box transformations and guidelines that facilitate the activities for the less experienced software architects. The experimental validation process used confirmed that our framework is feasible and perceived as easy to use and useful, also indicating that the participants of the experiments intend to use it in the future
    corecore