
Eric Rocha de Souza

BSc in Information Systems
Specialist in Software Engineering

MSc in Computer Enginnering

A Value-Driven Framework
for Software Architecture

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in
Computer Science

Adviser: Ana Maria Diniz Moreira,
Associate Professor with Habilitation,
NOVA University of Lisbon

Examination Committee

Chairperson: Professor Luís Manuel Marques da Costa Caires
Raporteurs: Professor Jaelson Brelaz de Castro

Professor António Rito Silva
Members: Professor Luís Manuel Marques da Costa Caires

Professor Ana Maria Diniz Moreira
Professor Silvia Mara Abrahão Gonzales
Professor Ademar Manuel Teixeira de Aguiar
Professor João Baptista da Silva Araújo Júnior

September, 2019

A Value-Driven Framework for Software Architecture

Copyright © Eric Rocha de Souza, Faculty of Sciences and Technology, NOVA University

Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

I dedicate this work to my wife Renata.

Acknowledgements

Obtaining a Ph.D. degree is a demanding journey, which is only possible with the help

of those who are closer to us, even when they are geographically distant. I would like

to thank all those who have supported me in this mission. First and foremost, none of

this would have been possible without the help of my friend and mentor Professor Ana

Moreira. It was really a privilege to work under her supervision. Thank you for your

friendship, availability, time, attention, patience, encouragement, lessons, and all sup-

port during this period. My thanks also to all those who have helped me day after day

during these years. There are too many to list, but I can not forget all the assistance

given to me by the professors of the Doctoral Program in Computer Science from the

Departamento de Informática of Universidade NOVA de Lisboa. Thank you all professors

and researchers from the Automated Software Engineering research group, in particu-

lar Professor João Araújo, for his support and guidance, and my colleagues Fernando

Wanderley and Cristiano de Faveri for all their suggestions, critiques, and the constant

joy of living that made the distance from my homeland shorter. Thank you also to all

participants of the empirical studies, especially to Silvia Abrahão and Emilio Insfran

for the receptivity and assistance during my stay in Valencia, where I started the eval-

uation of my Ph.D.. Many thanks to the Master’s students in Computer Science from

Universitat Politècnica de València (Spain), the Master’s students in Computer Science

and Informatics from Universidade NOVA de Lisboa (Portugal), and the Doctoral stu-

dents in Business Management from Universidade Federal de Pernambuco (Brazil) for

their willingness to participate in the empirical experiments that are part of the evalu-

ation of this research work. My sincere gratitude to the institutions that contributed in

some way to the success of this work, particularly Departamento de Informática from

Universidade NOVA de Lisboa, NOVA LINCS research Lab (Ref. UID/CEC/04516/2013),

Value@Cloud project (MINECOTIN2013-46300-R), Department of Computer Systems

and Computation from Universitat Politècnica de València, and Programa Ciência sem

Fronteiras from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES

(Ref. 99999.009047/2013-01). Finally, last but not the least, I would like to thank my

wife, Renata, who left everything behind in Brazil to live my dream with me in Portugal.

Thank you also to my beloved family. Much of the time spent on this job was directly

stolen from you. This thesis is also yours.

vii

“How wonderful it is that nobody need wait a single moment
before starting to improve the world.” – Anne Frank

Abstract

Software that is not aligned with the business values of the organization for which it

was developed does not entirely fulfill its raison d’etre. Business values represent what

is important in a company, or organization, and should influence the overall software

system behavior, contributing to the overall success of the organization. However, ap-

proaches to derive a software architecture considering the business values exchanged

between an organization and its market players are lacking. Our quest is to address this

problem and investigate how to derive value-centered architectural models systemati-

cally. We used the Technology Research method to address this PhD research question.

This methodological approach proposes three steps: problem analysis, innovation, and

validation. The problem analysis was performed using systematic studies of the litera-

ture to obtain full coverage on the main themes of this work, particularly, business value

modeling, software architecture methods, and software architecture derivation methods.

Next, the innovation step was accomplished by creating a framework for the derivation

of a software reference architecture model considering an organization’s business values.

The resulting framework is composed of three core modules: Business Value Modeling,

Agile Reference Architecture Modeling, and Goal-Driven SOA Architecture Modeling.

While the Business value modeling module focuses on building a stakeholder-centric

business specification, the Agile Reference Architecture Modeling and the Goal-Driven

SOA Architecture Modeling modules concentrate on generating a software reference ar-

chitecture aligned with the business value specification. Finally, the validation part of

our framework is achieved through proof-of-concept prototypes for three new domain

specific languages, case studies, and quasi-experiments, including a family of controlled

experiments. The findings from our research show that the complexity and lack of rigor

in the existing approaches to represent business values can be addressed by an early re-

quirements specification method that represents the value exchanges of a business. Also,

by using sophisticated model-driven engineering techniques (e.g., metamodels, model

transformations, and model transformation languages), it was possible to obtain source

generators to derive a software architecture model based on early requirements value

models, while assuring traceability throughout the architectural derivation process.

xi

In conclusion, despite using sophisticated techniques, the derivation process of a soft-

ware reference architecture is helped by simple to use methods supported by black box

transformations and guidelines that facilitate the activities for the less experienced soft-

ware architects. The experimental validation process used confirmed that our framework

is feasible and perceived as easy to use and useful, also indicating that the participants

of the experiments intend to use it in the future.

Keywords: Software and its engineering: Software architectures; Model-driven software
engineering; Domain specific languages; Requirements engineering; Software development
methods; Value-driven development; Business modeling.

xii

Resumo

Software que não está alinhado com os valores comerciais da organização para a qual

foi desenvolvido não cumpre inteiramente sua missão. Os valores de negócio representam

o que é importante numa empresa ou organização e por isso devem influenciar o compor-

tamento geral do sistema de software, contribuindo para o sucesso geral da organização.

Todavia, falta uma abordagem para derivar uma arquitetura de software considerando os

valores de negócio trocados entre uma organização e seus parceiros de mercado. O nosso

objetivo é endereçar este problema, investigando como obter sistematicamente modelos

arquiteturais centrados em valor. Para isso, usámos o método de Pesquisa Tecnológica

(do inglês, Technology Research method) para resolver a pergunta de investigação do nosso

trabalho de doutoramento. Esta abordagem metodológica propõe três etapas: análise do

problema, inovação e validação. A análise do problema foi realizada à custa de estudos

sistemáticos da literatura para obter uma cobertura completa dos principais temas deste

trabalho, particularmente modelação de valores de negócio, métodos de arquitetura de

software e métodos de derivação de arquitetura de software. Em seguida, a etapa de

inovação foi realizada com a criação de um framework para o derivação de um modelo

de arquitetura de referência de software, considerando os valores de negócio de uma

organização. O framework resultante é composto por três módulos principais: Modelagem

Modelação de Valor de Negócio, Modelação de Arquitetura de Referência Ágil e Modela-

ção de Arquitetura SOA Orientada por Objetivos. Enquanto o módulo de modelação de

valor de negócio se concentra na construção de uma especificação de negócio, os módulos

modelação de arquitetura de referência ágil e modelação de arquitetura SOA orientada

por objetivos concentram-se na geração de uma arquitetura de software de referência

alinhada com a especificação de valor. Finalmente, a parte da validação foi alcançada

por meio de protótipos de prova de conceito para três novas linguagens de domínio es-

pecífico, estudos de caso e quase-experimentos, incluindo uma família de experimentos

controlados. As descobertas do nosso trabalho de investigação mostram que a comple-

xidade e a falta de rigor nas abordagens existentes para representar valores de negócio

podem ser tratadas por um método de especificação de requisitos logo nas fases iniciais

do desenvolvimento que representa as trocas de valores de um negócio. Adicionalmente,

xiii

usando técnicas sofisticadas de engenharia orientada a modelos (por exemplo, metamode-

los, transformações de modelos e linguagens de transformação de modelos), foi possível

obter geradores para derivar um modelo de arquitetura de software com base em mode-

los de requisitos de valor, garantindo a rastreabilidade em todo o processo de derivação

arquitetural.

Palavras-chave: Software e sua engenharia: Arquitetura de software; Engenharia de software
dirigida por modelos; Linguagens específicas de domínio; Engenharia de requisitos; Métodos de
desenvolvimento de software; Desenvolvimento dirigido por valor; Modelação de negócio.

xiv

Contents

List of Figures xix

List of Tables xxiii

Listings xxv

Glossary xxvii

Acronyms xxxiii

1 Introduction 1

1.1 Context and motivation . 1

1.2 Problem statement . 2

1.3 Challenges . 4

1.4 Research questions . 6

1.5 Supporting methodologies, paradigms, and technologies 7

1.6 Major results . 11

1.7 Research methodology . 14

1.8 Structure of this document . 15

2 Business modeling 19

2.1 Overview on business modeling . 19

2.1.1 Value-based software engineering 19

2.1.2 Value-driven modeling . 21

2.2 A mapping study on business models . 23

2.2.1 Planning: research protocol . 24

2.2.2 Conducting: search results . 27

2.2.3 Reporting: answering the research questions 29

2.2.4 Threats to validity . 32

2.3 Two Business modeling approaches . 33

2.3.1 Eriksson-Penker UML business extensions 33

2.3.2 e3value . 34

2.4 Final considerations . 37

xv

CONTENTS

3 Software architecture 39

3.1 What is software architecture? . 39

3.2 Service-oriented architecture . 43

3.3 State of the art on software architecture: an Evidence-Based Tertiary Study 47

3.3.1 Planning: Defining the protocol . 48

3.3.2 Conduction . 54

3.3.3 Reporting: Answering the research questions 61

3.3.4 Threats to validity . 70

3.4 Final considerations . 71

4 Deriving architectural models from requirements specifications 73

4.1 Planning . 73

4.1.1 Formulating the research questions 74

4.1.2 Formulating the search string . 74

4.1.3 Defining the search strategies . 75

4.1.4 Selecting the research sources . 75

4.1.5 Selecting studies . 75

4.1.6 Assessing the quality of the studies 76

4.1.7 Collecting the Data . 78

4.1.8 Reviewing the protocol . 79

4.2 Conduction . 81

4.3 Reporting: Study results . 84

4.3.1 Demographic data . 84

4.3.2 Context . 84

4.3.3 Benefits to the users . 88

4.3.4 Content . 88

4.3.5 Validation . 98

4.4 Overview of the results . 99

4.4.1 Context . 99

4.4.2 Benefit to the users . 99

4.4.3 Content . 99

4.4.4 Validation . 100

4.5 Validity threats and their mitigation . 100

4.6 Research roadmap . 101

4.7 Final considerations . 103

5 A value-driven framework for software architecture 105

5.1 Framework’s structure . 105

5.2 Business value modeling . 107

5.2.1 DVD in a nutshell . 107

5.2.2 DVD abstract syntax and constraints 109

xvi

CONTENTS

5.2.3 DVD concrete syntax . 112

5.2.4 DVD process . 113

5.2.5 From a DVD model to a SoaML capability model 115

5.2.6 About the DVD implementation . 117

5.3 Agile reference architecture modeling . 118

5.3.1 An overview of the supported agile concepts 118

5.3.2 RAMA in a nutshell . 120

5.3.3 RAMA abstract syntax and constraints 121

5.3.4 RAMA concrete syntax . 127

5.3.5 The RAMA process . 128

5.3.6 About the RAMA implementation 133

5.4 Goal-driven SOA architecture modeling 133

5.4.1 Goal-oriented approaches . 134

5.4.2 KAOS4Services in a nutshell . 136

5.4.3 KAOS4Services abstract syntax, constraints, and concrete syntax . 137

5.4.4 KAOS4Services process . 139

5.4.5 About the KAOS4Services implementation 146

5.5 Final considerations . 146

6 Case Study 147

6.1 Business description . 147

6.2 Applying the DVD method . 148

6.3 Applying RAMA method . 150

6.4 Applying KAOS4Services method . 158

6.5 Final considerations . 165

7 Evaluation through experiments 167

7.1 Evaluating the DVD method . 168

7.1.1 Experiment design . 168

7.1.2 Discussion of the quasi-experiment results 170

7.1.3 Threats to validity for the quasi-experiment 170

7.2 Comparing the methods DVD and e3value 171

7.2.1 Experimental methodology . 172

7.2.2 Baseline Experiment . 173

7.2.3 Discussion of results . 180

7.2.4 Two Experimental Replications . 182

7.2.5 Meta-Analysis . 185

7.2.6 Discussion of the results . 186

7.2.7 Threats to validity for the family of the controlled experiments . . 190

7.3 Evaluating the methods RAMA and KAOS4Services 192

7.3.1 Experiment design . 192

xvii

CONTENTS

7.3.2 Discussion of the evaluation results for RAMA and KAOS4Services 194

7.3.3 Threats to validity . 196

7.4 Comparing RAMA and KAOS4Services . 196

7.4.1 Experiment design . 197

7.4.2 Complementary analysis . 199

7.4.3 Discussion of the results . 200

7.4.4 Threats to validity for the survey 201

7.5 Final considerations . 202

8 Conclusions and future work 203

8.1 The quest and respective research questions 203

8.2 Contributions . 206

8.3 Published results . 209

8.4 Future work . 210

Bibliography 213

xviii

List of Figures

1.1 Relating problem statement to challenges. 6

1.2 Transformation scheme [137]. 10

1.3 Document structure. 16

2.1 A company that offers its product to a consumer using a content provider, a

producer (or production house), a network infrastructure provider, and some

carriers (e.g., a telecom operator). It uses a network integrator (layer above)

and facilitates the management of operations as support (layer below) — de-

tails in [38]. 23

2.2 Cisco outsources the manufacturing of its products through Component Sup-

pliers (who produce the electronic components), Manufacturers/Assemblers

(who produce the Cisco’s products), and distributors (who transports the

electronic components from the Component Suppliers to the Manufactur-

ers/Assemblers). With the products in hand, Cisco sells them using Sales

Channels (electronics stores) or directly to the Customers (details in [250]). . 24

2.3 Planning phase. 25

2.4 EPBE metamodel. 34

2.5 e3value metamodel, taken from [104]. 36

2.6 e3value example extracted from [206]. 36

3.1 General view of a Service-Oriented Architecture [235]. 45

3.2 Example of a SoaML capability model for an order handling system. 46

3.3 a) Ecore SoaML ServicesArchitecture metamodel from [189] extended with

part of the QoS& FT profile, and b) SoaML specification, taken from [77]. . . 47

3.4 Study searching and selection process. 54

3.5 Publication period of the selected systematic studies. 59

3.6 Number of citations per secondary study. 70

4.1 Distribution of Non-functional Requirements (NFRs) (left) and requirements

models (right). 87

4.2 Distributions of architectural views as reported in the primary studies (left)

and mapped to the 4+1 views (right). 97

xix

List of Figures

5.1 Modules, environments, and technologies of value-driven framework. 106

5.2 Illustration of the DVD concepts. 109

5.3 Dynamic Value Description metamodel. 110

5.4 Concrete notation for the DVD language. 112

5.5 Example of a DVD model for the purchase and sale of goods by a store ex-

pressed using the DVD concrete syntax. 112

5.6 Process to create a DVD model. 113

5.7 SoaML capability model generated from a DVD model. 117

5.8 Subway map to agile practice [9]. 119

5.9 User story metamodel. 122

5.10 User story sketch. 123

5.11 Conceptual model metamodel. 124

5.12 Conceptual model sketch. 125

5.13 Metamodel for traceability support. 126

5.14 Traceability (tree) model sketch. 127

5.15 User story specification with the concrete syntax. 128

5.16 Traceability tree model concrete syntax . 129

5.17 RAMA’s process. 129

5.18 KAOS structure example from [237]. 136

5.19 KAOS4Services metamodel. 138

5.20 A Goal needs a relation. 139

5.21 KAOS4Services process. 139

5.22 Applying the guidelines 3.1–3.5 . 143

5.23 Candidate services, using guidelines 4.1–4.5. The colored numbers indicate

the order of the operations or activities. 145

5.24 Applying guidelines 6.1 and 6.2 . 146

6.1 (a) DVD editor palette and (b) the value exchange properties. 148

6.2 DVD model created using the tool. 149

6.3 Changing the focus of analysis. 150

6.4 Menu to open the transformation execution window. 150

6.5 Execution window. 151

6.6 The capability model generated. 151

6.7 “Registering data” user story. 153

6.8 Prioritization of value exchanges. 154

6.9 Tree model generated after prioritization. Note that the value exchanges are

represented grouped in High (red), Medium (yellow), and Low (blue) priorities

according to RoI. 154

6.10 Conceptual model for “Registering data” user story. 155

6.11 “Buying in the gas station” conceptual model. 155

6.12 Conceptual model for “Placing a bet” user story. 156

xx

List of Figures

6.13 Conceptual model for “Buying the auctioned good” user story. 156

6.14 Reference architecture for the online auction system. 157

6.15 Initial KAOS model for the auction online system. 158

6.16 Propeties of “Placing a bet” requirement. 159

6.17 Decomposition of requirement “Register the personal data”. 159

6.18 Decomposition of requirement “Register a bet”. 160

6.19 Decomposition of requirement “Make a payment”. 160

6.20 Decomposition of requirement “Buy product”. 161

6.21 Business processes generated from the requirement “user registration”. . . . 162

6.22 Business processes generated from the requirement “user authentication”. . 162

6.23 Business processes generated from the requirement “register a bet”. 162

6.24 Business processes generated from the requirement “make checkout”. 162

6.25 Business processes generated from the requirement “buy product”. 163

6.26 Identifying the candidate services. 163

6.27 Consolidating the candidate services. 164

6.28 Generating the architectural model. 165

6.29 SoaML model for online auction system. 166

7.1 Overview of our family of experiments. 173

7.2 Taxonomy of dependent variables. 174

7.3 Processes for the creation of (a) an e3value model and (b) a DVD model. . . . 176

7.4 Initial oracles of (a) e3value and (b) DVD for Object1. 176

7.5 Analysis procedure employed for the experiment in Spain (UPV). 181

7.6 Analysis procedure employed for the experiment in Portugal (UNL). 183

7.7 Analysis procedure employed for the experiment in Brazil (UFPE). 184

7.8 Meta-analysis blobbogram for effectiveness, efficiency, PEOU, PU and ITU. . 186

7.9 Actual efficacy (effectiveness and efficiency), perceived efficacy (PEOU and

PU), and Intention To Use (ITU) grouped by methods of experiments per-

formed in (a) Spain, (b) Portugal, and (c) Brazil. 187

xxi

List of Tables

1.1 List of publications. 13

2.1 Application of the Filtering Criteria in business modeling research. 27

2.2 Selected studies for the mapping study on business modeling. 27

2.3 Synthesis of the data extracted on business modeling. 29

3.1 Software architecture definitions. 40

3.2 Population, Intervention, Comparison, Outcome, and Context (PICOC) Anal-

ysis for the tertiary study about secondary studies on Software Architecture. 49

3.3 Research Query Building . 51

3.4 Search results for automated and manual searches. 54

3.5 Selected studies for the tertiary study on software architecture. 55

3.6 List of selected systematic studies. 59

3.7 Number of primary studies per review, time span of review and if the review

shows the primary study list . 62

3.8 Categories and corresponding number of secondary studies 65

3.9 Number of reviews and authors per country 69

3.10 Number of reviews per author’s affiliation with at least 2 studies. 70

4.1 PICOC Analysis . 74

4.2 Research Query Building . 75

4.3 Quality Assessment Checklist . 77

4.4 Research question decomposition . 78

4.5 Evaluation Score . 80

4.6 Application of the filtering criteria . 81

4.7 Selected studies for the mapping study on software architecture derivation

methods. 82

4.8 Context of the selected studies. 85

4.9 Requirements Types and Models Used as Input, where!means requirements

type/model used and X means not used. 86

4.10 Coverage of the methods, where!means phase covered and X means phase

not covered. 89

xxiii

List of Tables

4.11 Mapping primary study views to Kruchten 4+1 views; when authors tackle

more than one view, we address each sequentially. 90

5.1 Concrete language for User story specification tool. 128

5.2 Goal-oriented concepts . 134

5.3 Heuristics (concepts map) . 135

6.1 User stories . 151

6.2 Overlaps . 157

6.3 Applying guidelines 4.1 – 4.5 to identify candidate services. 163

7.1 Experiment design . 170

7.2 The descriptive statistics for PEOU and PU 170

7.3 Experiment design . 179

7.4 Descriptive statistics for effectiveness, efficiency, PEOU, PU, and ITU per ex-

periment and method. 180

7.5 Summary of the results of all experiments, where checkmark means hypothesis

accepted and X means hypothesis rejected. 188

7.6 Experiment design . 194

7.7 Effect size of survey . 199

xxiv

Listings

5.1 Example of DVD semantic rule . 111

5.2 M2M Transformation: from a DVD model to a SoaML capability model . 116

5.3 Given step must have only link to a Content 123

5.4 Attributes can only link to Entities . 125

5.5 A root node has three priorities nodes . 127

5.6 Levenshtein Distance method . 131

5.7 Rule 1: Create software components . 132

5.8 Rule 2: Create associations . 132

5.9 Transformation from DVD to KAOS . 140

xxv

Glossary

Actor A DVD actor is an economically independent

entity. A company, business unit, role, or a

customer are examples of actors. “Economi-

cally independent” refers to the ability of an

actor to be profitable or to increase value for

him/herself.

Agile practices Agile practices aim at reducing the effort-

intensive tasks in agile software develop-

ment, focusing on fast response to the various

changes in a project [83].

Agile software development Agile software development is any software de-

velopment methodology where specification

and solutions evolve through collaboration be-

tween self-organizing teams.

Architectural style Architectural styles determine the set of prin-

ciples and guidelines used to design an archi-

tecture software [172].

Business model Business model is an efficient way of under-

standing, evaluating, managing and conveying

the core concepts of a business [107, 198]. It

can be considered the basis to design an in-

formation system that supports the needs of a

company [271].

Business modeling Business modeling is a conceptual tool to ex-

press the business logic of an organization, de-

scribing the set of values that the organization

offers to its clients and the network of its part-

ners with which it exchanges values in a way

that is sustainable and cost-effective [192].

xxvii

GLOSSARY

Domain Specific Language A Domain Specific Language (DSL) is a lan-

guage designed to be useful for a specific set

of tasks of a particular domain [109].

Goal-oriented model A goal-oriented model uses goal as the concept

to provide the rationale for the envisioned sys-

tem [257].

Goal-oriented requirements engineering Goal-oriented requirements engineering uses

goals for eliciting, elaborating, structuring,

specifying, analyzing, negotiating, document-

ing and modifying requirements [257].

Metamodel A metamodel is a model that defines the lan-

guage for expressing a model [177].

Model Model is an abstract representation of a system

(or a theory or reality) that allows one to make

inferences and predictions about the system

[163].

Model-Driven Development Model-Driven Development uses abstraction

and automation through the transformations

between models as the two core concepts to

develop software systems [177].

Model-Driven Engineering Model-Driven Engineering is a software devel-

opment methodology that focuses on the cre-

ation and exploration of domain models, ie,

conceptual models representing all topics re-

lated to a specific problem [177].

Non-functional Requirements Non-Functional Requirements (NFRs) typi-

cally define the overall qualities of a system,

as well as the constraints imposed on a solu-

tion [58].

Oracle Oracle is used to refer to the correct model

created by an expert. It is used as a baseline

to measure the models created by the partici-

pants of the evaluation experiments.

xxviii

GLOSSARY

Service A Service is the SOA core concept. Service is

defined as an autonomous, minimally coupled,

and platform-independent entity that can be

published and used in novel ways [195].

Service-Oriented Architecture Service-Oriented Architecture (SOA) is an ar-

chitectural style to support the development

of distributed applications, even in heteroge-

neous environments [136, 196].

Software reference architecture A Reference architecture offers a template so-

lution of an architecture for a particular do-

main, expressing ways of organizing the fun-

damental structure of a system through high-

level reusable solutions [24, 235].

Software architecture Software architecture has been defined in

many different ways [120], but at its core it

refers to the software elements, their relation-

ships with each other and its environment, the

principles governing its design and evolution

[127], as well as the quality properties these

elements support [24].

Software engineering The systematic application of scientific and

technological knowledge, methods, and expe-

rience to the design, implementation, testing,

and documentation of software to optimize its

production, maintenance, evolution, and qual-

ity [126].

Value Value is the reason why companies and peo-

ple trade with each other, exchanging goods

among them [104].

Value level agreement A value level agreement is a particular busi-

ness aspect that must be minimally agreed

among the actors in order to enable the value

exchanges; it defines the business constraints

based on the business strategies.

xxix

GLOSSARY

Value object A value object is a service, a product, or even

an experience, which is of economic value for

at least one of the actors involved in a value

model.

Value port A value port is used to interconnect actors so

that they are able to exchange value objects.

Value exchange A value exchange represents one trade of value

object instances between value ports.

Value-based software engineering theory Value-based software engineering theory is a

research area that comnines the traditional

computer science theories with value-based

theories to provide processes and a framework

for guiding Value-Based Software Engineering

(VBSE) activities.

Value-based people management Value-based people management is a research

area that includes managing the expectations,

as well as the project’s accommodation of all

stakeholders’ value propositions.

Value-based quality management Value-based quality management is a research

area that involves prioritization of desired

quality factors concerning the stakeholders’

value propositions.

Value-based risk management Value-based risk management is a research

area that combinates principles and practices

to identify, analyze, prioritize and mitigate

risk.

Value-based planning and control Value-based planning and control is a research

area that covers principles and practices to

control costs, schedule, and product planning.

Value-based evaluation Value-based evaluation is a research area that

focuses on techniques to verify and validate

that the software solution satisfies its value ob-

jectives.

Value-based design and development Value-based design and development is a re-

search area that focuses on techniques to guar-

antee that the system’s objectives and value

considerations are aligned with the business,

then inherited by the software design and de-

velopment practices.

xxx

GLOSSARY

Value-based architecture Value-based architecture is a research area that

comprises the further adjustment of the sys-

tem objectives with possible architectural so-

lutions.

Value-based requirements engineering Value-based requirements engineering is a re-

search area that embodies principles and prac-

tices to identify stakeholders, identifying the

value propositions and reconciling these value

propositions into a mutually satisfactory set of

objectives for the system.

Value model Value model represents a business model from

an economic perspective, and must determine

the economic value exchanged and their inter-

venients [104].

Value-based software engineering Value-Based Software Engineering extends the

technical ISO software engineering definition

with elements from economics, cognitive sci-

ence, finance, management science, behavioral

sciences, and decision sciences areas [34].

Value constellations Value constellations is the co-production of

values. The business strategy is no longer

a matter of positioning a fixed set of activ-

ities along with value creating in a value

chain. The focus today should be on the value-

creating system itself. Where all stakeholders

co-produce value [182].

xxxi

Acronyms

ADD Attribute-Driven Design Method.

ADL Architectural Description Language.

API Application Programming Interface.

AQL Acceleo Query Language.

ATDD Acceptance-test Driven Development.

BDD Behavior-Driven Development.

BMeG Business models for e-government.

BMM Business Motivation Model.

BMO Business Model Ontology.

BPMN Business Process Modeling Notation.

DSL Domain Specific Language.

DVD Dynamic Value Description.

EBM Evidence-based Medicine.

EBSE Evidence-Based Software Engineering.

EKD Enterprise Knowledge Development.

EMF Eclipse Modeling Framework.

EPBE Eriksson-Penker business extensions.

ETL Epsilon Transformation Language.

EVL Epsilon Validation Language.

GBRAM Goal-Based Requirements Analysis Method.

GMF Graphical Modeling Framework.

GQM Goal Question Metrics.

GRL Goal Requirements Language.

GSN Goal Structuring Notation.

xxxiii

ACRONYMS

IS Information Systems.

ISO International Organization for Standardiza-

tion.

IT Information Technology.

ITU Intention To Use.

KAOS Keep All Objectives Satisfied.

KAOS4Services KAOS modeling approach for Service-

Oriented Architecture.

M2C Model to Code.

M2M Model to Model.

MBE Model-based Engineering.

MDA Model-Driven Architecture.

MDD Model-Driven Development.

MDE Model-Driven Engineering.

MSc Master of Science.

NATO North Atlantic Treaty Organization.

NFRs Non-functional Requirements.

OMG Object Management Group.

PEOU Perceived Ease Of Use.

Ph.D. Doctor of Philosophy.

PICOC Population, Intervention, Comparison, Out-

come, and Context.

PoC Proof of concept.

PSS Product-Service System.

PU Perceived Usefulness.

QASAR Quality Attribute-oriented Software ARchitec-

ture.

RAMA Reference Architecture Modeling in an Agile

software development.

REA Resource-Event-Agent.

xxxiv

ACRONYMS

RoI Return on Investment.

SBMO Strategic Business Model Ontology.

SECO Software ECOsystem.

SLR Systematic Literature Reviews.

SMS Systematic Mapping Studies.

SOA Service-Oriented Architecture.

SoaML SOA Modeling Language.

SOAP Simple Object Access Protocol.

SS Systematic Studies.

TAM Technology Acceptance Model.

TDD Test-Driven Development.

UCM Use Case Maps.

UFPE Universidade Federal de Pernambuco.

UML Unified Modeling Language.

UNL Universidade Nova de Lisboa.

UPV Universitat Politècnica de València.

VBSE Value-Based Software Engineering.

VLA Value Level Agreement.

WSDL Web Services Description Language.

XML Extensible Markup Language.

XP eXtreme Programming.

xxxv

C
h
a
p
t
e
r

1
Introduction

The present research work has its roots in the challenge of deriving a software architecture

from an early requirements specification considering the value exchanges of a business.

Although much work has been published addressing issues related to software architec-

ture and requirements engineering, no systematic approaches exist to support the aligned

construction of an architectural design with the business values that characterize organi-

zations in their marketplace. Such construction process is difficult, requiring skilled and

experienced architects. This introductory chapter offers an overview of the context and

motivations of this Doctor of Philosophy (Ph.D.) research, defines our problem statement,

the involved challenges and corresponding research question, summarizes the major find-

ings, comments on the adopted research methodology, and finalizes highlighting the

relationships between the various chapters composing this Ph.D. thesis document.

1.1 Context and motivation

With a first degree in information systems and 10 years of experience in industry, the

major problem I have encountered in my work was related to software architecture, more

specifically, how to structure an information system to make it reflect the business needs.

Additionally, in the companies I’ve worked for, the information systems were built based

on business processes often not aligned with the companies’ business values. These two

problems were the motivations for this research work. Therefore, the general goal was

to explore systematic and rigorous means to derive a software architectures from early

requirements specifications, aligned with the business goals of an organization. The

starting point was to survey the existing body of knowledge. To achieve this we followed

the best practices of Evidence-Based Software Engineering (EBSE) [149], and performed

a tertiary study to catalogue the empirical studies on software architecture aiming at

1

CHAPTER 1. INTRODUCTION

aggregating the main findings reported in those studies and providing an overview of the

consolidated state of the art in software architecture. From the results of this study, we

have also surveyed the state of the art on service-oriented architecture (an architectural

style commonly used to develop information systems [20, 136, 196]) and identified the

absence of a secondary study on software architecture derivation methods, what led us to

conduct a systematic mapping study on this particular topic. Both the tertiary study and

the systematic mapping study highlighted several challenges that we focus in this Ph.D.

research, particularly: (i) the lack of support to build architectural models considering

the business values of an organization, and (ii) the strong dependence on the architects’

experience and intuition.

1.2 Problem statement

Our problem statement results from the findings discovered in the systematic tertiary

and mapping studies. The discussion that follows identifies the two major problems

addressed and is structured with a “problem description”, a "corroboration"to justify the

problem with evidence found in the literature, and a brief "conclusion"to describe what

we can do to mitigate or solve the problem.

Problem 1: Lack of support to derive architectural models from business
value models

Problem description. Most software architecture derivation methods consider services

design as a software engineering problem rather than a business management and a

software engineering problem [262]. In the area of business management, services must

offer value to customers [182, 211]. Most software architecture derivation methods align

the software architectures with the the business processes rather than the business values
[20, 113].

Corroboration. The Service-Oriented Architecture (SOA) architectural style is widely

used to implement Information Systems (IS), thanks to services’ low coupling [20, 136].

The critical aspect of developing an efficient SOA solution is both the identification of

services from requirements and their mapping into an appropriate service reference

architecture [7, 18]. Although some works focus on improving the alignment between

business and IS using SOA [20, 32, 129, 154], this is still a challenge mainly due to its

multidisciplinary nature [7, 113]. Most of the methods use business process models as

the main input for a service architecture design process [20, 113]. Given that services

deliver value to their customers, value is, in fact, the reason why companies and people

trade with each other. In other words, companies offer something (e.g., money) to get

another thing in return (e.g., goods). Thus, deriving a service-oriented architecture that

2

1.2. PROBLEM STATEMENT

considers business values is important to identify the software services that better meet

the business needs and their respective customers’ satisfaction [15, 106].

Conclusion. There is a lack of approaches for deriving architectural models from early

requirements that consider the organization’s business values, thus offering improved

support for the alignment of an IS the software architecture with the business core values.

Problem 2: Software architecture based on experience and intuition

Problem description. The transition from requirements to software architecture is

based on the experience and intuition of software architects [24, 96]. Consequently,

this transition can hardly be conducted by less experienced professionals.

Corroboration. Deriving a software architecture from an early requirements specifi-

cation involves many complex decisions [24, 43, 131, 256] that are often based on the

experience and skills of the involved architects. This makes the task very difficult for

less experienced architects [117]. For example, methods such as Attribute-Driven Design

Method (ADD) [266] and Quality Attribute-oriented Software ARchitecture (QASAR)

[42] rely heavily on the software architect to find suitable solutions for satisfying quality

requirements1. [21]. Indeed, most architecture derivation methods do not offer sufficient

guidelines, relying on a creative process based on, in large extent, the professionals’ ex-

pertise [24]. Also, it is well accepted that NFRs are the major drivers of the architectural

decision-making process [25, 89, 125]. Although several approaches exist to elicit NFRs

in the early software development stages (e.g., goal-oriented approaches), an interview

(empirical) study with 13 architects from 12 companies in Spain2 shows that in industry,

NFRs are not handled until the architecture design phase and their elicitation is based

on the architects’ experience [13]. Another interview with 14 architects found that NFRs

are elicited very late or are never discovered [40]. Although the study participants know

the importance of NFRs these are not considered more important than functional require-

ments in practice. This may be because customers do not know what NFRs are, knowing

primarily what services they want (or functional requirements) the system to offer, and

companies work to deliver a solution to the customers’ requests. Thus, we emphasize the

importance of eliciting NFRs in the early stages of software development. A third study

with 53 experienced software architects recommends guiding less experienced architects

throughout architectural design because of its complexity [117].

Conclusion. The process of building a software architecture from early requirements

is strongly based on the architects’ experience and intuition, what makes this activity

1 Quality requirements are a subset of non-functional requirements.
2Although all organizations were based in Spain, some of the projects involved clients from other coun-

tries.

3

CHAPTER 1. INTRODUCTION

difficult for novices. Consequently, there is a need for a systematic, traceable and simple

to use approach for the transition between requirements and architecture design.

These the two major problems can be synthesized in the following problem statement:

We lack support to derive software architectures from early

requirements specifications aligned with an organization business values,

as well as to help novice IT professionals.

1.3 Challenges

The identified problem raises several challenges, in particular, how to develop an ap-

proach to derive architectural models from early business requirements models, and

how to align the business values of an organization with the resulting software com-

ponents and structure. We envision a systematic and traceable transition from require-

ments to software architecture by offering simple models, and explicit guidelines and

mappings to be followed by Information Technology (IT) professionals. The identified

challenges are discussed next.

Derive architectural models from early requirements models. Model-Driven Devel-

opment (MDD) automates repetitive and error-prone tasks through an automatic process-

ing Model aiming at reducing the effort and accidental complexity involved in software

development [155]. MDD motivates developers to concentrate on the production of

top-level abstraction models to generate software artifacts through automatic, or semi-

automatic, transformations of models. These characteristics make it an obvious tech-

nological choice to support our software architecture derivation approach. However,

developing software through models is complex, requiring a rigorous definition of these

models [226] and the semantic correctness of the transformations [153]. The correctness

of the transformations is guaranteed by the semantic validation offered by MDD tools

(e.g., EuGENia [79] and Sirius [80]).

Align the organizations’ business values with the resulting software architecture. We

argue that business models representing business values can be used during the software

requirements elicitation process to facilitate the transition from business to software arti-

facts. However, there is a wide gap between business models and requirements models,

because: (1) requirements engineers find it difficult to extract knowledge from business

models to design information systems (business models are complex [162, 212]); and (2)

business specialists are not usually aware of commonly used requirements techniques to

express system behavior [51]. Therefore, creating requirements models aligned with busi-

ness models is not straightforward and approaches to realize this alignment automatically

4

1.3. CHALLENGES

are lacking. A challenge is to avoid loosing or misunderstanding valuable information

due to communication issues between business and software developers, leading to wrong

or needless architectural features [267].

Guide less experienced IT professionals throughout architectural design. To achieve

this goal, the detailing of activities at different stages of development (e.g., business,

requirements, architecture) is required to provide processes and guidelines facilitating

the development process and reuse, as suggested by [117]. A deficiency in the sequence of

activities can culminate in the creation of mismatched and misaligned processes, resulting

in slowing down the transition activity in detrimental to the intended final result [52].

In other words, it is difficult to balance what really needs to be systematic and how to

organize the activities to assist the less experienced IT professionals during the derivation

process. In addition, the process of creating guidelines is difficult because it requires deep

insight of the problem and its possible solutions [200].

Simple (yet useful) models. The models used should be simple (and still be useful)

to be understood and easy to use. IT professionals. For example, the multiple business

model origins (e.g., e-Business, business strategy, information systems, business manage-

ment and economic science) [198], with different researchers defining their concepts in

different and overlapping ways, are hard to reconcile to a single definition or understand-

ing platform [8, 192, 198, 271]. As previously mentioned, requirements engineers find it

difficult to extract knowledge from business models to design information systems [141].

In fact, a similar problem happens in the transition from requirements models to archi-

tectural models [10]. Automating these transitions using MDD is even more challenging

because it requires a conceptual mapping between source and target models that belong

to different disciplines (often with a different abstraction level as well). We believe that

if our proposal is simple, IT professionals will want to use it in the future. This would

facilitate its wider adoption, possibly also by the industry.

Backward and forward traceability throughout the architectural derivation process.

Due to the market inherent high competition, companies constantly change their needs

to provide different and higher quality values to their customers. Such changes at the

company’s business level should be reflected in the information systems to ensure service

quality and customers’ satisfaction. Therefore, it is essential to trace important concepts

throughout the software development process and among the artifacts created through-

out this process. This facilitates the analysis of the impact of business changes on the

information system. However, supporting traceability for particular purposes at different

stages of the software development is challenging [97].

5

CHAPTER 1. INTRODUCTION

1.4 Research questions

The problems and respective challenges are structured in Figure 1.1, which offers an

overview of the main lines driving our research.

Figure 1.1: Relating problem statement to challenges.

The need to guide less experienced architects in the task of deriving a software archi-

tecture from a requirements specification that reflects the organization’s business values,

leads to the following general research question:

How to derive value-centred architectural models systematically?

Our research must consider both the lack of support to derive architectural models

from business value models (problem 1) and the fact that software architectures are built

based on the experience and intuition of architects (problem 2). To tacked problem 1, we

subdivided the main research question to consider the software architecture derivation

from early requirements (challenge 1) aligned with the organizations’ business values

with the resulting software architecture (challenge 2). The result of this subdivision leads

to the following sub-questions (Sub-RQ#):

[Sub-RQ1:] How to derive architectural models from early requirements specifications?

[Sub-RQ2:] How to align software architecture models with the business values of an organi-
zation?

Regarding problem 2, the investigation must consider guiding the less experienced

IT professionals throughout the architectural design (challenge 3), offering both, simple

(easy to use and useful) models for the software architecture derivation process (challenge

4) and traceability of concepts throughout the derivation process (challenge 5). Thus, as

part of the main research question, we should also consider:

[Sub-RQ3:] How to produce simple models and explicit guidelines ?

[Sub-RQ4:] How to include traceability mechanisms in the architectural derivation process?

6

1.5. SUPPORTING METHODOLOGIES, PARADIGMS, AND TECHNOLOGIES

1.5 Supporting methodologies, paradigms, and technologies

When we talk about software engineering, the discussion focuses on whether we can

consider it science or engineering. This question refers to the double character of soft-

ware. On the one hand, software engineering considers the process of product creation

(software), and from this point of view, it has the specific characteristics of production or

engineering [254]. On the other hand, aspects related to time-to-market and competition

demand the continuous improvement of process and product quality and delivery. It is

in this context that the scientific part of software engineering presents itself [254]. There-

fore, specific methodologies, paradigms, and technologies are needed to help establishing

an engineering and scientific foundation for software engineering. In this sense, it is

worth clarifying which are the supporting methodologies, paradigms and technologies.

Our work is based on EBSE for the principles and guidelines of for literature reviews,

Model-Driven Engineering (MDE) for the foundation of the software development pro-

cess, and experimental methods for the evaluation of our work. These three supporting

approaches are described next.

Evidence-Based Software Engineering. EBSE seeks to provide means by which better

evidence from the research can be integrated with practical experience during software

development and maintenance [151]. The essence of the evidence-based paradigm is

to systematically collect and analyze all available data on a particular phenomenon to

obtain a more complete and broader perspective that cannot be grasped by an individual

study [151, 185].

The evidence-based paradigm gained strength initially in medicine (Evidence-based

Medicine (EBM) [218, 219]), aiming to integrate the best research evidence with clinical

experiences and patient assessment. Medical practices have changed dramatically in the

last decade through the adoption of evidence-based paradigms, as studies have shown

that failure to perform systematic reviews can cost lives [218]. With the increasing im-

portance of software in many areas (e.g., mobile handsets, automated brakes, medical

devices, flight control systems), more care must be taken with research methods also in

software engineering. Therefore, several researchers (e.g., [78, 151, 185]) suggest that

software engineering professionals (and researchers) should consider supporting the use

of evidence-based software engineering to create a comprehensive overview of a given re-

search area, to identify the best practices on a given topic, and to improve their decisions

about which technologies to adopt.

To offer this support, EBSE provides a rigorous and reliable research methodology,

together with auditing tasks to reduce the researcher bias on the results [45, 149]. Two of

the core tools for evidence-based studies are Systematic Literature Reviews (SLR), focus-

ing on identifying the best practices on a given topic based on empirical evidence, and

Systematic Mapping Studies (SMS), aiming at creating a comprehensive overview of a

given research area [202, 203]. In general, SMSs can be performed previously to SLRs, to

7

CHAPTER 1. INTRODUCTION

help identifying research questions for data aggregation. Both SLRs and SMSs are con-

sidered secondary studies because they aggregate information from primary studies to

reveal evidence and build knowledge. In our research, we performed a SMS to obtain an

overview of business modeling (Chapter 2) and another of software architecture deriva-

tion methods (Chapter 4). Before performing this second SMS, we conducted a tertiary

review to map the most representative secondary studies covering software architecture

(Chapter 3). A tertiary review is a systematic study of systematic reviews, hence using the

standard methodology for systematic secondary studies. Only after verifying the nonex-

istence of a secondary study on software architecture derivation methods through our

tertiary review, did we execute our second SMS. Some advantages on using these tools

are [151]:

• Well-defined methodology: Mitigates biases in literature selection but it does not

protect against publication bias in the primary studies

• Information about the effects of some phenomenon across a wide range of settings

and empirical methods: If studies give consistent results, systematic reviews pro-

vide evidence that the phenomenon is robust and transferable

• With quantitative studies, it is possible to combine (aggregate) data using meta-

analytic techniques: Increased likelihood of detecting real effects that individual

smaller studies are unable to detect

• Reuse: Researchers can reuse the protocol used in a study to keep the results always

up to date for the scientific community

The drawback is that these tools require considerable more effort than traditional

ad-hoc literature reviews.

Model-driven Engineering. A common problem in recent years is the growing com-

plexity of the software due to customers’ demand for more features and more quality.

In response to this demand, software engineering continually offers new methods and

tools that, when correctly used, can help in the difficult task of software development. To

support our goal, we selected MDE as it focuses on abstracting the details of a complex

problem, concentrating developers on the production of top-level abstract models to gen-

erate complex software artifacts automatically or semiautomatically. MDE is a relatively

new software development methodology aiming at raising the level of abstraction to han-

dle the development of complex software systems, has been successfully implemented

in many industries, including telecommunication, automotive, aerospace, and business

information systems [180]. MDE automates repetitive and error-prone tasks through an

automatic process aiming at reducing the effort and accidental complexity involved in

software development [155]. As said, it focuses on abstraction, thus ignoring details of

8

1.5. SUPPORTING METHODOLOGIES, PARADIGMS, AND TECHNOLOGIES

a complex problem, concentrating developers on the production of top-level abstract

models to generate software artifacts automatically.

MDD, Model-Driven Architecture (MDA) and Model-based Engineering (MBE) are

common terms associated with MDE [44, 62]. MDD is a subset of MDE, and it is related

to the use of technologies and techniques to operationalize the MDE concepts (In a way,

this means that MDE is a super set of MDD because it goes beyond the development

activities, encompassing other tasks based on models of a software engineering process,

such as model-driven reverse engineering of a legacy system). MDA is a subset of MDE

and MDD. It is related to the use of technologies and techniques to operationalize the

MDE concepts (similar to MDD). The difference between MDD and MDA is that the

later only uses technologies and techniques proposed by the Object Management Group

(OMG). Finally, MBE is used to refer to a light version of the MDE. It is a process in which

models play an important role, although they are not necessarily the key development

artifacts. An example would be a development process in which in the design phase

the various models of the system are created, but then the models are delivered to the

programmers so that the code is written manually (without automatic code generation).

In this process, models continue to play an important role, but they are not the main

artifacts of the development process [44].

The MDE core concepts are model, metamodel, and model transformations [44, 62].

They are presented below. A Model is an abstract representation of a system (or a theory

or reality) that allows one to make inferences and predictions about the system [163].

MDE uses models as first class entities, with the advantage of increasing productivity, aug-

menting interoperability, and facilitating communication [16, 222]. However, developing

software through models requires a rigorous definition of these models [226]. A Meta-

model is a template for defining templates [177]. A model is an instance of a metamodel,

and a metamodel comprises all models that can be expressed through it [177]. In other

words, a metamodel is who strictly defines the models. Finally, model transformations

are made taking into account the source models and target models. In order to make a

transformation, it is necessary to map the concepts of the metamodels of the respective

models involved in the transformation [177]. That is, transforming a model A into a

model B requires a mapping between the concepts of the metamodel of model A and

the concepts of the metamodel of model B. In this way, the transformation of model

A generates a new model B. Figure 1.2 illustrates the transformation scheme. Model

transformations automatically refine, refactor or re-engineer source models [153]. Hence,

models are incrementally refined through transformations — known as Model to Code

(M2C) and Model to Model (M2M) —, starting from a problem model (the source model)

until the production of a solution model (the target model).

One way to implement MDE is through the construction of Domain Specific Language

(DSL)s. A DSL is a language designed to be useful for a specific set of tasks and a particular

domain [109], realize a particular point of view of a problem, and create a rigorous model

editor. What differs fundamentally from a DSL of a general purpose language (e.g., Java)

9

CHAPTER 1. INTRODUCTION

Figure 1.2: Transformation scheme [137].

is that the former is developed from the domain of the problem and not from the domain

of the solution. Ideally, each element of the DSL structure is directly related to a concept

present in the problem domain, and each restriction of that domain refers to one or more

constraints in the language. Adherence between DSL and the problem domain provides

many benefits, such as increased productivity, abstraction level, and system quality [145].

This adherence, however, determines its uselessness in other domains [145].

A DSL, like any language, must have syntax and semantics. Syntax defines its struc-

ture and semantics defines its meaning. The syntax of a language is divided into two:

abstract and concrete. The abstract syntax is usually specified in a metamodel, and it

defines the language constructs, their properties, and their relationships. The concrete
syntax defines a notation for the concrete representation of the various concepts of the

abstract syntax through drawings, tables, matrices or simple text. The chosen form of

representation must be in sync with the concepts of the domain. This is called the princi-

ple of representational fidelity [261]. The principle of representational fidelity predicts that

only one form of representation for each concept of the domain simplifies the definition

of notation and also ensures that all concepts can be represented unambiguously in the

language [145].

The semantics of a language is the definition of the meaning of the language constructs.

Because a language is specific to a particular domain, most of its elements carry meaning

from the domain. For example, in the development of mobile software, the Camera and

Display concepts have well-defined semantics. Since the semantics of a general-purpose

language is not related to a business domain, it is up to the developers to describe the

10

1.6. MAJOR RESULTS

domain to the semantics of the language.

Experimental evaluation methods. There are four relevant methods for conducting ex-

periments in the area of software engineering [265]: scientific, engineering, experimental,

and analytical.

The scientific method observes the world, suggests the model or theory of behavior,

measures, and analyzes to verify the hypotheses of the model or theory. This is an induc-

tive paradigm. This method tries to extract from the world some model that can explain

a phenomenon and to evaluate if the model is representative of the phenomenon under

observation. This was the method we used to build our models (e.g., business model).

The engineering method looks at existing solutions, suggests the most appropriate

one, develops, measures and analyzes, and repeats until no further improvement is pos-

sible. It is an evolutionary improvement-oriented approach that assumes the existence

of some model of the software process or product and modifies this model to improve

the objects of the study. We used this method when selecting existing approaches (e.g.,

goal-oriented requirements engineering) and developing proof-of-concept tools using

DSL editors (Chapter 5).

The experimental method creates the model (solution), develops the qualitative and/or

quantitative method, applies an experiment, measures, analyzes, and evaluates the so-

lution, and repeats the whole process. This method is an approach oriented towards

revolutionary improvement. The process begins with the survey of a new solution, not

necessarily based on an existing solution, and studies the effect of the process or product

suggested by the new solution. We used this method to perform controlled and quasi-

experiments to validate our research (Chapter 7).

Finally, analytical (or mathematical) method suggests a formal theory, develops that

theory, derives the results, and if possible, compares it with empirical observations. This

method is a deductive approach that does not require experimental design in the sta-

tistical sense but provides an analytical basis for developing solutions. From the four

methods explained, the analytical is the only one we did not use.

1.6 Major results

Our major result is a framework to derive a software reference architecture model from

business value models. This framework includes:

• A set of guidelines, set of model transformation schemes, methods, and pro-

cesses to derive a software reference architecture model from business value models.

In particular, we created the methods Dynamic Value Description (DVD), Reference

Architecture Modeling in an Agile software development (RAMA) and KAOS mod-

eling approach for Service-Oriented Architecture (KAOS4Services) to support an

11

CHAPTER 1. INTRODUCTION

integrated step-by-step and systematic development, using each method indepen-

dently or in tandem:

– DVD method for business value modeling. DVD is easy to use, useful for

business modelers, and has sufficient efficacy to be used during the derivation

of a software architecture [240, 241, 243].

– Reference Architecture Modeling for Agile development. RAMA software develop-

ment is a value-centric method to address the architecture-agility combination.

– KAOS4Services for traditional software development. KAOS4Services method

is a systematic approach to modeling SOA applications using goal-oriented

models.

• Traceability support of the relevant concepts (e.g., value, NFRs) from the business

value modeling phase down to the software reference architecture model. The

fundamental conceptual and technological infrastructure are provided by the MDD

techniques.

• A set of evidence-based studies (empirical studies) to validate various parts of our

proposal, contributing to the current body of knowledge.

– A quasi-experiment to evaluate the method of DVD in relation to its ease of

use and utility.

– A family of three controlled experiments and a meta-analysis to compare the

DVD method against the e3value method (a widely used business value mod-

eling method) with respect to its efficiency, perceived efficacy (ease of use and

utility) and intention to use the methods in the future by the participants.

– A quasi-experiment to evaluate the RAMA and KAOS4Services methods re-

garding their easy to use, utility and intention of participants to use the meth-

ods in the future. In addition, we did a comparative analysis between the two

methods.

• Prototyping tools to business, requirements, and SOA modeling tasks through

DSLs. We automated some error-prone tasks, such as the transition between busi-

ness modeling to requirements modeling through model transformations (for exam-

ple goal-oriented Keep All Objectives Satisfied (KAOS) models are generated from

the DVD language).

• Six scientific papers published in international conferences (C#), and two journal

articles (J#). Table 1.1 summarizes the goal of each paper and offers its classification

12

1.6. MAJOR RESULTS

according to CORE-ERA3 and SJR4, as well as the Brazilian Qualis5 for conferences

and journals).

Table 1.1: List of publications.

Title Venue Goal of the paper CORE-ERA
or SJR

/ Qualis

C1 Comparing Value-

Driven Methods: an

experiment design

[238]

2nd International

Workshop on Hu-

man Factors in

Modeling (Hu-

FaMo’16@MODELS’16)

The design of an experiment

to compare two business value

methods (e3value and DVD)

- / B2

C2 An approach to align

business and IT per-

spectives during the

SOA services identifi-

cation [240]

17th International

Conference on Com-

putational Science

and Its Applications

(ICCSA 2017)

A business value modeling ap-

proach that uses model-driven

techniques to generate the in-

put required by current software

services identification methods,

thus aligning business and soft-

ware perspectives

C / B1

C3* Aligning business

models with re-

quirements models

[239]

European Mediter-

ranean & Middle

Eastern Conference

on Information Sys-

tems (EMCIS2017)

A systematic approach to auto-

matically generate goal-oriented

models from value models

B / -

C4 Evaluating the effi-

cacy of value-driven

methods: a con-

trolled experiment

[241]

26th International

Conference on

Information Sys-

tems Development

(ISD2017)

A controlled experiment com-

paring the DVD method with

the well-known e3value method,

with respect to their effective-

ness, efficiency, perceived ease of

use, perceived usefulness and in-

tention to use

A / B3

C5 Towards an Agile

Reference Archi-

tecture Method for

Information Systems

[244]

Hawaii International

Conference on Sys-

tem Sciences 2018

(HICSS2018)

The RAMA (Reference Archi-

tecture Modeling in an Agile

software development), a value-

centric method to address the

architecture-agility combination

A / A1

C6 Deriving Services

using KAOS Models

[237]

33rd ACM/SIGAPP

Symposium On Ap-

plied Computing

(SAC2018)

KAOS4Services, a systematic ap-

proach to derive services from

goal-models expressed using the

KAOS language

B / A1

Continues on next page

3http://portal.core.edu.au/conf-ranks/
4https://www.scimagojr.com/journalrank.php
5https://sucupira.capes.gov.br

13

http://portal.core.edu.au/conf-ranks/
https://www.scimagojr.com/journalrank.php
https://sucupira.capes.gov.br

CHAPTER 1. INTRODUCTION

Table 1.1 – Continuation from previous page

Title Venue Goal of the paper CORE-ERA
or SJR

/ Qualis

J1 Comparing Business

Value Modeling Meth-

ods: A Family of Ex-

periments [243]

Information and Soft-

ware Technology Jour-

nal (IST), 2018

A family of three controlled ex-

periments to compare two differ-

ent value-driven methods, offer-

ing empirical evidence regard-

ing the methods’ efficacy when

modeling business value and

their likelihood of acceptance in

practice.

Q2 / A2

J2 Deriving Architec-

tural Models from

Requirements Specifi-

cations: a Systematic

Mapping Study [245]

Information and Soft-

ware Technology Jour-

nal (IST), 2019

A comprehensive overview of

the existing methods to derive ar-

chitectural models from require-

ments specifications, offering a

research roadmap based on the

identified limitations and open

issues.

Q2 / A2

* means Best Paper Award of the conference.

1.7 Research methodology

Our methodological research approach is based on the Technology Research method [232],

which encourages the creation or improvement of artifacts to address a specific need. The

main steps of this methodology are:

• Problem analysis addressing “what is the potential need” for a new technology. In this

step researchers identify a need for new or better artifacts.

• Innovation addressing “how to make an artifact that satisfies the need” identified dur-

ing the problem analysis step. In this step researchers produce new or better arti-

facts.

• Validation addressing “how to show that the artifact satisfies the need”. In this step

researchers check if the artifacts created during the innovation step satisfy their

requirements. When new artifacts are obtained, the researcher has a basis for new

questions, leading to new investigations. Therefore, technology research is an itera-

tive process.

Next, we discuss how the technology research process was followed in this research

work.

The problem analysis step was accomplished performing systematic studies of the lit-

erature to obtain a full coverage of the three topics of interest: business value modeling,

14

1.8. STRUCTURE OF THIS DOCUMENT

software architecture methods, and software architecture derivation methods. We started

with a systematic mapping study to build the state of the art on business modeling. This

study showed the complexity of modeling business values to be used in the construction

of information systems’ architectures. Then,we performed a tertiary study on software

architecture to create a catalog of consolidated software architecture methods, techniques

and tools subject of the selected systematic secondary studies. From the catalog, we real-

ized the nonexistence of secondary studies on derivation methods of software architecture

from requirements specifications, what lead us to carry out the final systematic mapping.

From the set of findings extracted from this systematic mapping and the tertiary study,

we identified several problems and challenges with the transition between requirements

and software architecture. The results of this phase will be discussed in some detail in

Chapter 2, Chapter 3, and Chapter 4.

The innovation step should explain how to satisfy the needs identified during the

problem analysis, and to develop the required efforts to create a solution. We created

a framework for the derivation of a software reference architectural model considering

the organization’s business values. This framework is composed of four large modules

(business modeling, agile requirements modeling, goal-oriented requirements modeling,

and software architecture) organized in two layers (business and software layers). The

main purpose of the business modeling module is to build value models for an organi-

zation. It generates SOA Modeling Language (SoaML) models to represent the business

value exchanges with a software engineering perspective. The requirements modeling

modules aim at decomposing the business models for identification of software Service.

The software architecture module aims at generating architectural models.

The validation step was performed in several different ways, that ranged from applying

the techniques to examples (e.g., e-commerce), to developing case studies (e.g., online

auction system), to building prototypes as proof of concepts through DSLs, to performing

a quasi-experiment to check if our business model is perceived as easy to use and useful as

well as a family of controlled experiments to compare the DVD method with the e3value

[104] (a well-known business value modeling method). The results of this work have also

been peer-reviewed and published in relevant fora, hence also validated by the feedback

obtained from the reviewers.

1.8 Structure of this document

This document is composed of eight chapters, technically aggregated in five major parts,

as depicted in Figure 1.3, where: the first part is this introduction; the second part is

composed of chapters 2-4 and reports on the state of the art about business modeling

methods and software architecture derivation methods; the third part is composed of

Chapter 5 and addresses the value-based framework for software architecture; the fourth

15

CHAPTER 1. INTRODUCTION

part is composed of chapters 6-7 and tackles the validation of this Ph.D. research; finally,

the fifth part is the concluding chapter. Each chapter is summarized next.

Figure 1.3: Document structure.

Chapter 1, Introduction, discusses the context and motivations of this Ph.D. research,

identifies the problem statement and the associated challenges, defines the research ques-

tion, summarizes the major results, and overviews the adopted research methodology.

Chapter 2, Business modeling, starts by introducing value-based software engineering

fundamentals and then dives into discussing a systematic mapping study on business

modeling methods aiming at identifying which existing methods are used to create mod-

els representing business value exchanges. We argue that the idea of value-based software

engineering is essential for an appropriate alignment between business and computed

information systems. Our study emphasizes in the value-based requirements engineering

and value-based architecture. Complementing the idea of value-based software engineer-

ing, we explain the basic concepts needed to represent business value through a model.

Chapter 3, Software architecture, aggregates consolidated findings on software archi-

tecture, showing the coverage and main results of existing work, and identifies relatively

unexplored niches of research that need further attention. To achieve this goal, we per-

formed a tertiary study on software architecture, aiming at gaining a better understand-

ing of its most notable findings and existing challenges, as reported in the literature. We

identified, for example, the nonexistence of secondary studies looking for software archi-

tecture derivation methods from requirements specifications. This result lead us perform

a systematic mapping on this topic (see Chapter 4).

Chapter 4, Deriving architectural model from requirements specifications: Software archi-
tecture derivation methods, provides a comprehensive overview of the existing methods

16

1.8. STRUCTURE OF THIS DOCUMENT

to derive architectural models from requirements specifications and offers a research

roadmap of the identified limitations and open issues that require further investigation.

The systematic mapping study follows the good practices from the EBSE field. The ma-

jor findings indicate that current architectural derivation methods rely heavily on the

architects’ tacit knowledge (experience and intuition), do not offer sufficient support for

inexperienced architects, and lack explicit evaluation mechanisms. These and other find-

ings are synthesized in the research roadmap, which we hope will benefit researchers and

practitioners.

Chapter 5, A value-driven framework for software architecture, presents our proposal

for the derivation of software architecture models aligned with business values, offering

explicit methods, model languages, guidelines, mappings and tools to help the archi-

tects. This framework is composed by the methods DVD, RAMA, and KAOS4Services.

The DVD method captures the key concepts of business values in models easy to build

and simple to understand by business and IT professionals. RAMA is used to derive a

software architecture model from a DVD model through the agile software development

cycle. Finally, KAOS4Services is also used to derive a software architecture model from a

DVD model; it follows a “more traditional” software development using a goal-oriented

approach. Each of these methods offer a model language, each implemented as a DSL,

and a step-by-step process to help applying the methods.

Chapter 6, Case Study, uses an industrial online auction system, that is part of a

Brazilian gas station chain fidelity program, to demonstrate the use of our value-driven

framework to derive a software reference architecture model. It starts by applying the

DVD method to build a value model, from where the subsequent application of the

RAMA or the KAOS4Services methods results in the derivation of a reference software

architecture model.

Chapter 7, Evaluation through experiments, uses an experimental method that develops

a qualitative and/or quantitative approach to measure, analyze, and evaluate hypotheses.

This method is considered the most appropriate approach to experimentation in the area

of Software Engineering [254]. This Chapter describes a quasi-experiment to evaluate

the perceived efficacy (ease to use and usefulness) of the business layer of the framework

(DVD method), a family of the three controlled experiments and a meta-analysis to com-

pare the methods DVD and e3value6 with respect to their actual efficacy (effectiveness

and efficiency), perceived efficacy (perceived ease of use and perceived usefulness), and

intention to use. Regarding the software layer of the framework, this Chapter presents a

quasi-experiment used to evaluate the RAMA and KAOS4Services methods (individually

and comparatively) for the purpose of verifying the perceived efficacy of the methods

with respect to their perceived ease of use and usefulness, from the point of view of soft-

ware engineers, in the context of professionals with a background in computer science

(with full or on-going IT courses) and who have participated in at least one information

6e3value is a well-known business modeling approach.

17

CHAPTER 1. INTRODUCTION

systems software development project in industry.

Finally, Chapter 8, Conclusions, finishes the document by revisiting and discussing

the research questions in the light of the results accumulated in the earlier chapters, and,

for each research question, also highlighting the contributions of the work. We also offer

an overview of the current status of the work, list the articles and papers published, and

end with a discussion of our intentions and visions for future work.

18

C
h
a
p
t
e
r

2
Business modeling

There is a widespread agreement about the importance of business models for a com-

pany to express its Value exchanges, be them economic, social, or other [106, 212, 263].

Therefore, it seems reasonable to expect an alignment between the company’s informa-

tion systems and the business values expressing its economic perspective. This alignment

can be achieved by using the business economic values expressed in a business model to

guide the software development process. This chapter presents background information

on business modeling by offering an overview of the main concepts and representations,

discussing the process and results of performing a SMS, and presenting two different ap-

proaches to business modeling selected based on the results of our systematic study. The

major findings indicate that current business modeling approaches are difficult to be used

by software engineers and do not provide the necessary rigor for software development.

2.1 Overview on business modeling

As the general goal of our work is to investigate how to derive architectural models aligned

with business values, this section presents an overview of business modeling and shows

its relation with the IT research area.

2.1.1 Value-based software engineering

The International Organization for Standardization (ISO) defines software engineering as

“the systematic application of scientific and technological knowledge, methods, and experience
to the design, implementation, testing, and documentation of software to optimize its produc-
tion, support, and quality” [126]. While this definition might serve the purposes of some

software projects there will be others with an higher impact on the business value of a

company, for which this definition must be extended to consider business value.

19

CHAPTER 2. BUSINESS MODELING

For example, the ISO definition excludes the fields of economics, management science,

cognitive sciences, and humanities from the body of knowledge required to create success-

ful software systems (mainly to build information systems) [36]. The ISO definition also

delimits the software development by technical activities (e.g., design, implementation,

and testing) and it does not explicitly recognize the ultimate goal of software develop-

ment: “ensuring that software systems continue to meet and adapt to evolving human and
organizational needs to create value” [34, 36].

In contrast, Value-based software engineering considers software development as

a purposeful activity carried out by people for people, without ignoring the body of

knowledge of those fields. In addition to the technical activities described in ISO, VBSE

also regards management-oriented activities as part of the software engineering lifecycle

(e.g., business case development, project evaluation, project planning, process selection,

project management, risk management, process measurement, and monitoring) [36, 139,

144]. According to Boehm [36], VBSE definition includes “the explicit concern with value
in the application of science and mathematics by which the properties of computer software are
made useful to people”, and its major elements are [36]:

1. Value-based requirements engineering, embodying principles and practices to iden-

tify stakeholders, identifying the value propositions and reconciling these value

propositions into a mutually satisfactory set of objectives for the system (e.g., [111,

140]);

2. Value-based architecture, comprising the further adjustment of the system objectives

with possible architectural solutions (e.g., [90]);

3. Value-based design and development, involving techniques to guarantee that the sys-

tem’s objectives and value considerations are aligned with the business, then inher-

ited by the software design and development practices (e.g., [258]);

4. Value-based evaluation, including techniques to verify and validate that the software

solution satisfies its value objectives (e.g., [100]);

5. Value-based planning and control, covering principles and practices to control costs,

schedule, and product planning (e.g., [35]);

6. Value-based risk management, combining principles and practices to identify, analyze,

prioritize and mitigate risk (e.g., [67, 100]);

7. Value-based quality management, involving prioritization of desired quality factors

concerning the stakeholders’ value propositions (e.g., [49]);

8. Value-based people management, including managing the expectations, as well as the

project’s accommodation of all stakeholders’ value propositions (e.g., [60]);

20

2.1. OVERVIEW ON BUSINESS MODELING

9. Value-based software engineering theory, combining the traditional computer science

theories with value-based theories (e.g., utility theory, decision theory, dependency

theory, and control theory) to provide processes and framework for guiding VBSE

activities (e.g., [37]).

Our research contributes to value-based requirements engineering by providing a busi-

ness ontology supported by the DVD method and a business Value model to facilitate

business modeling focused on value exchanges between actors (details in Chapter 5). We

also contribute to value-based architecture with the agile RAMA method and the goal-

oriented KAOS4Services method (details in Chapter 5).

2.1.2 Value-driven modeling

Business modeling covers several different disciplines such as information systems, busi-

ness management, information technology, economics, business strategy and e-commerce

[212]. Despite the growing importance of business modeling to the success of organiza-

tions, its multi-disciplinary origins results in a lack of cohesion and understanding of its

definition, fundamental concepts, components and taxonomy of business models [8, 271].

Business modeling can be regarded as a conceptual tool to express the main business

logic of an organization, describing the set of values that the organization offers to its

clients and the network of its partners with which it exchanges values in a way that is

sustainable and cost-effective [192]. It is worth noting the difference between business

modeling and process modeling [106]. The goal of a process model (e.g., Business Process

Modeling Notation (BPMN) [263]) is to clarify how processes should be carried out, and

by whom [106]. In contrast, a business model main goal is to identify who is offering what
to whom and expects what in return [106]. The central notion in a business model is the

concept of value, to explain the creation, addition, and the exchange of value between

stakeholders [106]. Value is the reason why companies and people trade with each other,

exchanging goods among them. Therefore, a value model represents a business model

from an economic perspective, and must determine the economic value exchanged and

their intervenients [104]. A Business model can be used as an efficient way of understand-

ing, evaluating, managing and conveying the core concepts of a business [107, 198]. It

can be considered the basis to design an information system that supports the needs of a

company [271].

2.1.2.1 Basic concepts of a business value model

Business organizations offer services or products (or both) of economic value to its clients,

or actors (e.g., in e-commerce), and receive something of value in return. Thus, the ba-

sic concepts in business modeling are actors, resources, and the transfer, or exchange,

of resources between actors [15, 104]. Therefore, value proposition expressions are im-

portant requirements that underpin the business idea. Consequently, the requirement

21

CHAPTER 2. BUSINESS MODELING

expressions seen from an economic value perspective respond to the following questions

[104]:

1. Who are the business actors involved? It is important to distinguish the actors, so

that each one can be satisfied in the best way possible.

2. What objects of economic value are created, exchanged and consumed by these

actors? Each actor must know what valuable products it need to produce and con-

sume.

3. What do actors expect in return for an item of value delivered? Actors aim at

profiting, usually by getting a valuable object (e.g., money) in exchange for an

object they deliver.

4. What phenomena cause exchanges of objects between actors? For example, an actor

buys a specific product in a given store because of its fast delivery service. So, “fast

delivery” is the phenomena that triggers the value exchange between the actor and

the store.

5. What are the activities needed to specify value creation? The activities serve to

specify the operationalization of creating or adding value.

2.1.2.2 Visual business value approaches

Value Chain [207] and Value Maps [250] are two visual approaches often used to specify

business value models [104].

The value chain approach. A typical and more common use of the value chain notation

is illustrated in Figure 2.1 [38]. It shows a sequence of the process of adding value to

a network-based value chain (from the manufacturer to the consumer). A value chain

approach lacks expressive power for a software requirements specification. This approach

does not show who is exchanging value objects with whom (it shows only the sequence of

value adding processes, which is not the same thing), does not present the value objects

nor does it recognize the concept of economic reciprocity. In summary, although it is a

good approach for a general overview of the values of a business, it does not offer enough

information to serve well software development.

Value maps approach. A value map shows actors and exchanges of tangible and intan-

gible value objects (e.g., goods, services, revenues, knowledge and intangible benefits)

[250]. Figure 2.2 shows an illustrative example for the Cisco system using the Value

map approach. Value maps are good for quickly drawing (e.g., on a whiteboard during

brainstorm sessions) but cannot express [104]:

• Who is offering what to whom and expects what in return (economic reciprocity);

22

2.2. A MAPPING STUDY ON BUSINESS MODELS

Figure 2.1: A company that offers its product to a consumer using a content provider,
a producer (or production house), a network infrastructure provider, and some carriers
(e.g., a telecom operator). It uses a network integrator (layer above) and facilitates the
management of operations as support (layer below) — details in [38].

• Who is performing each value activity (only actors are recognized);

• Bundles of value objects;

• Partnerships of actors.

Moreover, value maps do not distinguish stakeholders’ perspectives very well because

there is no explicit focus on valuable objects [104]. In sum, it uses a combination of sim-

ple, unstructured, informal textual elements and graphical notations. This combination

of elements impacts negatively in the understanding of the business model, often perpet-

uating the existing misunderstandings among stakeholders (e.g., the business specialist

and the IT professional) who must create the initial artifacts for the later implementation

of the information system [108]. For example, when we look at Figure 2.2, it is difficult

to say if all the arrows between two actors are related to one or more exchanges of values.

2.2 A mapping study on business models

Our goal is to identify the existing methods used to create models representing business

value exchanges. To achieve this goal, we performed the three phases of the Systematic

Studies (SS) process [149]: planning, conducting, and reporting. The planning phase

defines and evaluates the research questions and research protocol of the study. The

conducting phase searches relevant primary studies, and extracts and synthesizes the data

found according to the protocol. Finally, the reporting is concerned with the dissemination

of the results. We detail each phase in the following sections.

23

CHAPTER 2. BUSINESS MODELING

Figure 2.2: Cisco outsources the manufacturing of its products through Component Sup-
pliers (who produce the electronic components), Manufacturers/Assemblers (who pro-
duce the Cisco’s products), and distributors (who transports the electronic components
from the Component Suppliers to the Manufacturers/Assemblers). With the products
in hand, Cisco sells them using Sales Channels (electronics stores) or directly to the
Customers (details in [250]).

2.2.1 Planning: research protocol

The various elements of the planning phase are represented in Figure 2.3 and discussed

next, starting with the activity “search and analyze related works”.

Search and analyze related works. The goal of this activity is to look for “competing”

reviews and analyze all existing evidence published by these reviews on the topic of in-

terest. The outcome of this activity was a literature review published in 2012 identifying

twelve methods for modeling value concepts [162]. Given the existence of this study, the

scope of our systematic review was focused to search for primary studies published in

the period from 2011 to 2017, updating the list of those twelve methods.

Define research questions. We did not use any particular approach to create search

queries (e.g., PICOC [205]), as the goal of our study is that of the study in [162]. Thus,

the main research question is:

What methods are there to specify business models and what are their characteristics?

This main research question was decomposed into the following five sub-research

questions to be answered with data extracted from each method found selected:

RQ1: What are the research areas covered by this particular method?

24

2.2. A MAPPING STUDY ON BUSINESS MODELS

Figure 2.3: Planning phase.

RQ2: What are its main concepts?

RQ3: What is its main goal?

RQ4: Is it supported by a tool?

RQ5: Does it use a graphical or textual notation?

Regarding the RQ1, business modeling covers several different research areas such as

information systems, business management, information technology, economics, business

strategy and e-commerce [212]. Thus, the goal of this research question is to identify

the origin of the selected methods. Regarding RQ2, as the models cover several different

research areas, they can represent different concepts to address different purposes. Hence,

the goal of this research question is to identify the concepts described in the models

created by the methods. Regarding RQ3, the goal is to identify the main reason that led

to the creation of the method. Regarding RQ4, a tool is essential for the method to be used

in practice. Finally, regarding RQ5, a graphical notation can facilitate communication

and understandability of the concepts (e.g., road signs).

25

CHAPTER 2. BUSINESS MODELING

Define search strategy. The search strategy used was automatic, using search terms to

find primary studies in digital libraries, as described next.

Define research sources. We executed the search string in digital libraries search en-

gines to obtain studies that answer the research questions. The digital libraries chosen,

chosen for being the most used by the scientific community of the area, were: ACM digital

library [5], IEEEXplore [124], and Science Direct [75].

Define data extraction. The data relevant to our research was extracted from the pri-

mary studies to a spreadsheet workbook previously structured as a form. We extracted

data showing characteristics of the included primary studies (i.e., research source, title,

authors, year of publication, and venue) and information useful to answer our research

questions (i.e., method’s name, source discipline, main concepts, main goal, support tool,

and graphical notation).

Define quality assessment. It is common to use some quality criteria in the selection

of primary studies during systematic reviews, although the evidence-based software en-

gineering community still does not clearly define what is a study with quality [151].

However, as we are replicating the study by Kundish and John [162] to update their re-

sults, and their study does not describe the use of any quality criteria, we should follow

the same process.

Define research queries. Since we want to select primary studies to represent business

models and the central notion in a business model is the concept of value (as described

in Section 2.1.2), we selected the following set of keywords to create the string to search

for studies in digital libraries: business model, business modeling, business modelling, value
chain, value delivery, value model, value modeling, value modelling, and value network. The

search string uses logical operators AND and OR to connect the various terms, as follows:

“((’value model’ OR ’value network’ OR ’value delivery’ OR ’value modeling’ OR ’value
modelling’ OR ’value chain’) AND (’business model’ OR ’business modeling’ OR ’business

modelling’))”

Define inclusion and exclusion criteria. Inclusion and exclusion criteria were defined

to help selecting the studies for analysis. We have included all selected studies that were

listed in [162] (I1). In addition, we included all papers from journals, conferences and

workshops returned by the digital libraries (I2). On the other hand, we excluded informal

literature (slide shows, conference reviews, informal reports), secondary and tertiary

studies (reviews, surveys) and studies from conferences, workshops and journals without

peer-review (E1), duplicated studies or studies with the same content (E2), studies that

did not answer the research question (E3), and studies that were not written in English

26

2.2. A MAPPING STUDY ON BUSINESS MODELS

(E4). In cases of studies complementing previous work, only the more recent one were

selected, excluding the older study as duplicate (E2).

2.2.2 Conducting: search results

The execution of the search string in the three digital libraries retrieved a total of 1438

candidate primary studies, which were collected and imported into a spreadsheet work-

book. The resulting select the primary studies by applying the inclusion and exclusion

criteria, a step that decreased the number of papers to 18 relevant studies. Table 2.1

summarizes this process.

Table 2.1: Application of the Filtering Criteria in business modeling research.

Criteria From [162] IEEE ACM Science Direct

I1 +12 +0 +0 +0

I2 +0 +54 +21 +1363

E1 -0 -3 -0 -42

E2 -0 -7 -4 -111

E3 -0 -44 -15 -1199

E4 -0 -0 -0 -7

Total 12 0 2 4

I1 - Included papers from [162].

I2 - Included relevant studies cited by authors.

E1 - Excluded informal literature and secondary and tertiary studies.

E2 - Excluded duplicated studies or studies with the same content.

E3 - Excluded studies that did not answer the RQs or that were not available for download.

E4 - Excluded studies that were not written in English.

The 18 selected primary studies were read fully and the relevant data was extracted

and added to a spreadsheet workbook previously structured as a form. The list of all

selected papers can be found in Table 2.2, where the first twelve were selected from [162].

Table 2.2: Selected studies for the mapping study on business modeling.

Id Paper

S1 Porter, Michael E. "What is strategy."Harvard Business Review, 1996, pp. 61-78.

S2 Peinel, G., Jarke, M., and Rose, T., Business models for eGovernment services,

Electronic Government, an International Journal, 2010, pp. 380-401.

Continues on next page

27

CHAPTER 2. BUSINESS MODELING

Table 2.2 – Continuation from previous page

Id Paper

S3 Osterwalder, A., The business model ontology: A proposition in a design science

approach, University of Lausanne, 2004.

S4 Casadesus-Masanell, R. and Ricart, J. E., From strategy to business models and

onto tactics, Long Range Planning, 2010, pp. 195-215.

S5 Gordijn, J. and Akkermans, H. M., Value-based requirements engineering: Ex-

ploring innovative e-commerce ideas, Requirements Engineering, 2003, pp.114-

134.

S6 Weill, P. and Vitale, M. R., Place to space: Migrating to ebusiness models, HBS

Press, 2001.

S7 Eriksson, H. E. and Penker, M., Business modeling with UML, Wiley, 2000.

S8 McCarthy, W. E., The REA accounting model: A generalized framework for

accounting systems in a shared data environment, The Accounting Review, 1982,

pp. 554-578.

S9 Samavi, R., Yu, E., and Topaloglou, T., Strategic reasoning about business models:

A conceptual modeling approach, Information Systems and E-Business Manage-

ment, 2009, pp. 171-198.

S10 Tapscott, D., Lowy, A., and Ticoll, D., Digital capital: Harnessing the power of

business webs, HBS Press, 2000.

S11 Parolini, C., The value net: A tool for competitive strategy, Wiley, 1999.

S12 Pynnonen, M., Hallikas, J., and Savolainen, P., Mapping business: Value stream-

based analysis of business models and resources in information and communica-

tions technology service business, International Journal of Business and Systems

Research, 2008, pp. 305-323.

S13 Handoyo, Eko, Slinger Jansen, and Sjaak Brinkkemper. "Software ecosystem

modeling: the value chains."Proceedings of the Fifth International Conference

on Management of Emergent Digital Ecosystems. ACM, 2013.

S14 Agbabiaka, Olusegun, and Gbenga Adebusuyi. "Delivering eGovernment ser-

vices through the eTrade distribution network."Proceedings of the 5th Interna-

tional Conference on Theory and Practice of Electronic Governance. ACM, 2011

S15 Walravens, Nils. "Qualitative indicators for smart city business models: The case

of mobile services and applications."Telecommunications Policy 39.3-4 (2015):

218-240.

S16 Seidenstricker, Sven, Erwin Rauch, and Cinzia Battistella. "Business model engi-

neering for distributed manufacturing systems."Procedia CIRP 62 (2017): 135-

140.

Continues on next page

28

2.2. A MAPPING STUDY ON BUSINESS MODELS

Table 2.2 – Continuation from previous page

Id Paper

S17 Ongena, Guido, Erik Huizer, and Lidwien van de Wijngaert. "Threats and op-

portunities for new audiovisual cultural heritage archive services: The Dutch

case."Telematics and informatics 29.2 (2012): 156-165.

S18 Kolsch, P., et al. "A novel concept for the development of availability-oriented

business models."Procedia CIRP 64 (2017): 340-344.

2.2.3 Reporting: answering the research questions

This section discusses the results found in the 18 selected primary studies and offers an

analysis of the extracted data with respect to, each research question. Table 2.3 describes

a synthesis of the data extracted from the 18 selected studies.

Table 2.3: Synthesis of the data extracted on business modeling.

Id Method’s

name

Source dis-

cipline

Main concepts Main goal Support

tool

Graphical

notation

S1 Activity sys-

tem map

Business

strategy

Strategic

theme and

activity

Facilitates the under-

standing and creation of

business strategies

No Yes

S2 Business

models for

e-government

(BMeG)

E-

government

Partner,

object, and ob-

ject ex-change,

(dis)advantage

Supports the planning

of business models for

eGovernment services

Yes No

S3 Business

Model Ontol-

ogy (BMO)

E-business Interrelated

building

blocks, value,

value configu-

ration

Proposes a conceptual

model of business mod-

els

Yes No

S4 Causal loop

diagram

Business

strategy

Choice and

consequence

Proposes a separation be-

tween tactics and strat-

egy using causality the-

ory

No Yes

S5 e3value Information

systems

Actor, mar-

ket segment,

value, and

value ex-

change

Develops an e-commerce

intensive information

system

Yes Yes

S6 E-business

model

schematics

E-business Actor, value,

flow, and

relation

Migrates from business

to e-business

No Yes

Continues on next page

29

CHAPTER 2. BUSINESS MODELING

Table 2.3 – Continuation from previous page

Id Method’s

name

Source dis-

cipline

Main concepts Main goal Support

tool

Graphical

notation

S7 Eriksson-

Penker

business

extensions of

the Unified

Modeling

Language

Information

systems

Processes,

events, goals,

resources, and

rules

Identifies all the use

cases (or the correct ones)

that best support the

business in which the

system operates

Yes Yes

S8 Resource-

Event-Agent

(REA)

Business

account-

ing

Resource,

event, agent,

and economic

contract

Proposes a generalized

accounting framework

designed to be used in a

shared data environment

Yes Yes

S9 Strategic Busi-

ness Model

Ontology

(SBMO)

Business

strategy

Actor and goal Helps understanding

and analyzing the goals,

intentions, roles, and

the rationale behind the

strategic actions in a

business environment

Yes No

S10 Value map Business

strategy

Actor, value,

and value

exchange

Analyzes the flow of val-

ues (tangibles and intan-

gibles)

No Yes

S11 Value net Business

strategy

Actor, activity,

and flow

Helps creating a brand

new perspective in strate-

gic analysis (analysis of

new strategies from the

current ones)

No No

S12 Value stream

map

Business

strategy

Actor and

value stream

Maps the value streams

between the actors to un-

derstand the business

No Yes

S13 Software

ECOsystem

(SECO)

Ecosystems Actors and

flow

Facilitates further under-

standing of the business

models and value chains

of the software ecosys-

tem

No Yes

S14 eTrade E-

government

Dealer, dis-

tributor,

wholesaler,

retailer, and

citizen

Presents the concept of

the eTrade Distribution

Network as a model

for improving to access

the eGovernment ser-

vices and products in a

developing country

Yes No

S15 N/A E-

government

Control and

value

Analyzes business mod-

els that involve public ac-

tors, and municipal gov-

ernments in particular,

in the value network

No No

Continues on next page

30

2.2. A MAPPING STUDY ON BUSINESS MODELS

Table 2.3 – Continuation from previous page

Id Method’s

name

Source dis-

cipline

Main concepts Main goal Support

tool

Graphical

notation

S16 Bussiness

Model Engi-

neering

Business

strategy

Product/service,

gains, pains,

and time

Achieves production

excellence in each pro-

duction unit and ensures

strategic probability to

enhance implemented

distributed manufactur-

ing systems

No No

S17 STOF Business

strategy

Market seg-

ment, func-

tionality, cost

structure,

profit po-

tential, and

structure of

value network

Analyzes the business-to-

consumer market for dig-

ital audiovisual services

No No

S18 N/A Product-

Service

System

(PSS)1

Monetary

flow, commu-

nication, data,

and output

Develops availability-

oriented business models

No Yes

RQ1: For which research area has the method been created? Eight out of 18 studies

(44.4%) were created to solve some problem related to business strategy [S1, S4, S9,

S10, S11, S12, S16, S17]. The second discipline with more articles is e-government with

16.6% (3 out of 18 studies) [S2, S14, S15] followed by e-business [S3, S6] and information

systems [S5, S7] with 11.1% each (2 out of 18). The disciplines with less studies are

business accounting [S8], ecosystems [S13], and Product-service system [S18] with 5.5 %

each (1 out of 18 studies each).

RQ2: What are its main concepts? Mostly, the studies share a set of common concepts

(even if sometimes with different names), such as actors (partner, agent, dealer, distribu-

tor, wholesaler, retailer, or citizen) [S2, S5, S6, S7, S8, S9, S10, S11, S12, S13], resources

(value, object, product, service, or data) [S2, S4, S5, S6, S8, S10, S12, S15, S16, S17, S18],

and transfer of resources (value exchange, object exchange, event, value flow, flow, value

stream, or monetary flow) between actors [S2, S5, S6, S8, S10, S11, S12, S13, S18]. Regard-

ing the differences that characterize them, we emphasize, value configuration offered by

BMO, which is a macro-process necessary to create value for the customer, and economic
contract offered by REA, which is an aggregation of economic commitments, and market
segment offered by e3value, which is a group of similar actors.

1PSS are business models to provide a cohesive delivery of products and services.

31

CHAPTER 2. BUSINESS MODELING

RQ3: What is its main goal? For a better structuring of the response, we will aggregate

the goals of the studies according to the research areas from which they were created.

The studies focusing on business strategies are intended to facilitate understanding [S1,

S4, S9, S10, S12] and business analysis [S1, S9, S11, S16, S17] to improve or ensure those

business strategies. Regarding the studies focusing on e-government, they are intended

to support [S2], analyze [S15] and improve [S14] government services and products. The

e-business studies focus on business migration to e-business [S6] and try to standardize

e-business models with the creation of conceptual models [S3]. The studies from the

information systems discipline focus on the requirements engineering phase of software

development, more specifically, on the creation of a requirements specification to develop

information systems to better support the business [S5, S7]. The other studies focus

on better understanding business accounting [S8] and ecosystems [S13], as well as the

development of availability-oriented business models [S18].

RQ4: Is there a supporting tool? Most of the studies do not report any type of tooling

support (11 out of 18 studies, corresponding to 61.1%) [S1, S4, S6, S10, S11, S12, S13, S15,

S16, S17, S18]. The remaining 7 studies (38.9%) offer tools to support the construction

of their methods [S2, S3, S5, S7, S8, S9, S14]. It is important to highlight that the two

studies of information systems have a tool to create a model of business value [S5, S7].

RQ5: Does the method use a graphical or textual notation? 10 out of the 18 studies

(55.5%) analyzed use a graphical notation to represent their main concepts in a business

model [S1, S4, S5, S6, S7, S8, S10, S12, S13, S18]. In contrast, The remaining studies

(44.5%) use only textual notation [S2, S3, S9, S11, S14, S15, S16, S17]. Although there is

a difference in the number of studies that use a graphic notation and a textual notation,

this difference is not statistically significant. Considering the two studies of information

systems, both use a graphical notation to represent the concepts of values. However, [S7]

uses a more technology-centric approach to creating value models (it creates a Unified

Modeling Language (UML) profile, making it less attractive to the business community

[81]). Conversely, [S5] uses a more business-centric approach (creating a new model but

without the rigor required for a software requirements specification).

2.2.4 Threats to validity

Internal validity. In all systematic mapping studies there is the risk of not including

relevant studies. The terms used the in search string of this study were reviewed by

external reviewers as recommended in [149]. Interpretation problems can also happen

during planning and execution due to being totally immersed in the work. To mitigate

this, we used Fabbri’s best practices checklist [87] to check our work2. Also, one exter-

nal reviewer was involved to check, for a subset of papers, if there were interpretation
2This checklist has a number of questions to evaluate the search string, research protocol, initial selection

of studies, final selection of studies, and data extraction.

32

2.3. TWO BUSINESS MODELING APPROACHES

problems (re-test evaluation method [149]).

External validity: We could have missed venues (e.g., conferences and journals) with

relevant published works. To avoid this issue, we did not restrict our searchers to venues

where more work related to our research was found. We searched in three major digital

libraries for relevant related work, and we consider that these libraries are sufficient for

our study.

2.3 Two Business modeling approaches

From the list of 18 approaches found in the previous study, we selected two because

they were created to facilitate the alignment between the business level and information

systems. These two approaches, Eriksson-Penker business extensions (EPBE) and e3value,

are summarized next.

2.3.1 Eriksson-Penker UML business extensions

EPBE is an extension of the UML [114]. It was designed to enable the use of UML in

business modeling. According to the authors, the main motivation of this method is to

describe a business in terms of processes that satisfy objectives through the collaboration

of different types of resources [114]. However, as already discussed in Section 2.1.2, the

goal of a business process model is different from that of a business model [106]. Rules

define conditions and constraints on how processes and resources should relate to and

how they should behave [114]. All of this can be mapped into objects, relationships, and

interactions between objects [114]. In this approach, the five fundamental elements used

to describe a business are [114]:

• Resources: is everything the company uses, consumes or produces: people, materi-

als, information and products. Resources are manipulated and managed through

processes, and are classified as: physical, abstract and information. Resources are

represented in UML object diagrams.

• Processes: are the activities carried out by the business. They describe how the work

runs in the enterprise, and are bounded by rules. Processes are represented in UML

activity diagrams.

• Rules: are the definitions or restrictions of some aspect of the business. Rules de-

termine how a business should be managed or how resources should be structured

and used. They can be created by the company itself or imposed by external enti-

ties (government, associations, unions, etc.). Rules are represented in UML class

diagrams.

33

CHAPTER 2. BUSINESS MODELING

• Goals: represent the reason of the company, or the results that the business expects

to achieve. The set of high-level objectives forms the company’s strategy. Objec-

tives can be divided and distributed among the various processes of the company.

Objectives are represented in UML class diagrams.

• Events: are actions that occur in the external world and that affect processes. Events

are represented in UML class diagrams.

The authors highlight that their method provides a foundation to support the creation

of information systems. However, they at no time describe an approach to modeling the

company’s value proposition and its operational model. Figure 2.4 shows the EPBE

metamodel.

Figure 2.4: EPBE metamodel.

The metamodel shows how processes attempt to achieve goals. A goal is established to

overcome one or more problems and expresses the desired state of one or more resources.

Goals can be expressed as rules that control the process. A process interacts with resources

through an interface and can cause the states of resources to change. A process also

interacts with other processes by generating or handling events. Resources can be physical

(e.g., people), abstract (e.g., invoice), or information, holding information about another

resource (e.g., database record).

2.3.2 e3value

The e3value method offers modeling constructs for representing graphically and ana-

lyzing business requirements from an economic point of view [105]. The method is

34

2.3. TWO BUSINESS MODELING APPROACHES

composed of fifty concepts, and the main ones are [104]:

• Elementary actor: is an economically independent (and often also legal) entity. An

elementary actor does not contain value interfaces of other actors.

• Composite actor: is a specialized actor grouping value interfaces of other actors.

• Market segment: is a concept that breaks a market (consisting of actors) into seg-

ments that share common properties.

• Value interface: consists of one value transferring (in-going offering or out-going

offering).

• Value transfer: shows what an actor offers to (an out-going offering) or requests

from (an in-going offering) his/her environment, and closely relates to the value

interface concept.

• Value port: is used to interconnect actors so that they are able to exchange value

objects.

• Value object: is a service, a product, or even an experience, which is of economic

value for at least one of the actors involved in a value model.

• Value exchange: represents one or more potential trades of value object instances

between value ports.

• Value transaction: aggregates all value exchanges.

• Value activity: is a collection of operational activities which can be assigned as a

whole to actors.

• Start stimulus (customer needs): is the beginning of a value scenario. This concept

is inherited from the Use Case Maps (UCM) [48].

• Stop stimulus (scenario boundary): is the end of a value scenario. This concept is

inherited from the UCM [48].

• AND element: is a logical operator used to split or collapse paths of value scenarios.

This concept is inherited from the UCM [48].

• OR element: is a logical operator used to split or collapse paths of value scenarios.

This concept is inherited from the UCM [48].

• Connect element: is used to link the graphical elements of the model to show a

complete path of value scenario. This concept is inherited from the UCM [48].

35

CHAPTER 2. BUSINESS MODELING

Figure 2.5: e3value metamodel, taken from [104].

Figure 2.6: e3value example extracted from [206].

Figure 2.5 presents the e3value metamodel (note that some of these concepts are not

present [103, 212]), and Figure 2.6 exemplifies an e3value model.

In order to represent value exchange scenarios, the e3value model inherited the start

stimulus, the stop stimulus, the AND and OR logic operators, and the connect element

36

2.4. FINAL CONSIDERATIONS

from UCM3 [48]. Although these elements are contained in the e3value model (see Figure

2.6), they are absent from the metamodel (see Figure 2.5), showing that the e3value

metamodel is incomplete.

The start stimulus represents customer needs, that is, the beginning of a value scenario,

and the stop stimulus represents the end of a value scenario. A connection element

links a start-stop stimulus to a value interface or links value interfaces of the same actor

internally. As a lot of value scenarios are represented in a unique e3value model, AND

and OR elements are used to split or collapse paths of value scenarios, reusing start and

stop stimulus elements.

2.4 Final considerations

This Chapter presents a state of the art on business modeling, delimiting the scope of our

work and clarifying the main concepts of the area. As part of the task, we performed a

systematic mapping study to analyze a complete list of the business modeling methods

published in the literature. Most of the studies found were created to solve problems

related to business strategy. The various studies share a set of common concepts (such

as actors, value, and value exchange) aiming at facilitating business understanding and

analysis to improve business strategies. Most studies do not offer supporting tools, what

impairs negatively to the use of their methods. Also, most studies focus on graphical

notations to model business concepts. However, the difference between who uses and

who does not use graphical notations is not significant (two more studies favor graphical

notations). From the list of 18 approaches studied, two (EPBE and e3value) aimed at fa-

cilitating the alignment between business and information systems. For this reason, they

were summarized. On the one hand, EPBE does not at any time describe an approach to

modeling the company’s value proposition and, on the other hand, e3value is difficult to

be used in a systematic software development due to some ambiguous concept represen-

tation and also because the same model represents static and dynamic perspectives of the

problem/solution, a little against the good practice of separation of concerns. Because of

this, we decided to focus our research on creating a new easy-to-use business modeling

method that is useful for both business and software engineering professionals. In ad-

dition, we used e3value as the basis of comparison through a family of three controlled

experiments.

3Use Case Maps is a requirements language which have the notion of path to show how a particular
scenario works.

37

C
h
a
p
t
e
r

3
Software architecture

The Software Architecture research community has accumulated a large body of knowl-

edge over decades, to create and evolve new techniques, tools, processes, methods, and

frameworks. However, researchers and practitioners may have a hard time locating con-

solidated evidence on this Software architecture body of knowledge, as the available infor-

mation is disseminated in several different publications. This chapter offers an overview

of software architecture. It starts with a brief history of the origin of the software archi-

tecture and defining the main concepts needed to a broad understanding of the topic.

Next, it describes the principles and concepts on Service-Oriented Architecture (SOA) —

a widely used business practice to develop enterprise information systems [136]. It then

gives a brief description of model-driven engineering aiming at providing a background

on this methodology created to build complex software systems. Finally, it describes

the conduction of a systematic tertiary study, aggregating consolidated findings on soft-

ware architecture and facilitating the work of researchers and practitioners in learning

about the coverage and main results of existing work. For example, we identified the

nonexistence of secondary studies looking for software architecture derivation methods.

These and other relatively unexplored niches of research were synthesized to answer the

research questions of the tertiary study.

3.1 What is software architecture?

This section describes a brief history of the origin of Software Architecture and defines

some concepts for a broad understanding of the topic.

Origin. According to Kruchten et al. [160], the first reference to the term software archi-
tecture occurred in 1969 in a conference on software engineering techniques organized by

39

CHAPTER 3. SOFTWARE ARCHITECTURE

North Atlantic Treaty Organization (NATO) [50]. From then until the late 1980s, the word

“architecture” was used mostly in the sense of system architecture, meaning a computer

system’s physical structure [160]. Software architecture as a distinct discipline started

to emerge in the 1990’s [160], and in 2001 was created the first Working IEEE/IFIP Con-

ference on Software Architecture [209]. Ever since then, Software Architecture has been

largely researched by industry and academia.

Software architecture definition. The term software architecture is widely used in var-

ious contexts within Software Engineering [120], which reflects the growth or recognition

of its importance. However, the variety of contexts in which the term is used is an indica-

tion that the concept is still is not very well defined [159]. Among the various software

architecture definitions we selected the following ones in Table 3.1.

Table 3.1: Software architecture definitions.

Authors Reference Definition

Perry and Wolf [201] Software architecture represents the organization of

collections of interconnected components that obey

certain constraints on the form of interaction.

Shaw and Garlan [172] Software architecture is defined as a representation

of the system in terms of computational components

and their relationships.

Hofmeister et al. [119] Software architecture is the bridge between the re-

quirements of the system and its implementation,

serving as a guide for all activities of the software

development process.

Jazayeri et al. [133] Software architecture assists in the management of

software complexity, being the satisfaction of the func-

tional and non-functional requirements of a software

system.

Putman [210] Software architecture consists of well-defined rules

and concepts related to all aspects of the system,

from functional requirements to non-functional and

semantic behavior of the system.

Garlan [99] Software architecture plays a fundamental role in the

following aspects of the development process: analy-

sis, common understanding, reuse, construction, evo-

lution and maintenance, and management.

Continues on next page

40

3.1. WHAT IS SOFTWARE ARCHITECTURE?

Table 3.1 – Continuation from previous page

Authors Reference Definition

Kruchten [159] Software architecture should consider the following

aspects: The organization of a software system; The

selection of the structural elements and their inter-

faces; and The Architectural style that guides the or-

ganization of the elements and their interfaces.

Sommerville [235] Software architecture represents the fundamental

framework for structuring a software system. At-

tributes of a system such as performance, security and

availability are influenced by the software architec-

ture used.

Bass, Clements, and

Kazman

[26] Software architecture of a computational system is

the “structure of structures”, which encompasses com-

ponents, their external properties and their relation-

ships, creating a system abstraction that suppresses

details of components that do not affect form how

they are used.

ISO/IEC/IEEE

42010:2011

[127] Software architecture covers the fundamental con-

cepts or properties of a system incorporated in its el-

ements, relationships and principles of design and

evolution

An analysis of the presented definitions, despite the differences [120], indicates that,

at its core, Software Architecture refers to the software elements, their relationships

with each other and its environment [26, 172, 201, 235], the principles governing its

design and evolution [99, 119, 127, 133, 159, 210], as well as the quality properties

these elements support [24]. This definition embodies the two perspectives, where the

software architecture discipline guides the development, and organization of structural

choices and determines how the system should be constructed and evolved [89]. Since

the 1990s, software architecture has received a lot of attention within the area of Software

Engineering due to its criticality as one of the most important success factors in computer

systems projects [99].

Software reference architecture. A software architecture serving as a baseline for the

design activities that are executed in a software development project. It also serves as

an anticipated manifestation of the project decisions, influencing factors such as devel-

opment time, cost and maintenance, the definition of the constraints of implementation,

emphasizing the quality attributes that the system must have to meet the business needs

[26]. As a baseline, a software reference architecture allows stakeholders (end-users,

41

CHAPTER 3. SOFTWARE ARCHITECTURE

developers, test engineers, project managers, etc.) having a high-level understanding of

the software structure, enabling the communication among them, and facilitating the

analysis and validation of the system [24, 235]. The larger and more complex the system

is, the greater the need for easier communication, which directly impacts on the success

of a software project [24, 235]. A software reference architecture can also be used as

a planning and management tool, assisting system managers in decision making and

minimizing risks and uncertainties in software projects [199]. In this sense, Software

reference architecture models have been used to facilitate and guide the architectural

decision-making, for instance in the choice of architectural patterns [172] and styles [91]

during the architectural design process [188, 235] (some information on architectural

styles and patterns is given next). Indeed, a software reference architecture model offers

a template solution of an architecture for a particular domain, expressing ways of orga-

nizing the fundamental structure of a system through high-level reusable solutions [24,

235].

Architectural viewpoints. The description of a software architecture is directly related

to the use of abstraction techniques. The use of abstractions simplifies the problem, since

it provides separation of concerns and responsibilities that facilitate the development of

software systems [170]. A software architecture can be described in different levels of

abstraction and using different views with the same level of abstraction. The purpose for

using points of view stems from the fact that different stakeholders have different interests

in the system [19]. For example, Kruchten created the 4 + 1 views approach to detail

five different, but complementary, viewpoints to represent a software architecture [161].

In Kruchten’s approach, system engineers use a physical view to describe the mapping

of the software onto the hardware, and a process view to capture the concurrency and

synchronization aspects of the design. Software engineers and data specialists use a

logical view to create the object model of the design (when an object-oriented design

methodology is used). Project managers and the software configuration team use the

development view to describe the static organization of the software in its development

environment. Finally, all these four views are created from the architecturally relevant

requirements which are illustrated in the scenario view.

Architectural drivers. The transition between the requirements of a problem and its

solution involves architectural decisions, which are at the core of software architecture

[43, 131, 158, 255], as they are related to the satisfaction of functional and non-functional

requirements1 [25, 270]. Although it is well accepted that NFRs are difficult to describe,

satisfy and track in a software architecture specification [56, 110], it is also well accepted

that they are the main drivers of the architectural decision process [25, 89, 125].

1Functional requirements describe what the system does, and NFRs typically refer to the operational
quality of a system, as well as the constraints imposed on a solution [58].

42

3.2. SERVICE-ORIENTED ARCHITECTURE

Architectural description. The representation of the system solution for a specific

point of view is carried out through languages and notations. These languages and no-

tations are called Architectural Description Language (ADL)s. An ADL provides both

a conceptual framework and a concrete syntax for characterizing software architectures

through a model [194].

Architectural styles and patterns. Styles are mechanisms for categorizing architectures

and for defining their common characteristics [70]. Each style provides a high-level ab-

straction for the interactions of components, capturing the essence of a solution of in-

teraction by ignoring the incidental details of the rest of the architecture [224]. There

are several different architectural styles (e.g., layered architecture [220], pipe-filter [1],

and SOA [136]). Due to the large number of existing architectural styles, their properties

and benefits have been systematically described, for example, the catalog in [26]. On the

other hand, the term architectural pattern has been used to describe the same concept

of architectural style [26] although the meaning is somewhat different. For example, a

layered architecture is an architectural style where the software components are orga-

nized into horizontal layers, each layer performing a specific role within the application

[220]. This style does not specify the number of layers needed to structure the software,

in contrast, it only defines the logic of this structuring. However, some architectural

patterns use the knowledge offered by the layered style, providing more practical and

specific details regarding, for example, the number of layers, abstraction level and even

how to implement it in different programming languages. According to Bass et al. [26],

a Pattern is a context-problem-solution triple while a Style is a condensation that focuses

most heavily on the solution part.

3.2 Service-oriented architecture

Service-Oriented Architecture (SOA) is an Architectural style to support the development

of distributed applications, even in heterogeneous environments [136, 196]. As SOA is a

widely used business practice to develop enterprise information systems [136], we will

be using it to facilitate the alignment between business and IT solutions. Next, we offer

an overview of SOA’s main concepts and infrastructure, highlighting its main strengths

and weaknesses, as well as SoaML, a language for describing systems structured using

Service-Oriented Architecture.

Service. A service, the SOA core concept, is defined as an autonomous, minimally cou-

pled, and platform-independent entity that can be published and used in novel ways

[195]. Therefore, each service encapsulates in different contexts. Although services exist

autonomously and independently, they are not isolated from each other [84]. This is

aligned with Erl’s view [85], where services are defined as physically independent soft-

ware programs with distinct characteristics that support the achievement of the strategic

43

CHAPTER 3. SOFTWARE ARCHITECTURE

objectives associated with service-oriented computing. In this context, a service can be

defined as a self-contained module that provides some concrete functionality to its envi-

ronment. Although independent, a service is typically built to relate to, or communicate

with, other services that are available in any location. According to the OMG, a service

is the delivery of value to another party, enabled by one or more capabilities [189]. Each

service is created in a distinct context, having a set of capabilities and sometimes some

preconditions to be invoked. For a service, any other service is a potential candidate to

serve as a partner.

Services classification. There are multiple ways to classify services [136]. In the con-

text of information system design, the services can be classified as business services,

informational services, and utility services [71, 262]. Business services refer to economic

services provided by an economic actor to fulfill a customer need. Informational services
referring to software services aiming at producing information or enhancing communi-

cation. Business services can use groups of information services to achieve their purpose.

And, finally, utility services, strictly related to the technological platform supporting the

information services, provide functions for data storage or execution of programs.

Infrastructure. Some standards based on Extensible Markup Language (XML) proto-

cols [53], such as Simple Object Access Protocol (SOAP) and Web Services Description

Language (WSDL), are designed to support service communication and information ex-

change [85]. Thanks to these standards, the services are independent from the platform

and implementation language. The software can be constructed by composing a set of

services. A service can be local or external (provided by different suppliers) [85]. Some

SOA infrastructure definitions include the term Web Services, but SOA is not the same as

Web Services. Indeed, while SOA is an architectural style, web Services are one possible

way to realize the infrastructure by using a specific implementation strategy [136].

Figure 3.1 encapsulates the idea of a SOA infrastructure, where a Services provider

designs, implements, and specifies service-based software. Then a services provider pub-
lishes information about these services in a service record accessible to their customers

(also known as service requesters or Service consumers). Service consumers that wish to

use a service, use a mechanism to discover the specification of that service and locate the

service provider. They can then associate their application with this specific service and

communicate with it , using of service communication protocols (Join(SOAP)) [235].

Advantages and weakness. Given that interactions occur with loosely coupled services

that operate independently [136, 195, 196], SOA is widely used for the development

of IS. SOA facilitates the system’s evolution to reflect business changes, improving the

alignment between the developed software and the needs of the business [20, 136, 196].

In summary, the advantages of SOA are [168]:

44

3.2. SERVICE-ORIENTED ARCHITECTURE

Figure 3.1: General view of a Service-Oriented Architecture [235].

• Ease of integration and interoperability between services, what increases efficiency

in the use of available resources.

• Better scalability and ability to develop applications independently and in parallel.

• Reduction in system development costs due to component reuse.

Regarding the SOA weakness, the critical aspects of developing an efficient SOA solu-

tion are:

• The identification of services from the requirements and their mapping to an ap-

propriate SOA reference architecture has not been done satisfactorily [7, 18]

• Lack of approaches using business value models to align the business needs and the

software services (most methods use business process models rather than business
value models [20, 113]). This topic is still a challenge, requiring the cooperation

between the business and the IT communities [7, 113],

• Identification, monitoring, and management of NFRs still need to be addressed

systematically by the software architecture community [7, 113].

SoaML. According to the OMG, SOA is an architectural paradigm for defining how

people, organizations, and systems of services delivery act to achieve results [31]. In this

context, SoaML [189] is an OMG standard that aims to design and model SOA solutions

using UML. It is a set of UML extensions to support SOA modeling, providing a SOA

abstraction focused on the description of participants’ needs and resources [72], mod-

eling both business and IT perspectives. The elements made available by SoaML allow

the creation of UML diagrams to represent the structures of software systems in SOA,

allowing the generation of artifacts2 for the implementation of software architectures

through the existing support tools.
2In general, the artifacts are generated using model-driven engineering techniques. Section 1.5 describe

about model-driven engineering.

45

CHAPTER 3. SOFTWARE ARCHITECTURE

A characteristic that stands out in SoaML is its reach. Several technology-specific tools

allow modeling services using SoaML. However, such tools do not facilitate describing a

high-level service-oriented architecture in a complete way, that is, describing how services

and service participants work together to deliver business value [262]. This is a limitation

of these tools in supporting SOA, and it is known that organizations are most effective

when they understand their technology services and how they relate to their business

services [34, 262].

Figure 3.2 illustrates an example of a SoaML capability model. SoaML capability

represents the ability to act and produce a result that achieves a specific goal. For example,

Figure 3.2 shows that for an online store to be able to offer a Purchase order, it also needs

to offer a shopping cart, a purchase request and a delivery service. In this way, a capability

is presented as a cohesive set of functions or resources that a participant provider offers

through of a service [31]. Capabilities are specified without regard to how a particular

service should be implemented and subsequently offered to service consumers from a

service provider. Through capability model, developers can analyze how services will

relate and how they can be combined to form a larger capability before being assigned

to a particular participant [189]. A capability can be represented by a class diagram or

component diagram with the «Capability» stereotype.

Figure 3.2: Example of a SoaML capability model for an order handling system.

Figure 3.3-a presents an ecore metamodel of the service architecture model (or SoaML

Component Diagram) to design the collaboration of service contracts in SoaML. A Partici-
pant can be a service consumer or a service provider (ParticipantType) of a ServiceContract.
In SOA, NFRs refer to the quality or capability that satisfies customer specifications and

they are explicitly demanded by service consumers and can be formalized by Service

Level Agreement [113]. A pure SoaML service architecture model does not represent the

quality of services concepts, reason why OMG adopted the QoS&FT profile [190]. Part of

the conceptual representation of this profile is marked in grey in Figure 3.3-a. Figure 3.3-

b shows an example of a SoaML specification with a description of its concepts, showing

how participants (represented as rectangles) work together for a purpose by providing or

46

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

using services. A service is expressed in the model as a service-Contract (dashed circle).

In this example, an Applicant requests a Retirement Insurance Benefit (RIB) to a Handler.

The Handler checks the Social Security number (SSN) of the Applicant with a SSN Matcher
and, depending on the result, it applies for RIB claim to be processed by the RIB claim
processor.

Figure 3.3: a) Ecore SoaML ServicesArchitecture metamodel from [189] extended with
part of the QoS& FT profile, and b) SoaML specification, taken from [77].

3.3 State of the art on software architecture: an

Evidence-Based Tertiary Study

The software architecture area is too broad for a single study, but there are already several

secondary studies, in the form of literature reviews that partially aggregate information

in the area. As a consequence, we leverage those secondary studies, by conducting a

tertiary study to provide a consolidated state of the art and practices in software archi-

tecture. Our main objective in conducting this tertiary study was to verify the existence

47

CHAPTER 3. SOFTWARE ARCHITECTURE

of an updated state of the art about the derivation methods of an architecture model

from a requirements specification but not only that. Thus, the tertiary study aims at the

following contributions:

• A mapping of the most representative secondary studies that cover software archi-

tecture and their origin. This mapping is expected to serve as a starting point for

researchers and practitioners interested in software architecture to locate relevant

consolidated reviews in the area, and the experts responsible for those reviews.

• An annotated overview of the existing aggregated information on software archi-

tecture. By describing the main contributions of the included secondary studies,

we provide a unique resource from which researchers and practitioners can start

exploring future work.

• A report on the level of consolidation of the aggregated information on software

architecture. One of the purposes that a literature review can play is to aggregate

and consolidate information that would be otherwise scattered in several different

publications, while conserving traceability links to the original research sources. In

this tertiary review, we are interested in knowing to what extent this was achieved

in the reported literature reviews.

This study is a work in EBSE [151]. EBSE aims at collecting the best available evidence

to address software engineering research questions created by both practitioners and

researchers. Typically, this is performed by aggregating existing empirical studies on a

particular topic and conducting a literature review on them, in an impartial way. Our

study was conducted following the guidelines on SS, detailed in [148], of which the main

phases are planning, conducting, and reporting (as detailed in Section 2.2). Our goal,

with this decision, was to gather a broader overview of the current state of the art and

practice of software architecture. The next sections discuss how those three phases were

performed.

3.3.1 Planning: Defining the protocol

The protocol shows the formulation of the research questions, search strategies, search

string and research sources, the description of the process followed to search, classify

and assess for quality of the identified secondary studies, the design of data extraction

procedure, and, finally, the development and evaluation of the review protocol.

Formulating the research questions. We used the PICOC method [205] to structure

and formulate our research questions. PICOC is a method used to describe the five

elements of a searchable question. “PICOC” is an acronym that stands for Population

(who?), Intervention (What or How?), Comparison (Compared to what?), Outcome (What

48

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

are you trying to accomplish / improve?), and Context (In what kind of organization /

circumstances?). Table 3.2 shows the PICOC analysis of tertiary study.

Table 3.2: PICOC Analysis for the tertiary study about secondary studies on Software
Architecture.

Population General empirical studies on Software architecture created following the best practices
of EBSE. In other words, we want systematic studies with any topic, system or domain
of application in the area of software architecture.

Intervention The empirical studies must be secondary studies (i.e., systematic literature reviews or
mapping studies), as they follow a rigorous and systematic procedure for search and se-
lection of the sample primary studies to review, hence leading to more complete results.
Our goal is to characterize the state of the art and practice in software architecture
through the currently available information extracted from the secondary studies and
characterize the community in this research domain.

Comparison Not applicable, as our intention is to classify the topics of the secondary studies from
their research questions.

Outcome The main outcome is (i) provide the available information concerning software archi-
tecture and (ii) identify the key players in consolidating knowledge on the research
area. This include to check the quantity of primary studies that were included in these
reviews, the time span covered by these reviews, if the reviews provide the list of the
included primary studies, if the quality of the primary studies were assessed, identify
the target audience of these reviews, identify the quantity of systematic studies are
available, the origin of these reviews, and what is the impact of these reviews, in terms
of citations.

Context Research papers. We are working in a research context with experts of the domain
as well as other practitioners, academics, consultants and students with published
research results.

The PICOC Analysis led to the definition of the following three research questions:

RQ1: What is the software architecture information systematically aggregated by ex-

isting secondary studies currently available? Our goal is to characterize the cur-

rent state of the art in this research domain.

RQ2: What is the current status of consolidation of data collected from different lit-

erature reviews on software architecture? One of the potentially key benefits to be

taken from literature reviews is to be able to aggregate data collected independently

in different studies.

RQ3: Who is performing literature surveys? This question is of a demographic nature.

Our goal is to characterize the community with interest in consolidating knowledge

on software architecture.

The research question RQ1 was broken down into the following six sub-questions:

RQ1.1: How many primary studies are included in these reviews? This provides the

consolidation level of the research topic.

RQ1.2: What is the time span covered by these reviews? This may shed some light on

whether the area is consolidated.

49

CHAPTER 3. SOFTWARE ARCHITECTURE

RQ1.3: Is the list of the included primary studies available? This provide a traceability

to the information source.

RQ1.4: Is the quality of the primary studies assessed? This provide an indication of

the maturity level of secondary study.

RQ1.5: Who is the secondary study targeted to? The target audience can be made of

researchers, practitioners, or both.

RQ1.6: Which publication venues are most commonly used? This shows us which

venues are most interested in this type of research.

Similarly, we decomposed RQ2 into the following two sub-questions:

RQ2.1 What are the software architecture research topics that contain systematic sec-

ondary studies? This provides a coverage of the software architecture topics.

RQ2.2 Is there some secondary study focusing on methods for the derivation of soft-

ware architecture models from requirements specifications? In our Ph.D. re-

search, we need understand the context of these type of methods (e.g., goal, ap-

plication domain, and inputs), the benefits they offer to the users (e.g., benefits and

limitations), their content (e.g., architectural viewpoints, architectural description

language used, level of automation), and how they validate the software architec-

ture generated (e.g., case study, experimentation, illustrative example). If we do not

find a study (or set of studies) that provides us with such information, then we will

have to conduct a systematic mapping study to aggregate the data from the primary

studies and answer this question.

And the same decomposition approach was followed for RQ3:

RQ3.1: How many systematic reviews, including systematic literature reviews and

mapping studies, addressing any topic in software architecture, are available?

This provides an overview on the liveliness of the community consolidating infor-

mation on software architecture.

RQ3.2: What is the origin of these reviews? This covers organizations and countries

and is aimed at better understanding the extent to which software architecture is

becoming a global concern.

RQ3.3: What is the impact of these reviews, in terms of citations? This will provide

some insight on the “popularity” of this research topic.

Defining the search strategy. Our search strategy used two complementary methods

[269]: an automatic search using the search terms discussed next to discover secondary

studies on electronic data sources, and a manual search in Google Scholar to look for

additional secondary studies on software architecture.

50

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

Formulating the search string. The key terms for the search string were derived from

the research questions [149] and are listed in Table 3.3. We conducted a pilot to validate

the search string, as recommended in [45], adding synonyms of key terms. The search

string includes the terms “systematic review”, “literature review”, “mapping study”, “sys-
tematic study”, “software architecture”, “reference architecture”, “architecture design”, and

“architectural design”, concatenated with Boolean operators. As different digital libraries

use different syntax and limitations for search queries, we formulated dedicated search

queries for each digital libraries from the search terms listed in Table 3.3. The search

strings used in the digital libraries were structured according to the following logic: (“sys-
tematic review” OR “literature review” OR “mapping study” OR “systematic study”) AND
(“software architecture” OR “reference architecture” OR “service architecture” OR “architec-
ture design” OR ‘architectural design”).

Table 3.3: Research Query Building

Systematic
Study

“systematic review” OR “literature review” OR “mapping study” OR “system-
atic study”

Software Ar-
chitecture

“software architecture” OR “reference architecture” OR “service architecture”
OR “architecture design” OR ‘architectural design”

Selecting research source. The search string was ran in four digital libraries: IEEEX-

plore [124], ACM Digital Library [5], Science Direct [75], and SpringerLink [246]. These

digital libraries were selected because they cover the most important publications in soft-

ware architecture (e.g., journal papers, conference proceedings and workshop papers).

It is important to notice that in any systematic study there is a potential of missing the

relevant studies in the selected digital libraries. Because of this, we used a manual search

approach on Google Scholar [102] aiming at complementing the results of the automatic

searches with additional systematic studies.

Selecting studies. We included all candidate studies returned from the automated

search (I1) and the selected candidate studies from the manual search (I2). Exclusion

criteria were defined to select the secondary studies for analysis from the set of all candi-

date studies initially obtained. We read the title and abstract from all candidate studies

in order to exclude the papers that were not systematic literature reviews or mapping

studies focusing on software architecture (E1), duplicated papers (E2), and papers writ-

ten in a language different from English (E3). Once the title and abstract analysis was

concluded, we joined the all candidate studies to make a complete analysis reading the

papers’ full text by applying the same exclusions criteria.

The selected studies were cataloged into a bibliography management tool [197], and

the data related to our research was extracted to a spreadsheet workbook previously

51

CHAPTER 3. SOFTWARE ARCHITECTURE

structured as a form. We extracted publication data showing characteristics of the in-

cluded secondary studies (i.e., research source, title, authors, year of publication, type of

publication, and venue) and information required to answer our two research questions.

Classifying selected studies. We used three important facets for classifying the studies

namely study type, research topics, and publication venues. The study type facet consists of

the following categories: Systematic Literature Review (SLR) and Systematic Mapping

Study (SMS). To do the research topic facet, we selected the topics of interest from the

special issue “New Frontiers in Software Architecture” of the Journal of Systems and Soft-

ware (JSS) and from the call for papers of the Working IEEE/IFIP Conference on Software

Architecture (WICSA), and used them to classify the research topics in Software Archi-

tecture. Thus, the research topic facet consists of twenty five categories, listed in Table

3.8. The publication venue facet consists of journal, conference, symposium, workshop,

technical report, and others. These facets are used to classify the studies for answering

the research questions.

Assessing the quality of the studies. Although there is no agreed definition on what a

high level quality study is, there is a common agreement that the quality of the chosen

primary studies is critical for obtaining trustworthy results in empirical studies [149]. We

followed the widely accepted quality assessment criteria proposed by Kitchenham et al.
[150] for systematic tertiary studies. The summary of these quality assessment criteria is

as follows:

QA1: Are the inclusion and exclusion criteria described and appropriate? Score: YES, if

inclusion criteria are explicit, PARTLY, if the inclusion criteria are implicit; NO, if

inclusion criteria are not defined.

QA2: Is the literature search likely to have covered all relevant studies? Score: YES, if

two or more complete search strategies are used. For instance, automated search

on minimum four digital libraries and manual search on all potential publication

forums considered to be complete; PARTLY if search strategy has complete primary

search strategy and incomplete or no secondary search strategy; NO, the authors

have used incomplete search strategy. For instance, a search in up two digital

libraries or in an extremely restricted set of publication forums is considered to be

incomplete.

QA3: Did the reviewers assess the quality/validity of the included studies? Score: YES,

if there is explicit quality criteria definition, and reporting of the score; PARTLY,

if quality issues are covered in the research questions; NO, if there is no explicit

quality assessment.

QA4: Were the basic data/studies adequately described? Score: YES, if the information

about each primary study is reported; PARTLY, if the information about primary

52

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

studies are grouped or only the summary is provided; NO, if there is no data about

each primary study.

The scoring procedure was YES = 1, PARTLY = 0.5, NO = 0, or Unknown (i.e., the

information is not specified).

Collecting the Data. The following data was extracted from selected systematic studies

and the collected data is used to map the studies under the appropriated categories:

• Number of selected primary studies: Quantity of the selected primary studies

reported in the systematic study to answer RQ1.1.

• Time span: The date range used to search the primary studies to answer RQ1.2.

• List of the included primary studies: Verify if the systematic study provides the

list of the selected primary studies to answer RQ1.3 (YES or NO).

• Quality assessment data: Assess the quality of the studies in relation to search

strategy, inclusion/exclusion criteria, quality assessment strategy, and level of the

detail about the primary studies to answer RQ1.4.

• Target audience: Find out the target audience to answer RQ1.5 (Researchers, practi-
tioners, or both).

• Publication data: Find out the publication types, publishers and the publication

venues where the selected systematic studies are published to answer RQ1.6.

• Research topic: Number of papers per category of the classification scheme to an-

swer RQ2.

• Number of selected systematic studies: Quantity of systematic literature review

and mapping studies focusing on software architecture to answer RQ3.1.

• Author details: Author names, affiliation, country to uniquely identify the studies

to answer RQ3.2

• Impact: Number of citations in Google scholar3 [102] to answer RQ3.3.

Reviewing the protocol. The protocol was reviewed following Kitchenham’s guidelines

[148] by three external reviewers to reduce bias (all of them have published systematic

studies).

3This includes self citations.

53

CHAPTER 3. SOFTWARE ARCHITECTURE

3.3.2 Conduction

This section presents the search results, identifies relevant systematic studies to answer

the ten research questions, and shows the quality assessment scores. Figure 3.4 shows

the process performed to search for the secondary studies.

Figure 3.4: Study searching and selection process.

Results. We performed the automated search in four digital libraries (IEEEXplore [124],

ACM [5], ScienceDirect [75], and Springerlink [246]) and the manual search in Google

Scholar [102]. We obtained a set of 2127 (2087 from automated search + 40 from manual

search) candidate secondary studies. The subsequent filtering process (as detailed in

Table 3.4) resulted in 63 secondary studies. The list of selected systematic studies is in

Table 3.5.

The last row of Table 3.4 shows the total number of included secondary studies from

the digital libraries (automatic and manual searches). Despite the apparent significant

differences between the total number of candidate studies obtained from each digital

library, the most effective source seems to be ACM [5] with 18 out of 63 candidate studies.

Table 3.4: Search results for automated and manual searches.

Criteria ACM IEEExplore Science Direct Springer Link Google scholar Sum
I1 +81 +50 +45 +1911 0 +2087
I2 0 0 0 0 +40 +40
E1 -51 -36 -32 -1882 0 -2001
E2 -11 -6 -6 -16 -23 -62
E3 -1 0 0 0 0 -1

Total 18 8 7 13 17 63

I1 - Included candidate studies from automatic search.
I2 - Included candidate studies from manual search.
E1 - Excluded studies that were not SS on software architecture.
E2 - Excluded duplicated studies.
E3 - Excluded studies that were not written in English.

54

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

Table 3.5: Selected studies for the tertiary study on software architecture.

Id Paper

S1 Jamshidi, P., Ghafari, M., Ahmad, A., and Pahl, C. "A Framework for Classifying and Compar-

ing Architecture-centric Software Evolution Research."Software Maintenance and Reengineering

(CSMR), 2013 17th European Conference on. IEEE, 2013.

S2 Weinreich, Rainer, and Iris Groher. "A fresh look at codification approaches for sakm: A systematic

literature review."European Conference on Software Architecture. Springer, Cham, 2014.

S3 Me, Gianantonio, Coral Calero, and Patricia Lago. "A long way to quality-driven pattern-based

architecting."European Conference on Software Architecture. Springer, Cham, 2016.

S4 Durelli, Rafael S., et al. "A mapping study on architecture-driven modernization."Information

Reuse and Integration (IRI), 2014 IEEE 15th International Conference on. IEEE, 2014.

S5 Abdellatief, Majdi, et al. "A mapping study to investigate component-based software system

metrics."Journal of Systems and Software 86.3 (2013): 587-603.

S6 Murugesupillai, Esan, Bardia Mohabbati, and Dragan Gašević. "A preliminary mapping study

of approaches bridging software product lines and service-oriented architectures."Proceedings of

the 15th International Software Product Line Conference, Volume 2. ACM, 2011.

S7 Aulkemeier, F., Schramm, M., Iacob, M. E., and Van Hillegersberg, J.. "A service-oriented e-

commerce reference architecture."Journal of theoretical and applied electronic commerce research

11.1 (2016): 26-45.

S8 Javed, Muhammad Atif, and Uwe Zdun. "A systematic literature review of traceability approaches

between software architecture and source code."Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering. ACM, 2014.

S9 Procaccianti, Giuseppe, Patricia Lago, and Stefano Bevini. "A systematic literature review on en-

ergy efficiency in cloud software architectures."Sustainable Computing: Informatics and Systems

7 (2015): 2-10.

S10 Rouhani, Babak Darvish, et al. "A systematic literature review on Enterprise Architecture Imple-

mentation Methodologies."Information and Software Technology 62 (2015): 1-20.

S11 Pourmirza, S., Peters, S., Dijkman, R., and Grefen, P.. "A systematic literature review on the

architecture of business process management systems."Information Systems 66 (2017): 43-58.

S12 Guessi, M., Neto, V. V., Bianchi, T., Felizardo, K. R., Oquendo, F., and Nakagawa, E. Y..

"A systematic literature review on the description of software architectures for systems of sys-

tems."Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM, 2015.

S13 Alshuqayran, Nuha, Nour Ali, and Roger Evans. "A systematic mapping study in microservice

architecture."Service-Oriented Computing and Applications (SOCA), 2016 IEEE 9th International

Conference on. IEEE, 2016.

S14 Yang, Chen, Peng Liang, and Paris Avgeriou. "A systematic mapping study on the combination of

software architecture and agile development."Journal of Systems and Software 111 (2016): 157-

184.

S15 Breivold, Hongyu Pei, Ivica Crnkovic, and Magnus Larsson. "A systematic review of software

architecture evolution research."Information and Software Technology 54.1 (2012): 16-40.

S16 Shahin, Mojtaba, Peng Liang, and Muhammad Ali Babar. "A systematic review of software archi-

tecture visualization techniques."Journal of Systems and Software 94 (2014): 161-185.

S17 Nikpay, F., Ahmad, R., Rouhani, B. D., and Shamshirband, S. . "A systematic review on post-

implementation evaluation models of enterprise architecture artefacts."Information Systems Fron-

tiers (2016): 1-20.

Continues on next page

55

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.5 – Continuation from previous page

Id Paper

S18 de Oliveira, Lucas Bueno Ruas. "A Systematic Review on Service-Oriented Reference Models and

Service-Oriented Reference Architectures."Technical Report, São Paulo University. 2010.

S19 Martínez Fernández, Silverio Juan, et al. "Aggregating empirical evidence about the benefits and

drawbacks of software reference architectures."Empirical Software Engineering and Measurement

(ESEM), 2015 ACM/IEEE International Symposium on. 2015.

S20 Li, Zengyang, Peng Liang, and Paris Avgeriou. "Application of knowledge-based approaches in

software architecture: A systematic mapping study."Information and Software Technology 55.5

(2013): 777-794.

S21 Tabares, Luis, Jhonatan Hernandez, and Ivan Cabezas. "Architectural approaches for implement-

ing clinical decision support systems in cloud: a systematic review."Connected Health: Applica-

tions, Systems and Engineering Technologies (CHASE), 2016 IEEE First International Conference

on. IEEE, 2016.

S22 Lytra, Ioanna, Stefan Sobernig, and Uwe Zdun. "Architectural decision making for service-based

platform integration: A qualitative multi-method study."Software Architecture (WICSA) and

European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference

on. IEEE, 2012.

S23 Guessi, M., Nakagawa, E. Y., Oquendo, F., and Maldonado, J. C. "Architectural description

of embedded systems: a systematic review."Proceedings of the 3rd international ACM SIGSOFT

symposium on Architecting Critical Systems. ACM, 2012.

S24 Ali, Nour, Sarah Beecham, and Ivan Mistrik. "Architectural knowledge management in global soft-

ware development: a review."Global Software Engineering (ICGSE), 2010 5th IEEE International

Conference on. IEEE, 2010.

S25 Lewis, Grace, and Patricia Lago. "Architectural tactics for cyber-foraging: Results of a systematic

literature review."Journal of Systems and Software 107 (2015): 158-186.

S26 Salama, Maria, Rami Bahsoon, and Nelly Bencomo. "Managing trade-offs in self-adaptive software

architectures: A systematic mapping study."Managing trade-offs in adaptable software architec-

tures. 2017. 249-297.

S27 Williams, Byron J., and Jeffrey C. Carver. "Characterizing software architecture changes: A

systematic review."Information and Software Technology 52.1 (2010): 31-51.

S28 Weyns, Danny, and Tanvir Ahmad. "Claims and evidence for architecture-based self-adaptation:

a systematic literature review."European Conference on Software Architecture. Springer, Berlin,

Heidelberg, 2013.

S29 Juziuk, Joanna, Danny Weyns, and Tom Holvoet. "Design patterns for multi-agent systems: a

systematic literature Review."Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg,

2014.

S30 Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X., and Papazoglou, M. P.. "Development

of service-oriented architectures using model-driven development: A mapping study."Information

and Software Technology 62 (2015): 42-66.

S31 Maric, M., Matkovic, P., Tumbas, P., and Pavlicevic, V.. "Documenting Agile Architecture: Practices

and Recommendations."EuroSymposium on Systems Analysis and Design. Springer, Cham, 2016.

S32 Dersten, Sara, Jakob Axelsson, and Joakim Froberg. "Effect analysis of the introduction of autosar:

A systematic literature review."Software Engineering and Advanced Applications (SEAA), 2011

37th EUROMICRO Conference on. IEEE, 2011.

S33 Stelzer, Dirk. "Enterprise architecture principles: literature review and research

directions."Service-oriented computing. ICSOC/ServiceWave 2009 workshops. Springer, Berlin,

Heidelberg, 2010.

Continues on next page

56

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

Table 3.5 – Continuation from previous page

Id Paper

S34 Herold, Sebastian, Martin Blom, and Jim Buckley. "Evidence in architecture degradation and

consistency checking research: preliminary results from a literature review."Proccedings of the

10th European Conference on Software Architecture Workshops. ACM, 2016.

S35 Qureshi, Nadia, Muhammad Usman, and Naveed Ikram. "Evidence in software architecture, a

systematic literature review."Proceedings of the 17th International Conference on Evaluation and

Assessment in Software Engineering. ACM, 2013.

S36 Gu, Qing, and Patricia Lago. "Exploring service-oriented system engineering challenges: a system-

atic literature review."Service Oriented Computing and Applications 3.3 (2009): 171-188.

S37 Zhu, Meng, Alf Inge Wang, and Hong Guo. "From 101 to nnn: a review and a classification of

computer game architectures."Multimedia systems 19.3 (2013): 183-197.

S38 Tang, A., Razavian, M., Paech, B., and Hesse, T. M.. "Human aspects in software architecture

decision making: a literature review."Software Architecture (ICSA), 2017 IEEE International Con-

ference on. IEEE, 2017.

S39 Neto, C. R. L., Cardoso, M. P. S., Chavez, C. V. F. G., and de Almeida, E. S.. "Initial evidence for

understanding the relationship between product line architecture and software architecture re-

covery."Components, Architectures and Reuse Software (SBCARS), 2015 IX Brazilian Symposium

on. IEEE, 2015.

S40 Savolainen, Juha, and Varvana Myllarniemi. "Layered architecture revisited—Comparison of

research and practice."Software Architecture, 2009 & European Conference on Software Architec-

ture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on. IEEE, 2009.

S41 Haki, Mohammad Kazem, and Christine Legner. "New avenues for theoretical contributions in

enterprise architecture principles-a literature review."Trends in Enterprise Architecture Research

and Practice-Driven Research on Enterprise Transformation. Springer, Berlin, Heidelberg, 2012.

182-197.

S42 Saavedra, V., Dávila, A., Melendez, K., and Pessoa, M.. "Organizational maturity models architec-

tures: a systematic literature review."International Conference on Software Process Improvement.

Springer, Cham, 2016.

S43 Tofan, D., Galster, M., Avgeriou, P., and Schuitema, W.. "Past and future of software architectural

decisions–A systematic mapping study."Information and Software Technology 56.8 (2014): 850-

872.

S44 Affonso, F. J., Scannavino, K. R., Oliveira, L. B., and Nakagawa, E. Y.. "Reference architec-

tures for self-managed software systems: a systematic literature review."Software Components,

Architectures and Reuse (SBCARS), 2014 Eighth Brazilian Symposium on. IEEE, 2014.

S45 Arshad, Ali, and Muhammad Usman. "Security at software architecture level: A systematic

mapping study."Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual

Conference on. IET, 2011.

S46 Loya, S. R., Kawamoto, K., Chatwin, C.,and Huser, V. "Service oriented architecture for clinical

decision support: a systematic review and future directions."Journal of medical systems 38.12

(2014): 140.

S47 Molta, Y. H., Sarwar, A., Abbasi, M. A., and Jabeen, J.. "Software architecture and requirements:

A systematic literature review."Information and Communication Technologies (ICICT), 2015 In-

ternational Conference on. IEEE, 2015.

S48 Weinreich, Rainer, and Iris Groher. "Software architecture knowledge management ap-

proaches and their support for knowledge management activities: A systematic literature re-

view."Information and Software Technology 80 (2016): 265-286.

Continues on next page

57

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.5 – Continuation from previous page

Id Paper

S49 Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., and Meedeniya, I.. "Software architecture

optimization methods: A systematic literature review."IEEE Transactions on Software Engineering

39.5 (2013): 658-683.

S50 Ahmad, Aakash, and Muhammad Ali Babar. "Software architectures for robotic systems: A sys-

tematic mapping study."Journal of Systems and Software 122 (2016): 16-39.

S51 Cruz-Benito, Juan, Roberto Therón, and Francisco J. García-Peñalvo. "Software architectures

supporting human-computer interaction analysis: A literature review."International Conference

on Learning and Collaboration Technologies. Springer, Cham, 2016.

S52 Stevanetic, Srdjan, and Uwe Zdun. "Software metrics for measuring the understandability of archi-

tectural structures: a systematic mapping study."Proceedings of the 19th International Conference

on Evaluation and Assessment in Software Engineering. ACM, 2015.

S53 Koziolek, Heiko. "Sustainability evaluation of software architectures: a systematic re-

view."Proceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–

ISARCS on Quality of software architectures–QoSA and architecting critical systems–ISARCS.

ACM, 2011.

S54 Szvetits, Michael, and Uwe Zdun. "Systematic literature review of the objectives, techniques,

kinds, and architectures of models at runtime."Software & Systems Modeling 15.1 (2016): 31-69.

S55 e Silva, Glauco de Sousa, et al. "Systematic Mapping of Architectures for Telemedicine Sys-

tems."International Conference on Computational Science and Its Applications. Springer, Berlin,

Heidelberg, 2013.

S56 Palacios, Marcos, José García-Fanjul, and Javier Tuya. "Testing in Service Oriented Architectures

with dynamic binding: A mapping study."Information and Software Technology 53.3 (2011): 171-

189.

S57 Boucharas, V., van Steenbergen, M., Jansen, S., and Brinkkemper, S.. "The contribution

of enterprise architecture to the achievement of organizational goals: a review of the evi-

dence."International Workshop on Trends in Enterprise Architecture Research. Springer, Berlin,

Heidelberg, 2010.

S58 Mahdavi-Hezavehi, Sara, Matthias Galster, and Paris Avgeriou. "Variability in quality attributes

of service-based software systems: A systematic literature review."Information and Software Tech-

nology 55.2 (2013): 320-343.

S59 Groher, Iris, and Rainer Weinreich. "Variability support in architecture knowledge management

approaches: a systematic literature review."System Sciences (HICSS), 2015 48th Hawaii Interna-

tional Conference on. IEEE, 2015.

S60 Ahmed, Musa Midila, and Sukumar Letchmunan. "A systematic literature review on challenges

in service oriented software engineering."International Journal of Software Engineering and Its

Applications 9.6 (2015): 173-186.

S61 Razavian, Maryam, and Patricia Lago. "A systematic literature review on SOA migration."Journal

of Software: Evolution and Process 27.5 (2015): 337-372.

S62 Razavian, Maryam, and Patricia Lago. "A frame of reference for SOA migration."European Confer-

ence on a Service-Based Internet. Springer, Berlin, Heidelberg, 2010.

S63 Teka, Abelneh Y., Nelly Condori-Fernandez, and Brahmananda Sapkota. "A systematic litera-

ture review on service description methods."International Working Conference on Requirements

Engineering: Foundation for Software Quality. Springer, Berlin, Heidelberg, 2012.

Demography of the selected studies. Figure 3.5 shows the publication period (January

2009 to June 2017) of the systematic studies. From 2009 to 2016 there is a significant

58

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

increase in the number of systematic studies. We cannot state the exact reason for this

difference in the number of articles published per year, however, the number of articles in

2016 has grown abnormally (more than five times greater than the number of publications

in 2009). In general terms, the result show the increasing interest in the systematic studies

in the software architecture research since 2009.

Figure 3.5: Publication period of the selected systematic studies.

Quality assessment of Systematic Studies. We assessed the quality of each selected

study as per the Quality Assessment (QA) criteria discussed previously. The total scores

of each systematic study are listed in the Table 3.6. As the scale used is from 0 to 4, the

score 2 is considered the neutral. In other words, a selected study with QA score > 2 is

considered to have good quality. We identified 30 studies with QA score > 2 (50.84%), 17

studies with QA score = 2 (28.81%), and 16 studies with QA score < 2 (27.11%). More

details are given in the next section.

Table 3.6: List of selected systematic studies.

ID Year Venue Publisher Review Type QA Score

S1 2013 CSMR IEEE SLR 3.5

S2 2014 ECSA Springer SLR 4

S3 2016 ECSA Springer SMS 2

S4 2014 IRI IEEE SMS 2.5

S5 2012 JSS Elsevier SMS 3.5

S6 2011 SPLC ACM SMS 2.5

S7 2016 JTAER Universidad de Talca SLR 3

S8 2014 EASE ACM SLR 2.5

S9 2014 SUSCOM Elsevier SLR 1.5

S10 2016 IST Elsevier SLR 2.5

S11 2017 Information Systems Journal Elsevier SLR 2.5

S12 2015 SAC ACM SLR 2

S13 2016 SOCA IEEE SMS 1.5

S14 2016 JSS Elsevier SLR 2

Continues on next page

59

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.6 – Continuation from previous page

ID Year Venue Publisher Review Type QA Score

S15 2011 IST Elsevier SLR 3.5

S16 2014 JSS Elsevier SLR 3.5

S17 2016 Information Systems Fron-

tiers

Springer SLR 3

S18 2010 ECSA Springer SLR 2

S19 2015 ESEM IEEE SLR 3

S20 2013 IST Elsevier SMS 3.5

S21 2016 CHASE IEEE SLR 3

S22 2012 WICSA-ECSA IEEE SLR 2.5

S23 2012 ISARCS ACM SLR 2

S24 2010 ICGSE IEEE SLR 2

S25 2015 JSS Elsevier SLR 1.5

S26 2016 Managing Trade-Offs in

Adaptable Software Archi-

tectures

Elsevier SMS 2.5

S27 2010 IST Elsevier SLR 3

S28 2013 ECSA Springer SLR 2.5

S29 2014 Agent-Oriented Software En-

gineering

Springer SLR 2.5

S30 2015 IST Elsevier SMS 2

S31 2016 SIGSAND / PLAIS Springer SLR 0.5

S32 2011 SEAA IEEE SLR 2

S33 2009 ICSOC Springer SLR 2

S34 2016 ECSAW ACM SLR 1.5

S35 2013 EASE ACM SLR 2.5

S36 2009 SOCA Springer SLR 2

S37 2013 Multimedia Systems Springer SLR 1.5

S38 2017 ICSA IEEE SLR 2

S39 2015 SBCARS IEEE SLR 2.5

S40 2009 WICSA-ECSA IEEE SLR 1

S41 2012 TEAR Springer SLR 1.5

S42 2016 CIMPS Springer SLR 3.5

S43 2014 IST Elsevier SMS 3

S44 2014 SBCARS IEEE SLR 2

S45 2011 EASE IET SMS 1.5

S46 2014 Journal of Medical Systems Springer SLR 2

S47 2016 ICICT IEEE SLR 1

S48 2016 IST Elsevier SLR 3.5

S49 2012 TSE IEEE SLR 2

S50 2016 JSS Elsevier SLR 2

S51 2016 LCT Springer SLR 1.5

S52 2015 EASE ACM SLR 2

S53 2011 QoSA-ISARCS ACM SLR 3.5

S54 2016 SoSyM Springer SLR 2

S55 2013 ICCSA Springer SMS 1.5

S56 2011 IST Elsevier SMS 3.5

S57 2010 TEAR Springer SLR 3

Continues on next page

60

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

Table 3.6 – Continuation from previous page

ID Year Venue Publisher Review Type QA Score

S58 2013 IST Elsevier SLR 3.5

S59 2015 HICSS IEEE SLR 3.5

S60 2015 IJSEIA SERSC SLR 2

S61 2015 Journal of Software: Evolu-

tion and Process

Wiley SLR 2

S62 2010 European Conference on a

Service-Based Internet

Springer SLR 2

S63 2012 REFSQ Springer SLR 3

3.3.3 Reporting: Answering the research questions

Based on the analysis of the extracted data from the selected studies, the following para-

graphs discusses the findings that help answering each research question.

RQ1.1: How many primary studies are included in these reviews? The 63 secondary

studies selected analyze a total of 3092 primary studies. The “primary study count” row

of Table 3.7 shows the number of primary studies of each review. [S35] is the secondary

study with more primary studies (230 studies) and [S19] is the one with less (5 in total). 8

out of the 63 secondary studies (12.7%) have more than 100 selected primary studies [S28,

S30, S34, S35, S43, S48, S49, S54], 12 of the secondary studies (19%) have between 50 and

99 [S1, S3, S14, S20, S25, S36, S38, S42, S50, S60], 41 of the secondary studies (65.1%)

have less than 50 selected primary studies [S2, S4-S13, S17-S19, S21, S23, S24, S26,

S27, S29, S31-S33, S37, S39-S41, S44-S47, S51, S52, S55-S59, S61-S63], and 2 secondary

studies (3.2%) do not describe the number of primary studies selected [S22, S53].

RQ1.2: What is the time span covered by these reviews? A good practice is to inform

about the time span (start and end dates) of the search. This is shown in Table 3.7

(see “Time span” row). 21 out of 63 secondary studies (33.3%) do not use a start date

for searches of primary studies. So, these reviews include all published works for their

specific topics [S4, S12, S15, S18, S19, S22-S26, S31, S32, S34, S40, S42, S44, S46, S47,

S53, S54, S57], widening their search space. S35 is the secondary study that defines the

oldest start time (1972). Regarding the time in which each review was performed, the

most recent one is from 2016 [S13, S21, S31, S34] and the oldest is from 2001 [S16].

RQ1.3: Is the list of the included primary studies available? The row “Primary study

list” in Table 3.7 informs if the secondary study lists the selected primary studies. 14 out

of 63 secondary studies (22.2%) do not include the list of primary studies [S3, S4, S12,

S22, S28, S31, S32, S34-S36, S46, S53, S60, S62]. The reason may be due to the limited

number of pages imposed by the publishers. This is most unfortunate, as it does not

facilitate replication nor traceability.

61

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.7: Number of primary studies per review, time span of review and if the review
shows the primary study list

Primary
study
count

Time span Primary
study list

Primary
study
count

Time span Primary
study list

S1 60 1995-2011 yes S33 11 1990-2007 yes
S2 7 2008-2013 yes S34 119 Until 2016 no
S3 99 1990-2015 no S35 230 1972-2013 no
S4 30 Until 2013 no S36 51 2000-2008 no
S5 31 2000-2010 yes S37 40 1990-2009 yes
S6 48 2002-2010 yes S38 81 2005-2015 yes
S7 48 2003-2013 yes S39 28 1998-2015 yes
S8 11 1999-2013 yes S40 11 Until 2008 yes
S9 26 2000-2013 yes S41 19 1990-2011 yes

S10 46 1997-2013 yes S42 70 Until 2015 yes
S11 41 1994-2015 yes S43 144 2002-2012 yes
S12 38 Until 2013 no S44 22 Until 2013 yes
S13 33 2014-2016 yes S45 40 1998-2011 yes
S14 54 2001-2014 yes S46 44 Until 2013 yes
S15 82 Until 2010 yes S47 29 Until 2013 yes
S16 53 1999-2001 yes S48 115 2004-2015 yes
S17 34 2006-2014 yes S49 188 1992-2011 yes
S18 21 Until 2009 yes S50 56 1991-2015 yes
S19 5 Until 2014 yes S51 16 1998-2013 yes
S20 55 2000-2011 yes S52 25 1990-2013 yes
S21 22 2010-2016 yes S53 - Until 2010 no
S22 - Until 2012 no S54 122 Until 2013 yes
S23 24 Until 2011 yes S55 37 1996-2011 yes
S24 25 Until 2009 yes S56 37 2000-2009 yes
S25 58 Until 2013 yes S57 14 Until 2010 yes
S26 20 Until 2015 yes S58 46 2000-2011 yes
S27 23 1997-2007 yes S59 13 2008- 2013 yes
S28 102 2000-2012 no S60 91 2009-2014 no
S29 39 1998-2012 yes S61 31 2000-2013 yes
S30 129 2003-2013 yes S62 44 2000-2010 no
S31 10 Until 2016 no S63 24 2002-2010 yes
S32 20 Until 2010 no

RQ1.4: Is the quality of the primary studies assessed? We have analyzed the limita-

tions of the existing systematic studies based on the quality assurance score (see Section

3.3.1). Regarding QA1 (inclusion and exclusion criteria for selecting primary studies),

the results show that the quality of the studies is very good. 52 out of the 63 secondary

studies (82.5%) explicitly describe the inclusion and exclusion criteria (QA score = 1)

[S1-S30, S32, S35, S36, S39, S42-S44, S46, S48-S50, S52-S56, S58-S63], 10 studies (15.9%)

show the implicit inclusion and exclusion criteria (QA score = 0.5) [S33, S34, S37, S38,

S40, S41, S45, S47, S51, S57], and only one study (1.6%) does not describe any of these

criteria [S31].

Regarding QA2, we found that 17 secondary studies (27%) explicitly describe using

manual and automatic search on four or more digital libraries [S1, S2, S5, S6, S16, S20,

62

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

S26, S29, S33, S39, S42, S43, S48, S56, S57-S59], 43 secondary studies (68.2%) show

the implicit manual and automatic search or do not use more than three digital libraries

[S3, S4, S7, S10-S12, S14, S15, S17-S19, S21-S25, S27, S28, S30-S32, S34-S38, S40, S41,

S41-S47, S49-S55, S60-S63], and only three secondary studies (4.8%) do not describe any

use of manual or automatic search [S8, S9, S13].

With respect to QA3, we found that 23 secondary studies (38.3%) scored full mark

(score = 1) as all 63 secondary studies reported on the evaluation of the quality assessment

of the primary studies [S1, S2, S5, S7, S8, S10, S15-S17, S19-S22, S27, S28, S42, S48, S53,

S56-S59, S63]. In one secondary study the QA score is 0.5 [S35]. Surprisingly, in 39

secondary studies, the quality assessment of primary studies (62%) is not considered

[S3, S4, S6, S9, S11-S14, S18, S23-S26, S29-S34, S36-S41, S43-S47, S49-S52, S54, S55,

S60-S62]. This is an important limitation that the researchers should address in future

systematic studies.

Regarding QA4, only 7 secondary studies (11.1%) give details about the primary

studies individually [S2, S4, S11, S15, S38, S43, S53]. In 48 secondary studies (76.2%)

show the information about the primary studies in an aggregated form [S1, S3, S5-S9,

S12-S14, S16-S21, S23, S24, S26, S27, S29, S30, S32-S37, S39, S41, S42, S44-S46, S48-S52,

S54, S56-S63] and 8 secondary studies (12.7%) do not describe the primary studies data

adequately [S10, S22, S25, S28, S31, S40, S47, S55].

RQ1.5: Who is the secondary study targeted to? 6 secondary studies (9.5%) are tar-

geted to practitioners [S3, S25, S29, S32, S47, S58], 20 secondary studies (31.7%) to

researchers [S4, S6, S26, S30, S34, S36, S38, S40, S41, S44, S45, S49, S51, S53, S54, S56,

S59, S61-S63], and 26 secondary studies (41.3%) to both practitioners and researchers

[S1. S5, S7, S8, S10, S13-S21, S28, S33, S35, S37, S39, S43, S46, S48, S50, S52, S57, S60].

11 secondary studies (17.5%) do not describe their target [S2, S9, S11, S12, S22-S24, S27,

S31, S42, S55].

RQ1.6: Which publication venues are most commonly used? The goal is to find out

the publication types and the publication venues where the selected systematic studies

are published. 34 secondary studies (53.9%) are published in conferences [S1-S4, S6,

S8, S12, S13, S18, S19, S21-S24, S28, S31, S32, S34-S36, S38-S40, S42, S44, S45, S47,

S51-S53, S55, S59, S62, S63], followed by 25 secondary studies (39.7%) in journals [S5,

S7, S9-S11, S14-S17, S20, S25, S27, S30, S37, S41, S43, S46, S48-S50, S54, S56, S58, S60,

S61], 2 secondary studies (3.1%) in workshops [S33, S57], and 2 secondary studies (3.1%)

in others venues (e.g., Universities publication) [S26, S29].

Regarding where the selected systematic studies were published, we found that In-

formation and Software Technology journal (IST has 9 studies — 14.2%) as the most

targeted venue [S10, S15, S20, S27, S30, S43, S48, S56, S58]. Next, Journal of Systems and

Software (JSS has 5 secondary studies — 7.9%) [S5, S14, S16, S25, S50], European Confer-

ence on Software Architecture (ECSA has 4 secondary studies — 6.3%) [S2, S3, S18, S28],

63

CHAPTER 3. SOFTWARE ARCHITECTURE

international conference on Evaluation and Assessment in Software Engineering (EASE

has 4 secondary studies — 6.3%) [S8, S35, S45, S52], Working IEEE/IFIP Conference on

Software Architecture & European Conference on Software Architecture (WICSA-ECSA

has 2 secondary studies — 3.1%) [S22, S40], IEEE International Conference on Service-

Oriented Computing and Applications (SOCA has 2 secondary studies — 3.1%) [S13,

S36], Brazilian symposium on components, architecture and software reuse (SBCARS has

2 secondary studies — 3.1%) [S39, S44], and others 35 different venues with 1.6% each

[S1, S4, S6, S7, S9, S11, S12, S17, S19, S21, S23, S24, S26, S29, S31-S34, S37, S38, S41,

S42, S46, S47, S49, S51, S53-S55, S57, S59-S63].

RQ2: What is the current status of consolidation of data collected from different liter-

ature reviews on software architecture? The answer to this question started with an

analysis of both, the topics of interest of WICSA and the JSS special issue on new frontiers

in software architecture. Each of these topics were associated to a category against which

the research questions of the secondary studies were mapped. It is important to notice

that some secondary studies were mapped in more that one category (e.g., S6 was mapped

to CAT25 and CAT1). Table 3.8 shows the result of this mapping process, together with

the identifier of secondary study and the total number of studies in each category. The

category Developments in architectural design, analysis and evaluation (CAT1) emerged as

the most researched by the 63 secondary studies.

The findings for the categories are summarized next, following their order of appear-

ance in Table 3.8, except for CAT9-CAT13, CAT15, CAT16, CAT21, CAT23, and CAT24

which have no secondary studies associated.

– CAT1: Developments in architectural design, analysis and evaluation. The stud-

ies from CAT1 include a wide range of topics, such as metrics definition and methods

for architectural evaluation [S5, S6, S17, S18, S27, S52, S53, S56], quality attributes anal-

ysis [S3, S30, S43, S45, S52, S53, S58, S60, S63], design strategies for specific types of

development environments (e.g., cyber-foraging [S25], model-driven development [S30],

automotive open software architecture [S32], component-based architecture [S5, S51],

service-based architecture [S58, S7, S13, S36, S46, S63], decision support for clinical

systems [S46, S21], computer game architecture [S37], benefits and best practices of use

of reference architectures [S7, S19, S22, S23], use of architectural patterns [S22, S29],

architecture erosion [S35], architecture for web application [S47], and human aspects in

software architecture decision making [S51, S38].

– CAT2: Management of architectural knowledge, decisions, and rationale. The re-

search questions of the secondary studies concerning CAT2 point to the importance of

documenting architectural decisions to mitigate the “architectural vaporization knowl-

edge” during architecture evolution [S59, S20, S24] and also highlight that there are still

64

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

Table 3.8: Categories and corresponding number of secondary studies

Id Category Studies Quantity

CAT1 Developments in architectural design, anal-
ysis and evaluation

S3, S5-S7, S13, S17-S19, S21-
S23, S25, S29, S30, S32, S35-
S38, S40, S43, S45-S47, S51-
S53, S56, S58, S60, S63

31

CAT2 Management of architectural knowledge,
decisions, and rationale

S2, S20, S24, S48, S59 5

CAT3 Innovative architecture centric process,
models and frameworks

S8 1

CAT4 Software architecture and agility S14, S31 2
CAT5 Architecture-centric model driven engineer-

ing
S30, S54 2

CAT6 Architectures for reconfigurable and self-
adaptive systems

S26, S28, S44 3

CAT7 Architectures for ultra-large scale, long-
lived systems and systems-of-systems

S12 1

CAT8 Software architecture and the cloud S9, S21 2
CAT9 Software architecture and virtualization 0
CAT10 Software architecture and big data 0
CAT11 Architectures for cyber-physical systems 0
CAT12 Architectural concerns of autonomic sys-

tems
0

CAT13 Software architecture and system architec-
ture, including software-defined network-
ing

0

CAT14 Software tools and environments for
architecture-centric software engineering

S1, S8, S10, S14 4

CAT15 Industrial applications, case studies, best
practices and experience reports

0

CAT16 Architecting the internet of things 0
CAT17 Architectural reconstruction techniques, re-

factoring and evolving architecture design
decisions and solutions

S1, S4, S15, S27, S34, S39,
S49, S61, S62

9

CAT18 Architecture description languages S12, S16 2
CAT19 Energy-awareness and sustainability S9, S53 2
CAT20 Software architectures for emerging sys-

tems
S25, S37, S50, S55 4

CAT21 Software architecture for legacy systems
and systems integration

0

CAT22 Cultural, economic, business and manage-
rial aspects of software architecture

S10, S11, S17, S33, S41, S42,
S57

7

CAT23 Software architects’ roles and responsibili-
ties

0

CAT24 Training, education, and certification of
software architects

0

CAT25 Open architectures, product-line architec-
tures, software ecosystems

S6, S39, S58, S59 4

many critical open issues that need to be addressed to enable widespread adoption of ar-

chitectural Knowledge maintenance in industry (e.g., cost-efficient capturing, long-term

perspective, holistic approaches, and industrial validation) [S2, S48].

– CAT3: Innovative architecture centric process, models and frameworks. The study

associated with CAT3 focus on traceability approaches between software architecture and

65

CHAPTER 3. SOFTWARE ARCHITECTURE

source code [S8]. It highlights that most of the existing traceability approaches between

software architecture and source code provide insufficient support to address the various

architectural concerns. For instance, there is a need to more precisely address various

stakeholder issues, quality concerns, and software development artifacts across various

architectural or design views.

– CAT4: Software architecture and agility. Regarding CAT4, only [S14] and [S31]

report on agile development. [S14] verifies which architectural activities can be practiced

in an agile context and what are the costs and benefits, challenges and factors that have

an impact on the success of applying the architecture-agility combination. [S31] focuses

on the documentation of the agile architecture and it highlights that agile practitioners

do not renounce architecture documenting activities, but rather consider them significant

in the development of complex systems.

– CAT5: Architecture-centric model driven engineering. For CAT5, [S30] shows

what are the characteristics of model-driven development supporting service-oriented

architectures (SOA), which SOA is supported, and how these approaches handle non-

functional requirements. [S54] identifies different objectives of architectures of models at

runtime (e.g., adaptation, abstraction, consistency, conformance, error handling, monitor-

ing, simulation, prediction, platform independence, and policy checking/enforcement).

It also identifies different techniques when processing runtime models to extract run-

time data, raise the abstraction level and enforce constraints (e.g., introspection, model

conformance, model comparison, model transformation, and model execution).

– CAT6: Architectures for reconfigurable and self-adaptive systems. Studies ad-

dressing CAT6 show how reference architectures have been designed for self-adaptive

systems, as well as what are the claims made and which techniques and kinds of models

have been used [S26, S28, S44].

– CAT7: Architectures for ultra-large scale, long-lived systems and systems-of-systems.

CAT7 is addressed in [S12], focusing on the how system-of-systems software architectures

have been described and highlights the lack of consensus on how to better deal with these

descriptions.

– CAT8: Software architecture and the cloud. For CAT8, we found [S9] and [S21]

focusing on architecture for cloud system. [S9] gives a state-of-the-art of how energy effi-

ciency is addressed by cloud software architectures while [S21] focuses on architectural

approaches for implementing Clinical Decision Support Systems (CDSS) in the cloud.

– CAT14: Software tools and environments for architecture-centric software engi-

neering. For studies addressing CAT14, we noticed the authors’ interest in synthesising

66

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

the existing data about tool support for enterprise architecture implementation [S10],

architecture agility [S14], architecture evolution [S1], and traceability between software

architecture and the source code [S8].

– CAT17: Architectural reconstruction techniques, re-factoring and evolving archi-

tecture design decisions and solutions. For CAT17, the studies show that tools can

be useful to facilitate the enterprise architecture development [S34] and to manage the

impact of a change in a software architecture [S27]. However, most of the existing tools

are proof of concept [S1], and there is a lack of supporting tools for refactoring [S4], prod-

uct line architecture [S39], SOA migration [S61, S62], automatic creation of architectural

models [S49], and orchestration of the evolution of different platforms, decision nodes,

organizations and processes [S15].

– CAT18: Architecture description languages. For CAT18, we found two secondary

studies focusing on architecture description [S12, S16]. [S12] identifies that more research

is needed for effectively using architecture descriptions in the evaluation and evolution

of system-of-systems and [S16] concludes that little attention has been paid to carry

out controlled experiments to evaluate and compare the usefulness (e.g., ease of use,

effectiveness, efficiency, application cost) of the reported visualization techniques and

tools due to the excessive effort and resources needed.

– CAT19: Energy-awareness and sustainability. For CAT19, [S9] highlights that Self-

Adaptation is the most adopted strategy to achieve energy efficiency and that cloud feder-

ation will need more research in the future, due to the diffusion of multi-cloud environ-

ments and the need of optimizing the usage of Cloud infrastructures. In addition, [S53]

highlights that scenario-based methods should better validate their potential return on

investment.

– CAT20: Software architectures for emerging systems. For CAT20, the studies

show that there are gaps and opportunities for research in quality attributes that are

relevant to cyber-foraging systems (e.g., ease of distribution and installation, resiliency,

and security) [S25], that multi-server architectures (e.g., nnn Graph Style) and Peer-to-

Peer architectures (e.g., n0n Graph Style) are the two major architectural patterns for

MMOG in game architecture research [S37], that there is a growth of research with vari-

ous innovative solutions for robotics software architecture (e.g., model-driven and cloud-

based robotics solutions) [S50], and that the client-server architectures are the most used

architectural style to build telemedical applications [S55].

– CAT22: Cultural, economic, business and managerial aspects of software architec-

ture. For CAT22, the studies focus on three different topics: enterprise architecture

67

CHAPTER 3. SOFTWARE ARCHITECTURE

[S33, S41, S10, S17, S57], business process management [S11], and organizational matu-

rity model [S42]. Regarding the enterprise architecture, the studies describe that there

are various gaps in enterprise architecture definition (e.g., there is no accepted definition

of enterprise architecture principles) [S33, S41], practices that need to be considered to

provide a useful enterprise architecture implementation (e.g., architectural design and

requirement management) [S10], lack of methodologies or frameworks for enabling enter-

prise architecture evaluation [S17], and most existing research on enterprise architecture

is targeting information technology and information technology-related effects of enter-

prise architecture [S57]. Regarding the business process management topic, [S11] verifies

that although extensive research has been carried out on the architectures of business

process management systems for a particular company, only a small part of them have

appropriately covered inter-organizational collaboration as well. Regarding the organiza-

tional maturity model topic, [S42] identifies and compares nine architectural styles (e.g.,

SW-CMM-based model) of organizational maturity models for different domains.

– CAT25: Open architectures, product-line architectures, software ecosystems. For

CAT25, the studies show that the main motivating factor for the research papers in soft-

ware product lines was variability management [S6, S58], but few existing works focus

on fully automated recovery of variability at the architectural level [S39]. In addition,

[S59] describes that a broad application of software architecture knowledge management

in the context of variability and software product lines is still missing.

RQ2.2:Is there some secondary study focusing on methods for the derivation of soft-

ware architecture models from requirements specifications? We found 31 systematic

reviews and mapping studies on software architecture in the literature, focusing on devel-

opments in architectural design, analysis and evaluation (CAT1). However, even though

several works discuss requirements at the architectural level, they do not address our

research questions.

RQ3.1:How many systematic reviews, including systematic literature reviews and map-

ping studies, addressing any topic in software architecture, are available? SLRs is

the most frequently used systematic method in the software architecture domain with

51 studies (80.9%) [S1, S2, S7-S12, S14-S19, S21-S25, S27-S29, S31-S42, S44, S46-S54,

S57-S63], almost 4 times more studies than SMS with 12 studies (19.1%) [S3-S6, S13, S20,

S26, S30, S43, S45, S55, S56]. Kitchenham et al. [152] describe a pragmatic comparison

between SLRs and SMSs and, according to this comparison, we would say that all selected

systematic studies are, in fact, SMSs given that they classify and perform a thematic anal-

ysis of specific topics on software architecture, with more generic research questions and

with a broader scope.

68

3.3. STATE OF THE ART ON SOFTWARE ARCHITECTURE: AN

EVIDENCE-BASED TERTIARY STUDY

RQ3.2: What is the origin of these reviews? Regarding the countries, most of the stud-

ies (47 out of 63) were co-authored by researchers from European countries [S1-S4, S7-S9,

S11-S16, S19, S20, S22-S26, S28, S30-S34, S36-S38, S40, S41, S43, S48-S59, S61-S63]

and researchers from South American [S4, S12, S18, S19, S21, S23, S39, S42, S44, S55]

and Asian [S5, S10, S14, S16, S17, S20, S35, S45, S47, S60] countries contributed with

10 studies each. Next, the Oceania countries contributing with 4 studies [S16, S38, S43,

S49] and North American countries contributed with 3 systematic studies as we observed

from collected data [S6, S27, S46].

Table 3.9 shows the number of reviews and authors per country. This shows that The

Netherlands and Brazil are the countries with more authors performing systematic studies

on software architecture (with 27 and 26 authors respectively) and as a consequence they

also are the countries with more selected studies (with 14 and 9 respectively).

Table 3.9: Number of reviews and authors per country

Country Total authors Total studies
The Netherlands 27 14

Brazil 26 9
Spain 16 5

Sweden 11 5
Malaysia 10 3
Austria 8 7
Pakistan 8 3

United Kingdom 8 3
Germany 6 5
Ireland 6 3

Australia 4 3
France 4 3
Serbia 4 1
USA 4 2

China 3 3
Colombia 3 1

Italy 3 2
Norway 3 1

Perú 3 1
Switzerland 3 2

Finland 2 1
Iran 2 2

Belgium 1 1
Canada 1 1

Czech Republic 1 1
Denmark 2 1

New Zealand 1 1
Portugal 1 1

Table 3.10 shows the author’s affiliation with more than two reviews on software

architecture. Vrije Universiteit Amsterdam (The Netherlands) is the institution with

more reviews published, seven in total, followed by Universidade de São Paulo (Brazil)

with 6 in total.

69

CHAPTER 3. SOFTWARE ARCHITECTURE

Table 3.10: Number of reviews per author’s affiliation with at least 2 studies.

Affiliation Reviews Total
Vrije Universiteit Amsterdam S03, S09, S16, S25, S36, S61, S62 7
Universidade de São Paulo S04, S12, S18, S23, S42, S44 6
University of Groningen S14, S20, S43, S58 4
University of Vienna S08, S22, S52, S54 4
Johannes Kepler University Linz S02, S48, S59 3
Wuhan University S14, S16, S20 3
ABB Corporate Research S15, S53 2
International Islamic University S35, S45 2
Linnaeus University S28, S29 2
Mälardalen University S15, S32 2
Swinburne University of Technology S38, S49 2
Universitat Politècnica de Catalunya S19, S30 2
University of Limerick S24, S34 2
University of Malaya S10, S17 2
University of South Brittany S12, S23 2
University of Twente (NL) S07, S63 2

RQ3.3: What is the impact of these reviews, in terms of citations? Figure 3.6 shows

the number of citation of each review. The most cited review is [S49] with 186 citations,

followed by [S15] with 123 citations and by [S27] with 115 citations. The other studies

have less than 100 citations. The selected review’s set h-index4 is 22. In this case, we use

it to assess the impact of the body of publications included in this tertiary study.

Figure 3.6: Number of citations per secondary study.

3.3.4 Threats to validity

The validity threats of this study are related to potential problems associated to the

completeness of our search query and research sources, the secondary studies selection

process, as well as the care and rigorous execution by the authors of the secondary stud-

ies. This is a serious issue because if the quality of the included primary studies is not

evaluated, threats to the validity of the results published by those secondary studies may

put at risk the goodness of the results. To mitigate this risk, we only considered papers

published in peer-reviewed venues as this suggests that the studies were evaluated by

more than one specialist in the area, decreasing the risk of accepting low quality stud-

ies. Also, we considered the use of both automatic and manual search in more than four

4The h-index is the largest number h such that h publications have at least h citations [118]. The h-index
is often used to characterize the scientific output of a researcher.

70

3.4. FINAL CONSIDERATIONS

different digital libraries.

Before and during the execution process of our tertiary study, all steps (e.g., the def-

inition of the research questions, identification of secondary studies, identification of

bibliographic sources, selection of secondary studies, and results) were independently

validated by external reviewers (including faculty members and Ph.D. students who are

members of NOVA LINCS research laboratory) as recommended in [149]. Even though

our research string includes the relevant keywords and we performed an external valida-

tion, there is always a small risk that some secondary studies were not included in our

list of selected papers because either they are not indexed by the source libraries used, or

they do not include the relevant keywords in their title and abstract. To mitigate this risk,

we performed a manual search in Google Scholar [102].

Regarding the limitations of quality assessment, we have followed the QA criteria sug-

gested by Kitchenham et al. [150] which is more suitable for systematic studies. However,

we believe that a lower score for studies does not mean that the quality of the results is

bad. Instead, we just believe that studies do not follow all the good practices suggested

by the EBSE community because there is no definition of what a high level quality study

is [149].

3.4 Final considerations

This Chapter offered an overview of software architecture, service-oriented architecture,

model-driven architecture, and, finally, aggregated consolidated findings on software

architecture through a tertiary study. From this study, we emphasize next some findings

regarding each of the three main questions.

RQ1: What is the currently available information concerning software architecture,

systematically aggregated by means of a systematic literature reviews, or a mapping

study? The 63 selected systematics studies collect 3092 primary studies (RQ1.1) from

1972 until 2016 (RQ1.2). 77.8% of these studies ensure the traceability of their findings

with the primary studies, providing the list of these primary studies (RQ1.3). However,

62% of the selected reviews do not assess the quality of the studies they analyzed (RQ1.4),

showing an important limitation that researchers must address in future systematic stud-

ies on software architecture. Most of reviews (41.3%) are targeted to both researchers and

practitioners (RQ1.5). In addition, despite the fact that most of the studies are published

in conferences (53.9%), the Information and Software Technology journal is the largest

publisher (14.2%) of systematic studies on software architecture (RQ1.6).

RQ2: What is the current status of consolidation of data collected from different lit-

erature reviews on software architecture? Based on our classification scheme with 25

categories, we identified the topics of research with more secondary studies, and the list

of topics not yet covered by such type of studies. Regarding the topics of research with

71

CHAPTER 3. SOFTWARE ARCHITECTURE

systematic studies, we verified that CAT 1 – developments in architectural design, analysis
and evaluation – is the category (topic of research) with more secondary study (31 out 63).

In the future, we plan to update this tertiary study and we identified a need to create a

sub-classification of the secondary studies into this CAT1 to clarify the real distribution

of studies on architectural design, analysis, and evaluation. We believe that there are

sub-topics into CAT1 which have not yet been addressed by systematic studies. For ex-

ample, no secondary studies looking for software architecture derivation methods from

requirements specifications were found. Given that this topic is essential to answer our

Ph.D. research question, we carried out the systematic mapping described in Chapter 4.

We found that 40% of the categories (10 out of 25 categories) have no secondary studies

associated. Some of these categories are software architecture and virtualization, soft-

ware architecture for big data, cyber-physical systems, networking systems, autonomic

systems, and internet of things, empirical approaches to evaluate software architectures,

software architects’ roles and responsibilities, and training, education, and certification

of software architects.

RQ3: Who is performing literature surveys? Systematic literature reviews (SLR) is the

most frequently used systematic method (RQ3.1). However, according to the comparison

between SLR and SMS [152], we believe that the selected SLR are, in fact, SMSs given that

those studies classified and performed a thematic analysis of specific topics on software

architecture, with somewhat generic research questions and with a broader scope. Most

of the selected secondary studies were co-authored by researchers from Europe where

The Netherlands is the country with more authors and secondary studies (RQ3.2) and

the second is Brazil in South American (RQ3.2). Vrije Universiteit Amsterdam (The

Netherlands) is the institution with more secondary studies published, seven in total,

followed by Universidade de São Paulo (Brazil) with 6 in total (RQ3.2). Finally, the set

of 63 secondary studies selected have an h-index of 22, showing that the impact of these

studies is significant.

72

C
h
a
p
t
e
r

4
Deriving architectural models from

requirements specifications

Software architecture derivation methods offer ways to derive architectural models from

requirements specifications. These models must balance different forces that should be

analyzed during this derivation process, such as those imposed by different application

domains and quality attributes. Such balance is difficult to achieve, requiring skilled and

experienced architects. Our tertiary study indicates the nonexistence of secondary studies

looking for software architecture derivation methods. Hence, the purpose of this Chapter

is to perform a second systematic mapping study to provide a comprehensive overview of

the existing methods to derive architectural models from requirements specifications and

offer a research roadmap to challenge the community to address the identified limitations

and open issues that require further investigation. This study follows the traditional

planning, conducting, and reporting phases. This study resulted in 39 primary studies

selected for analysis and data extraction, from the 2575 documents initially retrieved.

The major findings indicate that current architectural derivation methods rely heavily on

the architects’ tacit knowledge (experience and intuition), do not offer sufficient support

for inexperienced architects, and lack explicit evaluation mechanisms. These and other

findings are synthesized in a research roadmap which results would benefit researchers

and practitioners.

4.1 Planning

To plan a mapping study, we start by formulating the research questions and the search

string to run in the digital libraries, next we define the search strategies and the research

sources and studies, then we determine how to assess the quality of the studies and

specify what data should be extracted from the selected studies, and finally, we review

73

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

the protocol, seeking external reviewers to validate and offer any additional suggestions

for improvement.

4.1.1 Formulating the research questions

We used the PICOC method [205], which is recommended to simplify the construction

of the research question. It offers a multi-view definition of the research objective, high-

lighting (in bold in the table) the main research terms.

Table 4.1: PICOC Analysis

Population Papers focusing on the transition from Requirements to Soft-
ware Architecture, considering all types of industries, systems
and application domains.

Intervention Software architecture derivation methods that use any method-
ology, tool, technology, and procedures.

Comparison Not applicable: our intention is to classify the existing derivation
methods based on specific criteria nor to compare the methods
with other methods or processes.

Outcome Overview on the context, benefits to the users, content, and vali-
dation of the software architecture derivation methods.

Context Research papers. We are working in a research context with ex-
perts in the domain as well as other practitioners, academics, con-
sultants and students.

This lead to the definition of the following research question:

RQ: What methods have been proposed for the derivation of software architecture models from
requirements specifications?

4.1.2 Formulating the search string

The key terms in our research question led to the definition of the search query. Table 4.2

shows those terms (first line), as well as the expressions (following lines) that, connected

with AND operators, form the final search query.

74

4.1. PLANNING

Table 4.2: Research Query Building

Research Question What methods have been proposed for the derivation of
software architecture models from requirements specifi-
cations?

Methods (process OR method OR technique OR approach OR
methodology OR framework)

Derivation (derivation OR decomposition OR “decision-making”)

Software Architecture (“architectural architecture” OR “architectural constraint”
OR “architectural pattern” OR “architectural style” OR “ar-
chitectural view” OR “architectural viewpoint” OR “archi-
tectural model” OR “architecture description language” OR
“architecture analysis” OR “architectural analysis” OR “ar-
chitecture documentation”)

Requirements (requirement OR “non-functional” OR “quality attribute”)

4.1.3 Defining the search strategies

Once again, our search strategy used two complementary search methods [269]: auto-

matic and manual. The automatic search uses the search terms from the previous section

to find primary studies on electronic data sources. With the manual search we followed a

forward snowball approach1 to identify additional primary studies focusing on software

architecture.

4.1.4 Selecting the research sources

The search string was run in four digital libraries, without date restrictions: IEEEXplore,

ACM Digital Library, Science Direct, and SpringerLink. As already described in the pre-

vious chapter, these are the libraries covering the most important forums in Computer

Science that publish software architecture works (e.g., journal papers, conference pro-

ceedings and workshop papers), including the best conferences and workshop in the

research area, such as WICSA, ECSA, and QoSA.

4.1.5 Selecting studies

Inclusion and exclusion criteria were defined to help selecting the relevant studies for

analysis and data extraction. We included peer-reviewed papers from journals, confer-

ences and workshops that present methods to design software architecture (I1), relevant

studies cited by authors of the papers we read during the conduction process obtained by

forward snowball search (I2), and relevant studies suggested by experts on the topic of

1There are two types of snowball approaches [128]: backward (from the reference lists) and forward
(finding citations to the papers found).

75

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

research (I3) as recommended in [148]. On the other hand, we excluded informal litera-

ture (slide shows, conference reviews, informal reports), secondary and tertiary studies

(reviews, surveys)2 and studies from conferences, workshops and journals without peer-

review (E1), duplicated studies or studies with the same content (E2), studies that did not

answer the research question (E3), studies not written in English (E4), studies not avail-

able for download from the source bases and whose authors did not reply to our request

(E5), and studies not meeting some quality criteria (E6). In cases of studies complement-

ing their authors’ previous work, only the most cited3 ones were selected, excluding the

other studies as duplicate (E2). With respect to quality criteria, further details are given

in the following section.

The application of these exclusion criteria happened in four rounds. In the first round,

we analyzed all the candidate studies through title and abstract reading. Next, with the

remaining candidate studies, we read the studies’ full text, excluding some and included

others with criterion I2. In the third round, we analyzed the candidate studies included

by I2 through full-text reading. Finally, in the fourth round, we analyzed the candidate

studies included by criterion I3 through full-text reading.

4.1.6 Assessing the quality of the studies

We defined four quality assessment criteria (QA1–QA4) to be considered when applying

the excluding criteria E6, using an approach similar to that in [6] and based on bibliomet-

ric impact information. While QA1 uses a set of general and specific criteria (Table 4.3),

QA2 uses the ranking of the publications fora, QA3 uses the papers’ citations and QA4

relaxes QA3. Each of these criteria is discussed next.

QA1 is calculated using the QualityScore given by eq (1), where the General (G) and

Specific (S) assessment factors are summarized in Table 4.3. The result is a numerical

quantification to rank the selected studies.

QualityScore =

∑4
G=1

4
+

∑4
S=1

4
× 3

 (4.1)

The quality assessment checklist, with G and S composed of four items each and each

one with a maximum score of 1, shows a weighted average, where S weights 3 times more

than G, as the specific contribution of a study is more important than the general factors.

Papers with an overall score >=3 were considered “high” quality studies; papers with a

score >=1.5 and <3 were considered acceptable (“medium” quality); and papers with a

score <1.5 were considered of lower quality and therefore excluded from further analysis.

It is important to clarify that we do not evaluate the quality of the paper itself with this

criterion, but only its contributions’ alignment with our research questions (derivation of

an architectural model from requirements).

2Excluding these type of studies is common practice [148].
3The citation numbers were collected from Google Scholar.

76

4.1. PLANNING

Table 4.3: Quality Assessment Checklist

General Items (G) = 25% Specific Items (S) = 75%

G1: Problem definition and motivation
of the study

S1: Method definition

- Explicit Definition (1) - Formal definition (1)
- General Definition (0,5) - Semi-formal definition (0,5)
- No Definition (0) - Lack of formalism (0)

G2: Research methodology and organi-
zation

S2: Architecture description

- An empirical Methodology (1) - Specifies more than one architectural
viewpoint (1)

- A generalized analysis (0,5) - Describes 1 architectural viewpoint
or 1 Architectural Description Lan-
guage (0,5)

- Lacks any proper methods (0) - Does not specify any architectural
viewpoint nor Architectural Descrip-
tion Language (0)

G3: Contributions of the study refer to
the study results

S3: Evaluation of the study

- Explicit w.r.t state-of-the-art (1) - Formalized empirical evaluation (1)
- Implicit w.r.t state-of-the-art (0,5) - Some informal evidences are pro-

vided (0,5)
- Not determined w.r.t state-of-the-art
(0)

- Non-justified or ad-hoc validation (0)

G4: Insights and lessons learned from
study

S4: Limitations and future implica-
tions of the study

- Explicit and technical description (1) - Formalized empirical evaluations (1)
- General recommendations (0,5) - Some informal evidences are pro-

vided (0,5)
- Not described (0) - Non-justified or ad-hoc validation (0)

QA2 rates papers according to the forums where they were published. It considers

“high” for papers published in forums rated A, and “medium” for papers published in

forums rated B, according CORE-ERA4 for conferences, and SJR5 for journals. QA3 rates

papers according to their citations, giving “high” to papers with more than five citations

and “medium” to papers with one to five citations. The citation numbers are collected

from Google Scholar. QA4 relaxes QA3 by considering papers published after 2010,

4http://portal.core.edu.au/conf-ranks/
5https://www.scimagojr.com/journalrank.php

77

http://portal.core.edu.au/conf-ranks/
https://www.scimagojr.com/journalrank.php

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

which may have fewer citations for being relatively recent6. In this case, papers that have

potentially high relevance have at least one citation, and papers that have not been cited

have potentially medium relevance. To be included in our review, a paper must obtain

QA1>=1.5 and its bibliometric impact criteria QA2-QA4 must be “medium” or higher.

4.1.7 Collecting the Data

To promote the understandability of the area and facilitate the data extraction, the re-

search question was decomposed according to the four dimensions recommended by the

NIMSAD framework7 [132]: Context, Benefits to the User, Content, and Validation. Each

dimension originated several (sub)research questions, as shown in Table 4.4.

Table 4.4: Research question decomposition

Research questions Reasoning

per NIMSAD dimension

Context

What is the main goal of the

method?

Even if the main goal of a method is not to address

the derivation of architectural models from require-

ments specifications, we still register it if the topic is

discussed.

What are the method’s appli-

cation domains?

The scope of the method must be well-defined, and

the application domain helps defining it.

What is the method’s starting

point?

There are many types of requirements specifications

and models. We wish to know what are the require-

ments specification and models used as input.

Benefits to the users

What are the method’s bene-

fits to the users?

A method improves some aspects of software architec-

ture or facilitates some tasks performed by a software

architect. We wish to collect the method’s benefits.

What are the limitations of

the methods?

All methods have benefits and limitations. We wish to

collect the method’s limitations as described by their

authors.

Continues on next page
6The data ranges used in Q2-Q4 are borrowed from [39], which, although not demanding, are a more

inclusive.
7NIMSAD (Normative Information Model-based Systems Analysis and Design) is a framework to evalu-

ate methods.

78

4.1. PLANNING

Table 4.4 – Continuation from previous page

Research questions Reasoning

per NIMSAD dimension

Content

What is the coverage of the

method with respect to (1)

understanding the problem

(specify the architecturally

significant requirements), (2)

finding a solution for the

problem (build the software

architecture), and (3) eval-

uating the solution (check

the alignment between the

requirements and architec-

ture)?

The problem of creating a software architecture

model is not different from solving any other problem.

We wish to know if the method includes activities for

these three phases.

What are the architectural

viewpoints proposed by the

method?

The complexity of a software architecture requires

several views of the solution and different perspec-

tives for different stakeholders. We wish to know

what are the viewpoints suggested.

Does the method define a lan-

guage or notation to represent

the produced artifacts?

Each viewpoint is described using some notation or

language. We wish to know what are these notations

and languages.

What is the level of automa-

tion of the supporting tools?

Automation is a way for decreasing the effort of exe-

cuting the method’s activities.

Validation

How is the method evaluated? The maturity of the method is directly related to how

it was evaluated (e.g., experimentation, case study).

How is the quality of the

method’s output validated?

Another indicator of the maturity of a method is the

evaluation applied the the produced artifacts.

4.1.8 Reviewing the protocol

Once completed, the research protocol must be reviewed by experts external to the study.

Our protocol was evaluated by three reviewers. This evaluation was based on a set of

79

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

slides explaining the study, an evaluation form (with questions for each part of the proto-

col), and the candidate protocol document. The three reviewers inserted their feedback

in the form, and we analyzed it. The evaluation form contained the questions in Table 4.5.

The maximum score for each question was 5. In general, the feedback received was very

good, as the quality assessment results ranged from 75% (average 4) to 100% (average 5).

The reviewing process led to the refinement of the protocol, particularly: we removed

the publication date restriction to be more inclusive with the journals and conferences

chosen, and added the quality score assessment to mitigate any potential subjectivity in

the evaluation of the general and specific factors. Additionally to the protocol evalua-

tion, (i) we performed a pilot to identify any possible issues in the application of the

protocol, and (ii) we used Fabbri’s quality checklist [87] as a supplementary quality step.

This checklist has a number of questions to evaluate the search string, research protocol,

initial selection of studies, final selection of studies, and data extraction. Although no

problems in the protocol were found during the execution of the pilot and performing of

the checklist, an insight was the usefulness of a bibliographic tool to facilitate the man-

agement of all the studies. Thus, the selected studies were cataloged into a bibliography

management tool8, and the data extracted was kept in a spreadsheet workbook.

Table 4.5: Evaluation Score

Question Average

1. Do the research questions cover the specific work objective? 4.6
2. Are the questions clear? 4.6
3. Are the digital libraries representative of the area of study? 5
4. Are you aware of any relevant conference or journal related to this

area of study?
NA∗

5. Are the keywords in the query sufficient to achieve the mapping
study objectives?

4.3

6. Is the query complete (e.g., missing synonyms)? 5
7. Are the Boolean operators adequate and are they used adequately

in the search query?
5

8. Is the data extraction procedure complete enough to achieve the
mapping study objectives?

4.6

9. Are the inclusion/exclusion criteria complete enough to achieve
the mapping study objectives?

5

10. Are the quality assessment criteria complete enough to achieve
the mapping study objectives?

4

* This is an open question where the reviewers were asked to offer a list
of publication fora.

8Papers tool: http://www.papersapp.com

80

http://www.papersapp.com

4.2. CONDUCTION

4.2 Conduction

The execution of the search string (Section 4.1.2) in the four digital libraries retrieved

a total of 2575 candidate primary studies, which were collected and imported into the

bibliographic tool. The following step was to select the primary studies by applying the

inclusion and exclusion criteria, a step that decreased the number of papers to 78 relevant

studies. Table 4.6 summarizes this process. The selected primary studies were read fully,

while still applying the exclusion criteria, and the relevant data was extracted and added

to a spreadsheet workbook previously structured as a form. Next, we applied the quality

assessment approach9, reducing to 39 the total number of studies for final analysis. A

synthesis of the data extracted from these 39 papers is described in the next section and

the list of all these papers can be found in Table 4.7.

Table 4.6: Application of the filtering criteria

Criteria IEEE ACM Science Direct Springer Snowball Experts

I1 +188 +905 +203 +1259 +0 +0
I2 +0 +0 +0 +0 +14 +0
I3 +0 +0 +0 +0 +0 +6
E1 -11 -22 -47 -91 -0 -0
E2 -9 -104 -10 -145 -4 -1
E3 -149 -775 -134 -999 -3 -3
E4 -0 -0 -0 -4 -0 -0
E5 -0 -0 -1 -1 -0 -0
E6 -12 -1 -3 -6 -2 -0

Total 7 3 9 13 5 2
I1 - Included peer-reviewed papers.
I2 - Included relevant studies cited by authors.
I3 - Included relevant studies suggested by experts.
E1 - Excluded informal literature and secondary and tertiary studies.
E2 - Excluded duplicated studies or studies with the same content.
E3 - Excluded studies that did not answer the RQs.
E4 - Excluded studies that were not written in English.
E5 - Excluded studies that were not available for download.
E6 - Excluded studies according to the quality assessment.

919 studies were excluded by QA1, four by QA2, and one by QA3.

81

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

Table 4.7: Selected studies for the mapping study on software architecture derivation

methods.

Id Paper

S1 Z. Durdik,Towards a process for architectural modelling in agilesoftware development, in: Pro-

ceedings of the joint ACM SIGSOFTconference–QoSA and ACM SIGSOFT symposium–ISARCS

on Quality of software architectures–QoSA and architecting critical systems–ISARCS, ACM, pp.

183–192, 2011.

S2 A. S. Nascimento, C. M. Rubira, R. Burrows, F. Castor, A model-driven infrastructure for

developing product line architectures using cvl, in: IEEE VII Brazilian Symposium on Software

Components, Architectures and Reuse (SBCARS), 2013, pp. 119–128.

S3 G. Loniewski, A. Armesto, E. Insfran, An architecture-oriented model-driven requirements

engineering approach, in: Model-Driven Requirements Engineering Workshop (MoDRE), 2011,

IEEE, pp. 31–38.

S4 F. Montero, E. Navarro, Atrium: Software architecture driven by requirements, in: 14th IEEE In-

ternational Conference on Engineering of Complex Computer Systems, 2009, IEEE, pp. 230–239.

S5 L. Dai, K. Cooper, Sixth International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-

Assembling Wireless Network, IEEE, 2005, pp. 178–183.

S6 P. Sochos, M. Riebisch, I. Philippow, The feature-architecture mapping (farm) method for feature-

oriented development of software product lines, in: 13th Annual IEEE International Symposium

and Workshop on Engineering of Computer Based Systems (ECBS2006), 2006.

S7 P. Petrov, U. Buy, R. L. Nord, The need for a multilevel context-aware software architecture

analysis and design method with enterprise and system architecture concerns as first class entities,

in: 9th Working IEEE/IFIP Conference on Software Architecture (WICSA), 2011, pp. 147–156.

S8 E. Woods, N. Rozanski, Using architectural perspectives, in: 5th Working IEEE/IFIP Conference

on Software Architecture (WICSA 2005), 2005. pp. 25–35.

S9 C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, P. America, A general model

of software architecture design derived from five industrial approaches, Journal of Systems and

Software 80 (2007) 106–126.

S10 P. Colombo, F. Khendek, L. Lavazza, Bridging the gap between requirements and design: An

approach based on problem frames and sysml, Journal of Systems and Software 85 (2012) 717–745.

S11 J. Castro, M. Lucena, C. Silva, F. Alencar, E. Santos, J. Pimentel, Changing attitudes towards the

generation of architectural models, Journal of Systems and Software 85 (2012) 463–479.

S12 J. Kim, S. Park, V. Sugumaran, Drama: A framework for domain requirements analysis and

modeling architectures in software product lines, Journal of Systems and Software 81 (2008)

37–55.

S13 A. Casamayor, D. Godoy, M. Campo, Functional grouping of natural language requirements for

assistance in architectural software design, Knowledge-Based Systems 30 (2012) 78–86.

S14 E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, P. Aho, Knowledge based quality-driven

architecture design and evaluation, Information and Software Technology 52 (2010), 577–601.

S15 P. Sanchez, A. Moreira, L. Fuentes, J. Araujo, J. Magno, Model-driven development for early

aspects, Information and Software Technology 52 (2010), 249–273.

S16 J. Perez, N. Ali, J. A. Carsi, I. Ramos, B. Alvarez, P. Sanchez, J. A.Pastor, Integrating aspects in

software architectures: Prisma applied torobotic tele-operated systems, Information and Software

Technology 50 (2008).

Continues on next page

82

4.2. CONDUCTION

Table 4.7 – Continuation from previous page

Id Paper

S17 J. Castro, M. Kolp, J. Mylopoulos, Towards requirements-driven information systems engineering:

the tropos project, Information systems 27 (2002) 365–389.

S18 J. Gonzalez-Huerta, E. Insfran, S. Abrahao, Defining and validating a multimodel approach for

product architecture derivation and improvement, in: International Conference on Model Driven

Engineering Languages and Systems, Springer, pp. 388–404, 2013.

S19 L. Chung, S. Supakkul, N. Subramanian, J. L. Garrido, M. Noguera, M. V. Hurtado, M. L.

Rodriguez, K. Benghazi, Goal-oriented software architecting, in: Relating Software Requirements

and Architectures, Springer, 2011, pp. 91–109.

S20 M. Lucena, J. Castro, C. Silva, F. Alencar, E. Santos, J. Pimentel, A model transformation

approach to derive architectural models from goal-oriented requirements models, in: On the

Move to Meaningful Internet Systems: OTM 2009 Workshops, Springer, pp. 370–380.

S21 S. Tang, X. Peng, Y. Yu, W. Zhao, Goal-directed modeling of self-adaptive software architecture,

Enterprise, Business-Process and Information Systems Modeling (2009) 313–325.

S22 R. Chitchyan, M. Pinto, A. Rashid, L. Fuentes, Compass: composition-centric mapping of

aspectual requirements to architecture, Transactions on aspect-oriented software development IV

(2007) 3–53.

S23 P. Sanchez, L. Fuentes, A. Jackson, S. Clarke, Aspects at the right time, in: Transactions on

aspect-oriented software development IV, Springer,2007, pp. 54–113.

S24 L. Silva, T. Batista, A. Garcia, A. Medeiros, L. Minora, On the symbiosis of aspect-oriented require-

ments and architectural descriptions, Early Aspects: Current Challenges and Future Directions

(2007) 75–93.

S25 R. Cordero, I. Salavert, J. Torres-Jimenez, Designing aspectual architecture views in aspect-

oriented software development, Computational Science and Its Applications-ICCSA 2006 (2006)

726–735.

S26 R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, B. Wood, Attribute-driven

design (ADD), version 2.0, Technical Report, Carnegie-Mellon University Pittsburgh PA Software

Engineering Institute, 2006.

S27 P. America, E. Rommes, H. Obbink, Multi-view variation modeling for scenario analysis, in:

International Workshop on Software Product-Family Engineering, Springer, pp. 44–65, 2003.

S28 F. Bachmann, L. Bass, G. Chastek, P. Donohoe, F. Peruzzi, The architecture based design method,

Technical Report, Carnegie-Mellon University Pittsbutgh PA Software Engineering Institute, 2000.

S29 E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, F. Oquendo, Consolidating a process for

the design, representation, and evaluation of reference architectures, in: IEEE/IFIP Conference

on Software Architecture (WICSA), 2014, IEEE, pp. 143–152.

S30 D. Soni, R. L. Nord, C. Hofmeister, Software architecture in industrial applications, in: 17th

International Conference on Software Engineering, 1995. ICSE 1995., IEEE, pp. 196–196.

S31 P. Kruchten, The rational unified process: an introduction, Addison-Wesley Professional, 2004.

S32 H. Bagheri, K. Sullivan, Model-driven synthesis of formally precise, stylized software architec-

tures, Formal Aspects of Computing 28 (2016) 441.

S33 A. Alebrahim, S. Fassbender, M. Filipczyk, M. Goedicke, M. Heisel, Towards systematic selec-

tion of architectural patterns with respect toquality requirements, in: Proceedings of the 20th

European Conference on Pattern Languages of Programs, ACM, pp. 40, 2015.

S34 L. Tian, L. Zhang, B. Zhou, G. Qian, A gradually proceeded software architecture design process,

in: Software Process Workshop, Springer,pp. 192–205, 2005.

S35 P. Grunbacher, A. Egyed, N. Medvidovic, Reconciling software requirements and architectures

with intermediate models, Software & Systems Modeling 3 (2004) 235–253.

Continues on next page

83

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

Table 4.7 – Continuation from previous page

Id Paper

S36 O. Raiha, H. Kundi, K. Koskimies, E. Makinen, Synthesizing architecture from requirements:

A genetic approach, in: Relating Software Requirements and Architectures, Springer, 2011, pp.

307–331.

S37 K. Pohl, E. Sikora, The co-development of system requirements and functional architecture, in:

Conceptual Modelling in Information Systems Engineering, Springer, 2007, pp. 229–246.

S38 R. F. Passarini, J.M. Farines, J. M. Fernandes, L. B. Becker, Cyber-physical systems design:

transition from functional to architectural models, Design Automation for Embedded Systems 19

(2015) 345–366.

S39 A. Tang, H. Van Vliet, Software architecture design reasoning, in: Software Architecture Knowl-

edge Management, Springer, 2009, pp. 155–174

4.3 Reporting: Study results

This section starts with a summary of the demographic data for the primary studies and

proceeds to discussing the results according to the four NIMSAD dimensions.

4.3.1 Demographic data

Among the various types of publications, 12 are conference papers ([S1, S2, S4-S8, S18,

S24, S25, S29, S30]) and 12 are journal papers ([S9-S17, S32, S35, S38]) both correspond-

ing to a total of 61.4% of the selected primary studies. From the total number of primary

studies, 7 are book chapters ([S19, S22, S23, S31, S36, S37, S39], accounting for 17.9%

of the studies), 6 are workshop papers ([S3, S20, S21, S27, S33, S34], corresponding to

15.3%) and, finally, 2 are technical reports ([S26, S28], or 5.1% of the total number of

selected studies).

4.3.2 Context

What is the main goal of the method? From the 39 selected studies, 35 (89.74%) ad-

dress the derivation of software architecture [S1-S4, S6-S8, S10-S29, S31, S33-S39], 3

(7.7%) concern the understanding of how an architectural model is created in practice

[S9, S30, S32], and one (2.56%) [S5] targets design and analysis of quality attributes [S5].

Although most of the studies discuss software architecture derivation, their focus differs

significantly, as described in Table 4.8.

It is important to notice that, although there are some supporting tools for the deriva-

tion process (e.g., QuaDAI [S18] and Monarch [S32]), all the decisions reported in the

selected primary studies were based on the architects’ tacit knowledge (meaning that they

are currently based on the experience and intuition of the authors), and the quality of the

artifacts were evaluated subjectively, when evaluated at all (this will be further discussed

in in Section 4.3.5, under the question How is the method evaluated?).

84

4.3. REPORTING: STUDY RESULTS

Table 4.8: Context of the selected studies.

Selected Study Context

S1 Relationship between agile methods and architectural modeling.

S2, S6, S12, S18,
S28

Use software product line concepts to derive a software architec-
ture.

S2, S3, S4, S11,
S14, S15, S18, S38

Use model-driven techniques to derive an architectural model.

S5, S7, S14, S15,
S19, S18, S26,
S33, S36

Focus on the satisfaction of non-functional requirements at archi-
tectural level.

S8, S27, S31 Describe different views to represent the complex software archi-
tectures.

S10, S33 Create software architecture from a problem frame specification.

S11, S17, S19,
S20, S21, S37

Derive a software architecture from organizational goals specifi-
cations.

S13 Introduce an approach for mining and grouping functionalities
(architectural modules) from textual descriptions of requirements
using text mining techniques

S16, S22, S23,
S24, S25

Use aspect-oriented techniques to derive an architectural model.

S29 Show a process for the design, representation, and evaluation of
reference architectures.

S34, S35 Facilitate the software architecture design.
S39 Help architects during architectural design

What are the method’s application domains? From the total number of studies, only

one focuses on a specific domain (cyber-physical systems) [S38]. The remaining 38 stud-

ies (97.4%) do not discuss the methods’ fitness (or unfitness) to particular application

domains. Instead, the authors limit their approaches to a given paradigm or technological

platform (e.g., model-driven development [S2, S3, S4, S11, S14, S15, S18, S38], aspect-

oriented software development [S16, S22-S25], software product lines [S2, S6, S12, S18,

S28]). Regarding examples or case studies used for evaluation, 20 studies were illustrated

with case studies [S2, S4, S6, S7, S10, S11, S13-S17, S20, S22, S24, S25, S29, S32, S35, S38,

S39], 10 use examples [S1, S3, S5, S8, S19, S21, S23, S33, S36, S37], 3 report experiments

85

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

for specific application domains [S12, S18, S36], and 7 were not illustrated [S9, S26-S28,

S30, S31, S34].

What is the method’s starting point? The goal is to identify the type of requirements

and requirements models used as a starting point. Table 4.9 summarizes the results,

that we discuss next. All the 39 studies address functional requirements, as expected,

and from those, 30 (76.9%) address non-functional requirements [S4, S5, S7-S12, S14-

S30, S33-S37]. To aggregate these findings we use Sommerville’s [236] classification

of NFRs into Product NFRs (specify the desired characteristics a product must have),

Organizational NFRs (derived from organizational policies and procedures), and External

NFRs (derived from factors external to the system and its development process). From

those 30 studies, 28 (93.3%) consider product NFRs [S4, S5, S7-S12, S14-S16, S18, S19,

S21-S30, S33-S37], 9 (30%) consider organizational NFRs [S7, S11, S12, S17, S20, S26,

S28, S30, S37], and one (3.3%) considers external NFRs [S7]. Some of the studies consider

more than one type of NFR, resulting in a sum of the percentages by type of NFRs greater

than 100%. In particular, 7 studies (23.3%) analyze product and organizational NFRs [S7,

S11, S12, S26, S28, S30, S37], and one study (3.3%) considers product, organizational and

external NFRs [S7]. Figure 4.1 (left) depicts the distribution of the studies that consider

NFRs as input, also showing the overlaps among types of NFRs.

Table 4.9: Requirements Types and Models Used as Input, where!means requirements
type/model used and X means not used.

Functional Product NFRs Organizational NFRs External NFRs Textual Goal-oriented Unspecified
Problem
frames

Feature
model

Sequence
model

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39

86

4.3. REPORTING: STUDY RESULTS

Figure 4.1: Distribution of NFRs (left) and requirements models (right).

Another relevant aspect is the requirements model used as input, summarized in Table

4.9. A total of 20 studies (51.3%) use to textual requirements, 8 (20.5%) use goal-oriented

models, 6 (15.4%) do not specify any type of model used, 2 use feature models, 2 use

problem frames, and 1 uses a sequence diagram model.

Textual Requirements The high number of studies using textual specifications (in 20

out of 39 studies) may be because industry still uses mostly natural language to specify

requirements [S22]. From those, 9 (45%) structure their requirements using use cases

[S1-S3, S28, S31, S34, S36, S37, S38], 4 (20%) use intermediary models — e.g., [S14] uses

Quality Attribute taxonomy, [S22] uses Requirements Description Language (RDL) [55],

[S23] uses Theme/Doc [227], and [S35] uses Component-Bus-System-Property model —,

and 2 (10%) create clusters to facilitate modularization and identification of architectural

components [S7, S13] ([S13] uses natural language processing algorithms, and [S7] is

strongly based on the software architects’ experience and intuition). Finally, 5 (25%)

of the studies do not give enough information about the structure of the requirements

specification [S25, S26, S27, S30, S39].

Goal-oriented models From the 8 studies using goal-oriented models, 3 use generic

goal-oriented models [S4, S12, S19], 3 use i-Star [S11, S17, S20], one uses KAOS [S21],

and another one uses v-graph [S24].

Unspecified models The group of 6 studies ([S5, S8, S9, S16, S29, S32]) that does not

specify any type of model used as input for their methods share the idea that architects

should analyze and define the critical architectural requirements based on their own

experience and, starting with the results of that analysis, begin the architectural modeling

process.

87

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

4.3.3 Benefits to the users

What are the benefits the method brings to the users? From the 39 studies, 30 (76.9%)

do not explicitly describe who the users are (target audience) and what are the benefits

for them [S1, S2, S4-S7, S9, S11, S12, S14-S30, S32, S35-S37]. In such cases, we consider

that the main benefit to the users is the proposal itself. The main benefits of the analyzed

studies were the derivation of the software architecture from the requirements (33 out

of 39) [S2-S4, S6-S9, S11, S14-S25, S27-S39], followed by understand the requirements

specification (12 out of 39) [S3, S7, S9, S13, S22, S26, S28, S30, S31, S34, S35, S37],

decision making support (12 out of 39) [S7, S8, S14, S17, S18, S19, S28, S33, S34, S35, S36,

S39], architectural Knowledge reuse (6 out of 39) [S1, S8, S14, S18, S21, S25], improve

the modularization of software architecture (2 out of 39) [S15, S16], and traceability

between requirements and architecture (1 study) [S12]. The result is very interesting

because, on the one hand, sharing knowledge between architects is difficult [S8], and, on

the other hand, the architectural decision-making process is an important aspect during

architectural design. Both have a significant effect on the structure and functionality

of the system being developed, hence on the success or failure of the overall software

project [204]. However, while systematic processes exist for software architecture model

derivation, all architectural decisions have been exclusively based on the architects’ tacit

knowledge. Thus, further investigation on how to collect and later reuse the architect’s

tacit knowledge during the decision making process would be useful.

What are the limitations of the method? From the total number of studies, 32 (82%)

did not clearly specify limitations or weaknesses [S1, S3-S7, S9-S20, S23, S25-S30, S32-

S35, S37]. These are essential elements for building a sound body of knowledge in a

research area. The reason for this lack of information may be due to the level of complex-

ity involved, particularly in finding the balance between the many different forces playing

a major role when creating a software architecture [88]. The limitations found are related

to the immaturity of the approaches and lack of supporting tool [S21], poor requirements

understanding processes [S36], undetailed decision making processes [S8, S31], inconsis-

tency between the artifacts [S2, S22], semantic loss [S24], and lack of traceability between

models [S2, S22].

4.3.4 Content

What is the coverage of the method with respect to (1) understanding the problem,

(2) finding a solution for the problem, and (3) evaluating the solution? In general,

a software architecture design approach is composed of an architectural analysis phase

to understand the problem, an architectural synthesis phase to propose solutions to

solve the problem, and an architectural evaluation phase to evaluate if the proposed

solution solves the problem. Hence, we emphasize that the problem of creating a software

architecture model is not different from solving any other problem, where, iteratively, we

88

4.3. REPORTING: STUDY RESULTS

understand the problem, find a solution, and evaluate that solution. When analyzing

the coverage of the methods with respect to these three phases, only 8 studies (20.5%)

tackle the three phases [S3, S8, S14, S29-S31, S37, S39]. Including overlaps, 30 (76.9%)

aim at understanding the problem and finding a solution [S1-S4, S6-S8, S10-S17, S19,

S22, S23, S26, S29-S39], 3 (7.6%) focus on finding a solution (without detailing how to

understand the problem) and evaluating it [S9, S18, S28], and 6 (15.3%) focus on creating

a solution [S5, S20, S21, S24, S25, S27]. Table 4.10 shows the coverage of each selected

study. Besides the identified gaps, the software architecture methods provide only a

coarse-grained description of the proposed method, hence difficult to replicate. This may

be because they are currently based on experience and intuition of the authors.

Table 4.10: Coverage of the methods, where!means phase covered and X means phase
not covered.

Study Understanding Finding a solution Evaluating Study Understanding Finding a solution Evaluating
the problem for the problem the solution the problem for the problem the solution

S1 S21
S2 S22
S3 S23
S4 S24
S5 S25
S6 S26
S7 S27
S8 S28
S9 S29
S10 S30
S11 S31
S12 S32
S13 S33
S14 S34
S15 S35
S16 S36
S17 S37
S18 S38
S19 S39
S20

What architectural views does the method use? Although the various studies use mod-

els to describe one or more architectural views, 19 (out of 39) studies do not explicitly

name the views used [S1, S3-S6, S9-S13, S17, S20, S22, S24, S32-S34, S38, S39]. The

remaining 20 studies describe a total of 28 different views: variability view [S2, S18],

scenario view [S8, S28, S31], logical view [S8, S19, S28, S31, S35, S36], development

view [S8, S14, S28, S31], physical view [S8, S28, S31], process view [S8, S28, S31], struc-

tural view [S14, S15, S21, S23], behavioral view [S14, S15, S21, S23], deployment view

[S14, S29], internal view [S16], external view [S16], micro view [S17], macro view [S17],

functional view [S18, S27], quality view [S18], transformation [S18], modular view [S25,

S26, S27, S30], component-connector [S2, S25, S26], allocation view [S26], customer view

[S27], application view [S27], conceptual view [S27, S29, S30], realization view [S27],

crosscutting view [S29], runtime view [S29], execution view [S30], requirements [S37],

and architectural [S37].

89

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

A closer analysis of these views suggests that the same view names were used for

different purposes. For example, the development view was used by [S8] to describe the

software modules and their communications and by [S14] to describe the mapping of

the software to the hardware. The contrary has also been found, that is, different view

names for the same purpose (e.g., [S2] describes the component-connector view with the

same purpose of the development view in [S8]). This and other similar cases seem to

indicate lack of a common understanding. To make the analysis possible, we chose the

Kruchten’s 4+1 Views approach [161] as a baseline method to classify the various views

found, “normalizing” those views that shared either the meaning or the name. Although

we could have chosen any of the existing proposals, we opted for the widely known

4+1 Views approach that details five different, but complementary, views to represent a

software architecture. Table 4.11 shows the mappings and a rational for each decision,

and Figure 4.2 shows the result of this analysis, for a total of 80 instances of views found

and mapped to Krutchen’s 4+1 views.

Table 4.11: Mapping primary study views to Kruchten 4+1 views; when authors tackle

more than one view, we address each sequentially.

Study Views in primary

studies

4+1 Views Observations

S1 <not named> Development

view

The study describes the organiza-

tion of software modules using ar-

chitectural styles, so the mapping

to Development view.

S2 Variability view

and component-

connector view

Not mapped and

development

view

The variability view shows the com-

mon features among different soft-

ware products. The 4 + 1 ap-

proach does not contain this view.

The component-connector view de-

scribes the organization of software

modules (thus, development view).

S3 <not named> Process view and

logical view

The study discusses information

flows (hence mapped to process

view) and supports functional re-

quirements through class diagrams

(hence, logical view).

Continues on next page

90

4.3. REPORTING: STUDY RESULTS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S4 <not named> Process view and

development

view

The study addresses information

flows through sequence diagram

(process view) and describes the or-

ganization of software modules (de-

velopment view).

S5 <not named> Logical view The study describes a logical view

with different abstraction levels.

The first one abstraction defines the

internal behavior of an object with

state chart diagrams and another

one supports the functional require-

ments through class diagrams.

S6 <not named> Not mapped, pro-

cess view and log-

ical view

The study has a variability view (so

not mapped), represents the infor-

mation flows through collaboration

diagrams (process view) and sup-

ports functional requirements with

class diagrams (logical view).

S7 Micro and macro

views

Not mapped and

not mapped

The study describes a macro and a

micro architecture views, showing

the context of software architecture.

S8 Development

view, process

view, physical

view, logical view,

and scenario view

Development

view, process

view, physical

view, logical view,

and scenario view

The study uses the 4+1 approach.

S9 <not named> Not mapped The study does not describe details

of the architecture that is generated

by the method.

S10 <not named> Process view and

development

view

This study describes two views. The

first shows the information flows

using activity diagrams (process

view), and the second shows the

organization of software modules

using a component-connector dia-

gram (development view).

Continues on next page

91

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S11 <not named> Development

view, process

view, physical

view, logical view,

and scenario view

The study uses the 4+1 approach.

S12 <not named> Development

view

The study describes the organiza-

tion of software modules through

the choice of architectural styles.

S13 <not named> Development

view

The study shows the software mod-

ules extracted from textual require-

ments.

S14 Structural view,

behavioral view,

deployment view,

and development

view

Development

view, process

view, physical

view, and not

mapped

The study does not give details

about its development view.

S15 Structural view

and behavioral

view

Development

view and process

view

The structural view describes the or-

ganization of software modules us-

ing component-connector diagram

(development view) and the behav-

ioral views shows the information

flows through sequence diagram

(process view).

S16 Internal view and

external view

Not mapped and

development

view

The internal view is related to

source code (not mapped) and the

external view shows the organi-

zation of software modules using

component-connector diagram (de-

velopment view).

S17 <not named> Development

view

The study shows software modules

organization using a component-

connector diagram (development

view).

Continues on next page

92

4.3. REPORTING: STUDY RESULTS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S18 Variability view,

functional view,

quality view, and

transformation

view

Not mapped, de-

velopment view,

not mapped, and

not mapped

Variability view describes the com-

mon features among different soft-

ware products. Quality view rep-

resents the important quality at-

tributes of system. The transforma-

tion view is related to model-driven

techniques where a model can be

transformed to other type of model.

These three views do not map to any

of the 4+1 views.

S19 Logical view Development

view

The view shows the software

modules organization with a

component-connector diagram

(development view).

S20 <not named> Development

view

The study shows software modules

organization with a component-

connector diagram (development

view).

S21 Structural view

and behavioral

view

Development

view and process

view

The structural view describes the or-

ganization of software modules us-

ing component-connector diagram

(development view) and the behav-

ioral views shows the information

flows through state chart diagram

(process view).

S22 <not named> Development

view

The study shows software modules

organization using a component-

connector diagram (development

view).

S23 Structural view

and behavioral

view

Development

view and process

view

The structural view describes the or-

ganization of software modules us-

ing component-connector diagram

(development view) and the behav-

ioral views shows the information

flows with sequence diagram (pro-

cess view).

Continues on next page

93

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S24 <not named> Development

view

The study shows software modules

organization using a component-

connector diagram (development

view).

S25 Modular view

and component-

connector view

Logical view and

development

view

The modular view supports the

functional requirements through

class diagram (logical view) and the

component-connector view shows

the organization of software mod-

ules (development view).

S26 Modular view,

component-

connector view,

and allocation

view

Process view, de-

velopment view,

and physical view

The modular view describes the

reasoning about the system in-

formation flow (process view),

component-connector view shows

the organization of software mod-

ules (development view), and

allocation view shows how soft-

ware elements will be allocated to

hardware elements (physical view).

S27 Customer view,

application view,

functional view,

conceptual view,

and realization

view

Not mapped, sce-

nario view, not

mapped, develop-

ment view, and

physical view

The customer view is used to iden-

tify the major stakeholders who in-

fluence the system development.

Functional view intends to describe

the externally perceivable proper-

ties of the system. Both views are

not in 4+1 approach. The appli-

cation view describes the scenarios

necessary to satisfy the customer’s

need (scenario view). The func-

tional view shows gives an overview

of all relevant features (develop-

ment view). The realization view is

related to the selection of hardware

to satisfy the system features (phys-

ical view).

Continues on next page

94

4.3. REPORTING: STUDY RESULTS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S28 Development

view, process

view, physical

view, logical view,

and scenario view

Development

view, process

view, physical

view, logical view,

and scenario view

The study uses the 4+1 approach.

S29 Crosscutting

view, runtime

view, deploy-

ment view, and

conceptual view

Not mapped, pro-

cess view, physi-

cal view, and log-

ical view

The crosscutting view shows

general information about the

reference architecture, such as

terms/concepts and variabilities

(not mapped). The runtime view

shows the dynamic behavior of sys-

tems using intern block diagrams

(process view). The deployment

view describes the hardware (such

as, server machines, database

servers, and client machines) using

package diagrams (physical view).

The conceptual view shows the

module decomposition using block

definition diagram (logical view).

S30 Conceptual view,

modular view

and execution

view

Physical view,

development

view, and logical

view

The conceptual view gives an

overview of the system showing

the hardware needed to execute the

software modules (physical view).

The modular view describes the

domain specific modules (develop-

ment view). The execution view

details the modules, showing their

internal behavior (logical view).

S31 Development

view, process

view, physical

view, logical view,

and scenario view

Development

view, process

view, physical

view, logical view,

and scenario view

The study uses the 4+1 approach.

Continues on next page

95

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

Table 4.11 – Continuation from previous page

Study Views in primary

studies

4+1 Views Observations

S32 <not named> Development

view

The study describes software mod-

ules organization with component-

connector diagram (development

view).

S33 <not named> Logical view The study describes functional re-

quirements using class diagrams

(logical view).

S34 Development

view, process

view, logical view,

and scenario view

Development

view, process

view, logical view,

and scenario view

The study uses the 4+1 approach,

but does not present the physical

view .

S35 <not named> Development

view

The study describes software mod-

ules organization with component-

connector diagram (development

view).

S36 <not named> Logical view The study describes the architec-

ture through class diagram (logical

view).

S37 Requirements

and architectural

views

Logical and devel-

opment views

The study describes an architec-

ture through class diagram (logi-

cal view) and component-connector

model (development view).

S38 <no named> Development

views

The study describes the software

architecture using AADL (develop-

ment view).

S39 <no named> Development

views

The study describes the architec-

ture through a component diagram

(development view).

The visual notation described in [161] was also used for this mapping where, for

example, the development view is represented by components (modules and subsystems)

and connectors (the communications) among components.

Figure 4.2-left shows the percentage of instances of the views used by the authors. The

total number of instances, for the 28 views in the 39 studies analyzed, is 8010. Therefore,

10For example, consider two studies where one describes a development view and a physical view, and
the other describes a development view; the total number of instances of views is three and the number of
(types of) views is two.

96

4.3. REPORTING: STUDY RESULTS

Figure 4.2: Distributions of architectural views as reported in the primary studies (left)
and mapped to the 4+1 views (right).

6 out of 80 views (7.5%) are logical views, 4 are development view (5%), followed by

physical, process, and scenario views with 3 views each (3.75% each). Besides, 23 views

were not named (28.75%), and 38 (47.5%) were described using other names.

Figure 4.2-right shows that the percentage of studies addressing the logical and devel-

opment views increased from 7.5% to 17.5% (from 6 to 14 views) and from 5% to 38.7%

(from 4 to 31 views), respectively. Seven (8.75%) of the views in the primary studies were

not mapped to the 4+1 views. These are, however, alternative and useful views, such as

the variability view [S2, S18], the crosscutting view [S29], the customer view [S27], the

quality view [S18], the macro view [S7] or internal views [S16].

Does the method define a language or notation to represent the produced artifacts?

We used Jamshidi’s categories (“process algebra”, “standards” and “others — non-standard”),

to classify the studies with respect to the architectural description language used [130].

It is curious to note that in this analysis, the studies were grouped in three sets of the

same size. Hence, one third (13 studies corresponding to 33.3%) use standard Architec-

ture Description Languages - ADLs (e.g., UML, SysML, and AADL) [S2, S10, S14, S15,

S18, S19, S29, S33-S36, S38, S39], another third does not explicitly use a standard ADL

to model the architecture [S3-S5, S11, S16, S17, S20, S22-S25, S32, S37], and the third,

does not indicate the architectural description language used [S1, S6-S9, S12, S13, S21,

S26-S28, S30, S31] (None of the selected studies used a process algebra ADL). A possible

reason for 26 studies not adopting nor defining an ADL could be because an ADL needs

to capture design decisions judged fundamental to satisfy different stakeholder concerns

[176] and also because it is difficult to capture all the different concerns with a unique

language [169].

What is the level of automation of the supporting tools? Of the 39 selected studies,

18 (46.1%) are partially automated [S2, S4-S6, S10, S12-S16, S18, S19, S22, S32, S35, S36,

S38, S39], 8 (20.5%) are not automated [S1, S20, S21, S23-S25, S33, S37], and 13 (33.3%)

97

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

do not mention supporting tools [S3, S7-S9, S11, S17, S26, S27, S28, S29, S30, S31, S34].

Given the strong dependency between the resulting architecture and the architect’s tacit

knowledge, it is not surprising that we could not find a complete, fully-fledged automated

approach. An important fact found in studies offering some level of automation is that

they all propose rules to transform a specific requirements into a specific architectural

model. The generated model is then analyzed manually by the architect, and improved

where necessary. This requires a considerable effort from the architect. Additionally,

there is a lack of tools supporting the activities related to architectural decision making.

4.3.5 Validation

How is the method evaluated? The goal is to identify the types of empirical approaches

used in the evaluation of the approaches proposed by the 39 selected studies. The result

shows that 9 (23%) were illustrated with (in some cases simple) examples [S1, S3, S5, S8,

S19, S21, S23, S33, S37], 3 (7.6%) were evaluated in experiments [S12, S18, S36], and

that 7 (17.9%) were not evaluated [S9, S26-S28, S30, S31, S34]. Although the authors of

the remaining 20 (51.2%) studies claim their approaches are evaluated with case studies

[S2, S4, S6, S7, S10, S11, S13-S17, S20, S22, S24, S25, S29, S32, S35, S38, S39], these are,

in fact, illustrative examples (or else the details of the case study are not given in the

papers). The conclusion is that, in general, there is a lack of strong and rigorous empirical

evidence. For example, no study describes what hypotheses are being evaluated (case

study design), what data is collected, or how the data analysis is performed to check if

the purpose of the case study has been reached.

A final fact indicates that 27 (69.2%) of the evaluation approaches were performed

in academia [S1-S3, S5, S8, S10, S13-S15, S17-S25, S29, S32-S39], 8 (20.5%) have their

roots in industry [S4, S6, S7, S11, S12, S16, S29, S35], and 2 ([S29, S35] have academic

and industrial case studies.

How is the quality of the method’s output validated? Despite recent studies showing

that ATAM (Architecture Tradeoff Analysis Method) [143] is the most used and mature

architecture assessment method [54], only 4 (10.2%) of the selected studies use it, or

suggest its use [S8, S9, S19, S33]. In addition, [S15] uses ASAAM11 (Aspectual Software

Architecture Analysis Method [252]), [S34] uses SAAM, and S5 uses FDAF (Formal De-

sign Analysis Framework) [64]. We found that 8 (20.5%) of the studies use different

scenario-based approaches in an attempt to evaluate the architectural model early in the

development12 [S6, S11, S12, S14, S18, S28, S29, S37] and 21 (53.8%) of the studies do

not inform about the evaluation method that can be used with their approaches [S1-S4,

S7, S10, S13, S16, S17, S20-S27, S30-S32, S35, S36, S38, S39].

11This is a method based on SAAM [142], a precursor of ATAM.
12Architecture defined only conceptually or with a high-level structure.

98

4.4. OVERVIEW OF THE RESULTS

4.4 Overview of the results

The major findings discussed in some detail for Context (Section 4.3.2), Benefit to the

users (Section 4.3.3), Content (Section 4.3.4) and Validation (Section 4.3.5) are summa-

rized next.

4.4.1 Context

None of the approaches analyzed are concerned with supporting the architects’ design

decisions or increasing the quality of the artifacts. All of the approaches are methodology-

specific (e.g., aspect-oriented). Around 51% of the methods use textual specifications as

their input, and 65% of these structure the requirements using use cases or some other

intermediate model. Finally, there is a lack of approaches to build architectural models

considering external non-functional requirements.

4.4.2 Benefit to the users

Given that several studies address more than one benefit (e.g., [S3, S7, S8, S14-S19, S21,

S22, S25, S26, S28, S30, S31, S33-S36]), the sum of the number of studies in the following

analysis is larger than the total number of analyzed studies. Overall, 33 studies (84.6%)

focus on the derivation of the software architecture from the requirements, 12 (30.7%)

are concerned with understanding the requirements specification, another 12 aim at pro-

viding decision making support, 6 (15.3%) focus on the reuse of architectural knowledge,

2 (5.1%) aim at facilitating the modularization of software architecture, and one (2.7%) fo-

cus on providing traceability support between requirements and architecture. Although

decision making support and architectural knowledge reuse are considered benefits of

some studies, it is noticeable that all the studies are strongly based on the architect’s

experience. Only 18% of the studies acknowledge their limitations, which include imma-

turity of the approach, lack of supporting tool, poor requirements understanding process,

undetailed decision-making process, inconsistency between the artifacts, semantic loss,

and lack of traceability between models.

4.4.3 Content

A point worth highlighting is the apparent confusion and lack of standardized terms.

We argue that the architecture of a software system is a complex task that cannot be

described in one single model. Perhaps this is why ISO [127] does not commit itself

to any particular views for software architecture description. This lack of standardized

terms in software architecture reduces understandability and makes the communication

between the involved stakeholders inefficient and error-prone [230]. Our analysis also

shows that 66.6% of the studies did not use a standard ADL and that an effort is needed

to develop supporting tools (1/3) of studies do not have or do not mention support tools.

Standardization of terms would facilitate the adoption of ADLs. We also observed that

99

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

the methods can hardly be used by novices or less experienced software architects due to

lack of detail, (the methods are strongly based on the architect’s tacit knowledge and lack

of systematization) and tool support, as only 46.1% is partially automated, 20.5% is not

automated, and 33.3% do not offer information about tools.

4.4.4 Validation

Case studies is the most used mean for evaluation (mentioned in 51.2% of the studies

analyzed). However, in most cases, these case studies are examples to illustrate the

approaches. This state of practice should be improved with the adoption of stronger

qualitative and quantitative evaluation methods. Regarding validation, 53.8% of the

approaches do not provide an explicit way to evaluate the software architecture against

the requirements specification.

4.5 Validity threats and their mitigation

Internal validity Due to the large number of definitions for the same concept, there is

the risk of not including relevant studies. The terms used in this study were reviewed

by external reviewers as recommended in [148]. We also performed a pilot study to val-

idate the use of the terms and applied snowballing to add relevant studies cited by the

authors of included approaches. We used the test-retest strategy on a random subset of

selected studies to assess consistency of the selection process as recommended in [148].

Additionally, we included studies suggested by experts, as also recommended in [148].

Regarding the mapping study, we performed two evaluations: we analyzed if the results

found in the pilot execution were consistent with the results of the final implementation,

and we asked the three external reviewers to check, for a subset of papers, if there were in-

terpretation problems. Subjectivity could be another threat happening during planning

and execution due to the length of this study. We were so totally immersed in the work

that objectivity could be thought as an issue. To mitigate this, we used three external

reviewers to evaluate all the phases of the protocol. Additionally, we used Fabbri’s best

practices checklist [87] to check our work. A final threat concerns the quality of the

selected papers for analysis and data extraction, as there is no agreement of how this task

should be performed. To mitigate this risk we chose only peer-reviewed papers, used

the QualityScore approach to reduce the subjectivity of the analysis, and used quality

assessment criteria based on bibliometric impact information (approach widely used in

systematic reviews published in the literature).

External validity We could have missed venues (e.g., conferences, journals) with rele-

vant published works or have not analyzed relevant articles due to their unavailability. To

avoid the first issue, we did not restrict our searchers to venues where more work related

to our research was found. We searched in four major digital libraries for relevant related

100

4.6. RESEARCH ROADMAP

work, and the external reviewers assessed whether these libraries were sufficient for our

study and suggested some additional venues to be considered. These venues were used

to crosscheck that they were being indexed by the digital libraries. Regarding the issue of

unavailable papers, it has been mitigated by requesting the articles directly to the authors

through the ResearchGate website and by email. Although the number of articles not

available is small (only 2), we can only analyze the studies that we can find.

Conclusion validity The main conclusion validity threat is the data collection. Since

we do not know how the digital libraries’ search engines work, we run the risk of get-

ting different results for each search (even because libraries can index new articles daily).

Therefore, we ran the search string and, to eliminate the possibility of changes to the list

of articles returned by the digital libraries, stored the returned studies in a bibliography

management tool13 for later analysis and data extraction. To mitigate the issue about the

data extraction,we decomposed the research question according to the four dimensions

recommended by the NIMSAD framework [132] (e.g., Context, Benefits to the User, Con-

tent, and Validation) and structured a spreadsheet workbook as a form in order to receive

the data necessary to answer the research question, as recommended in [148]. In this

way, we know precisely what we want to extract from the articles and how to store the

extracted data in an organized way.

4.6 Research roadmap

The previous discussions of the results and major findings highlight several open issues,

suggesting worthwhile topics for future research. In particular:

1. Specific domains. The studies analyzed are typically methodology-specific (see Sec-

tion 4.4.1). However, paradigms and technological platforms change over time and

with technological evolution. We believe that developing approaches for specific

domains could be seen as a means to collect systems’ resources and capabilities to

create new and more complex systems, such as systems of systems.

2. Approaches addressing a wider range of NFRs, particularly external NFRs. Most

studies about the success factors of a software development project indicate that the

key critical factors lie in the external non-functional requirements, such as business

values satisfaction [34, 243, 247] (see Section 4.4.1). For example, the Standish

Group CHAOS reports state that most software design defects are caused by value-

oriented weaknesses [247]. A related relevant topic is to take into account the NFRs

(intrinsic) conflicting nature, and study the influence these conflicts have on the

architectural decisions and their consequent impact on the final architectural solu-

tion. Particularly, more research is needed to investigate the relationships between

external NFRs and the software architecture.
13Papers tool: http://www.papersapp.com

101

http://www.papersapp.com

CHAPTER 4. DERIVING ARCHITECTURAL MODELS FROM REQUIREMENTS

SPECIFICATIONS

3. Understand the methods’ limitations. Only 18% of studies acknowledge their lim-

itations (see Section 4.4.2). This may be due to immaturity of the area or due to the

level of complexity involved. The fact is that researchers and practitioners should

be encouraged to report the limitations and weaknesses of their approaches as these

are essential to build a sound body of knowledge.

4. Standards or common understanding. The lack of standardized terms, or at least

common agreements, reduces understandability and makes the communication be-

tween the involved stakeholders inefficient and error-prone [230] (see Section 4.4.3).

Initiatives such as the Software Engineering Institute catalog of different definitions

for the term "software architecture"should be more encouraged [231]. This stan-

dardization of terms is fundamental for an established body of knowledge, hence

beneficial to all software architecture researchers and practitioners (particularly the

less experienced ones).

5. Make explicit tacit knowledge. Most of the methods can hardly be used by novices

or less experienced architects (see Section 4.4.3). These methods provide only a

coarse-grained description of the proposed method, hence making replication im-

possible or at least too difficult. This may be because they are currently based on

the experience and intuition of the authors. Thus, authors must share the process

in which a software architecture is built, by providing the steps that must be exe-

cuted, together with the guidelines and heuristics required to achieve the goal of

the method.

6. Tool support. From the analyzed approaches, 1/3 does not offer or mention sup-

porting tools (see Section 4.4.3). Thus, there is a need to develop tool support to

facilitate the architects’ activities. For example, tools able to suggest the best suited

patterns and styles for a given application domain, or to handle specific NFRs to

support decision-making activities and decrease the dependence on experienced

architects. Such tools could explore artificial intelligence techniques, for example,

to create a knowledge base and investigate recommendation algorithms based on

the architects’ knowledge.

7. Evaluation methods. A total of 51.2% of the approaches indicate being evaluated

using case studies. However, these case studies are relatively simple illustrations

of the authors’ approaches (see Section 4.4.4). This state of practice should be

improved with the adoption of stronger qualitative and quantitative methods to

support the evaluation.

8. Requirements satisfaction. More than half of the studies (53.8%) do not provide an

explicit way to validate the resulting software architecture against the requirements

specification (see Section 4.4.4). The existing methods must evolve to facilitate the

evaluation of architectural models in the early stages of the development life cycle,

102

4.7. FINAL CONSIDERATIONS

or new ones should be created. This should contribute to identify major technical

risks, allowing their mitigation at a minimal cost.

4.7 Final considerations

The goal of this chapter is to provide a comprehensive overview of the existing methods

for the derivation of software architecture models from requirements specifications. To

achieve this, we performed a systematic mapping study to find empirical evidence about

software architecture derivation methods, and classified them with respect to their con-

text, benefits to the user, content and validation. Two important findings of this study

were, on the one hand, the confirmation of the lack of approaches for deriving archi-

tectural models from early requirements specifications aligned with the organizational

business values and, on the other hand, that the process of building a software archi-

tecture is strongly based on the architects’ experience and intuition, what makes this

activity difficult for novices. Consequently, there is a need for a systematic, traceable and
simple to use approach for the transition between requirements aligned with the organization
business values and architecture design. These findings constitute the major goal of our

Ph.D. research.

103

C
h
a
p
t
e
r

5
A value-driven framework for software

architecture

The general research question proposed for this Ph.D., “How to derive value-centred ar-
chitectural models systematically?”, searches for a value-based methodological approach

to support incremental software development that better aligns with the business values

of an organization. The importance of this research question was confirmed by the sec-

ondary mapping study on software architecture derivation methods, discussed in Chapter

4, which confirms the need for a systematic, traceable and simple to use approach for the

transition between requirements and architecture design. The current chapter presents

a value-driven software architecture framework that facilitates the derivation of soft-

ware architecture models aligned with the business values of an organization, therefore

contributing to address this work research question. This framework is supported by

model-driven development techniques and is composed of three main methods, each one

supported by a proof-of-concept tool.

5.1 Framework’s structure

According to the Cambridge dictionary, a framework is a “supporting structure around
which something can be built”; or “a system of rules, ideas, or beliefs that is used to plan or
decide something” [208]. Thus, by definition, a framework is a large-scale design [135]

which serves as a guide, a sketch or overview of interlinked activities to facilitate an

approach towards accomplishing a specific goal [63]. In the context of this work, we

created a framework with a set of methods, processes, concepts mappings, and guidelines

to provide the required structure to support the early stages of value-based software de-

velopment, particularly business modeling and the derivation of requirements models

and a reference software architecture. This framework, summarized in Figure 5.1, is

105

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

composed of three core modules — Business Value Modeling, Agile Reference Architec-

ture Modeling, and Goal-Driven SOA Architecture Modeling — supported by a set of

MDD languages, transformations and tools developed using an Eclipse-based Implemen-

tation Environment. While the Business value modeling module focuses on building a

stakeholder-centric business specification, the Agile Reference Architecture Modeling

and the Goal-Driven SOA Architecture Modeling modules concentrate on generating a

reference software architecture aligned with the business value specification.

Figure 5.1: Modules, environments, and technologies of value-driven framework.

The “Business Value Modeling” module is composed of the Dynamic Value Descrip-

tion (DVD) method, responsible for modeling the business values of an organization, a

visual technique to build value models to express the needed concepts, a modeling lan-

guage implemented as using metamodeling and a DSL, a step-by-step process model, a

set of supporting guidelines, and conceptual mappings for a MDD derivation of a SOA

capability reference architecture model. DVD uses a cognitive early requirements method

aimed at analyzing and representing business values exchanged between the different

parties involved in a given business activity. That is, it offers an environment wherein

stakeholders can share their economic interests and views (The DVD method is further

discussed in Section 5.2.)

The “Agile Reference Architecture Modeling” module is composed by the method

Reference Architecture Modeling for an Agile software development scenario (RAMA).

RAMA is a value-centric method developed to address the architecture-agility combi-

nation. It uses the business value model created by the DVD method, and MDD and

conceptual modeling techniques together with Agile practices. The result is a feasible

approach that combines agile development practices and software architecture design

principles during the creation of the information system’s reference architecture. Due

to the particular methodology followed, RAMA produces a reference architecture well-

aligned with an organization business values. RAMA’s supporting modeling environment

includes metamodels, semantic rules, DSLs, transformations scripts, a process model and

heuristics. (RAMA is discussed in more detail in Section 5.3.)

The “Goal-Driven SOA Architecture Modeling” module is composed of the KAOS

modeling approach for Service-oriented architecture (KAOS4Services). KAOS4Services

106

5.2. BUSINESS VALUE MODELING

is a systematic approach to derive SOA applications from Goal-oriented models aligned

with the business values. In other words, the DVD model is used as the start point to

generate the goal-oriented model used throughout the KAOS4Services method. In con-

trast to existing service-oriented works that do not offer detailed and systematic methods

for business analysis and services identification [20, 112, 154], KAOS4Services offers a

systematic approach supported by model-driven development techniques and a set of

mappings and guidelines applied to goal concepts. KAOS4Services is defined by its own

modeling language, defined and implemented as a DSL, a process, a set of guidelines,

and conceptual mappings to guide its use. (A detailed discussion is offered in Section

5.4).

While RAMA is suggested for Agile software development projects, KAOS4Services

works better for (academic) scenarios where goal-oriented approaches are elected. There-

fore, choosing between these two methods depends on the software development method-

ology the project under development is to follow.

The following sections describe Business Value Modeling using the DVD method,

Agile Reference Architecture Modeling using the RAMA method and Goal-Driven SOA

Architecture Modeling using the KAOS4Services method. The chapter ends with some

final considerations.

5.2 Business value modeling

There is a widespread agreement [106, 212, 263] regarding the importance of business

models for a company to express its business value, be it economic, social, environmental,

technical, or other. Additionally, the success of a company’s impact in the market may

also depend on the alignment between its information systems and the value models

expressing its economic perspective. To achieve this alignment, the value model must be

used as a starting point of the software requirements specification process, guiding the

software development according to the company’s business economic values [36].

The Dynamic Value Description (DVD) method was developed to capture the key

business values concepts through models easy to build and simple to understand by non-

IT experts. This Section describes the DVD concepts and their relationships, its abstract

and concrete syntax, its semantics and supporting process.

5.2.1 DVD in a nutshell

The DVD method is an early requirements specification approach whose goal is to analyze

and represent the economic values exchange through a model called Dynamic Value

Description (same method name). From the DVD model, both business analysts and

requirements engineers specify the business values exchanges by using a cognitive-based

requirements approach. The cognitive requirements approach facilitates the domain

understanding because it provides an environment wherein all the stakeholders can share

107

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

their views and abstractions in a semi-structured mindmap model. In other words, the

DVD model was structured to inherit the well-known characteristics from mindmap

structure (e.g., simple, easy to use, useful, and accessible model [51]).

DVD is composed of six main concepts: Actor, Value exchange, who starts the value

exchange, Value port, Value level agreement, and value activity. An actor is an economi-

cally independent entity. A company, business unit, role, or a customer are examples of

actors. “Economically independent” refers to the ability of an actor to be profitable or to

increase value for him/herself. Actors are specialized in main actor and environment actor.

Each time, the business analyst focuses the analysis on the main actor and represents its

relationship with others environment actors, producing an inter-organizational network.

As the focus changes, the actor playing the role of “main actor” also changes. With this

change in focus, new actors and value exchanges may appear.

A value exchange shows economic reciprocity through two value ports, one entry and

one exit, which points to value objects (e.g., money, goods, services or information). The

business analyst should define who starts a value exchanges and the corresponding value
activities. While who starts the value exchanges aims at identifying the actor responsible for

starting the value exchange, the value activities aim to specify how the value exchanges

can be operationalitized in a high-level of abstraction. Finally, each value exchange

may have a quality level of agreement agreed between the involved actors. This level of

agreement is a particular business aspect that must be minimally agreed among the actors

in order to enable the value exchanges; it defines the business constraints based on the

business strategies. For example, a company of the feeding segment provides food fresher

than its competitors, as a business strategy. However, it can only guarantee “fresher food”

if its suppliers deliver fresh ingredients. Therefore, the business analyst can specify a

Value Level Agreement (VLA) defining quality constraints on the values exchanged, in

this case of these ingredients. In other words, VLA is typically associated with Non-

functional Requirements (NFRs) or Quality attributes. Non-functional Requirements

(NFRs) refer to the operational quality of a system, as well as the constraints imposed on

a solution [217]. Thus, we can define a VLA as a NFR at the business abstraction level.

Figure 5.2 shows a “sketch” model representing all the DVD concepts for the following

example scenario: A Shopper buys low cost goods from a Store. The Shopper makes a

payment and receives the good in return. In order to offer this good to the Shopper, the

Store needs to acquire this same good from a specific Manufacturer. To this end, the Store

places an order to receive the goods as soon as possible, aiming at refilling their stocks

quickly.

The actor Store is the focus on the analysis. It is therefore the main actor of our

DVD model — rectangle marked with “M” on the left upper corner — and Shopper and

Manufacturer are the environment actors (rectangles marked with “E” on the left upper

corner). Shopper starts a value exchange with Store, making a payment and receiving a

good in return. The lines between actors represent the value exchanges and the black

squares on the side of an actor indicate the actor that starts the relation (who starts). A

108

5.2. BUSINESS VALUE MODELING

VLA associated with the value exchange between Shopper and Store is low cost of products.

Store also starts a value exchange with Manufacturer, making an order aiming at receiving

goods with fast delivery.

Figure 5.2: Illustration of the DVD concepts.

A DSL was defined and implemented to support the DVD concepts and relationships.

Such DSL has been defined in terms of its abstract syntax (in a metamodel), a set of the

rules (constraints) and its concrete syntax (visual notation). DVD is also supported by a

process. All this is discussed in the following sections.

5.2.2 DVD abstract syntax and constraints

The DVD language abstract syntax is described using a metamodel. Such metamodel

defines each concept with its attributes together with the relationships among the various

concepts. Figure 5.3 shows this model using an ecore metamodel [47] diagram1. Con-

cepts are defined as metaclasses and are represented by rectangles, attributes are defined

by their names and types and shown in the second compartment of the corresponding

metaclass, and relationships are represented by arrows between the metaclasses. (The

gray node metaclasses correspond to abstract metaclasses.)

As the DVD model is structured as a mindmap, most of the DVD concepts are special-

izations of the Node and Relation metaclasses, as per the mindmap metamodel defined by

Siochos and Papatheodorou in [228].

In the metamodel, we created an abstract class to represent the actors (Actor class).

Actors are classified (or specialized) in main actor (MainActor class) and environment
actor (EnvironmentActor class). Each actor has a name (name attribute in Actor class)

and a unique attribute (id attribute in Actor class). An actor is involved in at least one

1Ecore is the core metamodel of Eclipse Modeling Framework (EMF) (Eclipse Modeling Framework).
EMF is an Eclipse-based modeling framework and code generation facility for building tools and other
applications based on a structured data model. Ecore is also its own metamodel [47], it is, it defines itself.

109

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

Figure 5.3: Dynamic Value Description metamodel.

value exchange (ValueExchange class) and each value exchange has at least one value level

agreement (ValueLevelAgreement class) and one value activity (Activity class). Each value

exchange, activity, and value level agreement has an identifier and a description. Also,

the value exchange also has two value ports: the input value port (InValuePort class) and

output value port (outValuePort class). Each value port has a value object (ValueObject

class), a description and an identifier.

The relation presented in the metamodel are of two types: Who Starts (WhoStartsRe-

lation class) and Simple (SimpleRelation class). Each of these has only one source node

([1..1] from) and a target node ([1..1] to). The relationship between the main actor and the

environment actor is made through the WhoStartsRelation relation, having as the source

node a main actor and as the target node a environment actor. In this relation, if the main

actor starts the value exchange, its object is set to be hasVEBackward and, in contrast,

if the environment actor is who starts the value exchange, then its object is placed into

hasVEForward. Both, the hasVEBackward and hasVEForward are need to show visually

who starts the value exchange. In other words, it is the visual representation of the who
starts concept.

Each actor can be involved in more than one value exchange, but each value exchange

can only belong to an environment actor. This relationship is represented by the bidi-

rectional link [1 .. *] hasValueExchange and [1..1] hasEnvironmentActor, respectively. The

same rule happens with main actor ([1 .. *] hasValueExchange and [1..1] hasMainActor). In

110

5.2. BUSINESS VALUE MODELING

turn, each value exchange has an input value object, represented by the link [1..1] Inval-
ueObject, and an output value object, represented by the link 1..1] OutValueObject. Each

value exchange may have at least one value level agreement; this link is made through

the SimpleRelation relation, where the source node is a ValueExchange and the target node

is a ValueLevelAgreement. Also, activities can be defined to clarify how the value exchange

can be operationalized ([1 .. *] hasActivity).

Certain correctness-construction rules cannot be assured by the metamodel. Those

cases are defined using Epsilon Validation Language (EVL)2 To ensure correct DVD mod-

els, a few rules we defined, particularly to guarantee:

• Only one central node. As the DVD is structured as a mindmap model, we need to

ensure that the DVD model has only one central node. Also, the central node must

be a main actor.

• A value exchange belongs to two actors. A value exchange is always associated

with one main actor and one environment actor.

• Economic reciprocity. A value exchange is reciprocal by nature, that is, an actor

gives something and receives in return something else. Therefore, a value exchange

must have one input value port and an output value port.

• Mandatory fields. Actors, activities, value exchanges, ports, value objects, and

value level agreements must be a unique (have an identifier) and have a name or

description.

The above constraints were all implemented using EVL. As an example, Listing 5.1

shows two constraint rules performed in the context of a value exchange object. The first

rule checks if a value exchange has one main actor and one environment actor associated

to it. The second rule checks if a value exchange has two value ports, one input port

inValuePort and one output port outValuePort.

Listing 5.1: Example of DVD semantic rule

1 context ValueExchange {

2

3 c o n s t r a i n t ActorsDef in i t ion {

4 check : s e l f . mainActor . isDefined () and s e l f . environmentActor . i sDefined ()

5 message : ’ The�value�exchange�must�be� a s s o c i a t e d � to �both� " main� a c t o r " �and�
" environment� a c t o r " . ’

6 }

7

8 c o n s t r a i n t ValuePortsDef in i t ion {

9 check : s e l f . outValuePort . i sDefined () and s e l f . inValuePort . i sDefined ()

2EVL contributes to model validation capabilities. More specifically, EVL can be used to specify and
evaluate constraints on models, metamodels and modelling technologies [74]. rules, typically associated to
(context) metaclasses.

111

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

10 message : ’ The�value�exchange�must�have�be� a s s o c i a t e d � to �one� " in � port " " �
and�one� " out� port " . ’

11 }

12 }

The remaining constraints were implemented in a similar way and are available on

DVD repository3.

5.2.3 DVD concrete syntax

After the definition of the abstract syntax, with all the concepts defined in a metamodel

and extra correctness rules defined in EVL for the validity rules of the concepts and

relationships, we allocated one visual representation or symbol to each DVD concept and

relationship. This visual representation forms DVD’s concrete syntax and allows a user

to use the language to create DVD models. The concrete syntax of the DVD language is

shown in Figure 5.4.

Figure 5.4: Concrete notation for the DVD language.

Taking our illustrative example from Figure 5.2 and using the DVD concrete syntax

from Figure 5.4, the final DVD model would take the form of the diagram in Figure 5.5.

The exception is the value activity concept, which we decided not to represent it in the

keep the graphical representation simpler.

Figure 5.5: Example of a DVD model for the purchase and sale of goods by a store
expressed using the DVD concrete syntax.

Note that we have changed the geometric form of the main actor to a circle aiming at

passing the idea (subliminally) of a target or point of analysis. Also, we created a more

expressive graphic element for the exchange of a value (a square with its identifier in the

center) and to make clear the value ports used we have chosen arrows. The representation

of “who starts” the value exchange was also improved in relation to the first notation

3DVD GitHub Repository: http://bit.do/e2sYv

112

http://bit.do/e2sYv

5.2. BUSINESS VALUE MODELING

where it was not possible to identify the origin of the value exchange, particularly if

more than one value exchanges between two actors exists. In the current notation, we

used the value exchange identifier between brackets on the line between the main actor

and environment actor; the identifier must be displayed next to the originator actor. For

example, the “[1]” next to Shopper indicates that this environmental actor initiates the

value exchange with the identifier 1.

5.2.4 DVD process

The most notorious activity of the DVD method is the use of its DSL to create a correct

DVD model. Such model is created following a set of steps, or activities, more rigorously

described in BPMN [263], as depicted in Figure 5.6. The creation of a DVD model involves

six activities: Identify main actor, Identify environment actors, Define value exchanges,

Define who starts each value exchange, Define value level agreement, and Change the

main actor. Each of these activities is explained next with excerpts of the DVD model

example depicted in Figure 5.5.

Figure 5.6: Process to create a DVD model.

1. Identify main actor. This activity starts a DVD model by representing the focus of

the analysis. In the example, the main actor is Store, obtained by applying the following

guideline.

• Guideline 1.1: Choose your focus by selecting the main actor for the DVD model;

this is the actor for which you are interested in studying its value exchanges. In

general, there is no need to understand the value exchanges of the entire business

environment. Thus, focus only on the actor(s) (for which the information system

will be developed).

113

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

2. Identify environment actors. Environment actors are those that directly interact

with the main actor. The process is incremental, so we specify one environment actor at a

time. The environment actors in our example are Shopper and Manufacturer and were

identified using the guideline that follows.

• Guideline 2.1: Create environmental actors with similar level of abstraction. For ex-

ample, if the identified actors are companies, then continue analyzing which other

companies exchange value with this main actor. However, if the environmental

actors are roles (e.g., purchasing manager), then continue analyzing the environ-

mental actors at this level of abstraction.

3. Identify value exchanges. These add the values exchanged between the main actor

and its environment actors by defining the value object related to each value port. For

example, the environment actor Shopper makes a Payment to the main actor Store in

exchange for a Good. In this case, Payment is represented in the output port of the

value exchange (arrow heading out, as it comes from the Shopper towards the Store)

and the Good in the input port (arrow heading in, as it “given” to the Shopper). In

addition, business analysts can specify the activities required to operationalize the value

exchanges (value Activities). These activities are not shown graphically on the DVD

model. Instead, they are registered as properties of the value exchanges in the DSL. The

next five guidelines systematize this process.

• Guideline 3.1: Use products and services mentioned in the business description. All

companies should offer a set of services or products to the market and/or the main

actor business parties. It is through these services and products that the companies

remain alive and profitable.

• Guideline 3.2: Use the economic reciprocity idea to find value objects. When the

environment actor Shopper makes a Payment to the main actor Store, the shopper

will want to receive something in return from the store (e.g., goods).

• Guideline 3.3: Make sure the actor is an end consumer. According to the consumer

value theory [121], in general, actors who are final consumers do not aim for profit.

Instead, they want to meet their needs. Although they might not aim for profit, the

objects continue to have an important value for these actors.

• Guideline 3.4: Place the value object on the correct value port. Always consider what

is received (in value port) and offered (out value port) from the point of view of the

environment actor. For example, the Manufacturer receives an Order (in value port)

and offers Goods in return (out value port).

• Guideline 3.5: Activities are needed for a business to deliver value. The operational

activities of a company do not need to be specified. In general, the operational

activities are automated by third parties.

114

5.2. BUSINESS VALUE MODELING

4. Identify who starts each value exchange. This identifies the actor starting the value

exchange. For example, the value exchange between the environment actor Shopper and

main actor Store starts when the shopper makes a payment. If the shopper does not pay

the store will not deliver the good and so the value exchange will not occur.

• Guideline 4.1: Use the value activities as the basis of an analysis to identify who

starts the value exchange. Order the activities and identify who is the actor who is

responsible for the first activity of value activities ordered.

5. Identify value level agreement. This defines a contract for the value exchange. So,

we must understand the business constraints related to each value exchange. In the

example, the requirement “low cost” of goods leads to the exchange of value between

Shopper and Store. In other words, if goods were expensive, the value exchanged buyer

and store would not happen.

• Guideline 5.1: Identify the minimum requirements needed to the value exchange

to happen. Analyze why actor A makes a value exchange with actor B instead of

choosing a competitor (actor C). For example, the main actor Store always places

orders in environment actor Manufacturer because the Manufacturer has a fast

delivery service.

6. Change the main actor. This activity allows the analyst to change the focus of his

analysis to another actor. In other words, if the user selects an environment actor to

become a main actor, a new DVD model is generated, and the context of that environment

actor is copied to the new environment.

• Guideline 6.1: Set an environment actor as a main actor only when you are interested

in knowing its value exchanges with other initially peer environment actors, or new

environment actors down the business chain for that partner actor. In general, there

is no need to understand the value changes of the entire business environment.

5.2.5 From a DVD model to a SoaML capability model

DVD is the starting point of the whole use of our framework. That is, any of the subse-

quent methods to generate a reference architecture, start from a DVD model. We can,

however, generate a SoaML capability model using model driven techniques. In order to

achieve that, we need to define a Model-to-Model transformation taking the DVD model

as the source model and SoaML as the target model. This is an optional activity that

serves to generate a modular description of a business in terms of its desired business

outcomes.

As described in Section 3, a capability represents the ability of a business, service, or

system to act and produce a result that achieves a specific goal. In this way, a capability is

presented as a cohesive set of functions or resources that a the business needs to offer or to

115

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

receive. Since a capability model represents hierarchical capacities, we begin by creating

an abstract capability only to be the parent of all capacities (aggregator of all capacities).

Soon after, we create the second level of capabilities (children of abstract ability), where

each value exchange on the DVD is transformed to a capacity in the SoaML model. The

reason for this transformation is that the business needs to be able to realize the value

exchanges, in order to be successful in the market. By the end, we create the third level

of capabilities by transforming each activity from a value exchange into a capability in

the SoaML model.

Listing 5.2 shows the implementation of the rules to transform a DVD model into

a SoaML capability model using Epsilon Transformation Language (ETL). Lines 11-14

show the creation of a high-level capability aiming at being the parent of all capabili-

ties. Next, the value exchange element from a DVD model is transformed into an abstract

capability element in SoaML (Lines 18-22) and then is linked to the highest-level capa-

bility (Lines 26-29). Lines 33-37 show the DVD activity element being transformed to a

SoaML capability element and Lines 42-45 show the creation of the links between the last

capabilities created.

Listing 5.2: M2M Transformation: from a DVD model to a SoaML capability model

1 c r e a t e C a p a b i l i t y () {

2 var soamlTrans : new SoaML_Capability ! SoaML_Capability ;

3 var valueExchangeList = dvd ! ValueExchange . a l l I n s t a n c e s () ;

4 var mainActor = dvd ! MainActor . a l l I n s t a n c e s () . f i r s t () ;

5 var c a p a b i l i t y ;

6 var r e l a t i o n ;

7 var a b s t r a c t C a p a b i l i t y ;

8

9 // Create c a p a b i l i t y aggregator (parent)

10

11 var parentCapabi l i ty : new SoaML_Capability ! Capabi l i ty ;

12 parentCapabi l i ty . name = " General� c a p a b i l i t y " ;

13 parentCapabi l i ty . transformedFrom = " Main�Actor� ID: "+mainActor . idMainActor ;

14 soamlTrans . hasCapabi l i ty . add (parentCapabi l i ty) ;

15

16 // Create a b s t r a c t c a p a b i l i t i e s from dvd . valueExchanges

17

18 fo r (valueExchange in valueExchangeList) {

19 a b s t r a c t C a p a b i l i t y : new SoaML_Capability ! Capabi l i ty ;

20 a b s t r a c t C a p a b i l i t y . name = valueExchange . d e s c r i p t i o n ;

21 a b s t r a c t C a p a b i l i t y . transformedFrom = " Value�Exchange� ID: "+valueExchange .

id ;

22 soamlTrans . hasCapabi l i ty . add (a b s t r a c t C a p a b i l i t y) ;

23

24 // c r e a t e a r e l a t i o n between c a p a b i l i t i e s

25

26 var parentRelat ion : new SoaML_Capability ! Relat ion ;

27 parentRelat ion . from = parentCapabi l i ty ;

116

5.2. BUSINESS VALUE MODELING

28 parentRelat ion . to . add (a b s t r a c t C a p a b i l i t y) ;

29 soamlTrans . hasRelat ion . add (parentRelat ion) ;

30

31 // Create SoaML_Capability . Capabi l i ty from dvd . a c t i v i t y

32

33 var a c t i v i t y L i s t = valueExchange . h a s A c t i v i t y ;

34 for (a c t i v i t y in a c t i v i t y L i s t) {

35 c a p a b i l i t y : new SoaML_Capability ! Capabi l i ty ;

36 c a p a b i l i t y . name = a c t i v i t y . d e s c r i p t i o n ;

37 c a p a b i l i t y . transformedFrom = " A c t i v i t y � ID: "+ a c t i v i t y . id ;

38 soamlTrans . hasCapabi l i ty . add (c a p a b i l i t y) ;

39

40 // c r e a t e a r e l a t i o n between c a p a b i l i t i e s

41

42 r e l a t i o n : new SoaML_Capability ! Relat ion ;

43 r e l a t i o n . to . add (c a p a b i l i t y) ;

44 a c t i v i t y . from = a b s t r a c t C a p a b i l i t y ;

45 soamlTrans . hasRelat ion . add (r e l a t i o n) ;

46 }

47 }

48 }

Figure 5.7 shows the result of applying the above transformation to the DVD model

in Figure 5.5. Note that the capability names are not represented graphically in the DVD

model but as attributes of the concepts. For example, the value exchange between shopper
and story has the description “Sell products”. This description is what we use for the

capability generation in the SoaML model. (The same is true for activities.)

Figure 5.7: SoaML capability model generated from a DVD model.

5.2.6 About the DVD implementation

A DSL for DVD was implemented initially using the Eclipse EuGENia tool [79], allowing

the creation of models syntactically validated4. EuGENia is a tool that automatically

4DVD GitHub Repository: http://bit.do/e2sYv

117

http://bit.do/e2sYv

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

generates the background models needed to implement an Eclipse Graphical Model-

ing Framework (GMF) editor from a single annotated Ecore metamodel. However, the

open-source community was no longer evolving the tool or correcting existing errors. In

addition, there is little documentation to use as a knowledge base during the implemen-

tation of a DSL. For this reason, we decided to replace the EuGENia tool by the Sirius

tool [80]. Sirius has been created by Obeo [187] and Thales [253] to provide a generic

workbench for model-based architecture engineering that could be easily tailored to fit

specific needs5. Basically, Sirius is supported by the same model-based technologies

used by the EuGENia’s tool (e.g., metamodeling, transformation between models, and

model validation). The difference is that Sirius offers a lot more for its the users (e.g.,

documentations, forum for developers, and an active community).

5.3 Agile reference architecture modeling

Traditional software architecture processes tend to introduce excessive documentation

and additional development effort of possibly unneeded features [2]. This may be why

combining software architecture design and agile development was ranked second in

the top “ten burning research questions” for the agile community [95]. However, com-

bining these topics is challenging [2, 267], as proved by a recent study [267] showing

that the architecture-agility combination still lacks supporting techniques. The first

challenge is the apparent mismatch between the architectural design development plan

and the fact that agile practitioners do not pay much attention to planning, favouring

handling changes during development instead of designing early a well-structured archi-

tecture [267]. The second challenge points to valuable information being lost or misunder-

stood due to communication issues between business and software developers, leading

to wrong or needless architectural features [267]. This section addresses the above issues

by proposing RAMA, a value-centric development method; it starts with an overview of

agile practices and follows by detailing a method for software architecture modeling for

agile development.

5.3.1 An overview of the supported agile concepts

Agile development aims at reducing the effort-intensive tasks in software development,

focusing on fast response to the various changes in a project [83]. The Agile Manifesto

establishes values and principles to guide the agile development [93]. In recent years,

researchers and practitioners have proposed several agile practices [175], which have

been catalogued by the agile alliance in its “subway map to agile practice” [9], as can be

seen in Figure 5.8.

Next, we describe briefly the meaning of the Agile Practices (AP#) used in RAMA

(described in the following section) and the reason why they are used.

5Sirius features can be found at https://www.eclipse.org/sirius/features.html

118

https://www.eclipse.org/sirius/features.html

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Figure 5.8: Subway map to agile practice [9].

AP01 Iterations: is a timebox during which the development takes place. RAMA uses

this AP to facilitate measuring the development progress and managing the scope

of the changes to in the project, hence aiding implementation and reducing the

associated costs.

AP02 User stories: are functional increments describing what must be developed by

the team. RAMA uses user stories because they help deliver the highest value by

focusing on small and immediate customer needs.

AP03 Facilitation: is any action that facilitates the development. RAMA uses this AP

because the facilitator role usually focuses primarily on creating the conditions to

run an effective process. Thus, a facilitator also helps to accomplish the RAMA

process.

AP04 Team: is a small group of people, assigned to the same project. RAMA uses this

AP because it the notion of a team entails shared accountability. In order words,

the outcomes should be attributed to the entire team rather than to any individual.

A small team works better than a unique person or a group of people that work

individually.

AP05 Backlog: is an ordered list of items representing everything that may be needed

to deliver a specific outcome. RAMA uses this AP because it explicitly shows what

may need to be done.

119

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

AP06 Iterative development: is the “repetition” of the software development activities

for potentially “revisiting” the same work products. RAMA uses iterative develop-

ment because this AP increases the quality of the product delivered.

AP07 Incremental development: is the adding of user-visible functionality to the previ-

ous software version. RAMA uses this practice because each successive development

iteration in RAMA must add user-visible value.

AP08 Ubiquitous language: is the use of the vocabulary of a given business domain,

not only in discussions about the requirements for a software product, but also

in discussions of design. RAMA uses this AP because the use of an “ubiquitous

language” mitigates difficulties between the business experts and the development

team.

AP09 Simple design: is the design that uses the practice often reduced to the acronym

YAGNI (You Aren’t Gonna Need It), RAMA uses this AP because it alludes to the

usual counter-arguments when a programmer tries to propose a costly design ele-

ment based on its future benefits only. RAMA derives an architectural model based

on the current snapshot of business values.

These are the practices that RAMA will use explicitly, as highlighted in the following

sections.

5.3.2 RAMA in a nutshell

RAMA creates an information system reference architecture model aligned with the eco-

nomic business values of an organization as defined in a DVD model in an intuitive,

interactive, and agile (fast) manner. Starting from a DVD model, the business analyst

(and/or product owner) and the development team can now initiate the identification

and specification of user stories for each value exchange. To achieve this, they should

define operationalization scenarios for the value exchanges. Then, the business analyst

(or product owner) prioritizes the value exchanges, according to the business Return on

Investment (RoI). Next, the business analyst and the development team, with the help

of a facilitator (agile practice AP03), specify conceptual models for the user stories using

mind maps (AP08). As partial conceptual models are specified separately, it is common

to find the same concept in different models. The potential “concept-overlap” between

different conceptual models needs to be identified. The development team identifies

concept overlaps with the help of the Levenshtein distance algorithm6 [164]. When an

overlap is found, the team decides which of the models take the responsibility for that

concept. These activities are performed iteratively and incrementally (AP06 and AP07).

Finally, model-driven techniques are used to generate a reference architecture with its

architectural components and relationships.

6Levenshtein distance algorithm measures the edition distance between two words.

120

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Next, we describe the fundamentals used to operationalize this method through a

DSL (with its abstract syntax, constraints, and concrete syntax) and present its associated

process.

5.3.3 RAMA abstract syntax and constraints

The RAMA metamodel is too large to be presented here as a single piece. Aiming at facil-

itating its comprehension, we split it into three parts. user stories specification, conceptual
modeling, and traceability support. The user stories specification part specifies the concepts

needed to create user stories related to the value exchanges. The conceptual modeling
part represents all the concepts necessary to create a conceptual model structured as a

mindmap. Finally, the traceability support part interlinks all the concepts, from the DVD

model to the conceptual model as a tree model. Each of these parts are discussed next.

User stories specification. A user story is a high-level representation of a software

requirement. Similarly to the DVD model, the user story model is also structured based on

the specialization of the Node and Relation metaclasses, as shown in Figure 5.9. However,

the user story model is not a mindmap because it has no central node. Instead, it is a

hierarchical model displayed in a landscape mode. We decided to use this structure in

order to reuse the BehaviorMap tool infrastructure [225] and, as a consequence, decrease

the evaluation effort in the construction of the proof of concept tools.

A user story is typically described using natural language following one of several

possible templates. We structure the users stories as suggested by the Behavior-Driven

Development (BDD) practice. BDD is an agile development practice that evolved from

Test-Driven Development (TDD)7 and Acceptance-test Driven Development (ATDD)8

[233]. BDD was created based on software testing practices. It uses system behaviors

checking to build software with quality [183]. Behaviors are specified directly with stake-

holders through BDD scenarios. BDD scenarios aim at obtaining a description of the

behavior of the system, taking advantage of an active communication between the stake-

holders. In other words, they are intended to describe how the system implements a

feature and how it should behave given a context in the occurrence of a certain event

[183].

This BDD scenarios has three main parts (or Steps): Given (some context) When (some

action is carried out) Then (a particular set of observable consequences should happen).

The full formulation of the User story can be preceded by the agent that triggers the

7TDD was mainly adopted in the processes of agile development, born from EXtreme Programming
(XP) [28]. It suggests that the tests be written at the beginning of development rather than at the end as in
the traditional form of software development. Thus, the programmers have control over what is working
correctly in the system and consequently the quality of the code produced increases [27].

8ATDD is a requirements capture and verification process [156]. It was evolved from TDD, with the
objective of creating tests that validate the business rules of the stakeholders. With the creation of acceptance
tests, there is a validation of stakeholder needs, and development progress is made on the basis of satisfied
acceptance tests.

121

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

action associated to the “when” clause. For example, “As a Ph.D. Student, given that I

completed all the curricular units, when I ask for a certificate, then the academic services

will print one without further requirements”.

Also, each Step (Given, When, and Then) contains a Content. In addition to the steps,

the BDD scenarios have a node As a that associates an agent to the scenario. In order to

relate the DVD model with the user story specification, a value exchange is associsated

with one or more user stories (UserStory class).

Figure 5.9: User story metamodel.

An instantiation of the user story metamodel is depicted in Figure 5.10, which shows

a sketch representing the user story concepts for a Cash withdrawal requirement. In this

illustrative example the user story is described for an agent Bank account owner who has

a bank account in credit, and does not made withdrawals recently (Given step). So, when
he attempts to withdraw an amount less than his card’s limit, then the withdrawal should

complete without errors or warnings.

As discussed for the DVD abstract syntax, certain correctness-construction rules can-

not be assured by the metamodel. Those cases are defined using EVL rules, typically

associated to metaclasses that define the context (or scope) of the rule. To ensure correct

user stories models, a few rules were defined, particularly to guarantee that:

• All concepts must be linked. As the user story is structured as a hierarchical model

122

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Figure 5.10: User story sketch.

in a landscape mode, we need to ensure that the concepts Asa, Given, When, and

Then are always linked to the the user story node.

• All user story must have an agent. Any user story must specify its agent because

the scenario it describes is from the point of view of that agent.

• Steps always have a content. All the steps of a user story must have a content. In

other words, each Given, When, and Then step must have a content associated to it.

• All attributes are mandatory. All the attributes of all the concepts must be filled

in.

Listing 5.3 shows a semantic rule where each “given step must have a content” imple-

mented using EVL. All the other rules were implemented in a similar manner.

Listing 5.3: Given step must have only link to a Content

1 c o n s t r a i n t GivenMustPointToContent {

2 check {

3 var n = s e l f . nodes . s e l e c t (n : Node | isGiven (n . type ()) and

4 s e l f . edges . s e l e c t (c : Edge | c . source = n and

5 not (isContent (c . t a r g e t . type ()))) . s i z e () > 0) ;

6 return n . isEmpty () ;

7 }

8 message : ’ Given�Step�must�have�a� l ink � to �a�Content ’

9 }

Conceptual modeling. A Conceptual model describes “aspects of the physical and social
world around us for the purposes of understanding and communication” [166]. A conceptual

model describes the important concepts in the system domain, helping clarifying the ter-

minology, or vocabulary, of the domain [234]. This helps the stakeholders to understand

the key elements of the domain that are involved in the system being developed. We pro-

pose a conceptual model structured as a mindmap aiming at inheriting all well-known

123

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

benefits of the mindmap structure (e.g., simplicity, understandability [51]). Figure 5.11

shows the metamodel for our conceptual model. The mindmap structure is defined by

the composition of Nodes and Edges corresponding to the structure of a graph. Each Node

can be of type Entity or Attribute, where Entity is a representation of a concept from the

domain and an Attribute is a characteristic of an Entity. Also, the Edges are represented

as Dotted lines in our conceptual model.

Figure 5.11: Conceptual model metamodel.

An instantiation of the conceptual metamodel is depicted in Figure 5.12, showing

a sketch representing a conceptual model for a Business-to-Business e-commerce order

management. In the example, a sales Order can be carried out by a User that can be an

administrator, operator, or supervisor. This order can have different statuses (e.g., performed,

backorder, and completed as defined in Status) and a Payment description. An order item

(OrderItem) has an amount, a price, and a discount and it is related to a Product. A product

has a description, a minimal price, and a quantity in stock.

To ensure that only correct conceptual models are created, similarly to the previous

cases, a few rules were defined, particularly:

• The model has only one central node. As the conceptual model is structured as a

mindmap model, we need to ensure that it has only one central node.

• The model has a creation order. Entities can be linked with other entities and with

attributes. However, attributes cannot be linked with other attributes.

• The entities are unique. One entity is defined only once, i.e., if there are two entities

with the same name, only one can is linked with attributes. Therefore, if more than

124

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Figure 5.12: Conceptual model sketch.

one entity with the same name exist, they must be representing the same concept. So

it is not good practice to scatter the (attributes) of the concept throughout different

parts (entities) of the model.

• All the attributes are mandatory. All the attributes of all the concepts must be

filled in.

Listing 5.4 shows the EVL rule to ensure that an attribute is not linked with other

attributes. All other rules were implemented in a similar manner.

Listing 5.4: Attributes can only link to Entities

1 c o n s t r a i n t AttributesCanOnlyPointToEntity {

2 check {

3 var n = s e l f . nodes . s e l e c t (n : Node | i s A t t r i b u t e (n . type ())

4 and s e l f . edges . s e l e c t (c : Edge | c . t a r g e t = n

5 and (i s E n t i t y (c . source . type ())

6 or i s A s s o c i a t i v e E n t i t y (c . source . type ()))) . isEmpty ()) ;

7

8 return n . isEmpty () ;

9 }

10 message : ’ A t t r i b u t e s �can�only� l ink � to � E n t i t i e s ’

11 }

Traceability support. We created a tree model to ensure traceability among the devel-

opement artifacts, from the DVD value exchanges to conceptual models. Figure 5.13

shows the metamodel of this tree model, which is structured based on Nodes and Edges.
This structure allows the concepts to be shown in the model in a hierarchical manner.

The model defines the various nodes are specializations of the Node, and a continuous
line from the Edge node. A RootNode is the Parent node of at least one Priority node.

Priority nodes have an attribute establishing their level of priority, according to the enu-

merated High, Medium, and Low, as defined in the metaclass PriorityEnum. A Priority
node is parent of at least one Value Exchange node. A Value Exchange node is parent of at

125

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

least one User Story node. The tree model also maintains the traceability between user

stories and their conceptual models ([0.*] isParent relation from UserStory class to Con-
ceptualModel class) and the links among conceptual models ([0..*] relatedWith relation on

the ConceptualModel class).

Figure 5.13: Metamodel for traceability support.

Figure 5.14 shows a sketch tree representing all the traceability supporting concepts.

In this illustrative example, the top level is the root node (backlog, related to AP05), each

of the three nodes in the second level represent a priority value from the priority scale

used in the first-round, the third level has the value exchanges (order by the second-round

priority), the fourth level has the user stories, and the last level has the conceptual models.

In this way, we have a direct traceability of the value exchanges that are most important

for the business and also the user stories are associated with each value exchange. Also,

we are able to identify what conceptual models are associated with which user story.

To ensure a correct tree model, a few rules were defined, to guarantee the following

constraints:

• All the concepts must be linked. As the model is structured as a tree, we must

ensure that the the elements of type priority, value exchange, user story, and con-

ceptual model are always linked among them hierarchically. In other words, there

are no loose elements in the model.

• The top of the model is always the same. The traceability model always has a root

node with three children nodes: High Priority, Medium Priority, and Low Priority.

• The parent node is known. The parent node of a value exchange is always a priority

node, The parent node of a user story is always a value exchange node, and the

126

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Figure 5.14: Traceability (tree) model sketch.

parent of a conceptual model node is always a user story node.

• All attributes are mandatory. All the attributes of all the concepts must be filled

in.

Listing 5.5 shows the EVL rule to ensure that a root node has three priorities nodes.

Listing 5.5: A root node has three priorities nodes

1 c o n s t r a i n t RootNodeHasThreePrioritiesNodes {

2 check {

3 var n = s e l f . nodes . s e l e c t (n : Node | isRootNode (n . type ())

4 and s e l f . edges . s e l e c t (c : Edge | c . t a r g e t = n

5 and (i s P r i o r i t y (c . source . type ())))) ;

6

7 return n . s i z e () == 3 ;

8 }

9 message : ’A�Root�node�can�only�have� three � a s s o c i a t e d � p r i o r i t i e s �nodes ’

10 }

5.3.4 RAMA concrete syntax

User stories specification. The elements that make up the concrete syntax of a user

story (inherited from the BehaviorMap tool [225]) are presented in Table 5.1.

Figure 5.15 is an instantiation of the user story model showing the Cash withdrawal

example used to illustrate the concrete syntax.

127

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

Table 5.1: Concrete language for User story specification tool.

Icon Name displayed in Icon Name displayed in
the editor palette the editor palette

Given When

Then User Story

Agent Text (No icon) Content

Figure 5.15: User story specification with the concrete syntax.

Traceability support. The elements that make up the concrete syntax of the traceability

tree model are presented in Figure 5.16. The notation chosen for the tree elements is a

circle, altering only the color according to the priority of the node [high = red; Medium

= yellow; Low = blue].

Conceptual modeling. Since there are editors already available for mindmap model-

ing, we did not design one more language and nor did we implement one more editor.

Instead, we evaluated several tools and concluded that Freemind [229], Drichards [76],

DomainMap [225], and SimpleMind Lite [178] can be used for our purpose. We chose to

use the DomainMap tool because it allows us to change the concrete syntax when we are

creating the model.

5.3.5 The RAMA process

RAMA is more than a set of techniques with some supporting tools. The macro process

in Figure 5.17 describes the whole method. It is composed of six activities: Specify user

stories, Prioritize value exchanges, Specify conceptual models, Identify concepts overlaps,

Decision analysis, and Create a reference architecture.

Next, each of these steps are discussed in more detail.

128

5.3. AGILE REFERENCE ARCHITECTURE MODELING

Figure 5.16: Traceability tree model concrete syntax

Figure 5.17: RAMA’s process.

1. Specify user stories. The business person and development team define user stories

(AP02) for each value exchange (or only for those with higher priority contained in an

iteration). User stories describe software requirements aligned with the value exchanges

which operationalize business values. We structure the users stories as suggested by BDD

practice. BDD scenarios have a structure with the keywords given, when and then to be

used in any situation as described in Section 5.3.3. That is, the keyword given is followed

by some scenario description. The keyword when is followed by some action taken. And

the keyword then is followed by some particular set of observable consequences that must

be obtained after acting. To facilitate the creation of a user story, we have defined the

following set of guidelines:

• Guideline 1.1: User stories should be defined with the help of the business analyst,

to avoid the risk of writing speculative stories based on beliefs and ideas and not

empirical data and evidence about the business.

129

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

• Guideline 1.2: Value activities can be used to facilitate the user stories specification

because they describe the operationalization of the value exchange at the business

level.

2. Prioritize value exchanges. Priorities are given in two rounds. In the first, the busi-

ness person uses the scale high, medium, low to define the priority of each value exchange

according to the RoI. These priorities guide the development iterations (AP01), where the

highest ranked will be implemented first. The second prioritization round, done by the

development team, happens for value exchanges with the same priority (and user stories

already described), to distinguish them and solving potential future conflicts. Then, it is

clear which value exchanges must be handled first.

• Guideline 2.1: It is very important that the first prioritization is defined by the

business owner or business analyst. However, the development team must also

participate in the prioritization task because it improves their knowledge about the

business.

• Guideline 2.2: The second prioritization round must be performed by the develop-

ment team because they aggregate the knowledge acquired about the business with

the technical expertise needed to build a solution.

3. Specify conceptual models. The development team creates conceptual models to (or

part of) the value exchanges. To aid visualization and ensure traceability between value

exchanges and respective conceptual models, a behavior tree view is generated from the

DVD model using M2M transformations soon after the prioritization of value exchanges.

The conceptual modeling activity is collaborative, involving the business analyst, the

development team, and a facilitator (who can be a member of the team) [260].

• Guideline 3.1: Armed with the value exchange specification (composed of a set of

user stories), the facilitator helps the business analyst and the development team

build the conceptual models, and uses a conceptual model strustured as a mindmap

to answer questions like: (i) What is the central concept of the problem domain?

(ii) What are the sub-concepts directly related to the central concept and that are

relevant to the system? (iii) What data must be managed and stored? These help

eliciting relevant responses from the business analyst to build the conceptual model

[260], which is used to aid communication. The mindmap helps to diminish the

semantic gap between the business analyst and the development team [12, 214].

4. Identify concepts overlaps. The development team must search for similar concepts

among conceptual models, identifying possible overlaps. The searches are done basically

through a search of the existing text in each node of the conceptual models. To make

130

5.3. AGILE REFERENCE ARCHITECTURE MODELING

this comparison, we use the well-known Levenshtein algorithm [164], shown in Listing

5.6. The Levenshtein distance is a string metric for measuring the difference between two

sequences, in other words, it returns the number representing the distance between two

words. When the words are considered similar, it is presented a semi-automatic step to

ask the user if the words are similar, or not. This semi-automatic step is discussed in the

next activity.

Listing 5.6: Levenshtein Distance method

1 public s t a t i c int l evenshte inDis tance (CharSequence str1 , CharSequence s t r 2) {

2 int [] [] d i s tance = new int [s t r 1 . length () + 1] [s t r 2 . length () + 1] ;

3 for (int i = 0 ; i <= s t r 1 . length () ; i ++)

4 dis tance [i] [0] = i ;

5 for (int j = 1 ; j <= s t r 2 . length () ; j ++)

6 dis tance [0] [j] = j ;

7 for (int i = 1 ; i <= s t r 1 . length () ; i ++)

8 for (int j = 1 ; j <= s t r 2 . length () ; j ++)

9 dis tance [i] [j] = minimum(

10 dis tance [i − 1] [j] + 1 ,

11 dis tance [i] [j − 1] + 1 ,

12 dis tance [i − 1] [j − 1]

13 + ((s t r 1 . charAt (i − 1) == s t r 2 . charAt (

j − 1)) ? 0 : 1)) ;

14 return dis tance [s t r 1 . length ()] [s t r 2 . length ()] ;

15 }

5. Decision analysis. The development team must decide where the overlapped con-

cepts belong, following the principles of domain-driven design [86], where the domain

is modularized with a concise set of concepts guiding the software structure. A software

component encapsulates a cohesive set of system functionalities. Those functionalities

handle a set of entities. Those entities are represented as concepts in a conceptual model.

Then when defining the conceptual model boundaries we also define the software compo-

nent boundaries, leading each conceptual model to “map” to a software component in our

reference architecture. So, the development team must decide if the overlapped concepts

belong exclusively to component A (matching to conceptual model 1, for example) or

component B (matching to conceptual model 2) or neither (a new component C).

6. Create a reference architecture. After defining the scope of each component, it is

generated a reference architecture model using models transformation. In other words,

the development team uses a transformation script to generate the reference architecture

model. The script transforms each conceptual model in a software architecture compo-

nent and creates the associations among the software architecture components. Listing

5.7 shows how the software components are created. The script reads all conceptual

model entities from the tree model (line 6) and transforms each of them in a software

architecture component (lines 9-13).

131

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

Listing 5.7: Rule 1: Create software components

1 pre {

2 var archi tec tura lModel = new sa . SoftwareArchitectureDiagram

3 }

4

5 SoftwareArchitectureDiagram . Component::createComponents ()

6 {

7 s e l f . MindMapModel−>forEach (t r e e : t r e e . MindMapModel)

8 {

9 var conceptualModel : tree . MindMapModel = new t r e e . MindMapModel

10 var newComponent:sa . Component = new sa . Component ()

11 newComponent . name = conceptualModel . name

12 newComponent . transformedFrom = conceptualModel . id

13 archi tec tura lModel . add (newComponent)

14 }

15 }

After transforming all the conceptual model entities into software architecture compo-

nents, the algorithm creates the associations among these components. Listing 5.8 shows

that the algorithm reads all the conceptual model entities from the tree model (line 3)

and, for each conceptual model entity, it checks if there is some association (line 5). If

an association exists, the algorithm reads all the existing associations (line 9), creating a

software architecture association element between two software architecture components

(lines 11-14).

Listing 5.8: Rule 2: Create associations

1 SoftwareArchitectureDiagram . A s s o c i a t i o n : : c r e a t e A s s o c i a t i o n s ()

2 {

3 s e l f . MindMapModel−>forEach (a u x : t r e e . MindMapModel)

4 {

5 i f (aux . relatedWith . s i z e > 0)

6 {

7 var r e l a t i o n L i s t <MindMapModel> = new L i s t<MindMapModel>

8 r e l a t i o n L i s t = aux . relatedWith

9 for (i n t i= 0 ; i< r e l a t i o n L i s t . s i z e ; i ++)

10 {

11 var newAssociat ion:sa . Assoc ia t ion = new sa . Assoc ia t ion ()

12 newAssociation . from = aux

13 newAssociation . to = r e l a t i o n L i s t . get (i)

14 archi tec tura lModel . add (newAssociation)

15 }

16 }

17 }

18 }

The relations between components are detected through the conceptual models over-

laps: if the conceptual model A uses a concept from conceptual model B, then they are

related.

132

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

5.3.6 About the RAMA implementation

A RAMA proof of concept was implemented9 using the Eclipse EuGENia tool [79]. We

used the first DSL created to the DVD method and added the RAMA concepts (shown in

the metamodel of Figure 5.9) in the DVD metamodel in order to generate the GMF infras-

tructure as an editor (this editor is generated automatically by the EuGENia tool). As the

user story management language uses the same structure used by the BehaviorMap tool,

we have been able to reuse many of the existing semantic rules implemented in EVL and

published in [225]. Regarding the traceability support, a DSL was also implemented us-

ing the same MDD technology. The purpose of this implementation was to make sure that

we were able to generate a tree model by relating all the necessary data (value exchanges,

user stories, and conceptual model). Despite the positive result, the implementation of

our proof of concept DSL is not enough to ensure that the data is always updated. To do

this, an envisioned end-user support tool for the RAMA method requires constant data

management, using design patterns, such as the observer10 [98] to keep the data always

up-to-date. About the conceptual modeling tool, we used the DomainMap [225] in our

proof of concept evaluation. The DomainMap was also created using MDD technology in

the context of a Master degree research [225], and allows us to change the visual notation

of the conceptual model being created. To facilitate the conceptual overlap identification,

we used the well-known Levenshtein distance algorithm [164], which measures the edi-

tion distance between two words, calculating how many operations it needs to transform

a word source in another word target. Levenshtein distance algorithm was enough to

the proof of concept evaluation, but we believe that future research must be performed

in natural processing languages algorithms to implement an end-user support tool for

RAMA (e.g., identification of synonymous of words).

5.4 Goal-driven SOA architecture modeling

Among the existing requirements specification techniques, goal-oriented modeling is an

approach used to discover requirements based on the stakeholders needs or objectives

for the system. Thus, a goal-oriented approach identifies the stakeholders’ needs and

decomposes them down to system’s requirements. The main focus of such an approach

is to analyze the ”whys” (or ”goals”) of the software requirements and associated quali-

ties. Because of this, goal-oriented approaches have been used aiming at improving the

alignment between businesses (analyzing the stakeholders’ needs of a business) and their

services-oriented software [7, 20, 113, 240].

There is a wide gap between value models and goal-oriented models, because: (1)

requirements engineers find it difficult to extract knowledge from value models to design

9RAMA GitHub repository: http://bit.do/e2tHw.
10The Observer pattern defines a relationship among objects so that when one object changes state, the

others are notified and updated automatically [98].

133

http://bit.do/e2tHw

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

information systems [238]; and (2) business specialists do not usually understand com-

monly used requirements techniques to express system behavior [51]. Therefore, existing

service-oriented approaches do not offer systematic methods for service identification

from goal models, and the principles and guidelines proposed are very difficult to follow

in practice [20]. This section starts by introducing the basics of goal-oriented approaches,

then presents our KAOS4Services that is a systematic approach to generate goal-oriented

models from value models and to derive services from goal-models expressed using a

goal-oriented model.

5.4.1 Goal-oriented approaches

Goal-oriented requirements engineering uses goals for eliciting, elaborating, structuring,

specifying, analyzing, negotiating, documenting, and modifying requirements [257]. A

goal-oriented model uses goal as the concept to provide the rationale (i.e., the why) for

the envisioned system [257]. Several goal-oriented approaches exist, each one focusing

on different activities of the early stages of information system development, offering

a variety of procedures for reasoning about goals (e.g., KAOS [65], Enterprise Knowl-

edge Development (EKD) [167], Business Motivation Model (BMM) [251], i*/Tropos [82],

Goal Structuring Notation (GSN) [146], NFRs framework [57], Goal-Based Requirements

Analysis Method (GBRAM) [17], Techne [41], and Goal Requirements Language (GRL)

[14]). We analyzed these nine goal-oriented modeling languages to identify and align

the business value concepts from DVD model with the goal-oriented concepts. Table 5.2

summarizes the existing concepts of the nine goal-oriented models analyzed.

Table 5.2: Goal-oriented concepts

Concept KAOS EKD BMM iStar/Tropos GSN NFR GBRAM Techne GRL

1 Goal X X X X X X X X
2 Soft Goal X X X X X
3 Vision X
4 Mission X
5 Objectives X
6 Strategies X X
7 Tactics X
8 Operation X X X X
9 Task X X X

10 Agent X X X X
11 Actor X X
12 Role X X
13 Position X X
14 Organization X X
15 Context X
16 Domain prop-

erty
X

17 Issues X X
18 Obstacles X X
19 Requirements X X
20 Events X
21 Resource X X
22 Expectation X
22 Claim X
23 Argument X

We created a set of six heuristics to map the concepts between the DVD concepts and

134

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

goal-oriented concepts. Table 5.3 describes these heuristics.

Table 5.3: Heuristics (concepts map)

DVD concept Goal Oriented Description

(source) Concept (target)

H1 Value exchange Goal A goal is an objective the system under consideration

should achieve [257]. Regarding a value exchange, it is an

objective the business under consideration should achieve,

most likely with the use of a system.

H2 Value Level Softgoal Softgoal is a goal for which there are no clear-cut cri-

Agreement (VLA) teria for whether the condition is achieved [213]. VLA

refers to the minimal business rule agreed among actors

with no clear-cut criteria to achieve it. Both concepts are

related to the specification of quality attributes and con-

straints.

H3 Actors Agent/Actor Agents are stakeholders who interact with the system.

They are a responsible for achieving requirements and ex-

pectations [213]. They are sub-units of a complex social

actor, each of which is an actor in a more specialized sense

[134]. There are software agents and environment agents.

Thus, as the DVD main actor is directly related to the in-

formation system under development, it is mapped into a

software agent, and the environment actor is mapped into

an environment agent.

H4 Value object Expectation An expectation is a type of goal to be achieved by an en-

vironment agent [213]. Therefore, when transferring a re-

source, the expectation is what the actor must provide to

receive something in return, and the value object is what

the actor provides or receives.

H5 Value object Requirement A requirement is a type of goal to be achieved by a soft-

ware agent [213]. Therefore, when transferring a resource,

the requirement is what the actor must provide to receive

something in return, and the value object is what the actor

provides or receives.

H6 Value object Resource A resource is what the actor desires to acquire [134], and

the value object is what the actor provides or receives.

From this analysis resulted that KAOS was the approach that had a greater number

of concepts related to the DVD model. This, together with the fact that KAOS has been

one of the most cited goal-oriented approaches in the literature [259] and that it builds

a model of the whole system, not just of part of it [213], were the reasons for choosing it

for our work.

In KAOS, a goal can be defined as an intention statement about some system whose

satisfaction requires the cooperation of some agents. Agents are either human beings

(an environment agent) or automated components (a software agent) responsible for

135

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

achieving requirements and expectations [213]. A requirement is a low-level type of goal to

be achieved by a software agent and expectation is another kind of goal to be achieved by

an environment agent. Besides these two types of goals, requirements and expectations,

KAOS also offers behavioral goals and softgoal. A behavioral goal is a high-level type of

goal that needs to be decomposed until requirements and expectations are reached. A

softgoal is a goal with no clear-cut criteria to be satisfied. Examples are quality attributes,

such as usability. Also, an operation describes behaviors that agents must have to fulfill

their requirements according to a functional scenario [213]. Thus, abstract high-level

goals are iteratively decomposed into subgoals which are operationalized to operations,

representing concrete functional requirements [181]. Figure 5.18 shows a KAOS model

structure example.

Figure 5.18: KAOS structure example from [237].

A high-level goal (root of the tree) is decomposed into (sub)goals, softgoals, require-

ments, and expectations using logical operators (e.g., AND and OR). And, recursively, a

(sub)goal can be decomposed into (sub)goals, softgoals, requirements, and expectations

using logical operators. A softgoal can be decomposed into (sub)softgoals and operations.

A requirement can be decomposed into (sub)requirements and operations. Finally, an

expectation can be decomposed into (sub)expectations and operations.

5.4.2 KAOS4Services in a nutshell

KAOS4Services has the purpose of removing the existing gap between value models and

goal-oriented models as well as guiding the derivation of a Service-Oriented Architecture

from a goal model. A SOA (Service-Oriented Architecture) development style introduces

new concerns in an organization (e.g., architectural roles and development tasks), mak-

ing it difficult to apply directly traditional software development approaches [20, 157].

Thus, deploying SOA in an organization requires developing an approach for services

development aligned with the business concerns [20, 262]. In many SOA contexts (such

as cloud computing), the business objectives are described using goal models, and these

are used to define the required service compositions [11]. However, the goal-oriented

requirements is not enough because they do not explicitly consider the business values.

That is, a goal specification may not be aligned with the business values. Besides lack of

136

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

consensus on how service development life cycle should be conducted [112, 154], existing

service-oriented works do not offer detailed and systematic methods for business analysis

and services identification. Instead, they propose principles or guidelines that are very

difficult to follow in practice due to lack of a systematic process [20]. This requires skilled

experts to identify services and their characteristics.

This Section describes the KAOS4Services method, a systematic approach to model

SOA applications using business values and goal-models. KAOS4Services generates a

KAOS model from the DVD model using MDD techniques; this KAOS model is then de-

compose until operations are reached. With such a KAOS model, architects can generate

BPMN models to better understand the business. Also, KAOS4Services offers a set of

heuristics and model-driven techniques to identify services from the KAOS specification.

The method classifies services into candidate services and implemented services. A candi-

date service is an envisioned service living in the design space and might be selected to

be implemented [84]. An implemented service lives in the implementation space and is

ready to be executed. KAOS4Service offers a DSL, defined in terms of its abstract syntax

(in a metamodel), a set of the rules (constraints) and its concrete syntax (visual notation),

and is supported by a process. The following sections discuss the various elements of the

KAOS4Services method.

5.4.3 KAOS4Services abstract syntax, constraints, and concrete syntax

As happened for the previous methods (DVD and RAMA), the KAOS4Services concepts

and their relationships are defined in the Ecore metamodel of Figure 5.19, forming the

method’s abstract syntax.

The main concepts are specializations of the (Node) metaclass, and the Refinement
relationship is a specialization of the Relation metaclass, connecting two or more elements

through the the logical operators AND and OR (defined by the attribute logical (set by

default to AND) and which type is defined by LogicalOperator).

The relationship between Goals (Goal metaclass) are represented using the relation

[0..1] hasGoal and [0..1] hasRefinement. A Requirement can be decomposed in a SoftGoal,
and in this case, a SoftGoal can only belong to a requirement. This relation is represented

between the metaclasses SoftGoal and Requirement by the bidirectional relationship [0..*]
requireSG and [0..1] toRequirement, respectively.

Each Agent relates to Operation and can relate to Requirements (if it is a SoftwareAgent)
or Expectations (if it is an EnvironmentAgent). A software agent may have to meet several

requirements, and each requirement only belongs to a software agent, this relationship is

represented by the bidirectional relation [0..*] RResponsability and [1..1] SoftwareAgent,
respectively. In turn, an environment agent may have to reach several expectations, and

each expectation only belongs to an environment agent, this relationship is represented

by the bidirectional relation [0..*] EResponsability e [1..1] EnvironmentAgent, respectively.

Any of the agents may have to perform several operations, but each operation only belongs

137

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

Figure 5.19: KAOS4Services metamodel.

to an agent, this relation is represented by the bidirectional relation [0..*] Operation e

[1..1] Agent, respectively. Each agent may also specialize in other agents of the same type,

i.e. one software agent may specialize in other software agents, and one environment

agent may specialize in other environment agents. These relations are represented by the

relation [0..*] Specialization.

A set of operations can be related by logical operators (through the element Refine-
ment), these relations are represented by the relation [0..*] ORefinement, and by the rela-

tion [0..1] hasLogical, which allows you to connect a refinement to another refinement. Each

operation has an associated order (Operation Order metaclass), and each order belongs to

a single scenario, each scenario may contain a set of operation orders. This relationship

is presented through the bidirectional relation [1..1] scenario and [1..*] operationOrder,

respectively.

In order to guarantee rules of good construction of the KAOS model, in addition to

the rules that are guaranteed from the metamodel, the additional semantics was defined:

• No loose nodes in the model. Goals, requirements, expectations, softgoals, opera-

tions, and agents must be associated with a Refinement. Also, a refinement links two

nodes.

Unlike for DVD and RAMA, the semantic rules for the KAOS4Services method were

138

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

implemented (for each concept individually) using Acceleo Query Language (AQL), in-

stead of EVL. Figure 5.20 shows an AQL rule to ensure that a Goal needs to be linked to a

Refinement. Similar rule was implemented for each concept of type Node (e.g. Goal). The

reason for this change was the need we felt to study and analyze Sirius environment [80].

Thus, the KAOS4Services DSL was implemented in Sirius tool [80] instead of EuGEnia

[79] and Sirius does not support EVL (more details in Section 5.4.5).

Figure 5.20: A Goal needs a relation.

The user interacts with the language through a visual notation, that is, the language

concrete syntax. KAOS4Services uses a concrete syntax similar to KAOS.

5.4.4 KAOS4Services process

The KAOS4Services method uses a set of guidelines and model-driven techniques to

identify services from values. This is guided by the process in Figure 5.21. This process

is composed of six activities; it is iterative and incremental, but for understandability

purposes its activities are displayed in cascade. Each of the activities is described next.

Figure 5.21: KAOS4Services process.

1. Generate a KAOS model. This first activity aims at creating a KAOS model from a

DVD model. This is achieve via a M2M transformation. Listing 5.9 shows this trans-

formation algorithm. First, the algorithm creates an abstract goal to be the parent of

139

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

goals (lines 3-10) and transforms the DVD value exchange into KAOS a behavioural goal

(lines 16-19). Note that line 19 describes a relationship between the origin and the target

elements, ensuring traceability between both model elements. Next, lines 22-27, create

AND refinements, from the abstract goal to the behavioural goals.

Listing 5.9: Transformation from DVD to KAOS

1 pre {

2 " Running�ETL" . p r i n t l n () ;

3 var Kaos4ServiceTrans : new KAOS4Service ! KAOS4ServiceModel ;

4 var in i t ia lValueExchange : new KAOS4Service ! BehaviouralGoal ;

5 in i t ia lValueExchange . name = " I n i t i a l " ;

6 var i n i t i a l R e f i n e m e n t : new KAOS4Service ! Refinement ;

7 i n i t i a l R e f i n e m e n t . l o g i c a l = KAOS4Service ! LogicalOperator#AND;

8 i n i t i a l R e f i n e m e n t . hasGoal = ini t ia lValueExchange ;

9 Kaos4ServiceTrans . r e l a t i o n s . add (i n i t i a l R e f i n e m e n t) ;

10 Kaos4ServiceTrans . nodes . add (in i t ia lValueExchange) ;

11 }

12

13 transformDVD2KAOS () {

14

15 \\ c r e a t e KAOS behavioural goal

16 var valueExchange : dvd ! ValueExchange ;

17 var behaviouralGoal : KAOS4Service ! BehaviouralGoal

18 behaviouralGoal . name = valueExchange . d e s c r i p t i o n ;

19 behaviouralGoal . transformedFrom = " ValueExchangeID: " + valueExchange . id ;

20

21 \\ c r e a t e KAOS refinement AND

22 behaviouralGoal . hasRefinement = i n i t i a l R e f i n e m e n t ;

23 var refinement : KAOS4Service ! Refinement = new KAOS4Service ! Refinement ;

24 refinement . l o g i c a l = KAOS4Service ! LogicalOperator#AND;

25 refinement . hasGoal = behaviouralGoal ;

26 Kaos4ServiceTrans . nodes . add (behaviouralGoal) ;

27 Kaos4ServiceTrans . r e l a t i o n s . add (refinement) ;

28

29 \\ c r e a t e KAOS expecta t ion

30 var expecta t ion : KAOS4Service ! Expectat ion = new KAOS4Service ! Expectat ion ;

31 expecta t ion . transformedFrom = " OutValueObjectID: " + valueExchange .

outValueObject . idObject ;

32 expecta t ion . valueObject = valueExchange . outValueObject . o b j e c t ;

33 expecta t ion . name = valueExchange . outValueObject . d e s c r i p t i o n ;

34 expecta t ion . hasRefinement = refinement ;

35

36 \\ c r e a t e KAOS environment agent

37 var environmentAgent : KAOS4Service ! EnvironmentAgent = new KAOS4Service !

EnvironmentAgent ;

38 environmentAgent . transformedFrom = " EnvironmentActor: " + valueExchange .

hasEnvironmentActor . name + " � ID: " + valueExchange . hasEnvironmentActor .

idEnvironmentActor ;

39

140

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

40 \\ a s s o c i a t e the KAOS environment Agent with the KAOS expecta t ion

41 environmentAgent . name = valueExchange . hasEnvironmentActor . name ;

42 expecta t ion . environmentAgent = environmentAgent ;

43 environmentAgent . eResponsabi l i ty . add (expecta t ion) ;

44 Kaos4ServiceTrans . nodes . add (expecta t ion) ;

45 Kaos4ServiceTrans . nodes . add (environmentAgent) ;

46

47 \\ c r e a t e KAOS requirements

48 var requirement : KAOS4Service ! Requirement = new KAOS4Service ! Requirement ;

49 requirement . transformedFrom = " InValueObjectID: " + valueExchange .

inValueObject . idObject ;

50 requirement . valueObject = valueExchange . inValueObject . o b j e c t ;

51 requirement . name = valueExchange . inValueObject . d e s c r i p t i o n ;

52 requirement . hasRefinement = refinement ;

53

54 \\ c r e a t e KAOS software agent

55 var softwareAgent : new KAOS4Service ! SoftwareAgent ;

56 var mainActor = dvd ! MainActor . a l l I n s t a n c e s () . f i r s t ;

57 softwareAgent . transformedFrom =" EnvironmentActor: " + mainActor . name + " � ID: "

+ mainActor . idMainActor ;

58 softwareAgent . name = mainActor . name ;

59

60 \\ Assoc ia te the KAOS software agent with the requirements

61 requirement . softwareAgent = softwareAgent ;

62 softwareAgent . r R e s p o n s a b i l i t y . add (requirement) ;

63 Kaos4ServiceTrans . nodes . add (requirement) ;

64 Kaos4ServiceTrans . nodes . add (softwareAgent) ;

65

66 \\ Create KAOS s o f t g o a l

67 var sRe la t ion = dvd ! SimpleRelation . a l l I n s t a n c e s () . s e l e c t (r e l | r e l . ‘ to ‘ .

instanceOf (dvd ! ValueLevelAgreement)) ;

68 fo r (r e l in sRe la t ion) {

69 var v e r e l = r e l . from ;

70 var vla = r e l . ‘ to ‘ ;

71 i f ((v e r e l . instanceOf (dvd ! ValueExchange)) and (v e r e l . id . equals (ve . id)))

{

72 var s o f t g o a l : KAOS4Service ! SoftGoal = new KAOS4Service ! SoftGoal ;

73 s o f t g o a l . transformedFrom = " ValueLevelAgreementID: " + vla . idVLA ;

74 s o f t g o a l . name = vla . d e s c r i p t i o n ;

75 s o f t g o a l . hasRefinement = refinement ;

76 Kaos4ServiceTrans . nodes . add (s o f t g o a l) ;

77 }

78 }

79 }

Next, the algorithm creates KAOS expectations from DVD value objects (lines 30-34),

environment agent from environment actor (lines 37-38), and associates environment

agents to KAOS expectations (lines 41-45). And similarly for requirements from value

objects (lines 48-52), software agents from main actor (lines 55-58), and associates KAOS

141

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

software agents to KAOS requirements (lines 61-64). Finally, softgoals are created from

value level agreements, associating these new elements with the KAOS goal generated

from the DVD value exchanges (lines 67-76).

2. Decompose requirements. System requirements are decomposed into human-intensive
operations, executed by people, and system-intensive operations, requiring a number of com-

putational transactions with minimal or no human intervention [213]. Candidate services

are identified from system-intensive operations, and are ordered according to the order

of the operations given by the designer [109].

• Guideline 2.1: To facilitate the requirements decomposition into operations, identify

the actions that each agent has to perform to operationalize a requirement. Each (or

a set of) identified action can be mapped to one (or set of) operation.

3. Generate business processes. Although not mandatory, this activity facilitates busi-

ness understanding and the services identification task, because it offers a clear step-by-

step set of operations to help the architect. Model-driven techniques are used to generate

BPMN business processes11. The transformation is achieved by applying the following

five guidelines which can be visualized in Figure 5.22. (The thick arrows indicate the

guideline used to make the transformation.)

• Guideline 3.1: KAOS agents are transformed into BPMN pools.

• Guideline 3.2: KAOS operations are transformed into BPMN activities.

• Guideline 3.3: BPMN activities follow the order of the KAOS operations. For exam-

ple, in Figure 5.22, the Operation 2 is ordered as the first, the Operation 3 as the

second, and the Operation 1 as the third. As a consequence, the BPMN model is

created following the order: Operation 2, Operation 3, and Operation 1.

• Guideline 3.4: KAOS operations with same ordering are transformed into a BPMN

parallel gateway. For example, in Figure 5.22 there are two operations with the same

order (Operation 1 and Operation 3 haveorder 2)). Thus, these KAOS operations are

transformed to BPMN activities between the parallel gateway (diamond with a cross

(plus sign) in the center).

• Guideline 3.5: KAOS optional operations are transformed into a BPMN exclusive

gateway. In the example illustrated in Figure 5.22, the optional operations are with

their order in purple color (Operation 2 and Operation 3). These optional KAOS

operations are transformed into the exclusive gateway (diamond with a “X” in the

center). This means that we can use either one or the other activity.

11We chose BPMN because it is a standard language [263].

142

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

Figure 5.22: Applying the guidelines 3.1–3.5

4. Identify candidate services: The service designer selects the system-intensive op-

erations and identifies candidate services using guidelines 4.1–4.5 which are based on

workflow patterns [68, 264] and a simplified version of Nagel’s technique et. al [181] to

order KAOS goals and operations. Each workflow pattern describes a common business

behavior that can be represented through processes. Nagel’s technique uses an extended

goal notation for the explicit specification of goal dependencies in a KAOS model. In

other words, Nagel uses an additional textual language to complement the KAOS specifi-

cation aiming at ordering the operations. Those guidelines, visually represented in Figure

5.23, are:

• Guideline 4.1: The Sequence pattern is an ordered series of activities, with one activity

starting after the previous activity is completed [264]. This behavior can be defined

as a “Sequential Routing” [264]. A series of sequential operations originates a

candidate service.

• Guideline 4.2: The Parallel Split pattern (or AND workflow pattern) is a mechanism

143

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

that allows activities to be performed concurrently, rather than sequentially [264].

Operations with the same order result in an AND workflow pattern, consequently

originating a candidate service.

• Guideline 4.3: The Exclusive Choice pattern (or OR workflow pattern) is a location in

a process where the flow is split into two or more exclusive alternative paths [264].

The pattern is exclusive in that only one of the alternative paths may be chosen for

the Process to continue. One OR logical operator results in an OR workflow pattern,

originating a candidate service.

• Guideline 4.4: Conditional operations also represent an OR workflow pattern, also

originating a candidate service.

• Guideline 4.5: Orphan operations originate a candidate service (Orphan operations

are not sequential operations nor are they part of an AND pattern or an OR pattern.

In most cases, they are aggregated into another candidate service.)

5. Consolidate candidate services. Service consolidation aims to help the service de-

signers decide whether or not to implement a given candidate service. Services not se-

lected to be implemented are not considered relevant to the system at this time and are

removed from the list of candidate services. The end result is that the service designers get

a list of refined candidate services. The following three service consolidation guidelines

help service designers deciding about the implementation.

• Guideline 5.1: The sum of the number of goals the candidate service needs to achieve

indicates its likelihood of being reused. We cannot define an exact goal number to

affirm that from this number we can consider a candidate service because this num-

ber depends on the complexity of the system and application domain, for example.

Instead, we can affirm that the greater is the number of goals, the higher will be the

importance of implementing the service.

• Guideline 5.2: The higher the number of dependencies of a candidate service, the

higher the probability of that service to be implemented.

• Guideline 5.3: Candidate services with a single operation (orphan operation) can be

aggregated into another candidate service.

6. Generate service specification. After consolidation, a SoaML specification with all

the selected candidate services is generated using MDD techniques and the following two

guidelines (see Figure 5.24):

• Guideline 6.1: A candidate service is mapped into a SoaML service contract.

• Guideline 6.2: KAOS agents are mapped into SoaML participants.

144

5.4. GOAL-DRIVEN SOA ARCHITECTURE MODELING

As a SoaML serviceContract is the specification of service as to what information,

products, assets, value, and obligations will flow between providers and consumers, then

the candidate service identified in the KAOS model can be directly mapped to the SoaML

serviceContract.

A SoaML participant represents something that provides and/or consumes services,

and a KAOS agent is who provides or consumes a system goal (e.g., requirement imple-

mented as a service). Thus, SoaML participant can be mapped in KAOS agent.

Figure 5.23: Candidate services, using guidelines 4.1–4.5. The colored numbers indicate
the order of the operations or activities.

145

CHAPTER 5. A VALUE-DRIVEN FRAMEWORK FOR SOFTWARE

ARCHITECTURE

Figure 5.24: Applying guidelines 6.1 and 6.2

5.4.5 About the KAOS4Services implementation

We used the Eclipse Sirius [80] to implement the DSLs for KAOS4Services. The Eclipse

Sirius is an open Source framework developed with the purpose of easily and quickly

create a graphical modeling workbench dedicated to a domain specific language. It allows

developers to graphically design complex systems while keeping the corresponding data

consistent. The modeling workbench created with Sirius comprises a set of Eclipse editors

that allow developers to create, edit and visualize EMF models.

In comparison with Eclipse EuGENia, we only highlight a weakness that is the non-

support of languages like EVL for semantic validation of the created models and meta-

models. Instead of EVL, we used AQL [92] that is a language used to navigate and query

an EMF model. In general, we felt that using AQL is more complex than using EVL,

although it is easily extensible with Java classes.

5.5 Final considerations

This Chapter describes the value-based framework for software architecture. This frame-

work is composed of three core modules: Business Value Modeling, Agile Reference

Architecture Modeling, and Goal-Driven SOA Architecture Modeling. It is supported

by a set of MDD languages, transformations and tools developed using an Eclipse-based

Implementation Environment. While the Business value modeling module focuses on

building a stakeholder-centric business specification, the Agile Reference Architecture

Modeling and the Goal-Driven SOA Architecture Modeling modules concentrate on gen-

erating a reference software architecture aligned with the business value specification

described in a DVD model.

The feasibility of this framework is illustrated in the next chapter using a case study.

The three methods (DVD, RAMA and KAOS4Services) are used and their application

is discussed thoroughly. Later, Chapter 7 discusses a set of controlled experiments and

quasi-experiments to check, mainly, the perceived easy to use and usefulness of the

methods that make up the proposed framework.

146

C
h
a
p
t
e
r

6
Case Study

To illustrate the use of our Value-Driven Framework we chose a case study inspired in

an online auction system that was part of a Brazilian gas station chain fidelity program.

This chapter starts with the construction of a value model for that business domain using

the DVD method and follows applying the whole process of deriving software reference

architecture models using the RAMA and KAOS4Services methods and respective tools.

6.1 Business description

A summary of this system is as follows. When a gas station chain customer registers in

the system, he earns 50 coins to bet in any auction of the system (each coin allows one bet).

Additional coins are acquired if a customer (i) shops in a gas station (receives the product

and coins), (ii) wins an auction (places a bet and expects to be the winner), or buys coins

packages (pays for coins). The system provides several auctions concurrently, always

selling cheaper than market price. The idea is not to earn by selling a third (partner)

company’s product or service (i.e. goods) but by having a large number of bets or selling

its own goods. An auction starts with a minimum, current and maximum price of goods,

a start time, and an envisaged end time. It begins with the minimum price and, each time

a bet is placed, the current price is increased by R$ 0,01. If the auction finalizes before

reaching the maximum price, the customer makes a very good acquisition (paying much

less than market price). If the price reaches the maximum price, he is still acquiring the

good cheaper than in the market. Thirty seconds from the deadline, a new bet postpone

the end time in thirty seconds, allowing time for more bets. The winner is the owner of

the last bet, who is contacted by e-mail and has thirty days to pay with a credit card for

the good acquired. The credit card company must provide a secure financial service in

exchange of a payment. After the payment is confirmed, the gas station uses a delivery

147

CHAPTER 6. CASE STUDY

service to deliver the product to the customer. If payment is not concluded, the gas station

chain creates a new auction with that same product. The online auction system of the

gas station chain sells advertisement, receiving goods to be auctioned in exchange for

publicity in their own website (large number of visualizations).

The starting point of the Value-Driven Framework is the DVD method to produce a

DVD model expressing actors (for the system focus and context), value exchanges, value

objects and quality criteria. From the DVD model, we can choose an agile setting and

derive conceptual models from where the architectural model is derived or chose a goal-

oriented approach that uses a set of guidelines to derive a software reference architecture

from a KAOS model.

6.2 Applying the DVD method

We started creating the dvd model by analyzing the problem description following the

steps defined in the process depicted in Figure 5.6. Let’s use the DVD tool to create the

DVD value model using the elements present in the editor palette (Figure 6.1-a). The

palette is divided into two sections: Elements, containing the necessary the base DVD

value model concepts, and Relations, containing the relationships to associate the model

concepts.

Figure 6.1: (a) DVD editor palette and (b) the value exchange properties.

Identify main actor and environment actors. Analyzing the presented business de-

scription, first, we identified Online auction, Customer, Partner, Credit card company, and

Delivery company as the actors of this business (see Figure 6.2). Online auction is the focus

of the analysis (main actor) and the other actors are those with whom value exchanges

occur (environment actors). The link between the environment actors and the main actor

is made through the relation StartRelation.

148

6.2. APPLYING THE DVD METHOD

Identify value exchanges and who starts each value exchange. The four value ex-

changes with Customer are (i) register their data in the system, (ii) buy in the gas station,

(iii) place bidding, (iv) pay for product won at auction. In these value exchanges, cus-

tomers start the actions. The Partner’ offers goods to be auctioned and start the action.

The Credit card company offers a financial service contracted by the Online auction that

starts the action. The Delivery company offers the delivery service to deliver goods to the

winners, and the Online auction starts the action. It is important to note that each value

exchange is graphically represented in the model through the ValueExchange element

and is identified by an ID and a textual description (see Figure 6.1-b).

Identify value level agreement. The VLAs for the value exchanges with Customer are

free coins and is low cost of good, with Partner is large number of visualizations, with Credit
card company is Security, and with Delivery company is fast (see Figure 6.2). To facilitate

the illustrative example, we created one activity for each value exchange (with the same

value exchange’s name, as can be seen in Activity property in Figure 6.2-b).

Figure 6.2: DVD model created using the tool.

Change the main actor. This activity allows the analyst to change the focus of his anal-

ysis to another actor. Although we feel that it is not necessary to change the focus of

the analysis in this case study, we will illustrate what this change would look like. Let’s

choose “Customer” as the focus of our analysis. Figure 6.3 shows the corresponding DVD

model, where “Customer” becomes the main actor, and the previous main actor “Online

Auction”becomes an environmental actor. Now, the analyst can start analyzing the value

exchanges from the “Customer” point of view. Also, the analyst does not lose whatwas

previously specified for the actor “Online Auction”.

149

CHAPTER 6. CASE STUDY

Figure 6.3: Changing the focus of analysis.

Generating SoaML capability model. Once created the DVD value model of the virtual

store, we can opt to create a SoaML capability model, or we can start the architectural

derivation process using the RAMA or KAOS4Services methods. For example, we may

want to apply a transformation script, such as the one described in Listing 5.2, to generate

a SoaML capability model. To do this, we open the execution settings (see Figure 6.4) to

create a transformation and define the name of the transformation.

Figure 6.4: Menu to open the transformation execution window.

Next, we choose the ETL file corresponding to the transformation of the DVD model

to the SoaML capability model (DVD2Capability.etl), as shown in Figure 6.5.

To conclude, we perform the transformation to generate the SoaML capability model

in Figure 6.6. Note that we have created an abstract element (“General capability”) to

aggregate all the capabilities generated from the value exchanges. In other words, this

abstract element is the parent of the capabilities generated from the activities.

6.3 Applying RAMA method

Similarly to the application of the DVD method, we follow closely the RAMA method

process summarized in Figure 5.17.

150

6.3. APPLYING RAMA METHOD

Figure 6.5: Execution window.

Figure 6.6: The capability model generated.

Specify user stories. We specified the user stories necessary to satisfy each value ex-

change. Each user story is then described using the editor we created based on the Behav-

iorMap tool. Table 6.1 describes all user stories specified.

Table 6.1: User stories

ID Value Exchange Actor User story

VE1 Register their

data in the system

(Registering data)

As a customer GIVEN I do not have an account

WHEN I create an account

THEN I see the active auctions.

As a customer GIVEN I am creating an account

WHEN I finish registering

THEN I get bets (coins) free.

VE2 Buying in the gas As a customer GIVEN I have an account

station WHEN I buy goods (products) in the gas station

Continues on next page

151

CHAPTER 6. CASE STUDY

Table 6.1 – Continuation from previous page

ID Activity Actor User story

THEN I earn free bets (coins).

VE3 Placing a bet As a customer GIVEN I’m logged in

WHEN I see all auctions available

THEN I can choose where I will place my bets.

As a customer GIVEN I’m logged in

WHEN I place a bet on an auction

THEN I can be the winner.

As a customer GIVEN I’m participating in an auction

WHEN I want to know if I am losing an auction

where I am betting

THEN I see who is the current winner.

As a customer GIVEN I’m logged in

WHEN the auction is available

THEN I can make another bet if I am not winning

the auction.

As a customer GIVEN I’m participating in an auction

WHEN I am the winner

THEN I want to be notified by email.

VE4 Buying the auc-

tioned good

As a customer GIVEN I’m participating in an auction

WHEN I am the winner

THEN I want to know the price of the good I won

so that I can pay for it.

As a customer GIVEN I’m participating in an auction

WHEN I am the winner

THEN I want to know the deadline to confirm the

payment so that I can perform the payment on

time.

VE5 Providing an

advertisement

service

As a partner GIVEN that I have an interest in advertising a prod-

uct or service

WHEN I provide a product or service to be auc-

tioned

THEN I want to see my ad during auctions with

products/services of my interest.

VE6 Receiving a

Credit card

service

As a credit card

company

GIVEN that the online auction wants to use my

payment service by credit card

WHEN I get paid for the service

THEN the service will be available through an Ap-

plication Programming Interface (API) respecting

the agreed deadlines.

VE7 Delivering a prod-

uct

As a Delivery

company

GIVEN that I provide the products of the auctions

WHEN I get paid for delivery

THEN I will deliver the product in accordance with

the pre-established deadlines.

Continues on next page

152

6.3. APPLYING RAMA METHOD

Table 6.1 – Continuation from previous page

ID Activity Actor User story

Figure 6.7 illustrates the specification of the user story to create an account, that is,

the first user story in Table 6.1.

Figure 6.7: “Registering data” user story.

Prioritize value exchanges. The prioritization of value exchanges are done based on

their RoI. This prioritization is used to guide the development order of the various

activities (e.g., the value exchanges with higher priority will be implemented first). Thus,

the business person sets the customers’ value exchanges priority to “high”, the financial

value exchange to “medium”, and the remaining value exchanges as “low”. Figure 6.8

shows the prioritization action where the user defines the value exchange VE7 with “low”

priority. In this case study, we defined an iteration with only the most important value

exchanges, that is, those with high prioritization, and we illustrate the development of

this iteration only, as the others are performed in a similar way. Therefore, we execute

the second prioritization round only for the value exchanges VE1–VE4.

Figure 6.9 shows the tree model with the result of the second round of prioritization,

for VE1–VE4. This tree model was generated similarly to the capability model, that is,

we open the execution settings option in the eclipse platform, as shown in Figure 6.4 and

choose and perform the ETL file corresponding to the generation of the tree model (see

Figure 6.9). It is important to highlight here that the implementation of this tree model

generation is as proof of concept. For an end-user tool, this model must be generated and

updated automatically, i.e., all data should be stored in a database, and some Observer

pattern1 should be implemented to always keep the tree model updated according to the

change of data. Another essential point to be highlighted is that the hierarchical structure

of the model facilitates concept traceability. For example, we can identify all user stories

associated with a value exchange visually because a value exchange is shown as a parent

of the user stories.
1The Observer pattern defines a relationship among objects so that when one object changes state, the

others are notified and updated automatically [98].

153

CHAPTER 6. CASE STUDY

Figure 6.8: Prioritization of value exchanges.

Figure 6.9: Tree model generated after prioritization. Note that the value exchanges are
represented grouped in High (red), Medium (yellow), and Low (blue) priorities according
to RoI.

Specify conceptual models. We used the SimpleMind Lite tool [178] to create concep-

tual models specifications structured as mindmaps. For example, Figure 6.10 illustrates

a conceptual model for VE1. The central node is the name of the value exchange “Reg-

istering data”. We identified that a Customer and a Partner must have accounts. Also,

Customer must save some mandatory data, for example, personal data, billing data, de-

livery data. In addition, each Customer must have a wallet and this wallet knows the

customer’s quantity of coins and holds a transactions history.

154

6.3. APPLYING RAMA METHOD

Figure 6.10: Conceptual model for “Registering data” user story.

The central node of VE2 is “Buying in the gas station” (see Figure 6.11).

Figure 6.11: “Buying in the gas station” conceptual model.

When a customer buys a good in the gas station, an invoice is issued. Later, Customer

must inform the system about the data of the invoice so that it calculates (conversion

table) the number of coins to be added to the customer’s wallet. For VE3, the central node

is “Placing a bet” (Figure 6.12). Customer places a bet in an auction. The auction offers an

object (service or product) and saves the history of all the bets. When the auction finishes,

a notification is sent to the winning customer.

For VE4, the central node is “Buying the auctioned good” (Figure 6.13). Customer

knows the price of the auction s/he won and offers billing data to complete the payment

process. During this process, a monitor checks that all payment steps (e.g., if the payment

was performed before the expiry date) and all changes that may happen during the process

are registered (history). When payment is concluded and the object auctioned is of type

155

CHAPTER 6. CASE STUDY

Figure 6.12: Conceptual model for “Placing a bet” user story.

product, the delivery process starts.

Figure 6.13: Conceptual model for “Buying the auctioned good” user story.

Identify concepts overlaps & decision analysis. Using Levenshtein algorithm [164], a

total of eight overlaps were found. Table 6.2 shows the overlaps and the decisions made.

This algorithm sufficient for a proof of concept tool, but for a fully fledged tool, the

algorithm should at least identify synonymous words. For example, in the first overlap

identification, if we had defined the customer with the word “client” or “consumer” or

“purchaser”, no overlap would have been found, even if these concepts were conceptually

the same.

Generate reference architecture. To finalize the process of combining architecture de-

sign and agile practices, the development team automatically generates the reference

architecture model, using the transformation script in Listing 5.7, and names each com-

ponent (AP09). For that, they must open the execution settings option in the eclipse

platform and choose and perform the ETL file corresponding to the generation of the

architectural model. After the architectural model is generated, we open it using the

156

6.3. APPLYING RAMA METHOD

Table 6.2: Overlaps

Conceptual model A Conceptual model B Overlap concept Decision analysis

1 Registering data Buying in the gas station Customer Create new “Customer”
2 Registering data Placing a bet Auction Create new “Auction”
3 Registering data Placing a bet Object Create new “Object”
4 Buying in the gas station “Customer” Customer “Customer”
5 Placing a bet “Customer” Customer “Customer”
6 Placing a bet Buying the auctioned good Auction “Auction”
7 “Auction” “Object” Object “Object”
8 Buying the auctioned good “Customer” Customer “Customer”

Obeo UML Designer tool [186]. Figure 6.14 shows the reference architecture model gen-

erated where the “registering data” was renamed to “Partner”, “placing a bet” to “Bet”,

and “Buying the auctioned good” to “Payment”. Component relationships are detected

automatically through the concepts overlaps, creating component interfaces (offered and

required) with the name of the concept. The offered interfaces are represented by a

lollipop-symbol and a required interface by an open socket symbol.

Figure 6.14: Reference architecture for the online auction system.

For example, the Customer component offers the concept “Customer” to the compo-

nents Bet and Payment. The interface “Customer” between the components Customer and

Bet is used to register the customer who places the bet; and the interface “Customer” be-

tween the components Customer and Payment is used to register the customer who makes

the payment. Auction component offers the concept “Auction” to the Bet component to

add a bet in an auction to Partner to register the auctions that the partner sponsors and

to Payment component to complete the auction. Finally, the component Object offers the

concept “Object” to the component Auction to register the object that is being auctioned

and to the component Partner to register the object offered to be auctioned by the partner.

Thus, this reference architecture encompasses the necessary knowledge on how to

design a concrete architecture for an online auction system, aligned with the value ex-

changes of an online auction.

157

CHAPTER 6. CASE STUDY

6.4 Applying KAOS4Services method

Similarly to the previous sections, the discussion of illustration of the KAOS4Services

method will also follow the structure of the corresponding process depicted in Figure

5.21.

Generate a KAOS model. A KAOS model is generated from a DVD model by applying

the mapping described in Section 5.4.4 and using only the high-priority value exchanges.

This is achieved by opening the execution settings option in the eclipse platform, choos-

ing and executing the ETL file. Figure 6.15 shows the initial KAOS model for the case

study, starting with the abstract goal root “Implement auction online system”, which is

decomposed into subgoals the “Registering data”, “Placing a bet”, “Buying the auctioned

good”, and “Buying in the gas station”.

Figure 6.15: Initial KAOS model for the auction online system.

To satisfy “Registering data” we need to achieve “Free bets” (softgoal), “Register the

personal data” (requirements), and “Earn bets” (expectation). To satisfy “Placing a bet”,

we need satisfy a softgoal “Low cost”, requirement “Register a bet” and expectation “Par-

ticipate in auction”. To satisfy “Buying the auctioned good”, we need to achieve “Low cost”

softgoal, “Make a payment” requirement and “Receive product or service” expectation.

Finally, to satisfy “Buying in the gas station”, we need satisfy at least softgoal “Free bets”,

requirements “Buy product”, and expectation “Earn bets”.

Note that by clicking on one of the generated elements, the information of its origin

is displayed in its properties. For example, Figure 6.16 shows the property tab of the

“Placing a bet” element, showing that its source comes from the Value Exchange element

with ID 3 of the DVD model. With this information we confirm the traceability between

158

6.4. APPLYING KAOS4SERVICES METHOD

the elements of the models and to ensure that this traceability remains throughout the

development process.

Figure 6.16: Propeties of “Placing a bet” requirement.

Decompose requirements. This activity focuses on the requirements (sub)goals to spec-

ify behaviors the system needs to achieve. Note that expectations are human-intensive

operations and we are only interested in system-intensive operations, although there

is some system-intensive operation to satisfy a user expectation. Next we decompose

“Register the personal data”, “Register a bet”, “Make a payment”, and “Buy product”.

Register the personal data. Figure 6.17 shows the decomposition of “Register the

personal data”. For “User registration”, a customer must provide his data and submit

them to the system, then the system validates the customer’s data and notifies data error

in case of an error. In contrast, the system must save the customer’s data and give 50 coins

to the customer. For “User authentication”, customer submits his login and password

and the system validates its authentication. If an error occurs, the customer is notified

(conditional operation, so we use purple). The order of the operations in the model helps

establishing a behavioural scenario.

Figure 6.17: Decomposition of requirement “Register the personal data”.

Register a bet. Figure 6.18 decomposes “Register a bet” into requirements “Update

159

CHAPTER 6. CASE STUDY

action data” and “Validate bet”. “Update action data” updates the auction data (e.g.

current winner, auction time, price) after a bet, and “validate bet” checks some business

rules (e.g., verify coins in customers wallet, check if the auction time is over, and notify

the customer when these rules are not confirmed). If the user has a coin in his wallet

and the auction time has not ended, the system must update the auction data informing

about the current winner, increase the auction time and price, decrease one coin of the

customer’s wallet, and update the bet historical data.

Figure 6.18: Decomposition of requirement “Register a bet”.

Make a payment. Figure 6.19 shows the decomposition for “Make a payment”. As the

process is similar to the two previous ones, and to avoid repetitions, we show only the

“Make checkout” decomposition.

Figure 6.19: Decomposition of requirement “Make a payment”.

160

6.4. APPLYING KAOS4SERVICES METHOD

To checkout, the customer confirms the payment address, delivery address and pay-

ment option. The system then receives the checkout and adds the product delivery rates.

Once the delivery rates are calculated, the customer must make the payment, causing the

system to receive confirmation of this action.

Buy product. Figure 6.20 shows the decomposition for “Buy product”. The customer

“informs the invoice data” so that the online auction system “calculates the number of

bets” the customer will receive. The number of bets is in conformance to the amount of

the invoice. Once the calculation is performed, the system must “identify the customer”

and “add the number of bets in customer’s wallet”.

Figure 6.20: Decomposition of requirement “Buy product”.

Generate business process. Figures 6.21 to 6.25 show the business process models

generated from the KAOS models using model-driven techniques by applying guidelines

3.1 – 3.5. The guideline 3.1 applied to “user registration”, transforms its agents “customer”

(bidder) and “online auction” to pools, the guideline 3.2 transforms its operations into

BPMN activities (with the same name) in the pool of the same agent, and the guideline

3.3 keeps their order. Guideline 3.5 takes the conditional behaviour represented by the

OR operator and inserts the affected operations in the BPMN model using the exclusive

operator. Note that guideline 3.4 takes the operations with the same order (number 5)

and inserts them in BPMN parallel gateways by applying the guideline 3.4. And similarly

to all the operations in the rest of the KAOS models.

Agents and operations were transformed into BPMN pools and activities, respectively.

The order of the operations is kept for the activities and the logical AND and OR operators

from KAOS were also considered during the model transformation.

Update business process. This activity, strongly dependent on the expertise of the de-

signer, is only needed if a more detailed specification is required. As the level of abstrac-

tion of the obtained BPMN processes is adequate, this step was not performed.

161

CHAPTER 6. CASE STUDY

Figure 6.21: Business processes generated from the requirement “user registration”.

Figure 6.22: Business processes generated from the requirement “user authentication”.

Figure 6.23: Business processes generated from the requirement “register a bet”.

Figure 6.24: Business processes generated from the requirement “make checkout”.

Identify candidate services. The user selects the system-intensive operations and iden-

tifies candidate services using guidelines 4.1 – 4.5. Figure 6.26 shows the “Identify tab”

of the graphical interface of the tool to determine the candidate services. First, we enter

the path where the KAOS model is saved. Then we press the “Identify candidate services”

button and the candidate services are listed in a table, showing their identifiers (e.g., ID),

the heuristic used, the origin requirement, and the set of composing operationalizations.

162

6.4. APPLYING KAOS4SERVICES METHOD

Figure 6.25: Business processes generated from the requirement “buy product”.

Table 6.3 shows lists all the candidate services identified.

Figure 6.26: Identifying the candidate services.

Table 6.3: Applying guidelines 4.1 – 4.5 to identify candidate services.

Guideline Requirement Set of operationalizations

CS1 4.4 User authentication Notify authentication error
CS2 4.4 Make bet Notify error
CS3 4.3 User registration Notify data error
CS4 4.2 User registration Save data, and give 50 coins
CS5 4.2 Make bet Update the auction time and price, update who is winning, and decrease 1 coin
CS6 4.1 Make bet Verify if user has coin and verify if auction time is over
CS7 4.1 Make checkout Receive checkout and add delivery fee
CS8 4.1 Buy product Calculate number of bets, identify the customer, and add bets to the customer’s wallet
CS9 4.5 User registration Validate data

CS10 4.5 User authentication Validate authentication
CS11 4.5 Make bet Update betting historical
CS12 4.5 Make checkout Receive payment confirmation

For example, for “User registration”, the guideline 4.2 identified the Candidate Service

(CS) containing “Save data” and “Give 50 coins” operations (CS4), the guideline 4.3

identified CS3, and the guideline 4.5 identified CS9.

163

CHAPTER 6. CASE STUDY

Consolidate candidate services. Guidelines 5.1 – 5.3 are used to help designers decide

about which candidate services should be implemented. In this particular case, the guide-

line 5.1 (reuse) applied to all candidate services results in the same number of goals (four).

Therefore, this guideline was not very useful in this case study. For 5.2 (dependency),

CS8 stands out from all the others because it has three dependent candidate services (e.g.,

“verify if auction time over” from CS6, “notify error” from CS2 and “update the bets

historical” from CS11 are connected to the operations from CS5). Regarding guideline

5.3 (aggregation), the designer analyzes the candidate services with only one operation.

This analysis is performed subjectively. For example, CS3 and CS9, CS1 and CS10, and

CS6 and CS2 could form three new aggregations due to their simplicity and size. Figure

6.27 shows the “Consolidate tab” of the tool.

Figure 6.27: Consolidating the candidate services.

To aggregate the candidate services we selected two available services (top table)

and pressed the “Aggregate” button. After, we verified if the services were aggregated

successfully by checking if they were shown in the table “service aggregated” (bottom

table). For example, Figure 6.27 shows our intention of aggregating services CS6 with

CS2. One can also see that we aggregated before services CS3 with CS9 and CS1 with

CS10. If we wanted to separate the candidate services that were aggregated then we just

needed to select the aggregated service in the lower table and then press the “Separate”

button.

Generate service specification. This activity automatically generates a reference archi-

tecture for software services using guidelines 6.1 and 6.2, mapping KAOS concepts into

SoaML concepts through model transformations. Guideline 6.1 transforms “candidate

services” into SoaML “serviceContract”, and Guideline 6.2 transforms KAOS “agents”

164

6.5. FINAL CONSIDERATIONS

into SoaML “participants”. Figure 6.28 shows the “Consolidate tab” of the tool. Note that

the user can select which candidate services he wishes to model. In our case, we selected

all candidate services and pressed the “Generate SA model” button.

Figure 6.28: Generating the architectural model.

Figure 6.29 shows the resulting SoaML model, where the designer is expected to name

each service. This service specification offers a realistic idea of what must be implemented

in the next software development phases.

6.5 Final considerations

This Chapter uses an online auction system that is part of a Brazilian gas station chain fi-

delity program to illustrate the use of our value-framework to derive a software reference

architecture. It starts with the construction of a value model with the DVD method and

proceeds using RAMA and KAOS4Services for two alternative ways of deriving a software

reference architecture model. During the execution of the case study, we used our proof-

of-concept tools and verified the traceability of the concepts during the transformation

tasks and the feasibility of the three methods (DVD, RAMA, and KAOS4Services).

Note that we are able to trace concepts between models using model transformations

and metamodeling approaches. However, to trace DVD value concepts to the architec-

tural model, it is required to keep track of the concepts within the models themselves,

not just between the models. To achieve this, we were careful to use only hierarchical

models, to be able to identify the parents’ and children’ concepts. For example, a model

structured as a mindmap (e.g., DVD model) has internal traceability from its central node

to its border nodes. Similarly, the KAOS model used by KAOS4Services is a hierarchical

model, where a more abstract goal is decomposed into more refined goals recursively

165

CHAPTER 6. CASE STUDY

Figure 6.29: SoaML model for online auction system.

until operations are reached. For example, a DVD value exchange is transformed into a

KAOS high-level goal. Next, this goal is decomposed into (sub)goals down to operations.

So we can track which KAOS model operations are related to the high-level goal that is

linked with the DVD value exchange concept. Also, as an architectural candidate service

is composed by a set of KAOS operations, we can trace such service to a value exchange

using backward traceability.

While this chapter illustrates the application of the methods offered by the Value-

Driven Framework, the next Chapter shows the planning and execution of a set of experi-

ments performed to evaluate the perceived ease of use, perceived usefulness and intention

to use by the one hundred and thirty one participants involved in the experiments. We

also compare DVD with e3value as well as RAMA with KAOS4Services.

166

C
h
a
p
t
e
r

7
Evaluation through experiments

There are four relevant methods for conducting experiments in the area of software engi-

neering [265]: scientific, engineering, analytical, and experimental.

The scientific method uses an inductive paradigm and tries to extract from the world

some model that can explain a phenomenon and to evaluate if the model is representative

of the phenomenon under observation. The engineering method uses an evolutionary

improvement-oriented approach that looks at existing solutions and suggests the most

appropriate one. The analytical (or mathematical) method uses a deductive approach

that suggests a formal theory to evaluate solutions. Finally, the experimental method

uses a revolutionary improvement approach to create or to evaluate a solution. For this,

it develops the qualitative and quantitative method, applies an experiment, measures,

analyzes, and evaluates hypotheses about a solution, and repeats all the process until

reach the answers to the hypotheses. The process begins with the survey of a new solution

(not necessarily based on an existing solution) and studies the effect of the process or

product suggested by the new solution. The experimental method is considered the most

appropriate approach to experimentation in the area of Software Engineering [254, 265].

This chapter discusses a set of different experiments used to evaluate our proposal.

To reduce the risk of bias during the evaluation of our proposal, we performed at least

one experiment per method (DVD, RAMA, and KAOS4Services), hence evaluating the

whole proposal. First, we evaluated the perceived ease of use and perceived usefulness of

the DVD method. With positive results in this experiment, we conducted a family of

three experiments controlled to compare our DVD method with the well-known e3value

(introduced in Chapter 2.3.2) with respect to their effectiveness, efficiency, perceived

ease of use, perceived usefulness and intention to use, completing the evaluation of the

framework´s business layer.

For the framework’s software layer, we evaluated the perceived ease of use and the

167

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

perceived usefulness, of the RAMA and KAOS4Services methods. We also evaluated the

participants’ intention to use the methods in the future (if necessary). Finally, we com-

pared the results obtained for these two methods, to understand which one approach

(agility versus use of goals) was better accepted.

7.1 Evaluating the DVD method

A controlled experiment was performed to evaluate the perceived efficacy (that is, the

perceived ease of use and the perceived usefulness) of the DVD method. Thus, the research

questions for our evaluation are as follows:

RQ1 : Is the DVD method perceived as easy to use?

RQ2 : Is the DVD method perceived as useful?

7.1.1 Experiment design

Following the Goal Question Metrics (GQM) process [22], the goal of this experiment is

to analyze the method to create DVD model for the purpose of verifying the perceived

efficacy of the method with respect to the perceived ease of use and the perceived useful-

ness, from the point of view of novice business analysts and software engineers, in the

context of postgraduate students in Computer Science.

Context of the experiment: We focused our evaluation on novice modelers since one

of our goals is to provide an easy and useful language that will help less experienced

modelers to specify business values. Although designed for business analysts, DVD can

be used by business analysts or software engineers. The participants of the experiment

are 37 Master of Science (MSc) students in Computer Science at the Universidade Nova de
Lisboa (UNL), attending the “Software Engineering” and the “Requirements and Software

Architecture” courses. The students were asked to accomplish this experiment as a part

of a series of optional lab exercises of the courses. All the students were volunteers and

were aware of the practical and pedagogical purposes of the experiment, but they did not

know the experimental hypotheses nor did they had previous knowledge on DVD.

Hypotheses formulation: We formulated two null hypotheses, defined in a one-tailed

manner, as we want to analyze the effect of the use of our method on the variables. Each

null hypothesis and its alternative are as follows:

H1-0: There is no significant perceived ease of use of the DVD method

H1-a: The DVD method is perceived as ease of use.

H2-0: There is no significant perceived usefulness of the DVD method

H2-a: The DVD method is perceived as useful.

168

7.1. EVALUATING THE DVD METHOD

Selected variables and experimental objects: The independent variable of interest is

the use of our method with nominal values. Hence, the experiment uses only one treat-

ment: the creation of a DVD model for two business descriptions. The dependent vari-

ables are perception-based, assessing the participants’ perceptions of their performance

after modeling with DVD, hence used to evaluate the perceived efficacy of the language.

They are based on Technology Acceptance Model (TAM) [66], a widely applied theoretical

model to analyze user acceptance and usage behavior of emerging information technolo-

gies. It has empirical support through validations and replications [147]. The perceived

efficacy [66] of the method can be broken down into two subjective dependent variables:

• Perceived Ease Of Use (PEOU): refers to the degree to which a person believes that

learning and using our method would not require significant effort.

• Perceived Usefulness (PU): refers to the degree to which a person believes that

using our method will increase her/his job performance within an organizational

context.

These two subjective variables were measured using a 5-point Likert scale question-

naire with a set of 10 closed-questions: 4 questions for PEOU and 6 for PU1. They were

formulated using the opposing statement format (the order of the items was ramdomized

to avoid monotonous responses. This approach avoids result distortions if uncommitted

participants always answer 5 - extremely positive - or 1 - extremely negative - on all

questions to finish the experiment execution quickly and without carefully reading the

questions). So, each question contains two contradictory statements representing the

max and min possible values (5 and 1), where 3 is considered a neutral perception. The

aggregated value is the arithmetical mean of the answers to the questions associated with

each perception-based variable. We used Cronbach’s alpha test [184] to evaluate the relia-

bility of the survey and of each variable. Two experimental objects were selected from the

literature: waste management [122], and a wireless access provisioning by a hotel [69].

Experiment design: We established two groups (each using one experimental object),

and the participants were randomly assigned to each group. Table 7.1 summarizes the

design of the experiment. The comprehension of the business description may also affect

the application of the language. We alleviated the influence of this factor by selecting

two representative business descriptions of a complexity suitable for application in the

1-hour slots available for the execution of the experiments.

Analysis procedure: We chose statistical tests for their robustness and sensitivity to

analyze the data collected. As usual, in all the tests we decided to accept a probability of

5% of committing a Type-I-Error [265], rejecting the null hypothesis when it is true. We

tested the normality of the data distribution with the Shapiro-Wilk test [223]. To verify

1The questionnaire can be found at https://goo.gl/forms/Di88e7wPr27GtbV82

169

https://goo.gl/forms/Di88e7wPr27GtbV82

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

Table 7.1: Experiment design

Groups Part 1 Part 2 Part 3

A Training on both methods Object1 Post-experimental questionnaire

B Training on both methods Object2 Post-experimental questionnaire

our hypotheses, we used the T-test to one sample when data could assume the normal

distribution. However, we applied the Wilcoxon-test when the data could not assume the

normal distribution.

7.1.2 Discussion of the quasi-experiment results

The use of multiple items to measure the same construct requires the examination of

the questionnaire’s reliability. We used Cronbach’s alpha [184], and the result for the

questionnaire was 0.846. This means that the questionnaire is reliable (Cronbach’s alpha

is higher than 0.7 [184]). After, we analyzed the descriptive statistics on the two variables,

as shown in Table 7.2.

Table 7.2: The descriptive statistics for PEOU and PU

Group PEOU
Min. Max. Med. Mean Std. Dev. p-value

A 3 5 4 4.1 0.52 -
B 3 5 5 4.58 0.63 -
A and B 3 5 4.25 4.31 0.61 0.001

PU

A 2.83 4.83 3.75 3.75 0.51 -
B 2.83 4.66 3.66 3.77 0.61 -
A and B 2.83 4.83 3.66 3.76 0.55 0.279

This data, apparently, shows that the participants perceived DVD as being easy to

use and useful considering the mean and medians higher than 3. However, we must

verify this result checking the hypotheses. For this, we applied the Shapiro-Wilk test

to check the normality of the distribution for both variables (column p-value in Table

7.2). The results show that PEOU does not have a normal distribution (PEOU <0.05) and

PU has a normal distribution (PU >0.05). To finalize, we applied the Wilcoxon-test in

PEOU data and the one-sample T-test in PU data to confirm if the mean is higher than

3 (PEOU=0.000 and PU=0.000). As the results of the Wilcoxon-test and one-sample test

were lesser than 0.05, we can accept that DVD was perceived as ease to use and useful,

confirming hypotheses H1-a and H2-a.

7.1.3 Threats to validity for the quasi-experiment

Certain issues may threaten the validity of this experiment. About internal validity,

the main threats are the learning effect, participants’ experience, information exchange

170

7.2. COMPARING THE METHODS DVD AND E3VALUE

among participants, and understandability of the documents. The learning effect was

mitigated by ensuring that each group of participants worked with only one experimental

object. Participants’ experience was not an issue as none of them had previous experience

with DVD. To minimize the information exchange among participants, they were mon-

itored by the experimenters to avoid communication biases while performing the tasks.

Understandability of the material was alleviated by performing a pilot study and with the

translation of the materials to Portuguese (the participants’ native language). Concerning

external validity, the main threats are representativeness of the results and the size and

complexity of the tasks. The representativeness of the results may be affected by the

business description used and the participants’ context selected. About the selection of

business description, we mitigated this by considering two different experiment objects

with a set of artifacts with similar size and complexity. Regarding size and complexity of

the tasks, we used small tasks since an experiment requires participants to complete the

assigned tasks in a limited amount of time. The main construct validity threats respect

the measures applied in the data analysis and the reliability of the questionnaire. We

mitigated this by using measures that are commonly used in other software engineering

experiments, and the variables are based on TAM [66, 147]. The reliability of the ques-

tionnaire was tested with the Cronbach test [184]. Finally, conclusion validity threats are

the data collection and the validity of the statistical tests applied. About the data collec-

tion, we used the same procedure in each experiment to extract the data and ensured that

each dependent variable is calculated by applying the same formula. With regard to the

validity of the statistical tests proposed, we chose the most common tests employed in

empirical software engineering due to their robustness and sensitivity [173].

7.2 Comparing the methods DVD and e3value

This section reports on a family of three controlled experiments carried out to compare

the two business value modeling methods e3value [105] and DVD. While e3Value is a

well-known method for business modeling [162, 212], DVD was developed in the context

of this Ph.D. work to facilitate communication between business and IT stakeholders,

and to use business values to drive the development of an information system. Both

methods are intended to assist in the alignment between the business and the software

development [104, 238] areas, and both represent the basic concepts found in a value

model [15]. These two methods were evaluated and compared with respect to their

effectiveness, efficiency, perceived ease of use, perceived usefulness and intention to use.

The first controlled experiment was conducted in Spain with MSc students at Univer-
sitat Politècnica de València (UPV) [241]. The results favored the DVD method, with the

exception of the perceived usefulness of the methods, for which no significant difference

could be found. This was the major motivation for the exact replication subsequently per-

formed in Portugal with MSc students at Universidade NOVA de Lisboa (UNL). In this case,

all the variables evaluated favored the DVD method. The second (exact) replication took

171

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

place in Brazil and aimed at validating the results from the two previous experiments

with Business Management Ph.D. students (who are also practitioners in industry) at

Universidade Federal de Pernambuco (UFPE). The results of each experiment are analyzed

individually and the empirical findings obtained in each experiment are aggregated by

means of a meta-analysis.

7.2.1 Experimental methodology

The methodology adopted for the experiments is an extension used by Gonzalez-Huerta

et al. [101] for the five-steps proposed by Ciolkowski et al. [33]. The experiments were

designed and executed by following the guidelines proposed by Wohlin et al. [265].

Step 1: Experiment preparation Following the GQM template [22], the goal of our fam-

ily of experiments is to analyze DVD and e3value models and their modeling processes

for the purpose of comparing them with respect to their actual efficacy (effectiveness

and efficiency), perceived efficacy (perceived ease of use and perceived usefulness), and

intention to use in the future in order to obtain high-quality value models from the point

of view of both business analysts and software engineers, in the context of business mod-

elers (novice software engineers and business analysts).

Step 2: Context definition The context of the set of experiments is the quality evalua-

tion of two business models carried out by business modelers. The context is defined by

(i) the business model to be evaluated, (ii) the value-driven modeling method, and (iii)

the selection of participants. Details on the above are provided in Section 7.2.2.

Step 3: Experimental tasks The experimental tasks were structured to allow the com-

parison of both methods. Depending on the method, each modeling task was composed

of the method activities that help to achieve its purpose (e.g., defining a value model). Af-

ter applying the method, the participants had to fill in a post-experimental questionnaire

containing subjective questions regarding their perceptions of the method (see details in

Section 7.2.2.3).

Step 4: Individual experiments The family of experiments is summarized in Figure

7.1. A baseline experiment (UPV) [241] was conducted in Spain. It was first internally

replicated in Portugal (UNL) and later externally replicated in Brazil (UFPE), in order to

attain more evidence for the results obtained after carrying out the baseline experiment

(UPV). The external replications allowed us to increase the external validity.

Step 5: Individual data analysis and meta-analysis The results of each individual ex-

periment were collected using a spreadsheet and imported to the SPSS v20 statistical tool

[123], after which they were analyzed individually. We then joined the data and imported

172

7.2. COMPARING THE METHODS DVD AND E3VALUE

Figure 7.1: Overview of our family of experiments.

it to the R Studio tool [248] in order to perform the meta-analysis. The analysis procedure

is detailed in Section 7.2.2.6.

7.2.2 Baseline Experiment

An initial design for this experiment was presented and discussed in a workshop held at

the ACM/IEEE MODELS conference [238]. The feedback received during the discussion

(for example, about the process used to measure the effectiveness of the participants)

was taken into account and incorporated into the baseline experiment. The following

subsections define the research questions and hypotheses, the sample and participants,

the experimental objects and tasks, the metrics and design, and, finally, the analysis

procedure of the experiment.

7.2.2.1 Research questions and hypotheses

There are two research questions addressed by the family of experiments:

RQ1 Which of the methods has the higher actual efficacy, e3value or DVD?

RQ2 Is the perceived efficacy and intention to use of the participants favoring e3value or DVD?

The independent variable of interest is the use of each value-driven modeling ap-

proach with nominal values: DVD and e3value. Two treatments were, therefore, em-

ployed in the experiment: the creation of a value model for two software systems using

the DVD method and the creation of a value model for the same systems using the e3value

method. The experimental data collected made it possible to compare the effects of both

treatments. Figure 7.2 shows the taxonomy of the types of dependent variables used in

this experiment.

There are two types of dependent variables in which the treatments are compared:

performance-based and perception-based. Performance-based variables assess how well

the participants perform the experimental task. They are used to evaluate the actual

efficacy of the methods. Perception-based variables assess the participants’ perceptions

of their performance and their subsequent intention to use the methods DVD or e3value.

173

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

Figure 7.2: Taxonomy of dependent variables.

These variables are used to evaluate the perceived efficacy of the methods, and their likely

adoption in practice. There are two performance-based variables:

• Efficiency, measuring the modeling time (i.e., the time required to apply the method).

• Effectiveness, measuring the correctness and completeness of the value model cre-

ated by the participants.

There are also three perception-based variables: Perceived Ease of Use, Perceived Use-
fulness, and Intention to Use. These variables were identified using the TAM [66], a widely

applied theoretical model used to analyze user acceptance and usage behavior as regards

emerging information technologies through the use of empirical validations and replica-

tions [147]. The perceived efficacy [66] of the method can, therefore, be decomposed into

the following subjective dependent variables:

• Perceived Ease of Use (PEOU), indicating the degree to which a person believes that

learning and using a particular value-driven method would occur with reduced

effort.

• Perceived Usefulness (PU), indicating the degree to which a person believes that using

a particular method will increase her/his job performance within an organization.

• ITU, indicating the extent to which a person intends to use a particular method.

It represents a perceptual judgment of the method’s efficacy, that is, whether it is

cost-effective and is commonly used to predict the likelihood of acceptance of a

method in practice.

We formulated several null hypotheses, which were defined in a one-tailed manner

since we wished to analyze the effect of the use of value-driven methods on the described

variables. Each null hypothesis and its alternative are presented as follows:

• H1-0: There is no significant difference between the effectiveness of the DVD and

e3value methods / H1-a: The DVD method is significantly more effective than the

e3value method.

174

7.2. COMPARING THE METHODS DVD AND E3VALUE

• H2-0: There is no significant difference between the efficiency of the DVD and

e3value methods / H2-a: The DVD method is significantly more efficient than the

e3value method.

• H3-0: There is no significant difference between the perceived ease of use of evalua-

tors applying the DVD and e3value methods / H3-a: The DVD method is perceived

as easier to use than the e3value method.

• H4-0: There is no significant difference between the perceived usefulness of the

DVD and e3value methods / H4-a: The DVD method is perceived as more useful

than the e3value method.

• H5-0: There is no significant difference between the intention to use the DVD and

e3value methods / H5-a: The DVD method is perceived as more likely to be used

than the e3value method.

Note that although we have no reason to believe that one method is better than the

other, the formulation of the hypothesis starts with the DVD method by chance, and we

could have chosen the e3value method to start those formulations.

7.2.2.2 Sample and participants

The sample in the baseline study is a group of 24 MSc students at the UPV, in Spain.

The experiment was a class exercise on an “Empirical Software Engineering” course,

which included an introduction to the e3value and DVD methods. The participants had

no previous experience of value-driven modeling methods before attending this course.

However, they had previous experience in modeling software with the UML and had an

average of three years experience in software development.

7.2.2.3 Experimental objects and tasks

Two experimental objects were selected from the following two software requirements

systems in literature [69, 122]:

• Wireless access provisioning (Object1): a hotel offers wireless connectivity to busi-

nessmen as an additional service. Such service must be provided as a joint service

offering of the hotel. In other words, the businessmen pays the hotel for both the

room and the wireless access service and the hotel determines the fee for the wire-

less service.

• Waste management (Object2): waste is traded between an exporter and an importer.

The exporter usually pays the importer for the waste handling, but in some cases,

the waste can be traded like a regular good, such as recycled waste.

175

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

The size of these two experimental objects is comparable. The experimental task was

to create a value model following the specific steps of each method (e3value or DVD).

Figure 7.3-a summarizes the process employed to create an e3value model [104].

Figure 7.3: Processes for the creation of (a) an e3value model and (b) a DVD model.

Participants had to identify a list of scenarios (or short textual descriptions of the

product, service, or experience expected by a customer), after which they had to identify

the actors (who offers and who receives the product, service or experience expected) from

the list of scenarios. They then had to create the initial e3value model using the products

and services mentioned in the list of scenarios and the actors in the list of actors, and add

the macro activities in order to operationalize the value exchange. Finally, they had to

insert the UCM elements representing the paths of all the scenarios.

Figure 7.4: Initial oracles of (a) e3value and (b) DVD for Object1.

176

7.2. COMPARING THE METHODS DVD AND E3VALUE

Similarly, Figure 7.3-b shows the process of creating a DVD model. It starts by de-

scribing the actors: main actor and environment actors. Using the idea of “main actor”

as the focus of the analysis signifies that, for a complex system, the designer may be the

need to build as many DVD models as the number of the actors that are fundamental

to the business so that the whole business is studied. Participants were asked to build a

single DVD model, after which they had to add the value exchanges to the model, define

the value elements related to each value port and continue by determining which actor

originates the value exchange, checking whether the value elements are specified in the

correct value port. The final step is to define the criteria required for value exchanges

to be performed and it is crucial to understand the business constraints related to each

value exchange.

The expected final model for each of the experimental objects are easily modeled

in both DVD and e3value methods. For example, Figure 7.4 shows the expected final

models obtained for the methods e3value (a) and DVD (b) for the Object1 case. These

expected final models are used as a baseline (Oracle) to measure the models created by

the participants (details are given in subsection 7.2.2.4).

Once the value model was created, the participants answered the post-experimental

questionnaire [242]. This questionnaire, defined as a Google Form, contains a set of

closed-questions, allowing the participants to express their opinion on the ease of use,

usefulness, and intention to use the method in the future. It also includes three open

questions to collect the participants’ feedback regarding the changes they would make

to improve the method and their reasons to use one or the other method in the future (if

any). The data collected was kept anonymous.

The answers to the questionnaire were the base to evaluate the perception-based

variables (PEOU, PU, and ITU). The performance-based variables (effectiveness and

efficiency) were evaluated by comparing the value model created by the participants with

the value model designed by experts and by analyzing the time required to perform each

experimental step.

7.2.2.4 Metrics

We used an approach based on the information retrieval theory [94] to obtain a quanti-

tative assessment of the Effectiveness of value models modeled with both the methods

e3value and DVD. This same approach has been applied in other software engineering

experiments [4, 221] to compare models created by participants with an Oracle (the

correct model created by an expert) regarding each type of graphic elements, using equa-

tions (7.1) and (7.2) for precision and recall, in which the precisionelement measures the

correctness of a graphical element belonging to a given value model and the recallelement

measures the completeness of a value model as regards to its graphical element.

precisionelement =
|Pelement ∩Oelement |

|Pelement |
(7.1)

177

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

recallelement =
|Pelement ∩Oelement |

|Oelement |
(7.2)

Accordingly, Pelement indicates all the particular graphical elements modeled by a

participant and Oelement represents the known correct set of expected types of graphical

elements that can easily be derived using an Oracle.

Precision and recall quantitatively summarize two different concepts. We therefore

used their harmonic mean [94] to obtain a balance between the correctness and complete-

ness of each graphical element in a value model (equation 7.3):

F −Measure =
2 ∗ precisionelement ∗ recallelement

precisionelement + recallelement
(7.3)

The F-Measure quantitatively summarizes the accuracy of a value model as regards

its graphical elements and is compared with an Oracle.

The effectiveness dependent variable is computed as the arithmetic mean of the entire

F-Measure. All the measures above assume values of between 0 and 1. Whatever the

measure is, 0 is the worst value and 1 is the best. With regard to effectiveness, values

close to 1 signify that the participants defined value models the were very similar to the

Oracle. Conversely, values close to 0 indicate that the models were very different from the

Oracle. The effectiveness variable has been defined in order to give the same relevance

to the correctness and completeness of value models for all the graphical elements of the

value model.

The first Oracle was developed by an expert in value modeling before the experiment

(one for each experiment object as can be seen in the Figure 7.4). In the case of e3value,

the first Oracle was extracted from the literature [122], [69]. As value models could have

different levels of granularity, the expert developed new Oracles with different levels of

abstraction. For example, in the Oracle represented in Figure 7.4-a, the participants could

create only one activity to represent all hotel services (e.g., “hotel services” activity within

the Hotel actor rather than creating the “Room renting” and “WIFI access” activities). At

the end, we checked the effectiveness of all models created by the participants against the

Oracles, and the higher effectiveness result was selected.

The three subjective variables (e.g., PEOU, PU, and ITU) were measured using a

5-point Likert scale questionnaire with a set of 12 closed-questions: 5 questions for per-

ceived ease of use (PEOU), 5 for perceived usefulness (PU), and 2 for intention to use

(ITU) [242]. These were formulated using the opposing statement format, signifying that

each question contains two contradictory statements representing the maximum and min-

imum possible values (5 and 1), where 3 is considered to be a neutral perception2. The

aggregated value of each variable was calculated as the arithmetical mean of the answers

2It is common for participants not committed to the research to try to complete the questionnaire by
answering all questions with 5 (in favor of the method) or 1 (against the method). In order to avoid this bias,
we use two contradictory statements, hence canceling out the result of these questions for this participant.

178

7.2. COMPARING THE METHODS DVD AND E3VALUE

to the questions associated with each perception-based variable. We used Cronbach’s

alpha test to evaluate the reliability of the survey and of each variable.

7.2.2.5 Design and execution

The experiment was planned as a balanced within-participant design with a confounding

effect, i.e., the same participants would apply both methods with both experimental

objects in a different order. We formed two groups (each of which used one method to

one experimental object) to which the participants were randomly assigned. Table 7.3

summarizes the design of the experiment. The within-participant experimental design

is intended to minimize the impact of learning effects on the results since none of the

participants repeats any treatment or experimental object during the execution. The

comprehension of the software systems requirements may also have affect the application

of both methods. We alleviated the influence of this factor by selecting two representative

software systems with requirements of a complexity suitable for application in the time

slot available for the execution of the experiments (2 sessions of one hour each).

Table 7.3: Experiment design

Groups Session 1 Session 2

A Object1, e3value Object2, DVD

B Object1, DVD Object2, e3value

We conducted a pilot experiment with 2 professors and 1 Computer Science Master’s

Degree student at the UPV. They played no further part in the controlled experiments.

The goals of this pilot experiment were to evaluate all the experimental material, the

instructions regarding the experimental procedure and the task completion time. The

results indicated that the experiment objects were well suited and that one hour were

sufficient to accomplish the task. No software tool was used during the execution of the

experiments, to avoid possible usability bias.

A training session explaining the concepts and processes was provided to the partici-

pants, who had to create a value model by following the experimental procedure. During

the experiment session, the participants were given a pencil, an eraser, sheets of paper

and the printed copy of the experimental material slides introducing business modeling

and value-driven development, slides describing the value-driven development method

and an application example, the slides describing the e3value and DVD methods with

an example, the specification documents of the software systems to be used in the tasks,

and the post-experimental questionnaire. The material was in the participants’ native

language (e.g., Spanish). No interaction among participants was allowed and no time

limit by which the tasks had to be completed was imposed. Moreover, we provided no

details on how to deal with the modeling tasks, but any issues concerning the specifica-

tion documents were clarified. Finally, the participants were asked to register their start

179

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

and end times for each step performed. The answers to this questionnaire were the basis

employed to evaluate the perception-based variables (perceived ease of use, perceived

usefulness, and intention to use).

The performance-based variables (effectiveness and efficiency) were evaluated by com-

paring the value model they created with the value model designed by the expert and by

analyzing the time required to perform each experimental step.

7.2.2.6 Analysis procedure

We chose to analyze the data collected with statistical tests owing to their robustness

and sensitivity and because they have been used in similar experiments ([46], [4]). As is

usual, we accepted a probability of 5% of committing a Type-I-Error [265] in all the tests,

i.e., rejecting the null hypothesis when it is true. We tested the normality of the data

distribution by applying the Shapiro-Wilk test. The results of the normality test allowed

us to select the correct significance test with which to examine our hypotheses. When

data was assumed to be normally distributed (p-value>0.05), we applied the parametric

one-tailed t-test for independent samples [138]. However, when data did not assume the

normal distribution (p-value<0.05), we applied the non-parametric Mann–Whitney test

[61].

7.2.3 Discussion of results

The results obtained in the baseline experiment show that the values for all variables

are higher for the DVD method (see Table 7.4). Before applying the analysis procedure

(Section 7.2.2.6) in order to confirm the results, we used the Cronbach’s alpha to examine

the reliability of the questionnaire. The test result for Cronbach’s alpha for the whole

questionnaire was 0.928 and that for each variable was 0.889 (PEOU), 0.802 (PU), and

0.850 (ITU), signifying that the questionnaire is very reliable (i.e., Cronbach’s alpha is

Table 7.4: Descriptive statistics for effectiveness, efficiency, PEOU, PU, and ITU per exper-
iment and method.

Experiment Number of Variable e3Value DVD

observations Min. Max. Med. Mean Std. Dev. Min. Max. Med. Mean Std. Dev.

Effectiveness 0.26 0.75 0.55 0.56 0.11 0.50 1 0.87 0.83 0.14
Efficiency 15 56 30.50 33.08 10.85 6 37 16.50 20.04 9.89

UPV 48 PEOU 1.6 5 3.40 3.41 0.87 1.2 5 4.70 4.25 0.99
PU 1.8 5 3.40 3.29 0.66 1.6 5 3.80 3.66 0.95
ITU 1 5 3.25 3.10 1.09 1 5 4.00 3.75 0.96

Effectiveness 0.22 0.82 0.55 0.54 0.14 0.14 1 0.81 0.75 0.22
Efficiency 7 64 25 29.33 15.89 4 49 20 21.72 13.24

UNL 78 PEOU 2 4.25 3.25 3.10 0.61 3 5 4.25 4.31 0.61
PU 2.16 4.33 3.33 3.36 0.58 2.83 4.83 3.66 3.76 0.55
ITU 1.5 4.5 3 3.19 0.74 2 5 3.5 3.73 0.87

Effectiveness 0.11 0.65 0.43 0.44 0.18 0.33 1 0.83 0.73 0.28
Efficiency 24 63 30 38.71 16.55 6 42 23 21.57 12.20

UFPE 14 PEOU 1 4.25 3 2.92 1.36 2.75 5 4.75 4.32 0.82
PU 1 4.2 3.16 2.85 0.99 3.2 5 3.50 4.04 0.79
ITU 1 5 3.50 3 1.29 3 5 3.50 3.64 0.97

180

7.2. COMPARING THE METHODS DVD AND E3VALUE

higher than 0.7 [184]), indicating that the questionnaire is not biased as regards the

perceived-based variables.

Figure 7.5 shows the analysis procedure used to confirm the results. We first applied

the Shapiro-Wilk test to verify the normality of the distribution of all variables (effec-

tiveness=0.108, efficiency=0.058, PEOU=0.000, PU=0.465, and ITU=0.005). The results

show that effectiveness, efficiency, and PU have a normal distribution (p-value>0.05). We

therefore applied a t-test (parametric test) to verify hypotheses H1-0 (effectiveness), H2-

0 (efficiency), and H4-0 (PU) and a Mann-Whitney test (non-parametric test) to check

hypotheses H3-0 (PEOU) and H5-0 (ITU).

Figure 7.5: Analysis procedure employed for the experiment in Spain (UPV).

The p-value results obtained from the t-test were effectiveness=0.001, efficiency=0.001,

and PU=0.121. As the p-value for PU is higher than 0.05, we can confirm hypothesis H4-0,

meaning there is no significant difference between the methods. Null hypotheses H1-0

and H2-0 must, however, be rejected because the p-values for effectiveness and efficiency

are lower than 0.05. With regard to PEOU and ITU, the results for the Mann-Whitney

test were 0.000 and 0.031, respectively. As both results are lower than 0.05, we cannot

confirm hypotheses H3-0 and H5-0, showing that the participants perceived the DVD

method to be easier to use than the e3value method (thus confirming H3-a) and their

intention to use DVD in the future is higher than that of using e3value (thus confirming

H5-a). In summary (see Figure 7.5), only the result obtained for PU (H4-0) confirms the

null hypothesis (artifact in red).

With regard to the RQ1 (Which of the methods has the higher actual efficacy, e3value or
DVD?), the data analysis results indicate a significant difference between the methods

concerning efficiency (time required to create the model) and effectiveness (correctness

and completeness of the model). One plausible justification for this result is that DVD fa-

cilitates the representation of the business economic point of view, thanks to its cognitive-

based, semi-structured nature. With regard to RQ2 (Is the perceived efficacy and intention
to use of the participants favoring e3value or DVD?) the data analysis results show that the

perceived efficacy is higher for the DVD method. However, the results show no significant

181

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

difference between the methods for perceived usefulness (PU). This is not surprising as

both methods share the same goal and represent the same central economic concepts. In

the case of perceived ease of use (PEOU), the results indicate that the DVD method is

significantly easier to use than the e3value method. We also associate this result with the

DVD method being being structured as a cognitive mind map.

7.2.4 Two Experimental Replications

Two experimental replications of the previous controlled experiment were performed,

one in Portugal and another in Brazil.

These were needed for two reasons. First, the null hypothesis H4-0 (there is no signifi-
cant difference between the perceived usefulness of the DVD and e3value methods) could not be

rejected in the (baseline) experiment performed in Spain, meaning that the participants

perceived both methods to be equally useful for defining value models. As the descriptive

statistics analysis shows that the PU result for the DVD method is higher than that of

the e3value method, we believed that H4-0 would be rejected if we increased the number

of participants. We consequently performed a replication with more participants at the

UNL in Portugal. Secondly, we felt the need to execute an experiment with experienced

participants with a business background in order to verify whether the results would

hold, thus increasing the validity of the results. This replication was performed at the

UFPE in Brazil. It is essential to highlight that, with the exception of the experimental

material which was translated into the participants’ native language (e.g., Portuguese-PT

and Portuguese-BR), we did not change any of the experimental conditions of the exper-

iment conducted in Spain. These experiments are, therefore, exact replications of the

baseline experiment.

7.2.4.1 Sample and participants

The sample in the replication was composed of 46 participants: 39 MSc students in Com-

puter Science in Portugal and 7 Business Management Ph.D. students in Brazil. The

39 MSc students were attending the “Software Engineering” and “Requirements Engi-

neering and Software Architecture” courses at UNL. These participants had no previous

experience with value-driven modeling methods, but they were experienced in software

modeling. In particular, they were familiar with UML and had an average of three years of

experience in software development. The experiment took place during April 2017. The

7 Business Management Ph.D. students in Brazil were attending the “Business Process

Modeling” course at the UFPE. Before attending this course, these participants had the-

oretical knowledge of value modeling (e.g., REA [174] and BMO [191]), but no previous

experience in the methods used in the experiment. It is worth noting that the Brazilian

experiment is important because all the participants are also professionals from industry

with more than five years of experience. Despite the small number of participants, the

experiment had a balanced within-participant design, what means that the number of

182

7.2. COMPARING THE METHODS DVD AND E3VALUE

observations generated is double the number of participants. The experiment took place

during June 2017.

7.2.4.2 Results

This section discusses the results from the replications performed in Portugal (UNL) and

Brazil (UFPE).

Internal Replication (UNL): Similarly to the results obtained in the UPV experiment,

the descriptive statistics results for all the variables of the UNL experiment also favor

the DVD method (see Table 7.4). Again, Cronbach’s alpha was used to examine the

reliability of the questionnaire, and the result obtained for the questionnaire was: PEOU

questions = 0.803, PU questions = 0.705, ITU questions = 0.732, while that for the whole

questionnaire = 0.858. This means that the questionnaire can be considered reliable

(Cronbach’s alpha is higher than 0.7 [184]).

Figure 7.6 shows the analysis procedure used to confirm the results of this experiment.

After using this process, the Shapiro-Wilk test resulted in the following values for each

variable: effectiveness=0.077, efficiency=0.001, PEOU=0.005, PU=0.407, and ITU=0.005).

Given that p-value > 0.05 for effectiveness and PU, we concluded that the effectiveness

and PU data had a normal distribution, so we could apply a parametric statistical test

to analyze them. However, it was necessary to apply a non-parametric statistical test to

analyze the remaining variables.

Figure 7.6: Analysis procedure employed for the experiment in Portugal (UNL).

We applied a t-test to compare the results obtained for effectiveness (0.001) and PU

(0.003). These results allowed us to reject hypotheses H1-0 and H4-0 (p-value<0.05),

meaning that the participants obtained higher quality value models when applying DVD

and that they perceived it to be more useful for creating value models than the e3value

method.

With regard to the efficiency, PEOU and ITU variables, the non-parametric test used

to compare the results was the Mann-Whitney test. The results were efficiency=0.029,

183

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

PEOU=0.001, and ITU=0.009. This allowed us to reject hypotheses H2-0, H3-0, and H5-0

because p-value<0.05 means that participants created the DVD models significantly faster

than the e3value models. The DVD method was also perceived to be considerably easier

to use than the e3value method and the participant’s intention to use DVD in the future

was substantially higher than that of using e3value. Overall, these results confirm that

the participants were more efficient and effective when using the DVD method. Unlike

the baseline experiment, the results for all the variables in Portugal favored the DVD

method, and both research questions (e.g., RQ1 and RQ2) obtained positive responses.

External Replication (UFPE): The descriptive statistics results obtained for the UFPE

experiment show that the DVD method is better ranked in all variables (see Table 7.4.

The results of Cronbach’s alpha show that the questionnaire is reliable (all question-

naire=0.952, PEOU questions=0.939, PU questions=0.920, and ITU questions=0.784),

as Cronbach’s alpha is higher than 0.7 [184], thus allowing us to apply the analysis

procedure. Figure 7.7 shows the analysis procedure used to confirm the results of this

experiment.

Figure 7.7: Analysis procedure employed for the experiment in Brazil (UFPE).

The Shapiro-Wilk test was used to verify the normality of the distribution for each

variable. The results (effectiveness=0.618, efficiency=0.263, PEOU=0.048, PU=0.230,

and ITU=0.413) show that all the variables have a normal distribution, with the excep-

tion of PEOU which has a p-value<0.05. The non-parametric Mann-Whitney test was

consequently applied in order to verify hypothesis H3-0 (PEOU), while the paramet-

ric t-test was applied to verify hypotheses H1-0 (effectiveness), H2-0 (efficiency), H4-0

(PU), and H5-0 (ITU). The result of the tests was: effectiveness=0.044, efficiency=0.048,

PEOU=0.048, PU=0.030, and ITU=0.316. All the variables, with the exception of ITU,

have a p-value<0.05, signifying that the null hypotheses can be rejected and that the

alternative hypotheses H1-a, H2-a, H3-a, and H4-a confirmed. In others words, the re-

sults show that the participants were more effective and efficient when using the DVD

184

7.2. COMPARING THE METHODS DVD AND E3VALUE

method and they also perceived DVD to be easier to use and more useful than the e3value

method. With regard to ITU, as the result obtained from the test was higher than 0.05, we

cannot confirm hypothesis H5-a, meaning that there is no significant difference between

the participants’ intention to use these methods (although the mean value obtained for

the DVD method is higher than that obtained for e3value). In summary, the results of

this experiment show that DVD was considered a better alternative with respect to the

variables analyzed, with the exception of ITU.

7.2.5 Meta-Analysis

Among the existing statistical methods to aggregate results from interrelated experiments

[116, 215], meta-analysis allows more general conclusions to be obtained and was, there-

fore, chosen for this study. Meta-analysis is a set of statistical techniques that can be used

to combine and contrast the results (e.g., patterns and sources of disagreement) of mul-

tiple scientific studies [216]. Figure 7.8 shows the forest plot (or blobbogram) provided

by the R Studio tool [248] used. The square expresses the magnitude of the effect of the

method while the dimensions of the square are proportional to both the weight of the

experiment in the meta-analysis and the number of participants. The result for studies

with a large sample size is more accurate, meaning that they make a greater contribution

to the overall effect [4]. The effect size obtained in our meta-analysis varies between small

and medium in all cases. This may indicate that it will be necessary to perform further

replications with a larger sample of participants. Despite this, and given that no other

similar studies exist in the literature, the present results are still useful and and of interest

to the community.

The confidence intervals of each experiment are represented by horizontal lines. We

considered a confidence interval of 95 percent for each experiment. When these hori-

zontal lines cross over the central vertical line of the graph, this means that there is no

significant difference between the means of the methods (e.g., PU in the experiment con-

ducted in Spain and ITU in the experiment conducted in Brazil). The diamonds represent

the overall conclusion. The summary measure is the central line of the diamond, while

the associated confidence interval is the lateral tips of the diamond. When the diamond

crosses over the central vertical line of the graph, this means that there is no significant

difference between the aggregated result. As this did not occur in our meta-analysis, the

aggregated result was, therefore, always favorable for one of the methods.

Despite the fact that the null hypotheses H4 (related to PU) and H5 (related to ITU)

could not be confirmed in the UPV and UFPE experiments, the overall results of the

meta-analysis have a significant positive effect. The diamonds are always positioned on

the DVD method side (for example, on the right-hand side of the effectiveness graph) and

we can, therefore, reject all null hypotheses. In summary, the meta-analysis strengthens

the results obtained in the individual experiments.

185

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

Figure 7.8: Meta-analysis blobbogram for effectiveness, efficiency, PEOU, PU and ITU.

7.2.6 Discussion of the results

Figure 7.9 summarizes the descriptive statistic results for the three experiments. The

small number of outliers were discarded from the data analysis. These outliers occurred

because some participants did not participate in the training session, or arrived late. They

just attended the review that was held before each experimental section.

Table 7.5 summarizes the results for the various hypothesis (where an accepted null

hypothesis means no significant difference between e3value and DVD, and an accepted

alternative hypothesis means that the result favors DVD). Besides, we calculated the

value of Cohen’s d [59] and the effect-size correlation (effect size r) [184] using the means

and standard deviations of two groups (treatment and control)3. The sign of our Cohen’s
d effect (Cohen’s d column in Table 7.5) indicates the direction of the effect. In the case,

the negative sign means that the direction of the effect is in favor of the DVD method.

Note that Cohen’s d result for efficiency is positive, meaning that the participants took

longer to model using e3value. In other words, the least efficient method is the one

3Details on how to calculate Cohen’s d and effect size r can be found in [29, 30, 59].

186

7.2. COMPARING THE METHODS DVD AND E3VALUE

Figure 7.9: Actual efficacy (effectiveness and efficiency), perceived efficacy (PEOU and
PU), and ITU grouped by methods of experiments performed in (a) Spain, (b) Portugal,
and (c) Brazil.

that has the positive result. Regarding the effect size r, Cohen provided rules for their

interpretation, suggesting that an effect size r between |.10| and |.29| represents a “small”

effect size, between |.30| and |.49| represents a “moderate” effect size, and larger than |.5|
represents a “large” effect size [59]. The last column in Table 7.5 shows that the effect

size of our experiments is, mainly large and moderate. Even though we have some results

187

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

with small effect size, we believe that the results of our family of experiments are still

relevant to the community because there are no other works that empirically compare

value-driven development methods.

Table 7.5: Summary of the results of all experiments, where checkmark means hypothesis
accepted and X means hypothesis rejected.

Experiment Variable Null hypothesis Alternative hypothesis Cohen’s d Effect size r Effect size interpretation

Effectiveness -2.14 -0.73 Large
Efficiency 1.25 0.53 Large

UPV PEOU -0.90 -0.41 Moderate
PU -0.45 -0.22 Small
ITU -0.63 -0.30 Moderate
Effectiveness -1.13 -0.49 Moderate
Efficiency 0.52 0.25 Small

UNL PEOU -1.98 -0.70 Moderate
PU -0.70 -0.33 Moderate
ITU -0.66 -0.31 Moderate
Effectiveness -1.23 -0.52 Large
Efficiency 1.17 0.50 Large

UFPE PEOU -1.24 -0.52 Large
PU -1.32 -0.55 Large
ITU -0.56 -0.26 Small

Which of the methods has the higher actual efficacy, DVD or e3value? (RQ1)

The descriptive statistics for effectiveness and efficiency indicate that the DVD method

performs better than the e3value method in the experiments performed in Spain, Portugal,

and Brazil. The meta-analysis for the aggregated experiments results confirm a significant

difference between the methods regarding efficiency (time required to create the model)

and effectiveness (correctness and completeness of the model). One plausible justification

for this conclusion is that the DVD method facilitates the representation of the business

from an economic point of view, thanks to its cognitive-based, semi-structured nature.

Moreover, the DVD method has fewer concepts which might also have a positive effect

on the modeling time and the participants’ perceived ease of use. The responses for the

open questions from the questionnaire indicated that the e3value method has a weak

separation of concerns [73]; it represents static (e.g., objects) and dynamic (e.g., scenarios)

business concepts in the same model, thus making the value model complex and arduous

to build. Furthermore, the participants indicated that “DVD is very simple, intuitive, and
easy to use”, or “I would use it [DVD] because it is not difficult to understand and it would
be simple to explain to my clients, saving time in modeling this business point of view”, or “It
[DVD] is not hard to understand and it uses a simple structure", or still “[DVD] makes the
business model construction an effective and fast step”.

In summary, the DVD method appears to represent the essential business value con-

cepts in a structured manner, thus making it a concise technique. The DVD’s structure

is based on mind map diagrams and inherits the well-known benefits of this structure

(e.g., organization, use of keywords, association, grouping ideas, visual memory, and

simplicity [51]). The consequence of being concise and having a simple structure seems

188

7.2. COMPARING THE METHODS DVD AND E3VALUE

to help DVD attain more positive results than e3value. (Note that efficiency in Figure 7.8

may seem misleading. This is because efficiency is measured in terms of modeling time,

meaning that the larger the result, the less efficient the method is, which is why the result

for efficiency may appear to be the opposite).

Is the perceived efficacy and intention to use of the participants favoring e3value or

DVD?

The result of the descriptive statistics analysis of the replications are in line with the

experiment baseline (at UPV). Upon considering the analysis of the hypotheses, the

results of the replication contradicts the baseline experiment in relation to PU and ITU.

With regard to the PU, we did not confirm a significant difference between DVD and

e3value in the UPV experiment (H4-0 was confirmed). However, we believed that H4-0

would be rejected if we increased the number of participants because the analysis of the

descriptive statistics in the baseline experiment favors the DVD method. The results of

the UNL replication confirmed what we believed, in other words, H4-0 was rejected (the

DVD method is perceived as significantly more useful than the e3value method). In the

UFPE replication, we changed the participants’ background from Computer Science to

Business Management. The result for PU in this replication is also favors DVD, and the

reason might be that no prior IT knowledge is required to create a DVD model.

The meta-analysis confirmed that, despite the result obtained in Spain (UPV), DVD

is perceived to be more useful than e3value. One plausible justification for this result

is that the DVD method also facilitates the extraction of business knowledge in order to

design information systems [239, 240].

One interesting finding that we have identified after carrying out the UFPE replication

is that the different backgrounds of the participants (e.g., Computer Science and Business

Management) did not significantly alter the results of the experiments. Only the ITU

result contradicts those of the other experiments (e.g., UPV and UNL), being significantly

higher for for DVD in Spain (UPV) and Portugal (UNL). However, this was not confirmed

in Brazil (UFPE), despite the fact that the mean obtained for DVD (3.64) was slightly

higher than the one obtained for e3value (3). As the analysis of the descriptive statistics

in the UFPE replication shows that the ITU result for DVD is higher than for e3value, we

believe that H5-0 (there is no significant difference between the intention to use the DVD and
e3value methods) would be rejected if we were to increase the number of participants with

a business background.

In addition, even when considering the result obtained in Brazil, the aggregated re-

sults of the experiments confirm that the participants have the intention to use DVD in

the future (when appropriate). Given that the Brazilian participants are practitioners,

they suggested that the DVD method needs a supporting tool and integration with busi-

ness processes (e.g., BPMN [263]) to represent the value stream throughout the business

activities. With regard to the integration issue, we would like to emphasize that a DVD

189

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

model provides a point of view of the business. It needs to be complemented with other

models (e.g., process models or goal models) for a more complete representation of the

whole business. It is worth highlighting that the DVD method follows a model-driven

approach and provides model transformations to the BPMN model [263] (and also to

KAOS [65], iStar [268] and SOA services) [239, 240], but this was not part of the experi-

ment. Moreover, even though the e3value method represents value streams (using UCM

elements), the result of the descriptive statistics for ITU favored the DVD method.

The questionnaire’s open questions also show that the likelihood of intention to use

the methods in the future is probably related to the easiness of using the method, as per

answers like “it [DVD] is easier to use and fast to create. Because of this, I would use it in the
future”, or “I would not use it [the e3value] because it requires a lot of effort to modeling, and
provides a complex and confusing diagram. The cost benefit does not pay. I would use it, if it
was simpler and more objective”.

For perceived ease of use (PEOU), results show that DVD is significantly easier than

e3value in all the experiments. We also associate this result with the mind map roots

of the DVD model. This conclusion is reinforced by the positive answers obtained from

the participants’ questionnaire, such as, “(DVD) is easy to understand, simple, and clearly
shows those who make the most important exchanges” and “I would use this method thanks to
its simplicity regarding its use and understanding by non-expert users”.

Nevertheless, the responses to these open questions also indicated that the partici-

pants had some difficulties in understanding the meaning of some modeling elements

(e.g., “[I would like to advise against] using such complicated symbols”). We plan to perform

a new empirical study with the aim of defining a more representative iconography for

these methods based on Moody’s physics of notation theory [179]. This would be useful

as regards improving the visual notation of both methods, thus making them easier to

understand and use.

7.2.7 Threats to validity for the family of the controlled experiments

We must consider certain issues which could threaten the validity of this experiment.

With regard to its internal validity, the main threats are: learning effect, fatigue effects,

participant experience, information exchange among participants, understandability of

the documents, and instrumentation validity. The learning effect was mitigated by en-

suring that each group of participants worked with the two methods, on two different

experimental objects, using a within-participant experimental design. We mitigated the

fatigue effects by executing the experiment in a time slot of 1 hour per session. Regard-

ing the participants’ experience, the random heterogeneity of subjects is always present

when experimenting with students and we are also conscious that they had no previous

knowledge of the value-driven methods being compared. Furthermore, if the knowledge

of the students involved in the experiment could be assumed to be comparable to that

of junior industry professionals, the working pressure and the overall environment in

190

7.2. COMPARING THE METHODS DVD AND E3VALUE

industry is different. The experiment should be replicated with participants with experi-

ence in value-driven modeling. Nevertheless, the experience collected in this first study

allows us to refine the material and tasks with the objective of performing a replication

in an industrial setting. In order to minimize the information exchange among partici-

pants, they were monitored by the experimenters to avoid communication biases while

performing the tasks. The understandability of the material was alleviated by performing

a pilot study and making it available in three languages (Spanish, Portuguese-PT, and

Portuguese-BR). Finally, the selection of different objects in the study may have affected

the instrumentation validity and thus biased the results. We mitigated this threat by

conducting a pilot experiment to assess both the complexity of the objects and to attempt

to identify mistakes in the experimental material.

With regard to external validity, the main threats are: representativeness of the results,

and the size and complexity of the tasks that might affect the generalization of the results.

The representativeness of the results may be affected by the software systems used and

the context of the participants selected. We mitigated the selection of software systems by

considering a set of artifacts with a similar size and complexity, containing representative

artifacts from an existing value-driven development method (i.e., e3value). The size and

complexity of the tasks may also affect the external validity. We decided to use relatively

small tasks since a controlled experiment requires that participants complete the assigned

tasks in a limited amount of time. To confirm or contradict the achieved results, we plan

to conduct case studies with larger and more complex tasks.

With regard to construct validity, the main threats are: the measures applied in the

data analysis and the reliability of the questionnaire. We mitigated this by using mea-

sures that are commonly applied in other empirical-based software engineering works

(including controlled experiments [3, 4, 23, 265] and meta-analysis [115, 165, 193, 249]).

In particular, effectiveness was measured using an information retrieval based approach

(see Section 7.2.2.1). The subjective variables are based on TAM [66, 147]. The reliability

of the questionnaire was tested using the Cronbach test.

With regard to conclusion validity, the main threats are: the data collection and the

validity of the statistical tests applied. In the case of the data collection, we applied the

same data-extraction procedure in each individual experiment and ensured that each

dependent variable was calculated with the same formula. With regard to the validity of

the statistical tests proposed, we chose those that are most commonly employed in the

empirical software engineering field (both for a simple experiment and for meta-analysis)

owing to their robustness and sensitivity [173]. Finally, the meta-analysis results may

be threatened by the reduced sample size. The effect size for each dataset was found to

be small and moderate. To investigate this issue, we plan to conduct further experiment

with a large number of participants.

191

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

7.3 Evaluating the methods RAMA and KAOS4Services

This section described an online survey to evaluate the perceived efficacy (that is, the

perceived ease of use and the perceived usefulness) and the intention of use of the methods

RAMA and KAOS4Services (the software layer of the framework.) It is important to

note that we chose to do a single experiment to evaluate both methods rather than an

experiment for each method because of the difficulty of recruiting participants. Therefore,

to perform this evaluation, we created six research questions as follows:

RQ1. Is the RAMA method perceived as easy to use?

RQ2. Is the RAMA method perceived as useful?

RQ3. Do the participants intend to use the RAMA method in the future?

RQ4. Is the KAOS4Services method perceived as easy to use?

RQ5. Is the KAOS4Services method perceived as useful?

RQ6. Do the participants intend to use the KAOS4Services method in the future?

7.3.1 Experiment design

To evaluate the six research questions, we followed the GQM process [22] and defined the

goal of this experiment to analyze the methods RAMA and KAOS4Services for the pur-

pose of verifying the perceived efficacy of the methods with respect to the perceived ease

of use and the perceived usefulness, from the point of view of software engineers, in the

context of people with a background in computer science (with full or on-going courses)

and who have participated in at least one information systems software development

project in the industry.

Context of the experiment: We focused our evaluation on software engineers with a

background in computer science (with full or on-going courses degrees) and who have

participated in at least one information systems software development project in the

industry. All the twenty-four participants were volunteers and were aware of the practical

and pedagogical purposes of the survey, but did not know the experimental hypotheses

nor did they have previous knowledge about RAMA or KAOS4Services.

Hypotheses formulation: We formulated twelve null hypotheses, defined in a one-

tailed manner, as we want to analyze the perceived effect of our method on the variables.

Each null hypothesis and its alternative are presented as follows:

H1-0: There is no significant perceived ease of use of the RAMA method

H1-a: The RAMA method is perceived as easy to use.

192

7.3. EVALUATING THE METHODS RAMA AND KAOS4SERVICES

H2-0: There is no significant perceived usefulness of the RAMA method

H2-a: The RAMA method is perceived as useful.

H3-0: Participants do not have a significant intention to use the RAMA method

H3-a: Participants intend to use the RAMA method in the future.

H4-0: There is no significant perceived ease of use of the KAOS4Services method

H4-a: The KAOS4Services method is perceived as easy to use.

H5-0: There is no significant perceived usefulness of the KAOS4Services method

H5-a: The KAOS4Services method is perceived as useful.

H6-0: Participants do not have a significant intention to use the KAOS4Services method

H6-a: Participants intend to use the KAOS4Services method in the future.

Selected variables: The independent variable of interest is understanding the methods

after watching some video classes. Hence, the experiment uses only one treatment: watch

the video classes. The dependent variables are perception-based, assessing the partici-

pants’ perceptions of methods. They are based on TAM [66]. The perceived efficacy [66]

of the method can be broken down into three subjective dependent variables:

• Perceived Ease of Use (PEOU): refers to the degree to which a person believes that

learning and using our method would not require significant effort.

• Perceived Usefulness (PU): refers to the degree to which a person believes that

using our method will increase her/his job performance within an organizational

context.

• Intention to Use (ITU): refers to the extent to which a person intends to use a

particular method. It represents a perceptual judgment of the method’s efficacy,

that is, whether it is cost-effective and is commonly used to predict the likelihood

of acceptance of a method in practice.

The three subjective variables were measured using a 5-point Likert scale question-

naire with a set of 12 closed-questions: 5 questions for perceived ease of use (PEOU), 5 for

perceived usefulness (PU) and 2 for intention to use (ITU). They were formulated using

the opposing statement format. So, each question contains two contradictory statements

representing the max and min possible values (5 and 1), where 3 is considered a neutral

perception. The aggregated value is the arithmetical mean of the answers to the questions

associated with each perception-based variable. We used Cronbach’s alpha test [184] to

evaluate the reliability of the survey and of each variable.

193

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

Experiment design: Each participant should evaluate both methods. Because of this,

we established two groups (each evaluating a different first method), and the partici-

pants were randomly assigned to each group. Table 7.6 summarizes the design of the

survey. The comprehension of the video classes may also affect the application of the

methods. We alleviated the influence of this factor by creating four short (the largest was

11 minutes) video classes (e.g., Introduction to EBSE, DVD method, RAMA method, and

KAOS4Service method).

Table 7.6: Experiment design

Phase
Groups Is the experimental material different?

A B

Part 1 (Introduction / levelling) Introduction to
EBSE and DVD
method

Introduction to
EBSE and DVD
method

No

Part 2 (Classes evaluation) Questionnaire Questionnaire No
Part 3 (1st method class) KAOS4Services

method
RAMA method Yes

Part 4 (class evaluation) Questionnaire Questionnaire No
Part 5 (1st method evaluation) Questionnaire Questionnaire No
Part 6 (2nd method class) RAMA method KAOS4Services

method
Yes

Part 7 (class evaluation) Questionnaire Questionnaire No
Part 8 (2nd method evaluation) Questionnaire Questionnaire No

Analysis procedure: We chose statistical tests for their robustness and sensitivity to

analyze the data collected. As usual, in all the tests we decided to accept a probability

of 5% of committing a Type-I-Error [265], rejecting the null hypothesis when it is true.

The normality of the data distribution was tested with the Shapiro-Wilk test [223]. When

there is only one sample to analyze, we used the T-test to one sample when data could

assume the normal distribution to verify our hypotheses. However, when the data could

not assume the normal distribution, then we applied the Wilcoxon-test. If there are in-

dependent samples, we applied the parametric one-tailed t-test for independent samples

[138] when data could assume the normal distribution. However, when data did not

assume the normal distribution, we applied the non-parametric Mann–Whitney test [61].

7.3.2 Discussion of the evaluation results for RAMA and KAOS4Services

With this survey, we aimed at analyzing the variables PEOU, PU, and ITU of the two meth-

ods forming the software layer of the framework. As the software layer of the Framework

consists of the RAMA and KAOS4Services methods, there is a possibility of obtaining a

positive final result for the software layer of the framework, but without getting a good re-

sult for the two methods. That is, it could be that the framework obtains a very good final

result because one of the methods was considered excellent by the participants concern-

ing PEOU, PU, and ITU in a way hiding the adverse effect of the other method. Because of

this, initially, we analyzed the results of the methods individually to check for the hidden

adverse effect.

194

7.3. EVALUATING THE METHODS RAMA AND KAOS4SERVICES

What is the perceived efficacy and intention to use of the RAMA method? A 5-point

Likert scale was used for the answers of the questions with 3 considered a neutral result

(neither positive nor negative). A mean greater than 3 indicates a good result for the

analyzed variable (e.g., PEOU, ITU, or PU), and a mean lower than 3 indicates a negative

result. The averages obtained were: PEOU=4.5273 (with Std = 0.41194), PU=4.3977

(Std = 0.41303), and ITU=4.6818 (Std = 0.36337). As all the averages are higher than 3,

the method obtained favorable results for all variables analyzed. However, for a definite

answer, it is necessary to check if the difference between the means found is significantly

higher than 3 (see H1-0, H2-0, and H3-0 hypotheses formulation in Section 7.3.1).

To analyze these hypotheses, we have to verify if the sample has a normal distribution

through the Shapiro-Wilk test. The results are: PEOU = 0.060, PU = 0.039, and ITU=

0.000. As the p-values obtained for PU and ITU are less than 0.05, the samples for these

variables have NOT a normal distribution and therefore we have to use the Wilcoxon

non-parametric test for them (PU result = 0.001 and ITU result = 0.001). On the other

hand, as the PEOU result is higher than 0.05, we can assume it has a normal distribution

and therefore we should use the one-sample T-test (PEOU result = 0.001). As the p-values

are less than 0.05, we can assume that the results are indeed significantly higher than 3,

confirming all three alternative hypotheses (H1-a, H2-a, and H3-a). In conclusion, RAMA

was perceived as easy to use and useful, and participants intend to use it in the future (if

necessary).

What is the perceived efficacy and intention to use of the KAOS4Services method?

The analysis performed for the KAOS4Services method was the same as for the RAMA

method. In this way, we initially verified the means obtained for each variable, and ob-

tained PEOU= 3.7455, PU= 3.7727, and ITU= 4.0455 with standard deviations equal to

0.48671, 0.51124, and 0.46057, respectively. Similarly to the RAMA method, all vari-

ables obtained an average higher than 3, that is, all are apparently positive. To confirm

these positive results, we checked the hypotheses H4-0, H5-0, and H6-0 to verify if the

difference between the averages found is significantly higher than 3 (see hypotheses for-

mulation described in Section 7.3.1).

Then, we verified if the sample has a normal distribution through the Shapiro-Wilk

test (PEOU= 0.425, PU= 0.000, and ITU= 0.004). As the p-values obtained for PU and ITU

are less than 0.05, then the samples for these variables have NOT a normal distribution.

Consequently, we used the Wilcoxon non-parametric test and obtained PU= 0.001 and

ITU= 0.001. As the PEOU result is higher than 0.05, then it has a normal distribution

and, therefore, we have to use the one-sample T-test (PEOU= 0.001).

As mentioned previously, p-values less than 0.05 mean that the results are signifi-

cantly higher than 3. With all the alternative hypotheses were confirmed (H4-a, H5-a,

and H6-a), we can conclude that KAOS4Services was perceived as easy to use and useful,

and participants intend to use it in the future (if necessary).

195

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

7.3.3 Threats to validity

Before analyzing the results of the survey, we did some preliminary analysis to look for

bias in the structure of the questionnaire or in the quality of the video classes given to

the participants prior to answering the questions.

Questionnaire analysis: Cronbach’s alpha was used to examine the reliability of the

questionnaire, and the result obtained for the questionnaire was: PEOU questions is 0.855,

PU questions is 0.722, ITU questions is 0.718, while that for the whole questionnaire is

0.825. This means that the questionnaire can be considered reliable (Cronbach’s alpha is

higher than 0.7 [184]).

Video classes analysis: We measured the quality of video classes using a 5-point Lik-

ert scale questionnaire with a set of 6 closed-questions: 3 for the video quality and 3

for the audio quality. Once more, the value 3 is considered to be a neutral result and

results higher than 3 are considered positive. The descriptive analysis shows that the

KAOS4Services video quality was 4.40 (Std 0.71), RAMA’s video quality was 4.7 (Std

0.33), and mean of videos quality was 4.57.

Regarding the audio quality, the results for the KAOS4Services’ were 4.47 (Std 0.62),

and for RAMA’s were 4.65 (Std 0.47), and the mean of the audios’ quality was 4.56.

Even though all the results were higher than 3, we must verify if the difference is sig-

nificantly different from 3. For this, we verified if the dataset has a normal distribu-

tion using Shapiro-Wilk test, obtaining KAOS4Services’ video quality= 0.001, RAMA’s

video quality= 0.001, KAOS4Services’ audio quality= 0.001, and RAMA’s audio quality=

0.001. These results show that KAOS4Services’ and RAMA’s video and audio quality, has

NOT a normal distribution (as p-value<0.05). Consequently, we used the non-parametric

Wilcoxon test to verify the significance of the results (KAOS4Services’ video quality=

0.001, RAMA’s video quality= 0.001, KAOS4Services’ audio quality= 0.001, and RAMA’s

audio quality= 0.001). As the results of Wilcoxon test were lower than 0.05, both audio

and video qualities are considered good (significantly higher than 3).

7.4 Comparing RAMA and KAOS4Services

Even with positive results (for PEOU, PU, and ITU) for both methods, the fact is that

these methods differ significantly in content. RAMA uses an agile development method-

ology while KAOS4Services uses a more traditional goal-oriented software development

methodology. The final output created by the methods also differ. The architectural

reference models created by RAMA and KAOS4Services change significantly due to the

amount of different information obtained during the execution of the method used. There-

fore, it is relevant to know which one was better evaluated by the participants, to identify

which is the most promising method to be accepted in industry in the future and what

196

7.4. COMPARING RAMA AND KAOS4SERVICES

possible improvements could be worth making. In addition, we would like to know if

the framework’s software layer (both methods together) was perceived as easy to use and

useful as well as if the participants intend to use the it in the future. To achieve these

aims, we extended the previous experiment as discussed next.

7.4.1 Experiment design

To perform this evaluation, we used the data already obtained in the previous experiment,

adding to the previous six research questions another six, as follows:

RQ7. Which of the methods is perceived as easier to use (PEOU), RAMA or KAOS4services?

RQ8. Which of the methods is perceived as most useful (PU), RAMA or KAOS4services?

RQ9. Which of the methods are the participants most likely to use in the future (ITU), RAMA
or KAOS4Services?

RQ10. Is the framework’s software layer perceived as easy to use (PEOU)?

RQ11. Is the framework’s software layer perceived as useful (PU)?

RQ12. Do the participants intend to use the framework’s software layer in the future (ITU)?

Consequently, we created new hypotheses to each new research question. Each null

hypothesis and its alternative are as follows:

H7-0: There is no significant difference between the perceived ease of use (PEOU) of

RAMA and KAOS4Services

H7-a: The RAMA method is perceived as easier to use than the KAOS4Services

method.

H8-0: There is no significant difference between the perceived usefulness of RAMA and

KAOS4Services

H8-a: The RAMA method is perceived as more useful than the KAOS4Services

method.

H9-0: There is no significant difference between the intention to use RAMA and KAOS4Services

H9-a: The RAMA method is perceived as more likely to be used than the KAOS4Services

method.

H10-0: There is no significant perceived ease of use of the Framework’s software layer

H10-a: The Framework’s software layer is perceived as ease of use.

H11-0: There is no significant perceived usefulness of the Framework’s software layer

H11-a: The Framework’s software layer is perceived as useful.

197

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

H12-0: Participants do not have a significant intention to use the Framework’s software

layer

H12-a: Participants intend to use the Framework’s software layer in the future.

(Disclaimer: although we have no reason to believe that one method is better than

the other, the formulation of the H7-a, H8-a, and H9-a hypotheses starts with the RAMA

method by chance, and we could have chosen the KAOS4Services method to start those

formulations.)

Analysing the hypotheses H7, H8, and H9. We initially checked whether the data sam-

ples have a normal distribution using the Shapiro-Wilk test (PEOU= 0.094, PU= 0.000,

and ITU= 0.000). As the p-values obtained for PU and ITU were less than 0.05, the

samples for these variables have NOT a normal distribution, and therefore we used the

Mann–Whitney non-parametric test for them (PU= 0.000 and ITU= 0.000). The PEOU

result was higher than 0.05 (hence has a normal distribution), we used the one-tailed

t-test for independent samples (PEOU= 0.000). P-values less than 0.05 mean that the re-

sults between the methods are significantly different, in other words, the results obtained

by the RAMA method are significantly higher than those obtained by KAOS4Services.

Therefore, RAMA was perceived as easier to use and more useful than KAOS4Services,

confirming the hypothesis H7-a and H8-a. Also, participants claimed to have higher

intention to use RAMA in the future (if necessary) than KAOS4Services, confirming the

H9-a.

Analysing hypotheses H10, H11, and H12. Given the results obtained by the RAMA

and KAOS4Services methods, it seems reasonable to expect that PEOU, PU, and ITU will

favor the software layer of the framework. To verify this result statistically, we calculated

the value that each participant assigned to PEOU, PU and ITU by the arithmetic mean of

the amounts that were assigned to the RAMA and KAOS4Services methods. For example,

if the PEOU result for RAMA was 5 and for KAOS4Services was 4, then the PEOU value

for the Framework’s software layer was 4.5 [(5 + 4) / 2]. Thus, the average of results

considering all participants were PEOU = 4.136 (std = 0.3155), PU = 4.0827 (Std =

0.35341), and ITU = 4.3636 (Std = 0.32484). As the values are higher than 3, we need

to check if the results are significantly higher than 3. To make this check, we must first

examine whether the samples have a normal distribution through the Shapiro-Wilk test

(PEOU= 0.494, PU= 0.007, and ITU= 0.180). As the values obtained for PEOU and ITU

were higher than 0.05, then the samples for these variables have a normal distribution.

Consequently, we used the parametric one-sample T-test for them (PEOU= 0.000 and

ITU= 0.000). In contrast, since the result for PU was less than 0.05, then it does NOT have

a normal distribution and, consequently, we used Wilcoxon’s nonparametric test for it

(PU= 0.000). The results of these tests show that the software layer of the Framework was

perceived as easy to use and useful by the participants (PEOU and PU < 0.05), confirming

198

7.4. COMPARING RAMA AND KAOS4SERVICES

H10-a and H11-a. Besides, participants stated that they intend to use it in the future

if they need to implement a value-based software development approach (ITU <0.05),

confirming H12-a.

7.4.2 Complementary analysis

To confirm that there was no bias regarding the order of which the methods were eval-

uated, we analyzed if the results obtained by group A who performed the experiment

evaluating KAOS4Services and later RAMA (see Table 7.6) is NOT significantly different

from group B that ran the experimental tasks in the reverse order. We also verified the

size of the effect of the results found as we would have to increase our sampling if it was

considered small.

Order of the survey: The absence of bias in the order of presentation of the methods,

was checked by performing the Mann-Whitney tests (in PU and ITU) and one-tailed t-test

for independent samples, grouping the results by group (group 1 = KAOS4Services >

RAMA and group 2 = RAMA > KAOS4Services). The results were PEOU= 0.153, PU=

0.194, and ITU= 0.148, with p-values higher than 0.05. This means that the results

between the groups are not significantly different, confirming that the order of execution

of the survey did not have an impact on the results.

Effect size: The effect size is calculated with Cohen’s d [59] and effect size r. (effect-size

correlation) [184] using the means and standard deviations of two groups (treatment and

control)4. Table 7.7 shows the result of these calculations per variable.

Table 7.7: Effect size of survey

Variable Cohen’s d effect size r

PEOU +1.733951811763858 0.6550639594530521
PU +1.3448479625626903 0.5580034118320171
ITU +1.533893328958535 0.6085714643625094

A positive value of Cohen’s d (sign of +) indicates that the effect favours the RAMA

method. In contrast, a negative value (sign of -) indicates that the effect favours the

KAOS4Services method. Regarding the effect size r, Cohen suggests that a value between

|.10| and |.29| represents a “small” effect size, between |.30| and |.49| represents a “mod-

erate” effect size, and larger than |.5| represents a “large” effect size [59]. The results

obtained for PEOU, PU, and ITU are higher than 0.5 (see Table 7.7), meaning that the

results are statistically significant.

4Details on how to calculate Cohen’s d and effect size r can be found in [29, 30, 59].

199

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

7.4.3 Discussion of the results

The descriptive statistics indicate that the RAMA method was perceived as easy to use

(meanPEOU= 4.52) and useful (meanPU= 4.39), and the participants intend to use it in the

future (meanITU= 4.68). These facts were confirmed through the parametric one-sample

T-test, where the p-value for all variables was inferior to 0.05. One plausible justification

for the perceived easy to use is that the RAMA method is lean and uses the tenth agile

principle (e.g., simplicity)[9] and nine agile practices (e.g., user stories) effectively (see

Section 5.3.1). The responses to the questionnaire’s open questions indicated that “the
[RAMA] method is very simple, easy to learn and use. Despite having the step-by-step that can
give a bureaucratic impression, I think it is viable in the agile development precisely because
it is not bureaucratic” or “the [RAMA] method is very simple and easy to use”. Also, three

participants suggest building a support tool as a way to make the method easier to use.

The combination of software architecture and agile development has received significant

attention in recent years [267]. However, ways of combining them is still a challenging

issue [2]. We believe that this challenge is being well addressed by the RAMA method,

making it useful to the architects. Our assumption is highlighted by some answers to open

questions from the questionnaire, for example, “the [RAMA] method is very interesting.
I think it is very useful to create software more aligned with the business in a very simple
way”. However, some improvement points to leave the most useful method were also

reported, for example, “to use more precise algorithms to identify overlapping concepts” or

“to use more agile practices for planning (e.g., planning poker)”. About the intend to use of the

participants, the answers suggest that the main reason is the mix of easily and usefully

of the RAMA method, for example, “the [RAMA] method generates reference architecture
models easily. These models are useful for discussion among the development team” or “I think
the [RAMA] method is lean [very objective]. This makes it easy to use”.

The descriptive statistics indicate that the KAOS4Services method was perceived as

easy to use (meanPEOU= 3.74) and useful (meanPU = 3.77), and the participants intend to

use it in the future (meanITU= 4.04). These facts were confirmed through the parametric

one-sample T-test and the Wilcoxon non-parametric test, all with p-vaules inferior to 0.05.

We believe that KAOS4Services is perceived as easy to use because its set of heuristics

make it very systematic. Our assumption is supported by some of the answers to the ques-

tionnaire, for example, “the [KAOS4Services] method is very simple and systematic” or “it is
well bound and justified”. Some participants suggest to automatize the heuristics or change

the goal-oriented approach to make the method easier to use, for example, “automate all
heuristics”, or “heuristics should be transparent to users. I think the user does not need to
memorize all these heuristics. Also, I do not like KAOS. If you change KAOS for something else,
maybe the method will get easier.”, or yet “explore BPMN instead of KAOS”. KAOS4Services

is perceived useful, because its output gives a good overview of the software that must be

built. The open questions did not give us any support to justify our supposition because

most participants did not write the reason why they think the method is useful. About

200

7.4. COMPARING RAMA AND KAOS4SERVICES

the intend to use of KAOS4Services in the future, some reasons were described by the

participants, such as “I would use the [KAOS4Service] method because I can see traceability
of the business value in software services”, “[the KAOS4Services method] creates useful models
to understand the system requirements”, and yet “the [KAOS4Services] method is well detailed
and generates a good enough model for discussing on the structure of software”.

Regarding the comparison between RAMA and KAOS4Services methods, RAMA

was perceived as easier to use and more useful than KAOS4Services. Also, partici-

pants claimed to have higher intention to use RAMA in the future (if necessary) than

KAOS4Services. The questionnaire’s open questions also show that the likelihood of

intention to use the methods in the future is probably related to the easiness of us-

ing the method, as per answers like “a thousand times this method [RAMA] to the other
[KAOS4Services]. I would use this method [RAMA] because it is very simple and generates a
useful reference model. It helps in the modularization of the system being developed”.

Regarding the framework’s software layer, the analysis show that the software layer

of the Framework was perceived as easy to use and useful by the participants. Besides,

participants stated that they intend to use it in the future if they need to implement a

value-based software development approach. These facts could not be different since

the individual results of RAMA and KAOS4Services were positive for all three variables

analyzed.

7.4.4 Threats to validity for the survey

With regard to its internal validity, the main threats are: learning effect, fatigue effects,

participant experience, and understandability of the video classes. The learning effect

was mitigated by ensuring that each group of participants watched video classes of the

two methods using a within-participant experimental design. We mitigated the fatigue

effects by creating short video classes (the longest lasted about 11 minutes). Regarding the

participants’ experience, they had no previous knowledge of the value-driven methods

being compared. The understandability of the video classes was alleviated by making

them available in the native language of the participants (Portuguese-BR) and checking

the quality of the audio and video through the questionnaire.

With regard to construct validity, the main threats are: the measures applied in the

data analysis and the reliability of the questionnaire. We mitigated this by using measures

that are commonly applied in other empirical-based software engineering works [3, 4,

23, 265]. In particular, the variables are based on TAM [66, 147]. The reliability of the

questionnaire was tested using the Cronbach test.

With regard to conclusion validity, the main threats are: the data collection and the

validity of the statistical tests applied. In the case of the data collection, we ensured

that each dependent variable was calculated with the same formula. With regard to the

validity of the statistical tests proposed, we chose those that are most commonly employed

in the empirical software engineering field owing to their robustness and sensitivity [173].

201

CHAPTER 7. EVALUATION THROUGH EXPERIMENTS

7.5 Final considerations

A set of different experiments was used to evaluate our proposal. We performed at least

one experiment per method (DVD, RAMA, and KAOS4Services), hence evaluating the

whole proposal. First, we evaluated the perceived ease of use and perceived usefulness of the

DVD method. After, we conducted a family of three experiments controlled to compare

our DVD method with the well-known e3value (introduced in Chapter 2.3.2) with respect

to their effectiveness, efficiency, perceived ease of use, perceived usefulness and intention

to use, completing the evaluation of the framework´s business layer. Then, we evaluated

the perceived ease of use and the perceived usefulness, of the RAMA and KAOS4Services

methods. We also evaluated the participants’ intention to use the methods in the fu-

ture (if necessary). Finally, we compared the results obtained for these two methods, to

understand which one approach (agility versus use of goals) was better accepted. As a

consequence, we checked that DVD, RAMA, and KAOS4Services were perceived as ease

of use and useful by the participants of the experiments. Participants also affirm that

they intend to use these methods in the future if necessary. These results support posi-

tively the approach we developed to answer the starting research question, How to derive

value-centred architectural models systematically? discussed in Chapter 1.

202

C
h
a
p
t
e
r

8
Conclusions and future work

The present research work has its roots in the challenge of deriving a software architec-

ture model from an early requirements specification representing the value exchanges

of a business. Although much work has been published addressing issues related to

software architecture and requirements engineering, no systematic approaches exist to

support the aligned construction of an architectural design with the business values that

characterize organizations in their marketplace. Such construction process is difficult,

requiring skilled and experienced architects. With a first degree in information systems

and 10 years of experience in industry, the major problem I have encountered in my work

was related to software architecture, more specifically, how to structure an information

system to make it reflect the business needs. Additionally, in the companies I’ve worked

for, the information systems were built based on business processes often not aligned with

the companies’ business values. These two problems were the motivations for this Ph.D.

work. Therefore, the general goal of my research work was to explore systematic and

rigorous means to derive a software architecture from early requirements specifications

while considering their alignment with the business goals of an organization.

8.1 The quest and respective research questions

This Ph.D. research work began by surveying the existing body of knowledge in business

modeling and software architecture. The methodology used for building such survey

followed the best practices of the EBSE discipline. The results were a secondary study

about the business modeling practices and a tertiary study to catalogue the empirical

studies on software architecture aiming at aggregating the main findings reported in

those studies to provide an overview of the consolidated state of the art. From the results

of this last study, we identified the absence of a secondary study on software architecture

203

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

derivation methods, what led us to conduct a systematic mapping study on this particular

topic. Both the tertiary study and the two systematic mapping studies highlighted several

problems and challenges that we focus in this Ph.D. research, particularly: (i) the lack of

support to build architectural models considering the business values of an organization,

and (ii) the strong dependence on the architects’ experience and intuition. The need to

guide less experienced architects in the task of deriving a software architecture from

a requirements specification that reflects the organization’s business values, led to the

following general research question:

How to derive value-centred architectural models systematically?

This research question was first subdivided into two sub-research questions to con-

sider the derivation of software architecture models from early requirements specifica-

tions and also the alignment of the end result with the business values of an organization:

SRQ1. How to derive architectural models from early requirements specifications?

SRQ2. How to align software architecture models with the business values of an organization?

As our goal was also to guide young professionals throughout architectural design, the

general research question led to two other sub-research questions to consider traceable

and simple (easy to use and useful) models and methods:

SRQ3. How to produce simple models and explicit guidelines?

SRQ4. How to include traceability mechanisms in the architectural derivation process?

A synthesis of the empirical findings of these sub-questions, that together address this

Ph.D. research question, are discussed next.

How to derive architectural models from early requirements specifications? We cre-

ated a value-driven framework with three different methods to derive a software refer-

ence architecture from an early requirements specification. First, we identified, through

a systematic mapping study, the complexity and lack of rigor in the existing approaches

to represent business values and, as a consequence, we created DVD, an early require-

ments specification method to represent business value exchanges. From a DVD model,

intermediate requirements models (e.g., conceptual model or goal-oriented model) and

software architecture models are derived using consecutive sets of model-to-model trans-

formation techniques. Note that models are used intensively to capture and represent

the knowledge acquired during the whole architectural derivation process. These models

assist communication between stakeholders, and help analysts both understand complex

problems and derive software architectural models using abstractions. Therefore, models

are used not only as documentation artifacts, but also as central elements in the soft-

ware engineering process. By using sophisticated MDE techniques (e.g., metamodels,

204

8.1. THE QUEST AND RESPECTIVE RESEARCH QUESTIONS

model transformations and model transformation languages), it was possible to obtain

source generators to derive a software architecture model based on early value-driven

requirements models using RAMA and KAOS4Services. Thus, this MDE approach en-

ables software engineers to work at a higher level of abstraction, providing techniques

and tools to alleviate the difficulty of deriving software architecture models, which may

benefit mostly the less experienced IT professionals.

How to align the software architecture models with the business values of the organi-

zation? We performed three systematic literature studies, following the best practices

of EBSE [149], to build a survey of the existing knowledge on business value modeling

and software architecture. From these studies, we identified the existing limitations of

the current approaches that range from the construction of business values representa-

tions to the representation and alignment of those concept values in an architectural

model. Besides the survey of the concepts involved, we also relate those concepts through

conceptual mappings using model-driven development techniques. These mappings al-

lowed us to align business value concepts to intermediate requirements models concepts

(e.g., conceptual and goal-oriented models) and, from here, generate architectural model

concepts. The methods RAMA and KAOS4Services support this goal by using model

transformation languages to automate various steps of their processes. The proposed soft-

ware architecture derivation methods are value-driven and based on the value exchanges

specified in a DVD model. Finally, the feasibility of our proposal was confirmed by the

development of a set of DSLs as proof of concepts tools.

How to produce simple models and explicit guidelines? By creating simple models we

risk rendering them useless if they are unable to represent the needed concepts and rela-

tionships. So we were careful to analyze which essential concepts should be represented

in both the value model and the requirements intermediary models (for example, we used

only a subset of the KAOS concepts). Additionally, we followed the mindmaps philos-

ophy, aiming at inheriting their well-recognized characteristics, such as simplicity and

high degree of cognitiveness. In what concerns the guidelines, we were aware of the risk

of making the architectural derivation process bureaucratic and ineffective. To avoid this,

all the derivation steps were defined systematically with concise processes and guidelines

were defined to complement the derivation instructions with good practices, even though

these guidelines are not a prerequisite for executing the processes. In order to simplify

the production of mappings, we automated them using model transformation languages,

making them transparent (i.e. black boxes) for end users. A set of experiments confirmed

that our proposal is perceived as easy to use and useful, and that the involved participants

in the experiments showed interest in using our proposal in the future.

205

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

How to include traceability mechanisms in the architectural derivation process? We

used MDE to facilitate the traceability of concepts from the specification of business val-

ues to a software reference architecture model. This forward (start to end) and backward

(end to start) traceability is very important to build software aligned with business val-

ues. The underlying idea was to start from a high-level specification (a DVD model) and,

by applying successive transformations, obtain lower-level specifications (a conceptual

model or KAOS model, and a software reference architecture). These transformations

between models support forward traceability, since from a source model concept (e.g.,

value exchange from a DVD model) we reach a target model concept (e.g., goal in a KAOS

model). To ensure backward traceability, we used metadata during the transformation to

save the source concept identifier in the generated target concept. Also, we were careful

to use only hierarchical models, to be able to identify the parents’ and children’ concepts.

8.2 Contributions

The present research contributes to the software engineering field with the conception

and specification of a Value-Driven Software Architecture Framework and associated

methodological and evaluation approach. The resulting specific contributions are dis-

cussed next with respect to the four research questions.

Contributions from SRQ1. The resulting contributions from investigating how to derive
architectural models from early requirements specifications, can be summarized as follows:

• DVD method. DVD is a cognitive early requirements method aimed at analyzing

and representing business values exchanges. It offers an environment wherein

stakeholders can share their economic views. This environment includes metamod-

els, a DSL, transformations scripts, processes, concept mappings and guidelines.

From a business model, goal-oriented models can be derived using model-driven

techniques, one per value exchange. The resulting requirements specification is

modularized from a business economic perspective, facilitating requirements pri-

oritization. The DVD’s environment includes metamodels, DSLs, transformations

scripts, processes, mappings and guidelines.

• Business value model. A business model was created for business modelers with-

out much information technology background. It contains the main concepts of-

fered by other known business models (e.g., e3value, REA, and BMO) to represent

business values. It allows stakeholders to share their economic viewpoints in a

semi-structured mindmap model. It is composed of seven main concepts: main

actor, environment actor, value exchange, who starts the value exchange, value port,

value object, and value level agreement. These concepts and relationships are used

by the DVD method to produce a DVD model.

206

8.2. CONTRIBUTIONS

• RAMA method. RAMA is a value-centric method to address the architecture-agility

combination. RAMA uses business value modeling, model-driven and conceptual

modeling techniques together with agile practices to produce a feasible approach

to combine software architecture design and agile development during the creation

of the information system’s reference architecture aligned with the organization’s

business values. The RAMA’s environment includes metamodels, DSLs, transfor-

mations scripts, processes, mappings and guidelines.

• KAOS4Services method. The KAOS for Services method is a systematic approach

to model SOA applications from goal-oriented models. This is achieved with model-

driven techniques and a set of guidelines applied to goal concepts. We analyzed

nine goal-oriented modeling languages to identify and align the DVD business value

concepts with goal-oriented concepts. From this analysis resulted that KAOS was

the approach with the larger number of concepts related to DVD concepts. This,

together with the fact that both KAOS has been one of the most well-cited goal-

oriented approaches and it builds a model of the whole system, not just of part of

it, were the reasons for choosing KAOS for our work. The KAOS4Services’s envi-

ronment includes metamodels, DSLs, transformations scripts, processes, mappings

and guidelines.

Contributions from SRQ2. The contributions from investigating how to align software
architecture models with the business values of an organization are as follows:

• Systematic literature mapping study on business modeling. This systematic of-

fers and analyzes a complete list of the business modeling methods published in

the literature. We identified that most of the studies found were created to solve

problems related to business strategy. The various studies share a set of common

concepts (such as actor, value, and value exchange) aiming at facilitating business

understanding and analysis to improve business strategies.

• knowledge aggregation in software architecture. The Software Architecture re-

search community has accumulated a large body of knowledge to create and evolve

new techniques, tools, processes, methods, and frameworks. So, we first performed

a tertiary study of the existing secondary systematic studies to aggregate consoli-

dated findings on software architecture. This tertiary study facilitates the work of

researchers and practitioners in learning about the coverage and main results of

existing work as well as identifying relatively unexplored niches of research that

need further attention. We also conducted a mapping study (secondary study) to

identify and analyze existing software architecture derivation methods. Thus, we

confirmed the lack of approaches for deriving architectural models from early re-

quirements specifications and that the building process is strongly based on the

architects’ experience, making it difficult for novices.

207

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

• Conceptual mapping. A set of conceptual mappings was defined to align the areas

of business and IT. We have created a DVD model to specify the essential concepts

of business value modeling, and aligned these concepts with requirements models

concepts (e.g., from conceptual and KAOS models). The operationalization of this

alignment was achieved using model-driven development techniques. Similarly,

the the requirements models concepts were also mapped to architectural model

concepts, facilitating once more the alignment with the business values. Thus,

MDD is used as the means of connection, or the glue, between the models at the

various levels of abstraction.

Contributions from SRQ3. The contributions from searching how to produce simple
models and explicit guidelines and mappings are:

• Set of experiments. We performed a quasi-experiment and confirmed that DVD

was perceived as ease to use and useful. Also, we executed a family of three con-

trolled experiments to compare the DVD method with the e3value method, with

respect to their effectiveness, efficiency, perceived ease of use, perceived usefulness and

intention to use. The experiment was initially performed at Universitat Politècnica

de València (UPV) in Spain and then replicated at Universidade NOVA de Lisboa

in Portugal and also at Universidade Federal de Pernambuco in Brazil with partici-

pants with different backgrounds. A meta-analysis was performed to aggregate the

empirical findings obtained in each experiment. The results favoured DVD with

respect to the e3value method. Finally, we performed a quasi-experiment to evalu-

ate RAMA and KAOS4Services with respect to the participants’ perceived ease of use,

perceived usefulness and intention to use. Both methods were also perceived as ease

to use and useful. This set of experiments contributes to the scientific community

with a set of evidence that can be used for future research.

• Set of guidelines. We created a set of guidelines that guide less experienced archi-

tects in the use of the DVD, RAMA and KAOS4Services methods, facilitating the

the various steps of the software architecture derivation processes.

Contributions from SRQ4. Finally, the main contribution when studying how to include
traceability mechanisms in the architectural derivation process is:

• Traceability support approach. We created a simple traceability approach joining

model transformation technique and metadata. In essence, a model transformation

defines a set of relationships between a set of source and target models elements, im-

plicitly defining a set of predecessor-successor relationships (forward traceability).

Additionally, for backward traceability, we added metadata in the target element

about the source element, allowing us to identify the source elements that origi-

nated the target element.

208

8.3. PUBLISHED RESULTS

8.3 Published results

Throughout our Ph.D. research, we have been able to publish at least one article or con-

ference paper per Chapter of our thesis. In total, we have eight scientific publications,

of which two in journals and six in international conferences. One of the papers was

awarded the Best Paper in a premier conference in Information Systems (the 12th Eu-

ropean, Mediterranean and Middle Eastern Conference on Information Systems – EM-

CIS’17). This paper proposes a systematic way to provide an alignment between value

models and software requirements models. Next is a summary list of the published works

(see Table 1.1 for further details).

• Deriving Architectural Models from Requirements Specifications: a Systematic

Mapping Study [245] in Information and Software Technology Journal (Impact

Factor: 2.921) by Eric Souza, Ana Moreira, and Miguel Goulão, 2019.

• Comparing Business Value Modeling Methods: A Family of Experiments [243] in

Information and Software Technology Journal (Impact Factor: 2.921) by Eric Souza

et al., 2018.

• Towards an Agile Reference Architecture Method for Information Systems [244] in

Hawaii International Conference on System Sciences 2018 (CORE A) by Eric Souza,

Ana Moreira, and Fernando Wanderley.

• Deriving Services using KAOS Models [237] in 33rd ACM/SIGAPP Symposium On

Applied Computing (CORE B) by Eric Souza and Ana Moreira.

• An approach to align business and IT perspectives during the SOA services identi-

fication [240] in 17th International Conference on Computational Science and Its

Applications (CORE C) by Eric Souza, Ana Moreira, and Cristiano de Faveri.

• Aligning business models with requirements models [239] in European Mediter-

ranean & Middle Eastern Conference on Information Systems (CORE B) by Eric

Souza, Ana Moreira, and João Araújo.

• Evaluating the efficacy of value-driven methods: a controlled experiment [241] in

26th International Conference on Information Systems Development (CORE A) by

Eric Souza, Silvia Abrahão, Ana Moreira, Emilio Insfran, and João Araújo.

• Comparing Value-Driven Methods: an experiment design [238] in 2nd International

Workshop on Human Factors in Modeling (HuFaMo’16@MODELS’16) by Eric Souza,

Ana Moreira, Silvia Abrahão, João Araújo, and Emilio Insfran.

These papers have been published with other authors, but in all of them I am the first

author because I have been the leader of the work for all of them.

209

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.4 Future work

A research work is never completed, and the more results one obtains, the more inter-

esting questions and challenges one finds to explore. However, research grants and

milestones in life impose constraints that oblige us to set limits on our tasks. The topic

of this research continues to excite us to the point that we plan to keep the collaboration

with the Automated Software Engineering research group of the NOVA LINCS research

lab even after the Ph.D. defense, and we will look for more collaborations and research

funds to pursue this topic for the years to come. The foreseen directions of work include:

Value-based planning, control and evaluation. Research on value-based planning and

control covering principles and practices to control costs, schedule, and product planning,

as well as further validations, are still required, particularly:

• Complement the business value perspective with the use of scenarios. This scenar-

ios can describe the dynamic component of a business, using value stream in the

ecosystem view.

• Explore the DVD in the context of the tech startups. We believe that DVD is ready

to be used to offer a fast overview of a business scenario; it can help during planning

and simple financial feasibility analysis.

• Analyze our framework using NIMSAD dimension [132].

• Perform a new empirical study to define more representative model iconography,

improving effectiveness and usability.

• Evaluate the proposal in real projects, to test its robustness under stressful condi-

tions, what may show points of improvement or points of adaptation that were not

identified during the research.

Value-based requirements engineering. Value-based requirements engineering em-

bodies principles and practices to identify stakeholders, identifying the value propo-

sitions and reconciling these with a mutually satisfactory set of objectives for the system.

Thus, further research would be useful to:

• Explore other goal-oriented languages beyond KAOS during the reference architec-

ture modeling in a traditional software development.

• Explore other requirements specification approaches, compare the different results

of the use of each approach, and create a roadmap to suggest which approach is

better under which circumstances.

210

8.4. FUTURE WORK

Value-based architecture. Value-based architecture comprises further adjustments of

the system objectives with possible architectural solutions. Further research to extend

our proposal includes:

• Improve the conceptual overlaps algorithm (Levenshtein distance algorithm [171])

used by the RAMA method to identify synonymous words.

• Develop the traceability viewpoint where from a selected element at any stage of

development, all related elements are showed in a network map.

• Build an end-user tool in the cloud, integrating all Proof of concept (PoC) tools in a

unique webtool accessible to anyone.

Value-based design and development. Value-based design and development requires

techniques to guarantee that the system’s objectives and value considerations aligned

with the business, are then inherited by the software design and development practices.

Some required research topics include:

• Develop recommendations systems to suggest architectural styles that are more

adequate to consider the elements represented in a software architecture reference

model generated by RAMA and KAOS4Services.

• Create a catalog of business architecturally significant requirements in order to link

them with architectural solutions and system quality attributes.

211

Bibliography

[1] G. Abowd, R. Allen, and D. Garlan. “Using style to understand descriptions of

software architecture.” In: ACM SIGSOFT Software Engineering Notes. Vol. 18. 5.

ACM. 1993, pp. 9–20.

[2] P. Abrahamsson, M. A. Babar, and P. Kruchten. “Agility and architecture: Can

they coexist?” In: IEEE Software 27.2 (2010).

[3] S. Abrahao, E. Insfran, J. A. Carsí, and M. Genero. “Evaluating requirements

modeling methods based on user perceptions: A family of experiments.” English.

In: Information Sciences 181.16 (2011), pp. 3356–3378. doi: 10.1016/j.ins.

2011.04.005. url: http://linkinghub.elsevier.com/retrieve/

pii/S0020025511001733.

[4] S. Abrahao, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora. “Assessing

the Effectiveness of Sequence Diagrams in the Comprehension of Functional Re-

quirements: Results from a Family of Five Experiments.” In: IEEE Transactions
on Software Engineering, volume 39, issue 3 (2013), pp. 327–342. doi: 10.1109/

TSE.2012.27. url: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6193111.

[5] ACM. ACM Digital Library. Online accessed: 22/Sep/2017. 2017. url: https:

//dl.acm.org/.

[6] A. Ahmad, P. Jamshidi, and C. Pahl. Protocol for Systematic Literature Review. Tech.

rep. Dublin - Ireland: Dublin City University, 2012.

[7] M. M. Ahmed and S. Letchmunan. “A systematic literature review on challenges

in service oriented software engineering.” In: International Journal of Software
Engineering and Its Applications 9.6 (2015), pp. 173–186.

[8] M. M. Al-Debei and D. Avison. “Developing a unified framework of the business

model concept.” In: European Journal of Information Systems 19.3 (2010), pp. 359–

376.

[9] A. Alliance. Subway Map to Agile Practices. Online accessed: 22/Sep/2017. 2015.

url: https://www.agilealliance.org/agile101/subway-map-to-

agile-practices/.

213

https://doi.org/10.1016/j.ins.2011.04.005
https://doi.org/10.1016/j.ins.2011.04.005
http://linkinghub.elsevier.com/retrieve/pii/S0020025511001733
http://linkinghub.elsevier.com/retrieve/pii/S0020025511001733
https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1109/TSE.2012.27
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6193111
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6193111
https://dl.acm.org/
https://dl.acm.org/
https://www.agilealliance.org/agile101/subway-map-to- agile-practices/
https://www.agilealliance.org/agile101/subway-map-to- agile-practices/

BIBLIOGRAPHY

[10] H. Almari and C. Boughton. “Questionnaire report on matter relating to software

architecture evaluation.” In: Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing (SNPD), 2014 15th IEEE/ACIS International
Conference on. IEEE. 2014, pp. 1–6.

[11] M. Almorsy. “Adaptive, Model-based Cloud Computing Security Management.”

Doctoral dissertation. Swinburne University of Technology, 2014.

[12] S. Ambler. Agile modeling: effective practices for extreme programming and the unified
process. John Wiley & Sons, 2002.

[13] D. Ameller, C. Ayala, J. Cabot, and X. Franch. “How do software architects con-

sider non-functional requirements: An exploratory study.” In: Requirements Engi-
neering Conference (RE), 2012 20th IEEE International. IEEE. 2012, pp. 41–50.

[14] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher. “A lightweight GRL profile

for i* modeling.” In: International Conference on Conceptual Modeling. Springer.

2009, pp. 254–264.

[15] B. Andersson, M. Bergholtz, A. Edirisuriya, T. Ilayperuma, P. Johannesson, J.

Gordijn, B. Grégoire, M. Schmitt, E. Dubois, S. Abels, et al. “Towards a refer-

ence ontology for business models.” In: Conceptual Modeling (ER 2006) (2006),

pp. 482–496.

[16] J. Andrade Almeida. “Model-driven design of distributed applications.” Doctoral

dissertation. Centre for Telematics and Information Technology University of

Twente, 2006.

[17] A. I. Anton. “Goal-based requirements analysis.” In: RE’96. IEEE. 1996, pp. 136–

144.

[18] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah. “S3: A

service-oriented reference architecture.” In: IT professional 9.3 (2007).

[19] V. F. Avelino. “MERUSA: metodologia de especificação de requisitos de usabili-

dade e segurança orientada para arquitetura.” Doctoral dissertation. Universidade

de São Paulo, 2005.

[20] L. G. Azevedo, F. Santoro, F. Baião, T. Diirr, A. Souza, J. F. de Souza, and H. P. Sousa.

“A method for bridging the gap between business process models and services.”

In: iSys-Revista Brasileira de Sistemas de Informação 6.1 (2014), pp. 62–98.

[21] F. Bachmann, L. Bass, M. Klein, and C. Shelton. “Designing software architectures

to achieve quality attribute requirements.” In: IEE Proceedings-Software 152.4

(2005), pp. 153–165.

[22] V. R. Basili and H. D. Rombach. “The TAME project: Towards improvement-

oriented software environments.” In: IEEE Transactions on software engineering
14.6 (1988), pp. 758–773.

214

BIBLIOGRAPHY

[23] V. R. Basili, R. W. Selby, and D. H. Hutchens. “Experimentation in software

engineering.” In: IEEE Transactions on software engineering 7 (1986), pp. 733–743.

[24] L. Bass. Software architecture in practice. Pearson Education India, 2007.

[25] L. Bass, M. Klein, and F. Bachmann. “Quality attribute design primitives and the

attribute driven design method.” In: International Workshop on Software Product-
Family Engineering. Springer. 2001, pp. 169–186.

[26] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-

Wesley Professional, 2003.

[27] K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[28] K. Beck and E. Gamma. Extreme programming explained: embrace change. addison-

wesley professional, 2000.

[29] L. A. Becker. Effect Size Calculators. University of Colorado Colorado Springs.

Available on https://www.uccs.edu/ lbecker/. 1999.

[30] L. A. Becker. Effect Size (ES). University of Colorado Colorado Springs. Available

on https://www.uccs.edu/lbecker/effect-size.html. 2000.

[31] A Berre. “Service oriented architecture modeling language (SoaML)-specification

for the UML profile and metamodel for services (UPMS).” In: Object Management
Group (OMG) (2008).

[32] D. Bianchini, C. Cappiello, V. De Antonellis, and B. Pernici. “Service identification

in interorganizational process design.” In: IEEE Transactions on Services Computing
7.2 (2014), pp. 265–278.

[33] S. Biffl, M. Ciolkowski, and F. Shull. “A family of experiments to investigate the

influence of context on the effect of inspection techniques.” In: Proceedings of the
Empirical Assessment in Software Engineering, IEE (2002).

[34] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher. Value-based
software engineering. Springer Science & Business Media, 2006.

[35] B. Boehm and L. G. Huang. “Value-based software engineering: A case study.” In:

Computer 36.3 (2003), pp. 33–41.

[36] B. W. Boehm. “Value-based software engineering: Overview and agenda.” In:

Value-based software engineering. Springer, 2006, pp. 3–14.

[37] B. W. Boehm and A. Jain. “An initial theory of value-based software engineering.”

In: Value-Based Software Engineering. Springer, 2006, pp. 15–37.

[38] D. Bollier. The Future of e-Commerce. The Aspen Institute, 1996.

[39] D. Bombonatti, M. Goulão, and A. Moreira. “Synergies and tradeoffs in software

reuse–a systematic mapping study.” In: Software: practice and experience 47.7

(2017), pp. 943–957.

215

BIBLIOGRAPHY

[40] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl. “The bad conscience of require-

ments engineering: an investigation in real-world treatment of non-functional

requirements.” In: (2003).

[41] A. Borgida, N. Ernst, I. J. Jureta, A. Lapouchnian, S. Liaskos, and J. Mylopou-

los. “Techne: A (nother) requirements modeling language.” In: Computer Systems
Research Group. Toronto, Canada: University of Toronto (2009).

[42] J. Bosch. Design and use of software architectures: adopting and evolving a product-
line approach. Pearson Education, 2000.

[43] J. Bosch. “Software architecture: The next step.” In: EWSA 3047 (2004), pp. 194–

199.

[44] M. Brambilla, J. Cabot, and M. Wimmer. “Model-driven software engineering in

practice.” In: Synthesis Lectures on Software Engineering 1.1 (2012), pp. 1–182.

[45] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. “Lessons

from applying the systematic literature review process within the software engi-

neering domain.” In: Journal of systems and software 80.4 (2007), pp. 571–583.

[46] L. C. Briand, Y Labiche, M Di Penta, and H Yan-Bondoc. “An experimental investi-

gation of formality in UML-based development.” In: IEEE Transactions on Software
Engineering, volume 31, issue 10 (2005), pp. 833–849. doi: 10.1109/TSE.2005.

105.

[47] F. Budinsky, D. Steinberg, R. Ellersick, T. J. Grose, and E. Merks. Eclipse modeling
framework: a developer’s guide. Addison-Wesley Professional, 2004.

[48] R. J. Buhr and R. S. Casselman. Use case maps for object-oriented systems. Prentice-

Hall, Inc. Upper Saddle River, NJ, USA, 1995.

[49] S. A. Butler. “Security attribute evaluation method: a cost-benefit approach.” In:

Proceedings of the 24th international conference on Software engineering. ACM. 2002,

pp. 232–240.

[50] J. N. Buxton and B. Randell. Software Engineering Techniques: Report on a Confer-
ence Sponsored by the NATO Science Committee. NATO Science Committee; avail-

able from Scientific Affairs Division, NATO, 1970.

[51] T. Buzan and B. Buzan. “The Mind Map Book: How to Use Radiant Thinking to

Maximize Your Brain\’s Untapped Potential.” In: (1996).

[52] I. T. Cameron and K. Hangos. Process modelling and model analysis. Vol. 4. Aca-

demic Press, 2001.

[53] S. Casteleyn, F. Daniel, P. Dolog, and M. Matera. Engineering web applications.
Vol. 30. Springer, 2009.

[54] C. Catal and M. Atalay. “A Systematic Mapping Study on Architectural Analysis.”

In: Information Technology: New Generations (ITNG), 2013 Tenth International
Conference on. IEEE. 2013, pp. 661–664.

216

https://doi.org/10.1109/TSE.2005.105
https://doi.org/10.1109/TSE.2005.105

BIBLIOGRAPHY

[55] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. “Semantics-based composition

for aspect-oriented requirements engineering.” In: Proceedings of the 6th interna-
tional conference on Aspect-oriented software development. ACM. 2007, pp. 36–48.

[56] L. Chung, B. A. Nixon, E. S.-K. Yu, and J. Mylopoulos. Non-Functional Require-
ments in Software Engineering. Boston, MA, 1999. isbn: 0-7923-8666-3. doi:

10.1007/978-1-4615-5269-7.

[57] L. Chung, S. Supakkul, N. Subramanian, J. L. Garrido, M. Noguera, M. V. Hurtado,

M. L. Rodríguez, and K. Benghazi. “Goal-oriented software architecting.” In:

Relating Software Requirements and Architectures. Springer, 2011, pp. 91–109.

[58] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements in
software engineering. Vol. 5. Springer Science & Business Media, 2012.

[59] J. Cohen. Statistical power analysis for the behavioral sciences 2nd edn. 1988.

[60] W. R. Collins, K. W. Miller, B. J. Spielman, and P. Wherry. “How good is good

enough?: an ethical analysis of software construction and use.” In: Communica-
tions of the ACM 37.1 (1994), pp. 81–91.

[61] W. J. Conover. Practical Nonparametric Statistics. 3rd. Wiley, 2006. isbn: 8126507756,

9788126507757.

[62] L. G. Cretu and F. Dumitriu. Model-Driven Engineering of Information Systems:
Principles, Techniques, and Practice. CRC Press, 2014.

[63] E. Dafikpaku, M. Eng, and M Mcmi. “The strategic implications of enterprise risk

management: A framework.” In: ERM Symposium. Vol. 48. 2011.

[64] L. Dai and K. Cooper. “Modeling and analysis of non-functional requirements as

aspects in a UML based architecture design.” In: Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, 2005 and First ACIS
International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005.
Sixth International Conference on. IEEE. 2005, pp. 178–183.

[65] A. Dardenne, A. Van Lamsweerde, and S. Fickas. “Goal-directed requirements

acquisition.” In: Science of computer programming 20.1-2 (1993), pp. 3–50.

[66] F. D. Davis. “Perceived usefulness, perceived ease of use, and user acceptance of

information technology.” In: MIS quarterly (1989), pp. 319–340.

[67] T. DeMarco and T. Lister. Waltzing with bears: Managing risk on software projects.
Addison-Wesley, 2013.

[68] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. “Work-

flow patterns.” In: Distributed and parallel databases 14.1 (2003), pp. 5–51.

[69] Z. Derzsi and J. Gordijn. “A Framework for Business/IT Alignment in Networked

Value Constellations.” In: BUSITAL. 2006.

217

https://doi.org/10.1007/978-1-4615-5269-7

BIBLIOGRAPHY

[70] E. Di Nitto and D. Rosenblum. “Exploiting ADLs to specify architectural styles

induced by middleware infrastructures.” In: Proceedings of the 21st international
conference on Software engineering. ACM. 1999, pp. 13–22.

[71] J. L. Dietz. Enterprise ontology: theory and methodology. Springer Science & Busi-

ness Media, 2006.

[72] T. Diirr, L. G. Azevedo, F. Faria, F. Santoro, and F. Baião. “Utilizando SoaML

para Modelagem e Geração de Código de Serviços em uma Abordagem SOA.” In:

Cadernos do IME-Série Informática 30 (2013), pp. 38–49.

[73] E. W. Dijkstra. “On the role of scientific thought.” In: Selected writings on comput-
ing: a personal perspective. Springer, 1982, pp. 60–66.

[74] Dimitrios S. Kolovos, Louis Rose, Richard Paige, and Antonio García-Domínguez.

The Epsilon book. 2018. url: www.eclipse.org/epsilon/doc/book/.

[75] S. Direct. Science Direct Digital Library. Online accessed: 22/Sep/2017. 2017. url:

http://sciencedirect.com.

[76] Drichards tool. Drichards tool. Online accessed: 22/Jun/2018. 2018. url: https:

//www.mindmaps.app.

[77] DTSam. “An Overview of SoaML.” In: Sparx Systems Enterprise Architect (2011).

https://goo.gl/WsLJ5g. Online accessed: 22/Sep/2018.

[78] T. Dyba, B. A. Kitchenham, and M. Jorgensen. “Evidence-based software engineer-

ing for practitioners.” In: IEEE software 22.1 (2005), pp. 58–65.

[79] Eclipse Foundation. EuGENia GMF Tutorial. Online accessed: 27/Aug/2018. url:

https://goo.gl/Hx27Nu.

[80] Eclipse Foundation. Sirius. Online accessed: 27/Aug/2018. url: http://www.

eclipse.org/sirius/.

[81] B. Elvesæter, A.-J. Berre, and A. Sadovykh. “Specifying Services using the Service

Oriented Architecture Modeling Language (SoaML)-A Baseline for Specification

of Cloud-based Services.” In: CLOSER. 2011, pp. 276–285.

[82] Y. Eric. “Social Modeling and i*.” In: Conceptual Modeling: Foundations and Appli-
cations. Springer, 2009, pp. 99–121.

[83] J. Erickson, K. Lyytinen, and K. Siau. “Agile modeling, agile software develop-

ment, and extreme programming: the state of research.” In: Journal of database
Management 16.4 (2005), p. 88.

[84] T. Erl. Service-oriented architecture: concepts, technology, and design. Pearson Edu-

cation India, 2005.

[85] T. Erl. Soa: principles of service design. Vol. 1. Prentice Hall Upper Saddle River,

2008.

218

www.eclipse.org/epsilon/doc/book/
http://sciencedirect.com
https://www.mindmaps.app
https://www.mindmaps.app
https://goo.gl/Hx27Nu
http://www.eclipse.org/sirius/
http://www.eclipse.org/sirius/

BIBLIOGRAPHY

[86] E. Evans. Domain-driven design: tackling complexity in the heart of software. Addison-

Wesley Professional, 2004.

[87] S. C.P. F. Fabbri, K. R. Felizardo, F. C. Ferrari, E. C. M. Hernandes, F. R. Octaviano,

E. Y. Nakagawa, and J. C. Maldonado. “Externalising tacit knowledge of the

systematic review process.” In: IET software 7.6 (2013), pp. 298–307.

[88] D. Falessi, G. Cantone, and P. Kruchten. “Do architecture design methods meet

architects’ needs?” In: Software Architecture, 2007. WICSA’07. The Working IEEE/I-
FIP Conference on. IEEE. 2007, pp. 5–5.

[89] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten. “Decision-making techniques

for software architecture design: A comparative survey.” In: ACM Computing
Surveys (CSUR) 43.4 (2011), p. 33.

[90] S. Faulk, R. Harmon, and D. Raffo. “Value-base software engineering: A value-

driven approach to product-line engineering. 1st Int.” In: Conf on Software Product-
Line Engineering, Colorado. 2000.

[91] R. T. Fielding and R. N. Taylor. Architectural styles and the design of network-based
software architectures. Vol. 7. University of California, Irvine Doctoral dissertation,

2000.

[92] E. Foundation. Acceleo Query Language:Query and navigate in EMF models. On-

line accessed: 22/Jun/2018. url: https://www.eclipse.org/acceleo/

documentation/.

[93] M. Fowler and J. Highsmith. “The agile manifesto.” In: Software Development 9.8

(2001), pp. 28–35.

[94] W. B. Frakes and R Baeza-Yates. Information Retrieval: Data Structures & Algo-
rithms. New Jersey, USA: Prentice-Hall, Inc., Upper Saddle River, 1992.

[95] S. Freudenberg and H. Sharp. “The top 10 burning research questions from prac-

titioners.” In: Ieee Software 27.5 (2010), pp. 8–9.

[96] M. Galster, A. Eberlein, and M. Moussavi. “Transition from requirements to

architecture: A review and future perspective.” In: Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2006. SNPD 2006.
Seventh ACIS International Conference on. IEEE. 2006, pp. 9–16.

[97] M. Galster, M. Mirakhorli, J. Cleland-Huang, X. Franch, J. E. Burge, R. Roshandel,

and P. Avgeriou. “Towards bridging the twin peaks of requirements and architec-

ture.” In: ACM SIGSOFT Software Engineering Notes 39.5 (2014), pp. 30–31.

[98] E. Gamma. Design patterns: elements of reusable object-oriented software. Pearson

Education India, 1995.

[99] D. Garlan. “Software architecture: a roadmap.” In: Proceedings of the Conference
on the Future of Software Engineering. ACM. 2000, pp. 91–101.

219

https://www.eclipse.org/acceleo/documentation/
https://www.eclipse.org/acceleo/documentation/

BIBLIOGRAPHY

[100] P. Gerrard and N. Thompson. Risk-based e-business testing. Artech House, 2002.

[101] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello. “Validating a model-

driven software architecture evaluation and improvement method: A family of

experiments.” In: Information and Software Technology 57 (2015), pp. 405–429.

[102] Google. Google Scholar. Online accessed: 22/Sep/2017. 2017. url: https:

//scholar.google.com.

[103] J. Gordijn. “E3-value in a Nutshell.” In: Proceedings of International Workshop on
E-business Modeling, Lausanne. 2002.

[104] J. Gordijn. “Value-based Requirements Engineering.” Doctoral dissertation. Vrije

Universiteit Amsterdam, 2002.

[105] J. Gordijn and J. Akkermans. “Value-based requirements engineering: exploring

innovative e-commerce ideas.” In: Requirements engineering 8.2 (2003), pp. 114–

134.

[106] J. Gordijn, H. Akkermans, and H. Van Vliet. “Business modelling is not process

modelling.” In: Conceptual modeling for e-business and the web (2000), pp. 40–51.

[107] J. Gordijn, H. Akkermans, and H. Van Vliet. “What’s in an electronic business

model?” In: Knowledge engineering and knowledge management methods, models,
and tools (2000), pp. 1–26.

[108] J. Gordijn, H. Akkermans, and J Van Vliet. “Designing and evaluating e-business

models.” In: IEEE intelligent Systems 16.4 (2001), pp. 11–17.

[109] R. C. Gronback. Eclipse modeling project: a domain-specific language (DSL) toolkit.
Pearson Education, 2009.

[110] P. Grünbacher, A. Egyed, and N. Medvidovic. “Reconciling software requirements

and architectures with intermediate models.” In: Software and Systems Modeling
3.3 (2004), pp. 235–253.

[111] P. Grünbacher, S. Köszegi, and S. Biffl. “Stakeholder value proposition elicitation

and reconciliation.” In: Value-Based Software Engineering. Springer, 2006, pp. 133–

154.

[112] Q. Gu and P. Lago. “A stakeholder-driven service life cycle model for SOA.” In:

2nd international workshop on Service oriented software engineering: in conjunction
with the 6th ESEC/FSE joint meeting. ACM. 2007, pp. 1–7.

[113] Q. Gu and P. Lago. “Exploring service-oriented system engineering challenges: a

systematic literature review.” In: Service Oriented Computing and Applications 3.3

(2009), pp. 171–188.

[114] E. Hans-Erik and P. Magnus. Business Modeling with UML: Business Patterns at
Work. 2000.

220

https://scholar.google.com
https://scholar.google.com

BIBLIOGRAPHY

[115] W. Hayes. “Research synthesis in software engineering: a case for meta-analysis.”

In: Software Metrics Symposium, 1999. Proceedings. Sixth International. IEEE. 1999,

pp. 143–151.

[116] L. V. Hedges and I. Olkin. Statistical Methods for Meta-Analysis. 1st. Academia

Press, 1985.

[117] U. van Heesch and P. Avgeriou. “Mature architecting-a survey about the reasoning

process of professional architects.” In: Software Architecture (WICSA), 2011 9th
Working IEEE/IFIP Conference on. IEEE. 2011, pp. 260–269.

[118] J. E. Hirsch. “An index to quantify an individual’s scientific research output.” In:

Proceedings of the National academy of Sciences of the United States of America 102.46

(2005), p. 16569.

[119] C. Hofmeister, R. Nord, and D. Soni. Applied software architecture. Addison-Wesley

Professional, 2000.

[120] L. Hohmann. Beyond software architecture: creating and sustaining winning solutions.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[121] M. B. Holbrook. Consumer value: a framework for analysis and research. Psychology

Press, 1999.

[122] C Huemer, A Schmidt, H Werthner, and M Zapletal. “"A UML Profile for the

e3-Value e-Business Model Ontology"; Vortrag: Third International Workshop on

Business/IT Alignment and Interoperability (BUSITAL’08) held in conjunction

with CAiSE’08 Conference, Montpellier, Frankreich; 16.06. 2008; in:"Proceedings

of the Third International Workshop on Business/IT Alignment and Interoper-

ability (BUSITAL’08) held in conjunction with CAiSE’08 Conference", CEUR-WS,

Vol-336 (2008), ISSN: 1613-0073; Paper-Nr. 1, 15 S.” In: ().

[123] IBM Analytics. IBM SPSS Software: Deliver greater business results with Predictive
Intelligence. Available on https://goo.gl/kfth4N. 2018.

[124] IEEE. IEEE Xplore Digital Library. Online accessed: 22/Sep/2017. 2017. url:

https://ieeexplore.ieee.org.

[125] E. Insfran, S. Abrahão, J. González-Huerta, J. D. McGregor, and I. Ramos. “A

multimodeling approach for quality-driven architecture derivation.” In: Building
Sustainable Information Systems. Springer, 2013, pp. 205–218.

[126] B. ISO. “IEC 2382-1 1993.” In: Information technology. Vocabulary. Fundamental
terms. British Standards Institution (1994).

[127] ISO/IEC/IEEE 42010. “International Electrotechnical Commission (IEC), Insti-

tute of Electrical and Electronics Engineers(IEEE): Systems and software engineer-

ing - Architecture description (ISO/IEC/IEEE 42010).” In: (2011).

221

https://ieeexplore.ieee.org

BIBLIOGRAPHY

[128] S. Jalali and C. Wohlin. “Systematic literature studies: database searches vs. back-

ward snowballing.” In: the ACM-IEEE international symposium. New York, New

York, USA: ACM Press, 2012, pp. 29–10. isbn: 9781450310567. doi: 10.1145/

2372251.2372257.

[129] P. Jamshidi, M. Sharifi, and S. Mansour. “To establish enterprise service model

from enterprise business model.” In: Services Computing, 2008. SCC’08. IEEE
International Conference on. Vol. 1. IEEE. 2008, pp. 93–100.

[130] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl. “A framework for classifying

and comparing architecture-centric software evolution research.” In: Software
Maintenance and Reengineering (CSMR), 2013 17th European Conference on. IEEE.

2013, pp. 305–314.

[131] A. Jansen and J. Bosch. “Software architecture as a set of architectural design

decisions.” In: Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP
Conference on. IEEE. 2005, pp. 109–120.

[132] N. Jayaratna. Understanding and Evaluating Methodologies: NIMSAD, a Systematic
Framework. New York, NY, USA: McGraw-Hill, Inc., 1994.

[133] M. Jazayeri, A. Ran, and F. Van Der Linden. Software architecture for product
families: principles and practice. Vol. 9. Addison-Wesley Reading, 2000.

[134] Jennifer Horkoff and Eric Yu. I-Star Wiki. http://istar.rwth-aachen.de. [Online;

accessed 03-May-2017]. 2017.

[135] R. E. Johnson. “Components, frameworks, patterns.” In: ACM SIGSOFT Software
Engineering Notes. Vol. 22. 3. ACM. 1997, pp. 10–17.

[136] N. M. Josuttis. SOA in practice: the art of distributed system design. "O’Reilly Media,

Inc.", 2007.

[137] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. “ATL: A model transformation

tool.” In: Science of computer programming 72.1-2 (2008), pp. 31–39.

[138] N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation. 1st.

Springer US, 2010. url: http://dl.acm.org/citation.cfm?id=1965114.

[139] J. Karlsson and K. Ryan. “A cost-value approach for prioritizing requirements.”

In: IEEE software 14.5 (1997), pp. 67–74.

[140] J. Karlsson and K. Ryan. “Prioritizing requirements using a cost-value approach.”

In: IEEE Software 14.5 (1997), pp. 67–74.

[141] V. Kartseva, J. Hulstijn, Z. Baida, J. Gordijn, and Y.-H. Tan. “Towards control pat-

terns for smart business networks.” In: Proceedings of the Smart Business Networks
Initiative Discovery Session. Springer, Heidelberg (2006).

[142] R. Kazman, L. Bass, G. Abowd, and M. Webb. “SAAM: A method for analyzing the

properties of software architectures.” In: Software Engineering, 1994. Proceedings.
ICSE-16., 16th International Conference on. IEEE. 1994, pp. 81–90.

222

https://doi.org/10.1145/2372251.2372257
https://doi.org/10.1145/2372251.2372257
http://dl.acm.org/citation.cfm?id=1965114

BIBLIOGRAPHY

[143] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture evaluation.

Tech. rep. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, 2000.

[144] R. Kazman, J. Asundi, and M. Klein. “Quantifying the costs and benefits of archi-

tectural decisions.” In: Software Engineering, 2001. ICSE 2001. Proceedings of the
23rd International Conference on. IEEE. 2001, pp. 297–306.

[145] S. Kelly and J.-P. Tolvanen. Domain-specific modeling: enabling full code generation.

John Wiley & Sons, 2008.

[146] T. Kelly and R. Weaver. “The goal structuring notation–a safety argument nota-

tion.” In: Dependable systems and networks workshop on assurance cases. 2004.

[147] W. R. King and J. He. “A meta-analysis of the technology acceptance model.”

In: Information & Management, volume 46, issue 6 (2006), pp. 740–755. doi: 10.

1016/j.im.2006.05.003. url: http://linkinghub.elsevier.com/

retrieve/pii/S0378720606000528.

[148] B. Kitchenham and S. Charters. “Guidelines for performing systematic literature

reviews in software engineering.” In: Technical report, Ver. 2.3 EBSE Technical
Report. EBSE. sn, 2007.

[149] B. Kitchenham, E. Mendes, and G. H. Travassos. “Cross versus within-company

cost estimation studies: A systematic review.” In: IEEE Transactions on Software
Engineering 33.5 (2007).

[150] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman.

“Systematic literature reviews in software engineering–a systematic literature re-

view.” In: Information and software technology 51.1 (2009), pp. 7–15.

[151] B. A. Kitchenham, T. Dyba, and M. Jorgensen. “Evidence-based software engi-

neering.” In: Proceedings of the 26th international conference on software engineering.

IEEE Computer Society. 2004, pp. 273–281.

[152] B. A. Kitchenham, D. Budgen, and O. P. Brereton. “Using mapping studies as the

basis for further research–a participant-observer case study.” In: Information and
Software Technology 53.6 (2011), pp. 638–651.

[153] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA explained: the model driven architec-
ture: practice and promise. Addison-Wesley Professional, 2003.

[154] T. Kohlborn, A. Korthaus, T. Chan, and M. Rosemann. “Identification and analysis

of business and software services—a consolidated approach.” In: IEEE Transac-
tions on Services Computing 2.1 (2009), pp. 50–64.

[155] D. S. Kolovos, N. Matragkas, J. R. Williams, and R. F. Paige. “Model Driven Grant

Proposal Engineering.” In: International Conference on Model Driven Engineering
Languages and Systems - MODELS’14. Springer. 2014, pp. 420–432.

[156] L. Koskela. Test driven: practical TDD and acceptance TDD for java developers.
Manning Publications Co., 2007.

223

https://doi.org/10.1016/j.im.2006.05.003
https://doi.org/10.1016/j.im.2006.05.003
http://linkinghub.elsevier.com/retrieve/pii/S0378720606000528
http://linkinghub.elsevier.com/retrieve/pii/S0378720606000528

BIBLIOGRAPHY

[157] A. Koski and T. Mikkonen. “What We Say We Want and What We Really Need:

Experiences on the Barriers to Communicate Information System Needs.” In: Re-
quirements Engineering for Service and Cloud Computing. Springer, 2017, pp. 3–

21.

[158] P. Kruchten. “An ontology of architectural design decisions in software intensive

systems.” In: 2nd Groningen workshop on software variability. Groningen, The

Netherlands. 2004, pp. 54–61.

[159] P. Kruchten. The rational unified process: an introduction. Addison-Wesley Profes-

sional, 2004.

[160] P. Kruchten, H. Obbink, and J. Stafford. “The Past, Present, and Future of Software

Architecture.” In: IEEE Software 23.2 (2006), pp. 22–30. doi: 10.1109/MS.2006.

59.

[161] P. B. Kruchten. “The 4 + 1 view model of architecture.” In: IEEE software 12.6

(1995), pp. 42–50.

[162] D. Kundisch and T. John. “Business model representation incorporating real op-

tions: an extension of e3-value.” In: System Science (HICSS), 2012 45th Hawaii
International Conference on. IEEE. 2012, pp. 4456–4465.

[163] T. Kühne. “Matters of (Meta-)Modeling.” In: Software and System Modeling 5.4
(2006), pp. 369–385.

[164] V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions, and

reversals.” In: Soviet physics doklady. Vol. 10. 8. 1966, pp. 707–710.

[165] M. W. Lipsey and D. B. Wilson. Practical meta-analysis. Sage Publications, Inc,

2001.

[166] P. Loucopoulos and R. Zicari. Conceptual modeling, databases, and CASE: an inte-
grated view of information systems development. John Wiley & Sons, Inc., 1992.

[167] P. Loucopoulos, V. Kavakli, N. Prekas, C. Rolland, G. Grosz, and S. Nurcan. “Using

the EKD approach: the modelling component.” In: (1997).

[168] Z. Mahmood. “The promise and limitations of service oriented architecture.” In:

International journal of Computers 1.3 (2007), pp. 74–78.

[169] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. “What industry

needs from architectural languages: A survey.” In: IEEE Transactions on Software
Engineering 39.6 (2013), pp. 869–891.

[170] R. Malveau and T. J. Mowbray. Software Architect Bootcamp. Prentice Hall Profes-

sional Technical Reference, 2003.

[171] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
vol. 1., Cambridge University Press, 2008.

224

https://doi.org/10.1109/MS.2006.59
https://doi.org/10.1109/MS.2006.59

BIBLIOGRAPHY

[172] S. Mary and G. David. “Software Architecture: Perspectives on an Emerging

Discipline.” In: Prentice-Hall (1996).

[173] K Maxwell. Applied statistics for software managers. Prentice Hall. 2002.

[174] W. E. McCarthy. “The REA accounting model: A generalized framework for

accounting systems in a shared data environment.” In: Accounting Review (1982),

pp. 554–578.

[175] J. Medeiros, A. Vasconcelos, M. Goulão, C. Silva, and J. Araújo. “An approach

based on design practices to specify requirements in agile projects.” In: Proceed-
ings of the Symposium on Applied Computing. ACM. 2017, pp. 1114–1121.

[176] N. Medvidovic, E. M. Dashofy, and R. N. Taylor. “Moving architectural descrip-

tion from under the technology lamppost.” In: Information and Software Technology
49.1 (2007), pp. 12–31.

[177] S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA distilled: principles of model-driven
architecture. Addison-Wesley Professional, 2004.

[178] ModelMaker Tools BV. SimpleMind Lite tool. Online accessed: 22/Jun/2018. 2018.

url: https://itunes.apple.com/br/app/simplemind-lite-mind-

mapping/id439654198?mt=12.

[179] D Moody. “The Physics of Notations: Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering.” In: IEEE Transactions on Software En-
gineering, volume 35, issue 6 (2009), pp. 756–779. doi: 10.1109/TSE.2009.67.

url: http://ieeexplore.ieee.org/document/5353439/.

[180] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet, B. Combe-

male, R. B. France, R. Heldal, J. Hill, et al. “The relevance of model-driven en-

gineering thirty years from now.” In: International Conference on Model Driven
Engineering Languages and Systems - MODELS’14. Springer. 2014, pp. 183–200.

[181] B. Nagel, C. Gerth, J. Post, and G. Engels. “Kaos4SOA-Extending KAOS Models

with Temporal and Logical Dependencies.” In: CAiSE Forum. 2013, pp. 9–16.

[182] R. Normann and R. Ramirez. “From value chain to value constellation: Designing

interactive strategy.” In: Harvard business review 71.4 (1993), pp. 65–77.

[183] D. North. Introducing BDD. Online accessed: 22/Jun/2018. 2006. url: https:

//dannorth.net/introducing-bdd/.

[184] J. C. Nunnally and I. H. Bernstein. “Psychometric theory.” In: (1978).

[185] B. J. Oates and G. Capper. “Using systematic reviews and evidence-based software

engineering with masters students.” In: EASE. Vol. 9. 2009, pp. 20–21.

[186] Obeo. UML Designer Documentation. Online accessed: 22/Jun/2018. 2018. url:

http://www.umldesigner.org/.

225

https://itunes.apple.com/br/app/simplemind-lite-mind-mapping/id439654198?mt=12
https://itunes.apple.com/br/app/simplemind-lite-mind-mapping/id439654198?mt=12
https://doi.org/10.1109/TSE.2009.67
http://ieeexplore.ieee.org/document/5353439/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
http://www.umldesigner.org/

BIBLIOGRAPHY

[187] Obeo Designer. Obeo Designer website. Online accessed: 27/Jun/2018. url:

https://www.obeodesigner.com/en/.

[188] L. B. R. de Oliveira and E. Y. Nakagawa. “A Systematic Review on Service-

Oriented Reference Models and Service-Oriented Reference Architectures.” In:

Software Architecture 6285.29 (2010), pp. 360–367. doi: 10.1007/978-3-642-

15114-9_29. url: http://link.springer.com/10.1007/978-3-642-

15114-9_29.

[189] OMG. Documents Associated With Service Oriented Architecture Modeling Language
(SoaML), Version 1.0.1. Online accessed: 22/Sep/2017. url: https://goo.gl/

FHHeUK.

[190] OMG. UML Profile For Modeling Quality Of Service And Fault Tolerance Character-
istics And Mechanisms (QFTP). url: http://www.omg.org/spec/QFTP/.

[191] A Osterwalder. “The Business Model Ontology-a proposition in a design science

approach (2004).” Doctoral dissertation. Universite de Lausanne, 2004.

[192] A. Osterwalder, Y. Pigneur, and C. L. Tucci. “Clarifying business models: Ori-

gins, present, and future of the concept.” In: Communications of the association for
Information Systems 16.1 (2005), p. 1.

[193] M. Pai, M. McCulloch, J. D. Gorman, N. Pai, W. Enanoria, G. Kennedy, P. Tharyan,

and J. J. Colford. “Systematic reviews and meta-analyses: an illustrated, step-by-

step guide.” In: The National medical journal of India 17.2 (2004), pp. 86–95.

[194] R. Pandey. “Architectural description languages (ADLs) vs UML: a review.” In:

ACM SIGSOFT Software Engineering Notes 35.3 (2010), pp. 1–5.

[195] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. “Service-oriented

computing: State of the art and research challenges.” In: Computer 40.11 (2007).

[196] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. “Service-oriented com-

puting: a research roadmap.” In: International Journal of Cooperative Information
Systems 17.02 (2008), pp. 223–255.

[197] Papers. Papers: Your personal library of research. Online accessed: 22/Sep/2017.

2017. url: http://www.papersapp.com.

[198] A. G. Pateli and G. M. Giaglis. “A research framework for analysing eBusiness

models.” In: European journal of information systems 13.4 (2004), pp. 302–314.

[199] D. J. Paulish and L. Bass. Architecture-centric software project management: A prac-
tical guide. Addison-Wesley Longman Publishing Co., Inc., 2001.

[200] J. Pearl. “Heuristics: intelligent search strategies for computer problem solving.”

In: (1984).

[201] D. E. Perry and A. L. Wolf. “Foundations for the study of software architecture.”

In: ACM SIGSOFT Software engineering notes 17.4 (1992), pp. 40–52.

226

https://www.obeodesigner.com/en/
https://doi.org/10.1007/978-3-642-15114-9_29
https://doi.org/10.1007/978-3-642-15114-9_29
http://link.springer.com/10.1007/978-3-642-15114-9_29
http://link.springer.com/10.1007/978-3-642-15114-9_29
https://goo.gl/FHHeUK
https://goo.gl/FHHeUK
http://www.omg.org/spec/QFTP/
http://www.papersapp.com

BIBLIOGRAPHY

[202] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. “Systematic Mapping Studies

in Software Engineering.” In: EASE. Vol. 8. 2008, pp. 68–77.

[203] K. Petersen, S. Vakkalanka, and L. Kuzniarz. “Guidelines for conducting system-

atic mapping studies in software engineering: An update.” In: Information and
Software Technology 64 (2015), pp. 1–18.

[204] P. Petrov, R. L. Nord, and U. Buy. “Probabilistic Macro-Architectural Decision

Framework.” In: Proceedings of the 2014 European Conference on Software Architec-
ture Workshops. ACM. 2014, p. 27.

[205] M. Petticrew and H. Roberts. Systematic reviews in the social sciences: A practical
guide. John Wiley & Sons, 2008.

[206] V. Pijpers, P. De Leenheer, J. Gordijn, and H. Akkermans. “Using conceptual

models to explore business-ICT alignment in networked value constellations.” In:

Requirements Engineering 17.3 (2012), pp. 203–226.

[207] M. E. Porter and V. E. Millar. How information gives you competitive advantage.

Harvard Business Review Cambridge, MA, 1985.

[208] C. U. Press. Cambridge Dictionary. Online accessed: 28/Jun/2018. 2018. url:

https://dictionary.cambridge.org/pt/dicionario/ingles/framework.

[209] “Proceedings Working IEEE/IFIP Conference on Software Architecture.” In: Pro-
ceedings Working IEEE/IFIP Conference on Software Architecture. 2001, pp. iii–. doi:

10.1109/WICSA.2001.948397.

[210] J. Putman. Architecting with RM-ODP. Prentice-Hall Professional, 2001. isbn:

9780130191168.

[211] H. Raju. “The New Age of Innovation: Driving Co-Created Value through Global

Networks.” In: Adarsh Journal of Management Research 1.1 (2008), pp. 77–78.

[212] A. Rasiwasia. “Meta Modeling for Business Model Design: Designing a Meta

model for E3 value model based on MOF.” Master’s thesis. Royal Institute of

Technology, 2013.

[213] RespectIT. A KAOS Tutorial. v1.0. Oct. 2007.

[214] S. Robertson and J. Robertson. Mastering the requirements process: Getting require-
ments right. Addison-wesley, 2012.

[215] R. Rosenthal. Meta-Analytic Procedures for Social Research. Sage Publications,

volume 6, Applied Social Research Methods Series, 1991.

[216] K. J. Rothman, S. Greenland, and T. L. Lash. Meta-Analysis. Page 652 in Modern
epidemiology. Lippincott Williams & Wilkins, 2008.

[217] J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language reference
manual. Pearson Higher Education, 2004.

227

https://dictionary.cambridge.org/pt/dicionario/ingles/framework
https://doi.org/10.1109/WICSA.2001.948397

BIBLIOGRAPHY

[218] D. L. Sackett. Evidence-based Medicine How to practice and teach EBM. WB Saunders

Company, 1997.

[219] D. L. Sackett, W. M. Rosenberg, J. M. Gray, R. B. Haynes, and W. S. Richardson.

Evidence based medicine: what it is and what it isn’t. 1996.

[220] J. Savolainen and V. Myllarniemi. “Layered architecture revisited—Comparison

of research and practice.” In: Software Architecture, 2009 & European Conference
on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference
on. IEEE. 2009, pp. 317–320.

[221] G. Scanniello and U. Erra. “Distributed modeling of use case diagrams with a

method based on think-pair-square: Results from two controlled experiments.” In:

Journal of Visual Languages & Computing, volume 25, issue 4 (2014), pp. 494–517.

doi: 10.1016/j.jvlc.2014.03.002.

[222] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering.” In:

IEEE Computer 39.2 (2006).

[223] S. Shaphiro and M. Wilk. “An analysis of variance test for normality.” In: Biometrika
52.3 (1965), pp. 591–611.

[224] M. Shaw. “Toward higher-level abstractions for software systems.” In: Data &
Knowledge Engineering 5.2 (1990), pp. 119–128.

[225] A. P. F. Silva. “Uma abordagem ágil para transformar modelos cognitivos em

modelos comportamentais e de domínio.” Master’s thesis. New University of

Lisbon, 2014.

[226] Y. Singh and M. Sood. “Model driven architecture: A perspective.” In: Ad-
vance Computing Conference, 2009. IACC 2009. IEEE International. IEEE. 2009,

pp. 1644–1652.

[227] C. Siobhan and B. Elisa. Aspect-Oriented Analysis and Design: The Theme Approach.

2005.

[228] V. Siochos and C. Papatheodorou. “Developing a formal model for mind maps.”

In: First Workshop on Digital Information Management, Greece (2011).

[229] Slashdot Media. Freemind tool. Online accessed: 22/Jun/2018. 2018. url: http:

//freemind.sourceforge.net/wiki/index.php/Main_Page.

[230] K. Smolander. “What is included in software architecture? A case study in three

software organizations.” In: IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems. IEEE. 2002.

[231] Software Engineering Institute. What is your definition of software architecture?
https://goo.gl/PBCLWR. 2010.

[232] I. Solheim and K. Stølen. “Technology research explained.” In: Technical Report
SITEF A313. SINTEF ICT, 2007.

228

https://doi.org/10.1016/j.jvlc.2014.03.002
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://freemind.sourceforge.net/wiki/index.php/Main_Page

BIBLIOGRAPHY

[233] C. Solis and X. Wang. “A study of the characteristics of behaviour driven devel-

opment.” In: Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on. IEEE. 2011, pp. 383–387.

[234] A Sølvberg and C. Kung. “Activity modelling and behaviour modelling.” In: In-
formation Systems Design Methodologies: Improving the Practice (1986).

[235] I. Sommerville. Software engineering. 9th edition. Pearson, 2010.

[236] I. Sommerville and G. Kotonya. Requirements Engineering: Processes and Techniques.
John Wiley & Sons, Inc., 1998.

[237] E. Souza and A. Moreira. “Deriving Services using KAOS Models.” In: 33rd
ACM/SIGAPP Symposium On Applied Computing (SAC2018), Pau, France. 2018.

[238] E. Souza, S. Abrahão, A. Moreira, J. Araújo, and E. Insfran. “Comparing Value-

Driven Methods: an Experiment Design.” In: HuFaMo@ MoDELS, Saint Malo,
France. 2016, pp. 19–26.

[239] E. Souza, A. Moreira, and J. Araújo. “Aligning Business Models with Require-

ments Models.” In: European, Mediterranean, and Middle Eastern Conference on
Information Systems, Coimbra, Portugal. Springer. 2017, pp. 545–558.

[240] E. Souza, A. Moreira, and C. De Faveri. “An approach to align business and

IT perspectives during the SOA services identification.” In: 17th International
Conference on Computational Science and Its Applications (ICCSA), Trieste, Italy.

IEEE. 2017, pp. 1–7.

[241] E. Souza, S. Abrahao, A. Moreira, E. Insfran, and J. Araújo. “Evaluating the ef-

ficacy of value-driven methods: a controlled experiment.” In: 26th International
Conference on Information Systems Development (ISD2017), Larnaca, Cyprus. 2017.

[242] E. Souza, S. Abrahao, A. Moreira, J. Araújo, and E. Insfran. Value-Driven Develop-
ment Method Survey Instrument. Available on https://goo.gl/forms/6KJA3zXyUFx3iHa62.

2017.

[243] E. Souza, A. Moreira, J. Araújo, S. Abrahão, E. Insfran, and D. S. da Silveira. “Com-

paring business value modeling methods: A family of experiments.” In: Informa-
tion and Software Technology (2018). issn: 0950-5849. doi: https://doi.org/

10.1016/j.infsof.2018.08.001. url: http://www.sciencedirect.

com/science/article/pii/S0950584918301629.

[244] E. Souza, A. Moreira, and F. Wanderley. “Towards an Agile Reference Architecture

Method for Information Systems.” In: Proceedings of the 51st Hawaii International
Conference on System Sciences, Hawaii, USA. 2018.

229

https://doi.org/https://doi.org/10.1016/j.infsof.2018.08.001
https://doi.org/https://doi.org/10.1016/j.infsof.2018.08.001
http://www.sciencedirect.com/science/article/pii/S0950584918301629
http://www.sciencedirect.com/science/article/pii/S0950584918301629

BIBLIOGRAPHY

[245] E. Souza, A. Moreira, and M. goulao. “Deriving Architectural Models from Re-

quirements Specifications: a Systematic Mapping Study.” In: Information and
Software Technology (2019). issn: 0950-5849. doi: https://doi.org/10.

1016/j.infsof.2019.01.004. url: https://www.sciencedirect.

com/science/article/abs/pii/S0950584919300035.

[246] Springer. SpringerLink Digital Library. Online accessed: 22/Sep/2017. 2017. url:

https://link.springer.com.

[247] Standish Group. Standish Group Website. http://www.standishgroup.com. 2017.

[248] R Studio. “RStudio: integrated development environment for R.” In: RStudio Inc,
Boston, Massachusetts (2012).

[249] A. J. Sutton, K. R. Abrams, and D. R. Jones. “An illustrated guide to the methods

of meta-analysis.” In: Journal of evaluation in clinical practice 7.2 (2001), pp. 135–

148.

[250] D. Tapscott. Digital capital: Harnessing the power of business webs. Harvard Busi-

ness School Press, 2000.

[251] B. Team. Business motivation model (bmm) specification. Tech. rep. Needham, Mas-

sachusetts. Technical Report dtc/06–08–03, Object Management Group, 2006.

[252] B. Tekinerdogan. “ASAAM: Aspectual software architecture analysis method.” In:

Software Architecture, 2004. WICSA 2004. Proceedings. Fourth Working IEEE/IFIP
Conference on. IEEE. 2004, pp. 5–14.

[253] Thales. Thales Group website. Online accessed: 27/Jun/2018. url: https://

www.thalesgroup.com/en.

[254] G. H. Travassos, D. Gurov, and E. Amaral. Introdução à engenharia de software
experimental. UFRJ, 2002.

[255] J. Tyree and A. Akerman. “Architecture decisions: Demystifying architecture.” In:

IEEE software 22.2 (2005), pp. 19–27.

[256] J. S. Van Der Ven, A. Jansen, J. Nijhuis, and J. Bosch. “Design decisions: The

bridge between rationale and architecture.” In: Rationale management in software
engineering 16 (2006).

[257] A. Van Lamsweerde. “Goal-oriented requirements engineering: A guided tour.”

In: Proceedings fifth ieee international symposium on requirements engineering. IEEE.

2001, pp. 249–262.

[258] R. Van Solingen. “Measuring the ROI of software process improvement.” In: IEEE
software 21.3 (2004), pp. 32–38.

[259] F. Wanderley and J. Araujo. “Generating goal-oriented models from creative re-

quirements using model driven engineering.” In: Model-Driven Requirements En-
gineering (MoDRE), 2013 International Workshop on. IEEE. 2013, pp. 1–9.

230

https://doi.org/https://doi.org/10.1016/j.infsof.2019.01.004
https://doi.org/https://doi.org/10.1016/j.infsof.2019.01.004
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300035
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300035
https://link.springer.com
https://www.thalesgroup.com/en
https://www.thalesgroup.com/en

BIBLIOGRAPHY

[260] F. Wanderley and D. S. da Silveria. “A framework to diminish the gap between

the business specialist and the software designer.” In: Quality of Information and
Communications Technology (QUATIC), 2012 Eighth International Conference on the.

IEEE. 2012, pp. 199–204.

[261] R. Weber and Y. Zhang. “An analytical evaluation of NIAM’s grammar for con-

ceptual schema diagrams.” In: Information Systems Journal 6.2 (1996), pp. 147–

170.

[262] H. Weigand, P. Johannesson, B. Andersson, and M. Bergholtz. “Value-based ser-

vice modeling and design: Toward a unified view of services.” In: Advanced Infor-
mation Systems Engineering. Springer. 2009, pp. 410–424.

[263] S. A. White. “Introduction to BPMN.” In: IBM Cooperation 2.0 (2004), p. 0.

[264] S. A. White. “Process modeling notations and workflow patterns.” In: Workflow
handbook 2004 (2004), pp. 265–294.

[265] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in software engineering. Springer-Verlag Berlin Heidelberg, 2012.

isbn: 978-3-642-29043-5. doi: 10.1007/978-3-642-29044-2. url: http:

//link.springer.com/10.1007/978-3-642-29044-2.

[266] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood.

Attribute-driven design (ADD), version 2.0. Tech. rep. Carnegie-Mellon University

Pittsburgh PA Software Engineering Institute, 2006.

[267] C. Yang, P. Liang, and P. Avgeriou. “A systematic mapping study on the combina-

tion of software architecture and agile development.” In: Journal of Systems and
Software 111 (2016), pp. 157–184.

[268] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos. Social modeling for requirements
engineering. Mit Press, 2011.

[269] H. Zhang, M. A. Babar, and P. Tell. “Identifying relevant studies in software

engineering.” In: Information and Software Technology 53.6 (2011), pp. 625–637.

[270] L. Zhu and I. Gorton. “Uml profiles for design decisions and non-functional

requirements.” In: Proceedings of the Second Workshop on Sharing and Reusing
Architectural Knowledge Architecture, Rationale, and Design intent. IEEE Computer

Society. 2007, p. 8.

[271] C. Zott, R. Amit, and L. Massa. “The business model: recent developments and

future research.” In: Journal of management 37.4 (2011), pp. 1019–1042.

231

https://doi.org/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2

2019

A
V

al
u

e-
D

ri
ve

n
Fr

am
ew

or
k

fo
r

So
ft

w
ar

e
A

rc
h

it
ec

tu
re

E
ri

c
So

u
za

Eric Rocha de Souza
BSc in Information Systems

Specialist in Software Engineering
MSc in Computer Enginnering

A Value-Driven Framework
for Software Architecture

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in
Computer Science

September, 2019

Eric Rocha de Souza
BSc in Information Systems

Specialist in Software Engineering
MSc in Computer Enginnering

A Value-Driven Framework
for Software Architecture

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in
Computer Science

September, 2019

Copyright © Eric Rocha de Souza, Faculty of Sciences and Technology, NOVA University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right, perpetual and without geographical boundaries, to

file and publish this dissertation through printed copies reproduced on paper or on digital form, or by any other means known or that may be

invented, and to disseminate through scientific repositories and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

20
19

E
ric

S
ou

za

20
19

A
Va

lu
e-

D
riv

en
Fr

am
ew

or
k

fo
rS

of
tw

ar
e

A
rc

hi
te

ct
ur

e

	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Introduction
	Context and motivation
	Problem statement
	Challenges
	Research questions
	Supporting methodologies, paradigms, and technologies
	Major results
	Research methodology
	Structure of this document

	Business modeling
	Overview on business modeling
	Value-based software engineering
	Value-driven modeling

	A mapping study on business models
	Planning: research protocol
	Conducting: search results
	Reporting: answering the research questions
	Threats to validity

	Two Business modeling approaches
	Eriksson-Penker UML business extensions
	e3value

	Final considerations

	Software architecture
	What is software architecture?
	Service-oriented architecture
	State of the art on software architecture: an Evidence-Based Tertiary Study
	Planning: Defining the protocol
	Conduction
	Reporting: Answering the research questions
	Threats to validity

	Final considerations

	Deriving architectural models from requirements specifications
	Planning
	Formulating the research questions
	Formulating the search string
	Defining the search strategies
	Selecting the research sources
	Selecting studies
	Assessing the quality of the studies
	Collecting the Data
	Reviewing the protocol

	Conduction
	Reporting: Study results
	Demographic data
	Context
	Benefits to the users
	Content
	Validation

	Overview of the results
	Context
	Benefit to the users
	Content
	Validation

	Validity threats and their mitigation
	Research roadmap
	Final considerations

	A value-driven framework for software architecture
	Framework’s structure
	Business value modeling
	DVD in a nutshell
	DVD abstract syntax and constraints
	DVD concrete syntax
	DVD process
	From a DVD model to a SoaML capability model
	About the DVD implementation

	Agile reference architecture modeling
	An overview of the supported agile concepts
	RAMA in a nutshell
	RAMA abstract syntax and constraints
	RAMA concrete syntax
	The RAMA process
	About the RAMA implementation

	Goal-driven SOA architecture modeling
	Goal-oriented approaches
	KAOS4Services in a nutshell
	KAOS4Services abstract syntax, constraints, and concrete syntax
	KAOS4Services process
	About the KAOS4Services implementation

	Final considerations

	Case Study
	Business description
	Applying the DVD method
	Applying RAMA method
	Applying KAOS4Services method
	Final considerations

	Evaluation through experiments
	Evaluating the DVD method
	Experiment design
	Discussion of the quasi-experiment results
	Threats to validity for the quasi-experiment

	Comparing the methods DVD and e3value
	Experimental methodology
	Baseline Experiment
	Discussion of results
	Two Experimental Replications
	Meta-Analysis
	Discussion of the results
	Threats to validity for the family of the controlled experiments

	Evaluating the methods RAMA and KAOS4Services
	Experiment design
	Discussion of the evaluation results for RAMA and KAOS4Services
	Threats to validity

	Comparing RAMA and KAOS4Services
	Experiment design
	Complementary analysis
	Discussion of the results
	Threats to validity for the survey

	Final considerations

	Conclusions and future work
	The quest and respective research questions
	Contributions
	Published results
	Future work

	Bibliography

