338 research outputs found

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points

    Get PDF
    We investigate a three-dimensional (3D) robust chaotic system which only holds two nonhyperbolic equilibrium points, and finds the complex dynamical behaviour of position modulation beyond amplitude modulation. To extend the application of this chaotic system, we initiate a novel methodology to construct multiwing chaotic attractors by modifying the position and amplitude parameters. Moreover, the signal amplitude, range and distance of the generated multiwings can be easily adjusted by using the control parameters, which enable us to enhance the potential application in chaotic cryptography and secure communication. The effectiveness of the theoretical analyses is confirmed by numerical simulations. Particularly, the multiwing attractor is physically realized by using DSP (digital signal processor) chip

    Bifurcations and synchronization using an integrated programmable chaotic circuit

    Get PDF
    This paper presents a CMOS chip which can act as an autonomous stand-alone unit to generate different real-time chaotic behaviors by changing a few external bias currents. In particular, by changing one of these bias currents, the chip provides different examples of a period-doubling route to chaos. We present experimental orbits and attractors, time waveforms and power spectra measured from the chip. By using two chip units, experiments on synchronization can be carried out as well in real-time. Measurements are presented for the following synchronization schemes: linear coupling, drive-response and inverse system. Experimental statistical characterizations associated to these schemes are also presented. We also outline the possible use of the chip for chaotic encryption of audio signals. Finally, for completeness, the paper includes also a brief description of the chip design procedure and its internal circuitry

    Nonlinear Resistor with Polynomial AV Characteristics and Its Application in Chaotic Oscillator

    Get PDF
    This paper shows the realization of two terminal devices with an arbitrary polynomial nonlinearity up to the fifth order. The proposed design procedure is completely systematic using minimum of components. The very heart of our conception is four-channel four-quadrant analog multiplier MLT04. The implementation of synthesized nonlinear resistor as a general nonlinearity in chaotic oscillator is also presented and experimentally verified

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Design and Analysis of Multiscroll Chaotic Attractors From Saturated Function Series

    Full text link

    Construction of classes of circuit-independent chaotic oscillatorsusing passive-only nonlinear devices

    Get PDF
    Two generic classes of chaotic oscillators comprising four different configurations are constructed. The proposed structures are based on the simplest possible abstract models of generic second-order RC sinusoidal oscillators that satisfy the basic condition for oscillation and the frequency of oscillation formulas. By linking these sinusoidal oscillator engines to simple passive first-order or second-order nonlinear composites, chaos is generated and the evolution of the two-dimensional sinusoidal oscillator dynamics into a higher dimensional state space is clearly recognized. We further discuss three architectures into which autonomous chaotic oscillators can be decomposed. Based on one of these architectures we classify a large number of the available chaotic oscillators and propose a novel reconstruction of the classical Chua’s circuit. The well-known Lorenz system of equations is also studied and a simplified model with equivalent dynamics, but containing no multipliers, is introduced
    corecore