143 research outputs found

    A Systematic Approach to Canonicity in the Classical Sequent Calculus

    Get PDF
    International audienceThe sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps---such as instantiating a block of quantifiers---by irrelevant noise. Moreover, the sequential nature of sequent proofs forces proof steps that are syntactically non-interfering and permutable to nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of canonicity: proofs that should be considered essentially the same may not have a common syntactic form. To fix this problem, many researchers have proposed replacing the sequent calculus with proof structures that are more parallel or geometric. Proof-nets, matings, and atomic flows are examples of such revolutionary formalisms. We propose, instead, an evolutionary approach to recover canonicity within the sequent calculus, which we illustrate for classical first-order logic. The essential element of our approach is the use of a multi-focused sequent calculus as the means of abstracting away the details from classical cut-free sequent proofs. We show that, among the multi-focused proofs, the maximally multi-focused proofs that make the foci as parallel as possible are canonical. Moreover, such proofs are isomorphic to expansion proofs---a well known, minimalistic, and parallel generalization of Herbrand disjunctions---for classical first-order logic. This technique is a systematic way to recover the desired essence of any sequent proof without abandoning the sequent calculus

    Algebraic proof theory for LE-logics

    Full text link
    In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the residuated frames in [16] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties

    Expansion Trees with Cut

    Full text link
    Herbrand's theorem is one of the most fundamental insights in logic. From the syntactic point of view it suggests a compact representation of proofs in classical first- and higher-order logic by recording the information which instances have been chosen for which quantifiers, known in the literature as expansion trees. Such a representation is inherently analytic and hence corresponds to a cut-free sequent calculus proof. Recently several extensions of such proof representations to proofs with cut have been proposed. These extensions are based on graphical formalisms similar to proof nets and are limited to prenex formulas. In this paper we present a new approach that directly extends expansion trees by cuts and covers also non-prenex formulas. We describe a cut-elimination procedure for our expansion trees with cut that is based on the natural reduction steps. We prove that it is weakly normalizing using methods from the epsilon-calculus

    Semantically informed methods in structural proof theory

    Get PDF

    Syntactic completeness of proper display calculi

    Full text link
    A recent strand of research in structural proof theory aims at exploring the notion of analytic calculi (i.e. those calculi that support general and modular proof-strategies for cut elimination), and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of proper display calculi as one possible design framework for proof calculi in which the analiticity desiderata are realized in a particularly transparent way. Recently, the theory of properly displayable logics (i.e. those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (aka unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by analytic inductive axioms, which can be equivalently and algorithmically transformed into analytic structural rules so that the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination and subformula property. In this context, the proof that the given calculus is complete w.r.t. the original logic is usually carried out syntactically, i.e. by showing that a (cut free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far this proof strategy for syntactic completeness has been implemented on a case-by-case base, and not in general. In this paper, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut free derivation can be effectively generated which has a specific shape, referred to as pre-normal form.Comment: arXiv admin note: text overlap with arXiv:1604.08822 by other author

    Multi-Focusing on Extensional Rewriting with Sums

    Get PDF
    International audienceWe propose a logical justification for the rewriting-based equivalence procedure for simply-typed lambda-terms with sums of Lindley [Lin07]. It relies on maximally multi-focused proofs, a notion of canonical derivations introduced for linear logic. Lindley's rewriting closely corresponds to preemptive rewriting [CMS08], a technical device used in the meta-theory of maximal multi-focus
    • …
    corecore