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Abstract
We propose a logical justification for the rewriting-based equivalence procedure for simply-typed
lambda-terms with sums of Lindley [8]. It relies on maximally multi-focused proofs, a notion
of canonical derivations introduced for linear logic. Lindley’s rewriting closely corresponds to
preemptive rewriting [5], a technical device used in the meta-theory of maximal multi-focus.
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1 Introduction

Deciding observational equality of pure typed lambda-terms in presence of sum types is a
difficult problem. After several solutions based on complex syntactic [6] or semantic [1, 2]
techniques, Sam Lindley presented a surprisingly simple rewriting solution [8]. While the
underlying intuition (extrude contexts to move pattern-matchings as high as possible in
the term) makes sense, the algorithm is still mysterious in many aspects: even though they
were synthesized from the previous highly-principled approach, the rewriting rules may feel
strangely ad-hoc.

In this paper, we will propose a logical justification of this algorithm. It is based on recent
developments in proof search, maximally multi-focused proofs [5]. The notion of preemptive
rewriting was introduced in the meta-theory of multi-focusing as a purely technical device;
we claim that it is in fact strongly related to Lindley’s rewriting, and formally establish the
correspondence.

The reference work on multi-focused systems [5] has been carried in a sequent calculus for
linear logic. We will first establish the meta-theory of maximal multi-focusing for intuitionistic
logic (Section 2). We start from a sequent calculus presentation, which is closest to the
original system. Our first contribution is to propose an equivalent multi-focusing system in
natural deduction 2.2. We then define preemptive rewriting in this natural deduction 2.4
and establish canonicity of maximally multi-focused proofs 2.6.

In Section 3, we transpose the preemptive rewrite rules into a relation on proof terms.
We can then formally study the correspondence between rewriting a multi-focused proof
into a canonical maximally multi-focused one, and Lindley’s γ-reduction on lambda-terms.
We demonstrate that they compute the same normal forms, modulo a form of redundancy
elimination that is missing in the multi-focused system.

We finally introduce redundancy-elimination rewriting and equivalence for the proof
terms of the multi-focused natural deduction (Section 4). The resulting notion of canonical
proofs, simplified maximal proofs, precisely corresponds to normal forms of Lindley’s rewriting
relation. The natural notion of local equivalence between simplified maximal proofs therefore
captures extensional equality.
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2 Intuitionistic multi-focusing

The space of proofs in sequent calculus or natural deduction exhibits a lot of redundancy:
many proofs that are syntactically distinct really encode the same semantics. In particular,
it is often possible to permute two inference rules in a way that preserves the validity of
proofs, but also the reduction semantics of the corresponding proof terms. If a permutation
transforms a proof with rule A applied above rule B into a proof with rule B applied above
rule A, we say that it is an A/B permutation (A is above the slash, as in the source proof).

Focusing is a general discipline that can be imposed upon proof system, based on the
separation of inference rules into two classes. Invertible rules (called as such because their
inverse is admissible) always preserve provability, and can thus be applied as early as possible.
Non-invertible rules may result in dead ends if they are applied too early (consider proving
A+B ` A+B by first introducing the sum on the right-hand side)). In focusing calculi,
derivations are structured in “sequences” or “phases”, that either only apply invertible rules
or only non-invertible rules. Focusing imposes that phases be as long as possible. During
invertible phases, one must apply any valid invertible rule. During non-invertible phases, one
focuses on a set of formulas, and applies non-invertible operations on those formulas as long
as possible – if the phase is started too early, this may result in a dead end.

Invertibility determines a notion of polarity of logical connectives: we call positive those
whose right-hand-side rule is non-invertible (they are “only interesting in positive position”),
and negative those whose left-hand-side rule is non-invertible. In single-succedent intuitionistic
logic, (→) is negative, (+) is positive, and the product (×) may actually be assigned either
polarity.

In single-sided calculi, non-invertible rules are those that introduce positive connectives,
and are called “positive”. For continuity of vocabulary, we will also call non-invertible
rules positive, and invertible rules negative. In particular, a permutation that moves a
non-invertible rule below an invertible rule is a “pos/neg permutation”.

2.1 Multi-focused sequent calculus
Multi-focusing ([9, 5]) is an extension of focusing calculi where, instead of focusing on a single
formula of the sequent (either on the left or on the right), we allow to simultaneously focus
on several formulas at once. The multiple foci do not interact during the focusing phase,
and this allows to express the fact that several focusing sequences are in fact independent
and can be performed in parallel, condensing several distinct focused proofs into a single
multi-focused derivation.

We start with a multi-focused variant of the intuitionistic sequent calculus, presented
in Fig. 1. We denote focus using brackets: the rules with no brackets are invertible. This
notation will change in natural deduction calculi.

In particular, we write An or ∆p for formula or contexts that must be all negative or
positive, and X, Y or Z for atoms. We write Bpa and Γna when either a positive (resp.
negative) or an atom is allowed. For readability reasons, we only add polarity annotations
when necessary; if we consider only derivations whose end conclusion is unfocused, then the
invariant holds that the unfocused left-hand-side context is always all-negative, while the
unfocused right-hand-side formula is always positive.

Our intuitionistic calculi are, as is most frequent, single-succedent. The notation A | B
on the right does not denote a real disjunction but a single formula, one of the two variables
being empty. The focusing rule seq-focus with conclusion Γ,∆ ` A | B can be instantiated
in two ways, one when A is empty, and the premise is Γ, [∆] ` [B] (the succedent is part of
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seq-atom
X atomic
Γn, X ` X

seq-inv-sum-l
Γ, A ` C Γ, B ` C

Γ, A+B ` C

seq-inv-prod-r
Γ ` A Γ ` B

Γ ` A × B

seq-inv-arr-r
Γ, A ` B

Γ ` A→ B

seq-focus
Γna, [∆n] ` Apa | [Bpa]

Γna,∆n ` Apa | Bpa

seq-release
Γ,∆pa ` A | Bna

Γ, [∆pa] ` A | [Bna]

seq-foc-arr-l
Γ ` [A] Γ, [∆, B] ` C | [D]

Γ, [∆, A→ B] ` C | [D]

seq-foc-prod-l
Γ, [∆, Ai] ` B | [C]

Γ, [∆, A1 × A2] ` B | [C]

seq-foc-sum-l
Γ, [∆] ` [Ai]

Γ, [∆] ` [A1 +A2]

Figure 1 Multifocused sequent calculus for intuitionistic logic.

the multi-focus), and one when B is empty, and the premise is Γ, [∆] ` A (the succedent is
not part of the multi-focus). Note that ∆ is a set and may be empty, in which case the focus
only happens on the right.

As a minor presentation difference to the reference work on multi-focusing [5], our
contexts are unordered multi-sets, and all the formulas under focus are released at once – by
seq-release, which releases positives (resp. negatives) or atoms.

This multi-focused calculus proves exactly the same formulas as the singly-focused sequent
calculus. The latter is trivially included in the former, and conversely one can turn a multi-
focus into an arbitrarily ordered sequence of single foci. As a corollary, relying on non-trivial
proofs from the literature (e.g., [11]), it is equivalent in provability to the (non-focused)
sequent calculus for intuitionistic logic.

2.2 Multi-focused natural deduction
While the multi-focusing sequent calculus closely corresponds to existing focused presentations,
its natural deduction presentation in Fig. 2 is new. We took inspiration from the presentation
of focused linear logic in natural deduction of [3], in particular the ⇑ and ⇓ notations coming
from intercalation calculi.

There are three main judgments. Γ ` A is the unfocused judgment with the invertible
rules. Γ;A ⇓ B is the “elimination-focused” judgment, and A ⇑ B is the “introduction-
focused” judgment (focused on A). Γ;A ⇓ B means that the assertion B can be produced
from the hypothesis A by non-invertible elimination rules; the context Γ is used in any
non-focused subgoal. A ⇑ B means that proving the goal A can be reduced, by applying
non-invertible introduction rules, to proving the goal B. Those two judgments do not come
separately, they are introduced by the focusing rule nat-focus.

In Fig. 2, we used auxiliary rules (nat-start-intro, nat-start-no-intro, nat-start-elim)
to present the focusing compactly (this is important when rewriting proofs); those rules can
only happen immediately above nat-focus, and can thus be considered definitional syntactic
sugar – we used a double bar to reflect this. If we inlined these auxiliary rules, the focusing
rule would read (equivalently):

(Ain)i∈I ⊆ Γna (Γna;Ain ⇓ A′ipa)i∈I (Bp ⇑ B′na | B = B′) Γna, (A′ipa)i∈I ` B′

Γna ` Bpa

This rule can only be used when all invertible rules have been performed: the context
must be negative or atomic, and the goal positive or atomic. It selects set of foci on the

TLCA’15
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nat-atom
X atomic

Γna, X ` X

nat-inv-sum-l
Γ, A ` C Γ, B ` C

Γ, A+B ` C

nat-inv-prod-r
Γ ` A Γ ` B

Γ ` A × B

nat-inv-arr-r
Γ, A ` B

Γ ` A→ B

nat-focus
Γna ⇓ Γ′ Apa ⇑? A′ Γna,Γ′ ` A′

Γna ` Apa

nat-end-elim

Γ;Ana ⇓ Ana

nat-end-intro

Ana ⇑ Ana

nat-elim-arr
Γ;A ⇓ B → C B ⇑ B′ Γ ` B′

Γ;A ⇓ C

nat-elim-prod
Γ;A ⇓ B1 × B2

Γ;A ⇓ Bi

nat-intro-sum
Ai ⇑ B

A1 +A2 ⇑ B

nat-start-no-intro

A ⇑? A
========

nat-start-intro
Ap ⇑ Bna
Ap ⇑? Bna

===========

nat-start-elim
(Ain)i∈I ⊆ Γ (Γ;Ain ⇓ A′ipa)i∈I

Γ ⇓ (A′ipa)i∈I
==================================

Figure 2 Multifocused natural deduction for intuitionistic logic.

left, the family of strictly negative assumptions (Ain)i∈I (we consistently use the superscript
notation for family indices), and optionally a focus on the right; if the goal is focused it must
be strictly positive. All foci must be as long as possible: elimination foci go from a variable
down to a positive or atomic A′ipa, and the introduction focus goes up until it encounters a
negative or atomic B′na.

In comparison to the sequent calculus, the positive or atomic formulas (A′ipa)i∈I appearing
at the start of the elimination-focus correspond to the formulas released at the end of a
multi-focus in a sequent proof; natural deduction, when compared to the sequent calculus,
has elimination rules “upside down”. Also characteristic of natural deduction is the horizontal
parallelism between eliminations and introductions; for example, the following two partial
derivations correspond to the same natural deduction:

Apa × B,Apa ` Cna
Apa × B, [Apa] ` [Cna]

Apa × B, [Apa] ` [Cna +D]
Apa × B, [Apa × B] ` [Cna +D]

Apa × B ` Cna +D

Apa × B,Apa ` Cna
Apa × B, [Apa] ` [Cna]

Apa × B, [Apa × B] ` [Cna]
Apa × B, [Apa × B] ` [Cna +D]

Apa × B ` Cna +D

Apa × B;Apa × B ⇓ Apa × B
Apa × B;Apa × B ⇓ Apa

Cna ⇑ Cna
Cna +D ⇑ Cna Apa × B,Apa ` Cna

Apa × B ` Cna +D

On the other hand, we kept the less important invertible rules in sequent style: the sum
elimination is a left introduction. Invertible rules being morally “automatically” applied,
the sequent-style left introduction, which is directed by the type of its conclusion, is more
natural in this context. Ironically, this brings us rather close to the sequent calculus of
Krishnaswami [7] which, for presentation purposes, preserved a function-elimination rule in
natural deduction style.

I Lemma 1. The multi-focused natural deduction system proves exactly the same non-focused
judgments as the multi-focused sequent calculus.
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preempt-focus
Γnpa ⇓ ∆′pa Bp ⇑? B′na Γnpa,∆′pa ` Anpa | B′na

Γnpa ` Anpa | Bp

preempt-elim
Γnpa ⇓ ∆′pa Γnpa,∆′pa;A ⇓ A′

Γnpa;A ⇓ A′

Figure 3 Preemptive rules for intuitionistic multifocused natural deduction.

2.3 A preemptive variant of multi-focused natural deduction
Multi-focusing was introduced to express the idea of parallelism between non-invertible rules
on several independent foci. A proof has more parallelism than another if two sequential
foci of the latter are merged (through rule permutations) in a single multi-focus in the
former. A natural question is whether there exists “maximally parallel proofs”. To answer
it (affirmatively), the original article on multi-focusing ([5]) introduced a rewriting relation
that permutes non-invertible phases down in proof derivations, until they cannot go any
further without losing provability – neighboring phases can then be merged into a maximally
focused proof.

In the process of moving down, a non-invertible phase will traverse invertible phases
below. The intermediary states of this reduction sequence may break the invariant that
invertible rules must be applied as early as possible; we say that the non-invertible phase
preempts (a part of) the invertible phase. As this intermediary state is not a valid proof in
off-the-shelf multi-focusing systems, the original article introduced a relaxed variant called a
preemptive system, in which the phase-sinking transformation, called preemptive rewriting,
can be defined following [5].

We present in Fig. 3 a preemptive variant of multi-focused natural deduction, except for
the invertible and focused-introduction rules that are strictly unchanged from the previous
multi-focusing rules in Fig. 2. There are two important differences:

Preemption of invertible phases. To allow the start of a focusing phase when some
invertible rules could still be applied, we lifted the polarity constraints for starting
focusing. In the rule preempt-focus, the goal Γnpa ` Anpa may be of any polarity. We
use a tautological Γnpa annotation to emphasize this change.
Preemption of non-invertible phases. This is expressed by the rule preempt-elim, where
an ongoing focus on A is preempted by a complete focus on ∆′pa. Note that stored
contexts are not available during the current elimination phase (they are unused in
nat-end-elim); they are only available to non-focused phases that appear as subgoals (in
the arrow elimination rule). This preserves the central idea that the simultaneous foci of
a single focusing rule are independent.

2.4 Preemptive rewriting
We can then define in Fig. 4 the rewriting relation on the preemptive calculus, that lets
any non-invertible phase move as far as possible down the derivation tree. Maximally
multi-focused proofs, which can be characterized on permutation-equivalence classes of
multi-focused proofs, correspond to normal forms of this rewriting relation.

A focused phase cannot move below an inference rule if some of the foci depend on this
inference rule. Instead of expressing the non-dependency requirement by implicit absence of
the foci, we have explicitly canceled out the foci that must be absent to improve readability.
In the first rule for example, Γ,@A ⇓ ∆ means that the A hypothesis must be weakened (not
used) in the derivation of Γ ⇓ ∆, orelse it cannot move below the introduction of A.

TLCA’15
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Γ,ZA ⇓ ∆ XXXXB ⇑ B′ Γ, A,∆ ` B
Γ, A ` B

Γ ` A→ B
→

Γ ⇓ ∆
Γ,∆, A ` B

Γ,∆ ` A→ B

Γ ` A→ B

Γ ⇓ ∆ XXXA ⇑ A′ Γ,∆ ` A
Γ ` A Γ ` B

Γ ` A × B
→

Γ ⇓ ∆
Γ,∆ ` A Γ ` B

Γ,∆ ` A × B
Γ ` A × B(

Γ,ZA ⇓ ∆ C ⇑? D Γ, A,∆ ` D
Γ, A ` C

)
(

Γ,ZB ⇓ ∆ C ⇑? D Γ, B,∆ ` D
Γ, B ` C

)
Γ, A+B ` C

→
Γ ⇓ ∆ C ⇑? D

Γ, A,∆ ` D Γ, B,∆ ` D
Γ, A+B,∆ ` D

Γ, A+B ` C,D

Γ ⇓ Γ′ Γ,Γ′;A ⇓ B1 × B2

Γ;A ⇓ B1 × B2

Γ,Γ′;A ⇓ Bi

→
Γ ⇓ Γ′

Γ,Γ′;A ⇓ B1 × B2

Γ,Γ′;A ⇓ Bi

Γ;A ⇓ Bi

Γ ⇓ Γ′ Γ,Γ′;A ⇓ B → C

Γ;A ⇓ B → C B ⇑ B′ Γ ` B′

Γ;A ⇓ C
→

Γ ⇓ Γ′
Γ,Γ′;A ⇓ B → C B ⇑ B′ Γ ` B′

Γ,Γ′ ⇓ B → C

Γ;A ⇓ C

Γ;A ⇓ B → C B ⇑ B′na

Γ ⇓ Γ′ Γ,Γ′ ` B′na

Γ ` B′na

Γ;A ⇓ C
→

Γ ⇓ Γ′
Γ;A ⇓ B → C B ⇑ B′na Γ,Γ′ ` B′na

Γ,Γ′;A ⇓ C
Γ;A ⇓ C

Γ ⇓ Γ′ An ∈ Γ
Γ ⇓ ∆ Γ,∆;An ⇓ A′

Γ;An ⇓ A′

Γ ⇓ Γ′, A′
========================================

B ⇑? B′ Γ,Γ′, A′ ` B′

Γ ` B

→
Γ ⇓ ∆

Γ ⇓ Γ′ An ∈ Γ Γ,∆;An ⇓ A′

Γ,∆ ⇓ Γ′, A′
================================

B ⇑? B′ Γ,Γ′, A′ ` B′

Γ,∆ ` B
Γ ` B

Γ ⇓ ∆ A ⇑? B

Γ ⇓ ∆′ B ⇑? C Γ,∆,∆′ ` C
Γ,∆ ` B

Γ ` A
↔

Γ ⇓ ∆,∆′ A ⇑? C Γ,∆,∆′ ` C
Γ ` A

Figure 4 Preemptive rewriting for multifocused natural deduction for intuitionistic logic.
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In this situation, it may be the case that other parts of the multi-focus do not depend
on the rule below, and those should not be blocked. To allow rewriting to continue, the
last rewrite of our system is bidirectional. It allows to separate the foci of a multi-focus, in
particular separate the foci that depend on the rule below from those that do not – and can
thus permute again. This corresponds to the first rule of the original preemptive rewriting
system [5], which splits a multi-focus in two. We only need to apply this rule when the result
can make one more unidirectional rewrite step – this strategy ensures termination.

In the left-to-right direction, this rule relies on the possibility of merging together two
elimination-focused derivations, or two optional introduction-focused derivations, with the
implicit requirement that at least one of them is empty.

2.5 Reinversion

After the preemptive rewriting rules have been applied, the result is not, in general, a valid
derivation in the non-preemptive system. Consider for example the following rewriting
process:


ν3

π3

ν2

π2

ν1

π1

→∗


ν3

ν2

π3; ν2

π2

ν1

π1

→∗
 ν2 ν3

π2 π3

ν1

π1

→∗


ν2 ν3

π2; ν3

ν1

π3; ν1

π1

→∗
 ν2 ν3

π2; ν3

ν1

π1 π3



We are here representing derivations from a high-level point of view, by naming complete
sequences of rules of the same polarity. Sequences of positive (non-invertible) are named
πn, and sequences of negative (invertible) rules νm. We use horizontal position to denote
parallelism, or dependencies between phases: each dipole (πk, νk) is vertically aligned as the
invertibles of νk have been produced by the foci of πk, but we furthermore assume that the
second dipole depends on formulas released by the first, while the third dipole is independent.

The third dipole is independent from the others, and its foci in π3 move downward in the
derivation as expected in the preemptive system. After the first step, its negative phase has
preempted the invertible phase ν2, and it is thus written π3; ν2 to emphasize that any rule of
this sequence will have all the invertible formulas of ν2 in non-focused positions (positives in
the hypotheses, and negatives in the succedent). It can then be merged with the foci of π2,
in which case it does not see the invertibles of ν2 anymore. When it moves further down, the
invertible formulas in its topmost sequent, those consumed by ν3, are present/preempted by
all the non-invertible rules of π2. It is eventually merged with π1.

The normal form of this rewrite sequence could be considered a maximally multi-focused
proof, in the sense that the foci happen as soon as possible in the derivation – which was
not the case in the initial proof, where π3 was delayed. However, while the initial proof is a
valid proof in the non-preemptive system, the last derivation is not: the invertible formulas
produced by π3 are not consumed as early as possible, but only at the very end of the
derivation, and the foci of π2 therefore happen while there are still invertible rules to be
applied.

We introduce a reinversion relation between proofs, written D . E , that turns the proof
D with possible preemption into a proof E valid in the non-preemptive system, by doing the
inversions where they are required, without changing the structure of the negative phases –

TLCA’15
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the foci are exactly the same. In our example, we have: ν2 ν3

π2; ν3

ν1

π1 π3

 .
 ν2

π2

ν1 ν3

π1 π3


I Definition 2 (Rewriting relation). If D and E are proofs of the non-preemptive system, we
write D ⇒ E if there exists a E ′ such that D →∗ E ′ . E .

Reinversion was not discussed directly in the original multi-focusing work [5], but it plays
an important role and can be described and understood in several fairly different ways. For
lack of space, we omit this discussion from this short article, and will only formally define
reinversion as a relation on the (more concise) proof terms in Section 3.1, Definition 4.

2.6 Maximal multi-focusing and canonicity
Now that we have defined the focusing-lowering rewrite (⇒) between non-preemptive proof,
we can define the notion of maximal multi-focusing and its meta-theory. It is defined by
looking at the width of multi-focus phases in equivalence classes of rule permutations; but it
can also be characterized as the normal forms of the (⇒) relation.

For lack of space, we have omitted this development (which is a mere adaptation of the
previous work [5]) from this short article. The central result is summarized below.

I Definition. We say that two proofs D and E are locally equivalent, or iso-polar, written
D ≈loc E, if one can be rewritten into the other using only local positive/positive and
negative/negative permutations, preserving their initial sequents.

I Definition. We say that two proofs D and E are globally equivalent, or iso-initial, written
D 'glob E, when one can be rewritten into the other using local permutations of any polarity
(so when seen as proofs in a non-focused system), preserving their initial sequents.

I Fact. Two multi-focused proofs are globally equivalent if and only if they are rewritten by
(⇒) in locally equivalent maximal proofs.

3 On the side of proof terms

3.1 Preemption and reinversion as term rewriting
Now that we have a notion of maximally multi-focused proofs in natural deduction, we
can cross the second bridge between multi-focusing and Lindley’s work by moving to a
term system. We define in Figure 5 a term syntax for multi-focused derivations in natural
deduction.

As the distinction between the preemptive and the non-preemptive systems are mostly
about invariants of the focusing rule, the same term calculus is applicable to both. The
only syntactic difference is that preemptive terms allow a multi-focusing f [n] to preempt an
ambient elimination focus n′.

Structural constraints on the multi-focusing system (preemptive or not) guarantee that
strong typing invariants are verified. In particular, in a focused term (let x̄ = n̄ in p?t), the
n̄ are typed by the formulas in ∆ at the end of a Γ ⇓ ∆ elimination phase: by our release
discipline they have a positive or atomic type, so the let-introduced x̄ are always bound to
positive types. The rewriting rules corresponding to the preemptive rewriting relation are
defined in Figure 6.
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t ::= terms
| x, y, z variable
| λ(x) t lambda
| (t, t) pair
| δ(x, x.t, x.t) case
| f [t] focusing

X atomic
Γna, x : X ` x : X

Γ, x : A ` t : C Γ, x : B ` u : C
Γ, x : A+B ` δ(x, x.t, x.u) : C

Γ ` t : A Γ ` u : B
Γ ` (t, u) : A × B

Γ, x : A ` t : B
Γ ` λ(x) t : A→ B

f [�] ::= let x̄ = n̄ in p?� multi-focusing
p? ::= optional introduction focus

| ∅ no introduction
| p introduction focus

Γna ⇓ let x̄ = n̄ : Γ′ Apa ⇑? p? : A′ Γna,Γ′ ` t : A′

Γna ` let x̄ = n̄ in p?t : Apa

A ⇑? ∅ : A
===========

Ap ⇑ p : Bna
Ap ⇑? p : Bna

==============
(xi : Ain)i∈I ⊆ Γ (Γ;xi : Ain ⇓ ni : A′ipa)i∈I

Γ ⇓ let (xi)i∈I = (ni)i∈I : (A′ipa)i∈I
=============================================

n ::= negatives
| x, y, z variable
| πi n pair projection
| n p(t) function application
| let x̄ = n̄ in n focusing (only in the preemptive calculus)

Γ;x : Ana ⇓ x : Ana

Γ;A ⇓ n : B → C B ⇑ p : B′ Γ ` t : B′

Γ;A ⇓ n p(t) : C
Γ;A ⇓ n : B1 × B2

Γ;A ⇓ πi n : Bi
i ∈ {1, 2}

Γnpa ⇓ let (xi)i∈I = (ni)i∈I : ∆′pa Γnpa,∆′pa;A ⇓ n′ : A′

Γnpa;A ⇓ let (xi)i∈I = (ni)i∈I in n′ : A′

p ::= positives
| ? identity
| σi p sum injection Ana ⇑ ? : Ana

Ai ⇑ p : B
A1 +A2 ⇑ σi pB

i ∈ {1, 2}

Figure 5 Preemptive term calculus.

I Lemma 3. If t is a proof term for the preemptive derivation D, then t→ u if and only if
u is a proof term for a preemptive derivation E with D → E.

The reinversion relation also has a corresponding term-rewriting interpretation. To
perform each invertible rule as early as it should be, it suffices to let any invertible rule skip
over a non-invertible phase it does not depend on. Depending on the order of the invertible
rules after this phase, the invertible rule we want to move may be after a series of invertible
rules that cannot be moved.

We “skip” over invertible contexts, we reduce invertible rules happening inside contexts of
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326 Multi-Focusing on Extensional Rewriting with Sums

λ(y) let x̄ = n̄ in t y/∈n̄→ let x̄ = n̄ in λ(y) t
((let x̄ = n̄ in t1), t2) → let x̄ = n̄ in (t1, t2)
(t1, (let x̄ = n̄ in t2)) → let x̄ = n̄ in (t1, t2)

δ(y, y1. (let x̄ = n̄ in p?t1), y2. (let x̄ = n̄ in p?t2)) y1,y2 /∈n̄→ let x̄ = n̄ in p?δ(y, y1.t1, y2.t2)
πi (let x̄ = n̄ in n′) → let x̄ = n̄ in πi n′
(let x̄ = n̄ in n′) t → let x̄ = n̄ in n′ t
n′ p(let x̄ = n̄ in t) → let x̄ = n̄ in n′ p(t)

let y = (let x̄ = n̄ in n′) in p?t → let x̄ = n̄ in let y = n′ in p?t

let x̄ = n̄ in p?(let ȳ = n̄′ in q? t) x̄/∈n̄′
↔ let x̄, ȳ = n̄, n̄′ in (p?.q?)t

p?.∅ = p?

∅.q? = q?
?.q = q

(σi p).q = σi (p.q)

Figure 6 Preemptive rewriting on proof terms.

Fi[�] ::= λ(x)�
| δ(x, x1.�, x2.t)
| δ(x, x1.t, x2.�)
| (t,�)
| (�, t)

Cneg[�] ::= n p(�)
| Cneg[�] p(t)
| πi Cneg[�]
| Cni[Cneg[�]]

Ci[�] ::= � | Fi[Ci[�]] Cni[�] ::= let x̄ = n̄ in p?�
| let x̄, y = n̄, Cneg[�] in p?t

Figure 7 Invertible frames and contexts, non-invertible contexts and elimination contexts.

the form Cni[Ci[ ]], where Ci[t] is a notation for invertible contexts (defined using invertible
frames Fi[t]), and Cni[t] for non-invertible contexts. Defining the latter requires describing
negative/elimination contexts Cneg[t], with holes where a term may appear in a series of
elimination-focused terms.

I Definition 4. Reinversion can be precisely defined as the transitive congruence closure of
the rewrite rules listed in Figure 8.

The rewrite conditions are expressed in terms of a C[�] ≺ c relation (read “context C
blocks term-constructor c”) that indicates a dependency of an invertible construction c on
a given context C[�]. For example, it would make no sense to extrude a λ in argument
position in a destructor, or move a sum-elimination δ(x) across the frame that defined the
variable x. This blocking relation is defined in Figure 9 – (A | B) in a rule means that the
rule holds with either A or B in place of (A | B).

It may at first seem surprising that reinversion rules have instances that are the opposite
of some of the preemptive rewriting rules – those about pos/neg permutations. But that is
precisely one of the purposes of reinversion: after preemptive rewriting rules have been fully
applied, we undo those that have gone “too far”, in the sense that they let a non-invertible
phase preempt a portion of an invertible phase below, but were blocked by dependencies
without reaching the next non-invertible phase. This blocked phase does not increase the
parallelism of multi-focusing in the proof, but stops the derivation from being valid in the
original multi-focusing system, so reinversion undoes its preemption.
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Cni[Ci[λ(x) t]]
Cni[Ci[�]] 6≺λ

. λ(x)Cni[Ci[t]]

Cni[Ci[(t1, t2)]]
Cni[Ci[�]] 6≺(,)

. (Cni[Ci[t1]], Cni[Ci[t2]])

Cni[Ci[δ(x, x1.t1, x2.t2)]]
Cni[Ci[�]] 6≺δ(x)

. δ(x, x1.Cni[Ci[t1]], x2.Cni[Ci[t2]])

Figure 8 Reinversion rewrite rules.

c ::= (, ) | λ | δ(x)

y ∈ x̄
let x̄ = n̄ in p?� ≺ δ(y)

p 6= ∅
let x̄ = n̄ in p� ≺ (, ) | λ

Cneg[�] ≺ c
let x̄, y = n̄, Cneg[�] in p?t ≺ c

((�, t) | (t,�) | λ(x)�) ≺ ((, ) | λ) λ(x)� ≺ δ(x) (δ(x, y.�, z.t) | δ(x, z.t, y.�)) ≺ δ(y)

n p(�) ≺ (, ) | λ
Cneg[�] ≺ c

Cneg[�] p(t) | πi Cneg[�] | Cni[Cneg[�]] ≺ c

Cni[�] ≺ c | Cneg[�] ≺ c
Cni[Cneg[�]] ≺ c

Fi[�] ≺ c | Ci[�] ≺ c
Fi[Ci[�]] ≺ c

Cni[�] ≺ c | Ci[�] ≺ c
Cni[Ci[�]] ≺ c

Figure 9 Reinversion blocking relation.

Remark, in relation to this situation, that preemptive rewriting cannot be easily defined
on equivalence classes of neg/neg permutations (or other presentations of focusing that crush
the invertible phase in one not-so-interesting step, such as higher-order focusing), as the
order of the invertible rules in a single phase may determine where a non-invertible phase
stops its preemption and is blocked in the middle of the invertible phase. Reinversion restores
this independence on invertible ordering. This explains why the meta-theory of maximal
multi-focusing was conducted in the non-preemptive system, using the relation between
proofs that always applies reinversion after preemptive rewriting.

The other interesting case is a non-invertible phase π0 having traversed a family of
non-invertible phases (π′i)i∈I , before merging into some non-invertible phase π1. Reinversion
will move its negative phase ν0, reverting the preemption of the (π′i) on the invertible formulas
introduced by π0. But the important preemptions that happened, namely the traversal by π0
of each of the invertible phases (ν′i)i∈I , are not reverted: each ν′i is blocked by the π′i below
and thus cannot be reverted below π0. As π0 traversed both the ν′i and the π′i, it does not
have the corresponding invertible formulas in its context anymore, and is well-positioned
even in a non-preemptive proof.

I Lemma 5. If t is the proof term of the preemptive derivation D : Γ ` A, and u is such
that t . u, then u is a valid (preemptive) proof term for Γ ` A.

I Lemma 6. If u is a valid proof term in the preemptive system, and a normal form of the
relation (.), then u is also a valid proof term for the non-preemptive system.

I Theorem 7. If t is a proof term for D and u for E, then D ⇒ E if and only there is a u′
such that t→∗ u′ . u, and u is a normal form for (.).
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3.2 Multi-focused terms as lambda-terms
There is a natural embedding btc of a multi-focused term t into the standard lambda-
calculus, generated by the following transformation, where t[x̄ := ū] represents simultaneous
substitution:

blet x̄ = n̄ in p?tc := bp?c(btc[x̄ := ¯bnc])

b∅c(t) := t b?c(t) := t bσi pc(t) := σi bpc(t)

The substitutions break the invariant that the scrutinee of a sum-elimination construct is
always a variable. However, as only negative terms are substituted, sum-elimination scrutinee
are always neutrals – embedding of negative terms. In particular, this embedding does
not create any β-redex. Proof terms coming from non-preemptive multi-focusing are also
always in η-long form, and this is preserved by the embedding; with the restriction present
in Lindley’s work that only neutral terms (eliminations) are expanded – this avoids issues
of commuting conversions. We mean here the weak η-long form, determined by the weak
equation (m : A+B) =weak-η δ(m,x1.σ1 x1, x2.σ2 x2).

I Lemma 8. If Γ ` t : A in the preemptive multi-focused system, then Γ ` btc : A in
simply-typed lambda-calculus, and btc is in β-normal form. If t is valid in the non-preemptive
system, then the pure neutral subterms of btc are also in weak η-long form.

3.3 Lindley’s rewriting relation
The strong η-equivalence for sums makes lambda-term equivalence a difficult notion. For any
termm : A+B and well-typed context C[�], it dictates that C[m] ≈ δ(m,x1.C[x1], x2.C[x2]).
In his article [8], Sam Lindley breaks it down in four simpler equations, including in particular
the “weak”, non-local η-rule (where F represents a frame, that is a context of term-size
exactly 1):

m ≈ δ(m,x1.σ1 x1, x2.σ2 x2) (+.η)

F [δ(p, x1.t1, x2.t2)] ≈ δ(p, x1.F [t1], x2.F [t2]) (move-case)

δ

(
p,

x1.δ(p, y1.t1, y2.t2),
x2.δ(p, z1.u1, z2.u2)

)
≈ δ(p, x1.t1[y1 :=x1], x2.u2[z2 :=x2]) (repeated-guard)

δ(p, x1.t, x2.t)
x1,x2 /∈t≈ t (redundant-guard)

Lindley further refines the move-case equivalence into a less-local hoist-case rule. Writing
D for a frame that is either δ(p, x1.�, x2.t) or δ(p, x1.t, x2.�), D∗ for an arbitrary (possibly
empty) sequence of them, and H any frame that is not of this from, hoist-case is defined as:

H[D∗[δ(t, x1.t1, x2.t2)]]→ δ(t, x1.H[D∗[t1]], x2.H[D∗[t2]])

Lindley’s equivalence algorithm (Theorem 36, p. 13) proceeds in three steps: rewriting
terms in βηγE-normal forms (using the weak (+.η) on sums), then rewriting them in γ-normal
form, and finally using a decidable redundancy-eliminating equivalence relation called ∼. The
rewriting relation γ is defined as the closure of repeated-guard, redundant-guard (when read
left-to-right) and hoist-case; γE is a weak restriction of it defined below. The equivalence ∼
is the equivalence closure of the equivalence repeated-guard, redundant-guard, and move-case
restricted to D-frames – clauses of a sum elimination.
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We discuss redundancy elimination, that is aspects related to repeated-guard and redundant
guard, in Section 4, and focus here on explanation of the other rewriting processes (βηγE and
hoist-case) in logical terms. We show that multi-focused terms in (⇒)-normal form embed
into βηγEγ-normal forms. As we ignore redundancy elimination, this is modulo ∼.

The β and η rewriting rules are standard – for sums, this is the weak, local η-relation, and
not the strong η-equivalence. As explained in the previous subsection, embeddings of proof
terms valid in the non-preemptive system – as are (⇒)-normal forms – are in βη-normal
form. The rewriting γE is defined as the extrusion of a sum-elimination out of an elimination
context: � t | πi � | δ(�, x1.t, x2.t).

I Lemma 9. Terms for valid preemptive multi-focusing derivations are in γE-normal form.

This rigid structure of focused proofs is well-known, just as βη-normality or commuting
conversions are not the interesting points of Lindley’s work. The crux of the correspondence
is between the transformation to maximal proofs, computed by (⇒), and his γ-rewriting
relation. There is an interesting dichotomy:

Preemptive rewriting, which merges non-invertible phases, is where most of the work
happens from a logical point of view. Yet this transformation, on the embeddings of the
multi-focused proof terms, corresponds to the identity!
Reinversion, which is obvious logically as it only concerns invertible rules which commute
easily, corresponds to γ-rewriting on the embeddings.

Of course, preemptive rewriting is in fact crucial for γ-rewriting. It is the one that
determines upto where negative terms can move in the derivation, and in particular the
scrutinees of sum eliminations. Reinversion would not work without the first preemptive
rewriting step, and applying reinversion on a proof term that is not in preemptive-normal
form may not give a γ-normal embedding. Note that the proof of the last theorem in this
section makes essential use of the confluence of γ-rewriting, one of Lindley’s key results.

I Lemma 10. If t→ u, then btc =α buc.

I Lemma 11. If t . u, then btc →∗γ buc.

I Lemma 12. If u is in (⇒)-normal form, then for some u′ ≈loc u, bu′c is in γ-normal
form modulo ∼.

I Theorem 13 (γ-normal forms are embeddings of maximally-focused proofs). If btc →∗γ n
and n is γ-normal, then there are u ≈loc u

′ such that t⇒ u and bu′c ∼ n. In particular, u is
maximally multi-focused.

4 Redundancy elimination

In the previous section, we have glossed over the fact that Lindley’s γ-reduction also simplifies
redundant and duplicated sum-eliminations. Those simplifications are not implied by multi-
focusing – they are not justified by proof theory alone. Our understanding is that they
correspond to purity assumptions that are stronger than the natural equational theory of
focused proofs. On the other hand, starting from maximally multi-focused forms is essential
to being able to define those extra simplifications. We do so in this section, to obtain a
system that is completely equivalent to Lindley’s.
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We simply have to add the following simplifications on proof terms:
redundant-focus
let x̄, y, z = n̄, n′, n′ in p?t→s let x̄, y = n̄, n′ in p?t[z :=y]

redundant-guard

δ(x, x1.t, x2.t)
x1,x2 /∈t≈loc t

repeated-case-1
δ(x, x1.δ(x, y1.u1, y2.u2), x2.t2) ≈loc δ(x, x1.u1[y1 :=x1], x2.t2)

repeated-case-2
δ(x, x1.t1, x2.δ(x, y1.u1, y2.u2)) ≈loc δ(x, x1.y1, x2.u2[y2 :=x2])

While those rules are not implied by focusing, they are reasonable in a focused setting,
as they respect the phase separation. As the redundancy-elimination rules test for equality
of subterms, they have an unpleasant non-atomic aspect (repeated cases only test variables),
but this seems unavoidable to handle sum equivalence (Lindley [8], or Balat, Di Cosmo
and Fiore [2], have a similar test in their normal form judgments), and have also been
used previously in the multi-focusing literature, for other purposes; in Alexis Saurin’s PhD
thesis [10], an equality test is used to give a convenient ⊗/& permutation rule (p. 231).

I Definition 14. We define the relation t ⇒s u between proof terms of the (preemptive)
multi-focusing calculus as follows, where t1 is a preemptive normal form, t2 is a redundant-foci
normal form, and u0 is a (.)-normal form: t→∗ t1 →∗s t2 .∗ u0 ≈loc u

I Definition 15. We call the u in the target of the (⇒s) relation simplified maximal forms.

I Theorem 16 (Simplified maximal forms are γ-normal). Given a multi-focused term t, there
exists some u such that t⇒s u, btc →∗γ buc, and buc is in γ-normal form. This u is unique
modulo local equivalence.

I Corollary 17. Two multi-focused proof terms are extensionally equivalent if their maximally
multi-focused normal forms are locally equivalent (modulo redundancy elimination).

Related and Future work

Maximally multi-focused proofs were previously used to bridge the gap between sequent
calculus, as a rather versatile way of defining proof systems, and specialized proof structures
designed to minimize redundancy for a fixed logic. The original paper on multi-focusing [5]
demonstrated an isomorphism between maximal proofs and proof nets for a subset of linear
logic. In recent work [4], maximally multi-focused proof of a sequent calculus for first-order
logic have been shown isomorphic to expansion proofs, a compact description of first-order
classical proofs.

There are some recognized design choices in the land of equivalence-checking presentation
that can now be linked to design choices of focused system. For example, Altenkirch et al. [1]
proposed to make the syntax more canonical with respect to redundancy-elimination by using
a n-ary sum elimination construct, while Lindley prefers to quotient over local reorderings of
unary sum-eliminations. This sounds similar to the choice between higher-order focusing
([12]), where all invertible rules are applied at once, or quotienting of concrete proofs by
neg/neg permutations as used here.

When we started this work, we planned to also study the proof-term presentation of
preemptive rewriting, in a term language for sequent calculus. We have been collaborating
with Guillaume Munch-Maccagnoni to study the normal forms of an intuitionistic restriction
of System L, with sums. In this untyped calculus, syntactic phases appear that closely
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resemble a focusing discipline, and equivalence relations can be defined in a more uniform
way, thanks to the symmetric status of the (non)-invertible rules that “change the type of the
result” (terms, values) and those that only manipulate the environments (co-terms, stacks).

Conclusion

We propose a multi-focused calculus for intuitionistic logic in natural deduction, and establish
the canonicity of maximally multi-focused proofs by transposing the preemptive rewriting
technique [5] in our intuitionistic, natural deduction setting. By studying the computational
effect of preemptive rewriting on proof terms, we demonstrate the close correspondence with
the rewriting on lambda-terms with sums proposed by Lindley [8] to compute extensional
equivalence. Adding a notion of redundancy elimination to our multi-focused system makes
preemptive rewriting precisely equivalent to Lindley’s γ-rules. In particular, the resulting
canonical forms, simplified maximal proofs, capture extensional equality.
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