22 research outputs found

    Higher-order linearisability

    Get PDF
    Linearisability is a central notion for verifying concurrent libraries: a library is proven correct if its operational history can be rearranged into a sequential one that satisfies a given specification. Until now, linearisability has been examined for libraries in which method arguments and method results were of ground type. In this paper we extend linearisability to the general higher-order setting, where methods of arbitrary type can be passed as arguments and returned as values, and establish its soundness

    On the Learnability of Programming Language Semantics

    Get PDF
    This is the final version of the article. Available from ICE via the DOI in this record.Game semantics is a powerful method of semantic analysis for programming languages. It gives mathematically accurate models ("fully abstract") for a wide variety of programming languages. Game semantic models are combinatorial characterisations of all possible interactions between a term and its syntactic context. Because such interactions can be concretely represented as sets of sequences, it is possible to ask whether they can be learned from examples. Concretely, we are using long short-term memory neural nets (LSTM), a technique which proved effective in learning natural languages for automatic translation and text synthesis, to learn game-semantic models of sequential and concurrent versions of Idealised Algol (IA), which are algorithmically complex yet can be concisely described. We will measure how accurate the learned models are as a function of the degree of the term and the number of free variables involved. Finally, we will show how to use the learned model to perform latent semantic analysis between concurrent and sequential Idealised Algol

    Games, Mobile Processes, and Functions

    Get PDF
    Long version of a CSL'22 paperInternational audienceWe establish a tight connection between two models of the λ-calculus, namely Milner's encoding into the π-calculus (precisely, the Internal π-calculus), and operational game semantics (OGS). We first investigate the operational correspondence between the behaviours of the encoding provided by π and OGS. We do so for various LTSs: the standard LTS for π and a new 'concurrent' LTS for OGS; an 'output-prioritised' LTS for π and the standard alternating LTS for OGS. We then show that the equivalences induced on λ-terms by all these LTSs (for π and OGS) coincide. These connections allow us to transfer results and techniques between π and OGS. In particular we import up-to techniques from π onto OGS and we derive congruence and compositionality results for OGS from those of π. The study is illustrated for call-by-value; similar results hold for call-by-name

    Thin Games with Symmetry and Concurrent Hyland-Ong Games

    Get PDF
    We build a cartesian closed category, called Cho, based on event structures. It allows an interpretation of higher-order stateful concurrent programs that is refined and precise: on the one hand it is conservative with respect to standard Hyland-Ong games when interpreting purely functional programs as innocent strategies, while on the other hand it is much more expressive. The interpretation of programs constructs compositionally a representation of their execution that exhibits causal dependencies and remembers the points of non-deterministic branching.The construction is in two stages. First, we build a compact closed category Tcg. It is a variant of Rideau and Winskel's category CG, with the difference that games and strategies in Tcg are equipped with symmetry to express that certain events are essentially the same. This is analogous to the underlying category of AJM games enriching simple games with an equivalence relations on plays. Building on this category, we construct the cartesian closed category Cho as having as objects the standard arenas of Hyland-Ong games, with strategies, represented by certain events structures, playing on games with symmetry obtained as expanded forms of these arenas.To illustrate and give an operational light on these constructions, we interpret (a close variant of) Idealized Parallel Algol in Cho
    corecore