255,102 research outputs found

    RelBAC: Relation Based Access Control

    Get PDF
    TheWeb 2.0, GRID applications and, more recently, semantic desktop applications are bringing the Web to a situation where more and more data and metadata are shared and made available to large user groups. In this context, metadata may be tags or complex graph structures such as file system or web directories, or (lightweight) ontologies. In turn, users can themselves be tagged by certain properties, and can be organized in complex directory structures, very much in the same way as data. Things are further complicated by the highly unpredictable and autonomous dynamics of data, users, permissions and access control rules. In this paper we propose a new access control model and a logic, called RelBAC (for Relation Based Access Control) which allows us to deal with this novel scenario. The key idea, which differentiates RelBAC from the state of the art, e.g., Role Based Access Control (RBAC), is that permissions are modeled as relations between users and data, while access control rules are their instantiations on specific sets of users and objects. As such, access control rules are assigned an arity which allows a fine tuning of which users can access which data, and can evolve independently, according to the desires of the policy manager(s). Furthermore, the formalization of the RelBAC model as an Entity-Relationship (ER) model allows for its direct translation into Description Logics (DL). In turn, this allows us to reason, possibly at run time, about access control policies

    Collaborative management of web ontology data with flexible access control

    Get PDF
    The creation and management of ontology data on web sites (e.g. instance data that is used to annotate web pages) is important technical support for the growth of the semantic web. This study identifies some key issues for web ontology data management and describes an ontology data management system, called robinet, to perform the management. This paper presents the structure of the system and introduces a Web ontology data management model that enables a flexible access control mechanism. This model adds rules into the robinet system to utilize the semantics of ontology for controlling the access to ontology data. The implementation of the rule-based access control mechanism and related testing are also discussed. © 2009 Elsevier Ltd. All rights reserved

    A SEMANTIC BASED POLICY MANAGEMENT FRAMEWORK FOR CLOUD COMPUTING ENVIRONMENTS

    Get PDF
    Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access control in the cloud. Currently, users have to use diverse access control mechanisms to protect their data when stored on the cloud service providers (CSPs). Access control policies may be specified in different policy languages and heterogeneity of access policies pose significant problems.An ideal policy management system should be able to work with all data regardless of where they are stored. Semantic Web technologies when used for policy management, can help address the crucial issues of interoperability of heterogeneous CSPs. In this dissertation, we propose a semantic based policy management framework for cloud computing environments which consists of two main components, namely policy management and specification component and policy evolution component. In the policy management and specification component, we first introduce policy management as a service (PMaaS), a cloud based policy management framework that give cloud users a unified control point for specifying authorization policies, regardless of where the data is stored. Then, we present semantic based policy management framework which enables users to specify access control policies using semantic web technologies and helps address heterogeneity issues of cloud computing environments. We also model temporal constraints and restrictions in GTRBAC using OWL and show how ontologies can be used to specify temporal constraints. We present a proof of concept implementation of the proposed framework and provide some performance evaluation. In the policy evolution component, we propose to use role mining techniques to deal with policy evolution issues and present StateMiner, a heuristic algorithm to find an RBAC state as close as possible to both the deployed RBAC state and the optimal state. We also implement the proposed algorithm and perform some experiments to demonstrate its effectiveness

    Semantic-Based Access Control Mechanisms in Dynamic Environments

    Get PDF
    The appearance of dynamic distributed networks in early eighties of the last century has evoked technologies like pervasive systems, ubiquitous computing, ambient intelligence, and more recently, Internet of Things (IoT) to be developed. Moreover, sensing capabil- ities embedded in computing devices offer users the ability to share, retrieve, and update resources on anytime and anywhere basis. These resources (or data) constitute what is widely known as contextual information. In these systems, there is an association between a system and its environment and the system should always adapt to its ever-changing environment. This situation makes the Context-Based Access Control (CBAC) the method of choice for such environments. However, most traditional policy models do not address the issue of dynamic nature of dynamic distributed systems and are limited in addressing issues like adaptability, extensibility, and reasoning over security policies. We propose a security framework for dynamic distributed network domain that is based on semantic technologies. This framework presents a flexible and adaptable context-based access control authoriza- tion model for protecting dynamic distributed networks’ resources. We extend our secu- rity model to incorporate context delegation in context-based access control environments. We show that security mechanisms provided by the framework are sound and adhere to the least-privilege principle. We develop a prototype implementation of our framework and present the results to show that our framework correctly derives Context-Based au- thorization decision. Furthermore, we provide complexity analysis for the authorization framework in its response to the requests and contrast the complexity against possible op- timization that can be applied on the framework. Finally, we incorporate semantic-based obligation into our security framework. In phase I of our research, we design two lightweight Web Ontology Language (OWL) ontologies CTX-Lite and CBAC. CTX-Lite ontology serves as a core ontology for context handling, while CBAC ontology is used for modeling access control policy requirements. Based on the two OWL ontologies, we develop access authorization approach in which access decision is solely made based on the context of the request. We separate context operations from access authorization operations to reduce processing time for distributed networks’ devices. In phase II, we present two novel ontology-based context delegation ap- proaches. Monotonic context delegation, which adopts GRANT version of delegation, and non-monotonic for TRANSFER version of delegation. Our goal is to present context del- egation mechanisms that can be adopted by existing CBAC systems which do not provide delegation services. Phase III has two sub-phases, the first is to provide complexity anal- ysis of the authorization framework. The second sub-phase is dedicated to incorporating semantic-based obligation

    Extended role-based access control model for enterprise systems and web services

    Get PDF
    This thesis intends to develop application-level access control models to address several major security issues in enterprise environments. The first goal is to provide simple and efficient authorization specifications to reduce the complexity of security management. The second goal is to provide dynamic access control for Web service applications. The third goal is to provide an access control framework for Semantic Web services. In this thesis, an Authorization-Function-Based Role-based Access Control (FB-RBAC) model is proposed for controlling enterprise systems at the application level. The unique features of the proposed model are authorization-function-based access control and constraint-based finegrained access control. This model significantly simplifies the management of an access control system by adopting roles and authorization-functions in authorization specifications. An extension of FB-RBAC, Extended FB-RBAC (ERBAC), is applied to Web service applications. New features such as credential-based access control and dynamic role assignment are added to FB-RBAC in order to address user heterogeneity and dynamicity in the Web environment. The proposed ERBAC model is then extended to support Semantic Web services. Each component of the ERBAC model is described by security ontologies. These correlated security ontologies are integrated with Semantic Web services to form a complete ontology network. Ontology-based role assignment is facilitated so that security information can be queries and discovered through a network of ontologies
    • …
    corecore