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Abstract

The creation and management of ontology data on web sites (e.g. instance data that is used to annotate

web pages) is important technical support for the growth of the semantic web. This study identifies some

key issues for web ontology data management and describes an ontology data management system, called

robinet, to perform the management. This paper presents the structure of the system and introduces a Web

ontology data management model that enables a flexible access control mechanism. This model adds rules

into the robinet system to utilise the semantics of ontology for controlling the access to ontology data. The

implementation of the rule-based access control mechanism and related testing are also discussed.
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1. Introduction

Ontologies have been recognized as an essential layer of the emerging semantic web [5, 20]. As a result,

the abundance of ontology related information is critical to the maturity of the semantic web. Through the

semantic web search engine Swoogle [11], we have found that there are plenty of ontology schemas (which

refer to classes, properties and their relations, such as “TBox” in description logics [4]) available over the

web. By contrast, ontology data or instance data (which refer to instances of classes or individuals such

as those contained in “ABox”) do not seem to be very abundant. One of the barriers for the problem is

that it is not easy for ordinary users to create ontology data due to the complexity of ontology languages

compared to the creation of normal web pages. Several tools have been developed to assist the generation of

ontologies with ease (e.g., Protégé [17], OntoEdit [37], SWOOP [26]), but most are not web-based tools and

are not often used by ontology experts due to their complexity. In addition, while ontology schemas, which

usually reflect the domain knowledge, are relatively stable once developed, the ontology data is often prone
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to changes in a dynamic environment. Therefore, it may not be convenient to use offline tools to maintain

the ontology data.

Recently, wikis1 have been studied as an alternative way to create and maintain ontology data on the web.

The basic idea of most wiki systems is to let web users create and maintain web contents in a collaborative

way. Semantic wiki systems additionally introduce semantic web standards (RDF/RDFS [29, 6], OWL

[30]) and techniques to ordinary wiki systems, trying to ensure the collaborated contents incorporate more

semantics for computers to understand and process. However, when collaboration is introduced into the

management of web ontology data, some particular issues need to be tackled properly, such as the reliability

of the data and the security of the management systems. Adequate access control mechanisms are often

needed to handle these issues.

This paper discusses the collaborative management of web ontology data with a focus on the enforcement

of a flexible access control mechanism. It first analyzes the functions that are desirable for a management

system. Accordingly, some key issues such as usability, data reliability and data quality are identified. A

web ontology data management system framework (on which the robinet system is based) is described to

accommodate these desirable functions. This paper also proposes an ontology data management model that

underlies the system framework and discusses the implementation of this model. In particular, the flexible

access control mechanism that utilizes both the rules and embedded semantics of ontology data is presented.

Discussions on the comparisons of this design paradigm and other paradigms for web content management

are also given.

The rest of the paper is organized as follows. Section 2 reviews related work in the fields of semantic

wikis, data-intensive applications, and access control over the web. Section 3 analyzes the desirable functions

for managing ontology data and presents the framework of the proposed web ontology data management

system. Section 4 introduces a web ontology data management model that enables the flexible access control

mechanism. Section 5 presents the implementation details of the model including some key operational

functions and the access control mechanism. Section 6 discusses some main advantages and limitations of

the proposed web ontology data management system. Section 7 concludes the paper and proposes future

work.

2. Related Work

Our research is related to the topics of wiki systems, data-intensive web applications and access control

over the web. This section first reviews the general ideas of wiki systems and the development of typical

semantic wiki systems. Related work in data-intensive web applications and access control over the web is

also discussed.

1http://en.wikipedia.org/wiki/Wiki
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2.1. Semantic Wikis

Most wiki systems are designed to let web users create and maintain web contents in a collaborative

way. Most existing systems provide convenient functions so that an ordinary user with little knowledge of

web page design and creation can contribute contents to the web. Wikipedia2, the most well-known online

collaborative encyclopedia on the web, is a successful application of wiki systems. However, most contents

maintained in current wiki systems are semi-structured web pages only for web users to search and read.

The facts and knowledge expressed in those web pages lack proper syntax and semantics for computers to

process.

In order to deal with this issue, semantic wiki systems have emerged to introduce semantic web standards

(e.g., RDF/RDFS , OWL) and techniques to the common wiki systems, and enable the collaborated contents

to include more semantics for computers to understand and process.

Platypus Wiki [38] is an extended wiki system that allows users to input RDF and OWL statements

in addition to plain text. How the system helps users to create such semantic statements has not been

discussed well in [38]. Rhizome [35] is an application stack that lets developers build Web applications

which use familiar technology such as XML. It can be used to develop a wiki-like application that lets the

user create arbitrary RDF resources and the application logic for presenting and interacting with them.

Several custom text formats (e.g., ZML, RxML) are used in the system to write semantic content. The use

of those custom text formats may help experienced users to generate semantic contents effectively and allow

systems to process them efficiently, but it can also raise barriers for ordinary users.

Powl [1] is a web based platform that provides a collaborative environment for semantic web development.

OntoWiki [2], which is built upon Powl, employs web 2.0 techniques to bring more features in authoring,

editing, and searching semantic contents. Unlike Powl and OntoWiki, which concentrate more on ontology

editing, Semantic Wikipedia [41], as an extension to the popular MediaWiki software, brings semantics to

texts and links in its wiki system. These systems usually have more sophisticated user interfaces.

There exist other semantic wiki systems (e.g., WikSAR [3], COW [13], WikiFactory [22]) which provide

more features such as integration with desktops [3], typical query mechanisms [13], domain-oriented design

[22], and so on. The investigation shows that most wiki systems do not have a sophisticated mechanism

to control the operations on the contents. The lack of this mechanism may reflect a particular feature of

wikis, that is, an open access for a community. However, while the use of wikis has been widespread from

loosely organized web communities to well organized companies, it is desirable that a flexible access control

mechanism be an option for controlling the operations of wiki contents in certain situations.

2http://www.wikipedia.org
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2.2. Data-intensive Web Applications

The research in data-intensive web development is motivated by the need to make a large volume of

data available on web sites for people to access. Various tools and approaches have been proposed in this

research area [14].

Araneus [31], as a web-based management system, is able to manage both structured and semi-structured

data in a database style. It supports three main classes of applications (or operations) in the spirit of

databases, which are “queries”, “views”, and “updates”. Restrictions on these operations are not yet well

discussed. Strudel [12] is a system aimed at separating the management of a web site’s data, specification

of its contents and structure, and presentation of its pages. It provides a declarative query language and a

template language to achieve this goal. Autoweb [15] is another system that relies on a conceptual model

and a tool environment to support web site development. All these systems employ database and/or XML

techniques to perform conceptual modeling and use particular languages for specification and transformation.

Mostly, they follow a centralized approach to generate, control and maintain the data in web applications.

As a result, the generated web sites to most users are read-only online data repositories that allow limited

interaction.

OntoWebber [24] tries to build a data-intensive web site not only by explicit modeling of different aspects

of the web site, but also by using ontologies as the foundation for web site design. The management of data in

the system (e.g., site maintenance modeling) still adopts a centralized mode of operation. An administrator

is responsible for almost all the content maintenance tasks, and other users are just content consumers of

the web site.

Recently, the need for interaction between data-intensive web applications and their users has been

addressed in [23], which proposes an “operation model” in addition to modeling contents, navigation and

presentation. XML techniques are used to help generate an operation layer in the application from the

operation model. However, the paper does not provide more information on how such operations are

restricted in the system to prevent unwanted operations to the contents from unauthorized users.

2.3. Access Control and Security over the Web

Since this study tackles privacy and security issues in managing web ontology data, it is related to the

topic of access control.

One of the most well-known approaches to access control is the use of a family of role-based access

control (RBAC) models [34], in which different permissions are associated with roles and users are assigned

to appropriate roles. Due to its simplicity and flexibility, this approach has been used in modern operating

systems and database management systems [34]. Since roles are normally predefined with different per-

missions, permissions are fixed once a user is assigned a given role. It is then difficult to adjust the user’s

permissions unless the user is assigned to a different role, or the role is modified directly. Therefore, RBAC
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models may be used well in situations where the roles have already been clearly defined and are stable for

a period of time. In addition, they do not have any inherent support for fine grained authorization [33].

Along with RBAC models, other access control approaches have been studied in the database research

community [8]. One approach is to use views as the basis for access control. In particular, authorization-

transparent access control models using views with validity inference have been proposed [33], which allow

fine grained access control levels other than the level of tables and columns. The use of an access matrix

model [19] is another approach to access control in databases. Since these approaches are studied mainly in

databases, they normally require that controlled data is structured into tables with certain normalization.

Policy-based approaches are another family of methods increasingly used for automated system manage-

ment [39]. Several policy languages and frameworks, such as Ponder [10] , Rei [25], KAoS [40], and extended

XACML [9], have been proposed, and some of them have employed semantic web technologies (i.e., ontology,

description logics (DLs), and rules) to model, represent and inference on policies.

There are some systems that have their own policy/rule languages for access control and privacy issues.

For example, the Semantic e-Wallet project [16] uses rules represented in RDF-S/OWL and translates them

into a format that can be processed by JESS, a Java-based rule engine. One of its objectives is to allow

users to control accessibility of their contextual information to selected users.

In summary, RBAC models are simple to implement, but may not be applicable for dynamic situations

that require fine grained access controls. These approaches to access control in databases may be efficient in

dealing with a large volume of data, but they usually require structured data. It is possible to either use a

general existing policy language and its framework or to create a new special mechanism to handle the issue

of access control for a web ontology data management system. We prefer to create a special mechanism

because using a general existing policy language/framework often requires additional modeling work that

bridges the domain of the system and the used policy language/framework. This may make the policies less

intuitive and hard to understand. Therefore, further optimization of them may not be possible. Compared

to role-based models, our mechanism is more adapted to dynamic situations. In addition, it allows the

achievement of fine grained access control in an incremental way without the requirement of database-like

structured data.

3. Design of the Web ontology Data Management System

3.1. Desirable Functions for Managing Web Ontology Data

This study identifies four sets of desirable functions that could be required for managing web ontology

data and provides some hints towards the design and development of more extensible semantic wiki systems.

Authentication and access control (A). This set of functions deals with the identification of the users

and the control of their operations on the web ontology data. Existing semantic wiki systems seem to

lack a sophisticated mechanism to implement this type of function. The lack of this mechanism affects the
5



ability to trust the contents from people, which hinders their use in some serious situations. Two interesting

examples are:

(1) an IT company wants to have the information of its employees, divisions, projects, documents and so

on managed collaboratively through a web based platform but hopes to maintain a certain level of

security and privacy;

(2) a department at a university requires that its web site can be updated by its staff, professors and

students so that the web site reflects the latest information about professors (contacts, publications,

courses to be offered, etc), students (contacts, courses enrolled in) and other resources.

Browsing, creating and editing (B). This set of functions involves the provision of facilities and interfaces

for browsing the ontology schema and data, creating and updating the data as required. These functions are

actually the most fundamental functions for any type of semantic wikis. Since the formats of ontology data

(e.g., OWL) are not intuitive to ordinary users, it is desirable to design these functions with more intuitive

and interactive features.

Search and Query (S). Obviously, these functions are designed to retrieve created ontology data from

web sites in response to the information need of the users. Generally, the search function may refer to some

form of query upon free/unstructured texts such as the search provided by web search engines. In contrast,

the query function is usually associated with the structured data (i.e., SQL for the relational databases).

Since web ontology data is a type of semi-structured data, it is desirable to have both search and query

functions in semantic wikis.

Data quality control (D). Generally, data quality control can be achieved in non-technical ways (e.g.,

training the authors to publish high quality data, or establishing peer review mechanisms to improve data

quality). In addition to these non-technical ways, some technical functions can also help ensure that the

overall web ontology data contributed by users is of accepted quality. For example, a common issue of data

quality is that the duplicated data may be generated in a web environment. A proper use of deduplication

techniques can help to deal with this data quality issue.

3.2. The Robinet System Framework

This sub-section overviews a framework based on which the prototype system “robinet” is developed.

It shows the general structure of the framework, the components (and their relationships) that reflect the

desirable functions previously discussed. The robinet system is implemented in Java.

Figure 1 illustrates the general structure of the framework and the interaction between the framework

and its managed web ontology data and users. At its lowest layer, the data layer, access rules and indexed

data are stored in addition to the managed ontology data. Above the data layer is the API layer, which is

made up of low level packages and the APIs they offer. Based on these APIs, a supporting layer provides

customized tools which are used to build various operations, data models and functions for presentation.
6



Figure 1: A framework for the prototype system robinet

The four sets of desirable functions (A, B, S, D) mentioned in Section 3.1 are reflected in the illustrated

framework. Basic and common functions such as browsing, creating and editing are implemented through

certain operations. These operations are restricted by an “access controller”, which relies on an “access

rule engine” to make decisions to accept/reject operations, avoiding malicious editing or sensitive data

leaking in certain situations. The “indexer and searcher” and their related components are designed for the

implementation of the search functions on ontology data. The “duplicate analyzer” is responsible for the

detection of duplicated ontology data, thus helping improve the data quality. This paper mainly discusses

in detail the first two functions in the framework, which are common operations (browsing, creating and

editing) and flexible access control. Discussion on the other functions can be found in [44]. In addition, the

methods that can be used to implement the “duplicate analyzer” have been proposed in [42][43].

Besides these functions, the following main principles are also considered in developing the robinet system.

Modularity. This has become a common practice in software development. Guided by this principle, we

try to divide the system into several loosely coupled modules and group them into layers, as revealed by

7



Figure 1. This principle allows us to modify or update a module with little interference to other modules.

Friendly URLs. Unlike some web sites that use very long and strange URLs for their web contents, wiki

systems often use URLs that are both user and search engine friendly. This feature has become a trend

nowadays. For the semantic web, this is not just a fashion, as a friendly URL is often a permanent URL

that is used to identify resources on the semantic web. Therefore, the robinet system uses friendly URLs,

particularly for concepts and instances. Section 5.1 will illustrate how we follow this principle.

Ease of use. The robinet system aims to provide enough facilities to make ordinary users feel comfortable

when they use it.

Before describing the detailed implementation of the functions and the demonstration of the principles,

we first present the underlying model for web ontology data management.

4. Web Ontology Data Management Model

We provide a web ontology data management model in order to impose flexible access control of the data.

At a certain level of abstraction, a web ontology data management system can be modeled as Λ(C, O, P, R)

where C is the set of data instances of ontology concepts (classes), O the set of operations on semantic

contents, P the set of different types of users who participate in the system by contributing and sharing

contents through the set of operations O, and R the set of rules that control the operations in O performed

by participants P on the semantic contents C. Formally, the set of R is a set of mappings from P ×C to O.

4.1. Semantic Contents

Semantic contents are composed of data instances of ontology concepts (classes). Before semantic con-

tents are created and managed, we need to have one or more ontology schemas containing proper concepts

and relations for a given domain. Therefore, a proper ontology schema is an important prerequisite. A well

modeled ontology schema casts rich semantics to the ontology data, which helps users to understand the

ontology data well. Ontology schema modeling can be conducted through ontology engineering [36]. There

exist several supporting tools (e.g., Protégé [17]) and approaches (such as ontology learning [28]) for this

task. This study assumes that proper ontology schemas are available for annotating semantic contents.

To assist further discussion in the following sections, we give an example of some fragments of ontology

schema reflecting the domain of company information management as shown in Figure 2 (referred to as

Scompany in subsequent sections). They are defined with the notations from Description Logics. Given this

example, an instance of the concept Developer can be denoted as Developer(john), where john identifies

the instance. All these instances then form the semantic contents for the given domain or the specific

application area.
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4.2. Participants

Since participants represent the set of different types of users of the system, they can be modeled into

ontology schemas in terms of types and relations. In particular, for some domains, they form an essential

part that is closely related to other aspects of the domains. For example, in the ontology schema Scompany

that describes the structures of the company and its resources, participants are mostly employees, whose

types and relations are already modeled into Scompany.

When participants are modeled in ontology schemas (whether in domain ontologies or in separate on-

tologies) and these ontology schemas form the basic schemas for this system, the instances of different types

of participants actually become the contents that are manageable through the system. For example, while

John is a participant with the role of Developer, the instance john that represents John becomes semantic

contents editor under management.

Company ⊑ Organization

Division ⊑ ∃partOf.Organization

Group ⊑ ∃partOf.Division ⊓ ∃member.Person

Employee ⊑ Person ⊓ ∃workFor.Company

Manager ⊑ Employee

ProjectManager ⊑ Manager ⊓ ∃manage.Project

FinancialStaff ⊑ Employee

Developer ⊑ Employee ⊓ ∃memberOf.Group

Report ⊑ Document

ProjectDocument ⊑ Document ⊓ ∃belongTo.Project

ProjectReport ⊑ Report⊓∃belongTo.Project

Specification ⊑ ProjectDocument

Figure 2: Fragments of an ontology schema reflecting the domain of company information management

4.3. Operations

Operations form the interaction between the semantic contents and the participants. There are four

basic operations, “create”, “edit”, “delete”, and “view”, in web ontology instances. For instance, the “view”

operation can be regarded as an operation that retrieves an instance and presents it to users in a specificway.

For different applications or domains, concrete meanings will be associated with them. In addition, there

can be more specific operations with typical semantics. For example, in a blog application, we may have

a “comment” operation on the articles published by bloggers. In the domain of company information

management, we may have a “change salary” operation on the instance of employees. Such operations can

be viewed as special types of the four basic operations. In a complex system where many different types of

specific operations are developed, it is desirable to use an “operation ontology” to depict them.
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4.4. Rules

Rules are used to control the operations of participants on the semantic contents. As mentioned before,

a rule defines a mapping from P × C to O. Informally, rules can be described using intuitive “if-then”

statements. For example, a simple rule may be informally described as “if a participant is with the type of

Administrator, then he/she can perform any operation on any instance”, while a more complex rule may

look like “if a participant is of type of Developer, then he/she can view and edit specifications that belong

to the project he/she works on”. Unlike operations and participants, rules are not modeled into ontology

schemas in our method. This is partly because ontology languages, which are based on description logics,

have several limitations [32]. Adding a rule layer on top of ontology is a common practice and efforts have

been made to define rule languages for the semantic web such as SWRL [21]. By using rules, it is possible

to use logic programming (LP) combined with description logics [18] to perform reasoning. This study uses

Prolog to implement the rule inference, which is discussed in detail later.

The following are some examples of rules to control operations in regard to Scompany.
3

Employee(?x) ⇒ edit(?x, ?x) (1)

Developer(?x) ∧ (∃y)workOn(?x, y) ⇒ create(?x, Specification) (2)

Developer(?x) ∧ Specification(?y) ∧ belongTo(?y, ?z) ∧ workOn(?x, ?z)

⇒ edit(?x, ?y) (3)

These rules are expressed in an intuitive way for demonstration. For example, Rule (1) states that any

employee can edit contents of his/her instance. Rule (3) states that a developer can edit a specification

if he/she works on the project to which the specification belongs. During implementation, these rules are

recoded using Prolog clauses, which will be discussed later.

There are two types of rules: permission and rejection (similar to the policy constructs “rights” and

“prohibitions” in some policy languages [10, 25]). For example, Rule (4) is a rejection rule that does not

allow the creation of any instances of Employee by developers.

Developer(?x) ⇒ ¬create(?x, Employee) (4)

We are able to define very flexible restrictions on operations thanks to the reasoning capabilities of

ontologies together with rules. For example, given the ontology schema Scompany, we can obtain Rule (5)

indicating that a developer is an employee. Then we know that a developer can also edit his/her own

instance using Rule (1).

Developer(?x) ⇒ Employee(?x) (5)

3edit(?x, ?x) may look somewhat confusing. We explain that the first ?x indicates the employee described by the instance
while the second ?x represents the contents of the instance.
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In summary, rules provide a flexible way to impose access control in the model by using the rich semantics

provided by the underlying ontology. However, when more rules are added, the relationships between these

rules may become complicated. Rule conflict issues may arise. They will be addressed in the implementation

of the rule engine, presented later in the paper.

5. Model Implementation

This section discusses the implementation of the model in terms of some desirable key operations and

the access control mechanism.

5.1. Key Operations

5.1.1. Ontology Schema Browsing

Browsing ontology schemas helps ordinary users become familiar with the domain that the ontology

schemas are intended to describe. It is clear that a user without an adequate understanding of the domain

ontology schema may not be able to proceed and create correct instances for the domain. Some ontology

specific editing tools (e.g., Protégé [17]) provide graphical user interfaces that allow users to view the domain

ontology schemas intuitively. But this requires users to install additional software. In addition, since such

editing tools are mostly designed for domain experts or certain professionals to develop ontologies in a

desktop environment, it may not be as easy to use as web browsers which are commonly used by ordinary

users nowadays. Therefore, it is desirable to have a web-based browsing mechanism so that users can use

any type of browser to learn the domain ontology schemas before they are ready to contribute information.

Initially, the robinet system requires a setup process such as loading the ontology schemas for browsing.

Once the initial setup is done, users can view the ontology schemas using common browsers. Figure 3 (a)

shows the web interface which renders the classes (concepts) in an ontology schema about the academic

domain in a tree structure according to their ‘is-a’ relationship. Users can get familiar with these classes

and their relations by exploring this tree. In addition, if they are interested in a particular class, they can

click it in the tree to see detailed comments (if supplied by the schema makers) on this class in the right-hand

side panel. If further information is needed about this class, users can follow the link in the right-hand side

panel to view such information.

In the robinet system, the URLs used to identify their corresponding resources (classes or properties) are

quite friendly to both end users and other semantic web applications which may run on other computers in

the network. For example, while the URLs http://decide/robinet/onto/univ/ and

http://decide/robinet/onto/univ/Article lead to human-readable web pages about the ontology schema

“univ” and the its class “Article” respectively, the URLs http://decide/robinet/onto/univand http://decide/robinet/

identify the original OWL formatted versions which are more machine-understandable. Therefore, other se-

mantic web applications can use such URLs to remotely import the interested ontology schemas into their
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Figure 3: The interfaces for browsing domain ontology schema and editing ontology data

application space. This mechanism could help the development of semantic web applications and intelligent

software agents over the web.

5.1.2. Ontology Data Creation and Editing

Once users have become familiar with the ontology schemas by browsing them, they can create new

ontology data through the functions of the system. Currently, two main types of functions (new data

creation and related data creation) have been implemented.

New data creation enables users to create completely new ontology data. For example, a staff member

who wants to publish some data about their recent publications, can choose the class that is appropriate

for the data. They may choose the class “Article” in the ontology schema “univ” and use it as the type

for the new instance created to annotate a paper. Figure 3 (b) demonstrates the interface used for this

operation. A unique ID is required from the user to form the URL used to identify this publication.

Figure 4 (a) shows the created instance in a human-readable view, which can be accessed through the

URL generated, based on the user-supplied ID. Actually, this view is generated by the system from the OWL

formatted ontology data which can also be accessed through a browser, as shown in Figure 4 (b). Obviously,

the actual ontology data is not easy for ordinary users to read. Computers, on the other hand, are good at

processing such data. Since they are aligned with the given ontology schema, well designed semantic web

applications that are aware of this domain ontology can use them to perform further complicated tasks such

as classification and reasoning.

After instances are created, they can be further edited by clicking the “Edit” button, as shown in Figure

4 (a).
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Figure 4: The created instance of the class Article. (a) The instance shown in a human readable view; (b) The actual ontology
data created by the user. (c) The instance after related instances are created and automatically linked with it.

Related data creation allows users to create new ontology data which is related to the existing data.

First, we discuss why we need this type of function. The function relies on the existence of a type of

properties, called “object properties”, which link one instance to another with a particular semantic relation

[30]. It offers the functionality similar to hyperlinks which are used over the current web to link different web

pages. The importance of hyperlinks is obvious. Without them, the web could not form and grow into the

huge connected information repository, nor could modern search engines build a large information base and

rank the related information with certain measurements such as authority or popularity [27][7]. Similarly, it

is also very important to use object properties to link instances. The resulting relational feature in ontology

data could be even more essential than using normal hyperlinks in web pages, as it delivers more specific

semantic meanings than a normal hyperlink mechanism. Therefore, it is highly desirable to enable users to

create ontology data which is linked to other ontology data via certain object properties.

This system then provides an easy way to create related new ontology data based on existing ontology

data. As already explained, when a completely new instance is created, all property values are initially

supplied as strings by users, regardless of the types of properties. However, after the instance is created, the

system will detect whether a property value should be a certain data type or an instance according to the

ontology schema. For those that should be instances via given object properties, it provides the function to

create them. As shown in Figure 4 (a), those property values that should be instances have associated with

question marks. By clicking a question mark, users will be presented with an instance creation interface

which is similar to the one shown in Figure 3 (b). After creating these new instances, they are related to
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the existing instance with the specified object properties. Figure 4 (c) shows the web pages of the existing

instance after its related instances are created. The question marks have disappeared. Instead, those object

property values are linked to the web pages of their related instances.

5.2. Implementation of Access Control

The functionality of access control in the system is mainly controlled by the rule engine, which has been

implemented with Prolog. The knowledge reflected by the domain ontology schema is input into a Prolog

database for reasoning. For example, the “is-a” relation between the concepts Developer and Employee is

asserted as a clause:

c Developer(X) : −c Employee(X). (6)

If a new instance of Developer “John” is created, it will be asserted as a fact:

c Developer(i John). (7)

As mentioned before, rules are re-coded into Prolog clauses and their priorities are also considered. The
head of the rule clause is a 5-arity functor “accept” or “reject”, representing the two types of rules. The
five arities are (P, O, C, Pr, PropSet), where P, O, C represent participants, operations, semantic contents
(ontology data) respectively, Pr represents the priority of the rule, and PropSet represents the affected
property set associated with the targeted ontology data. For example, the rule clause (8) means that a
developer can edit all the properties (indicated as “all” in the clause) of a specification when he/she works
on the project to which the specification belongs. This actually implements Rule (3). This rule has a priority
of 2 and can be overridden by rules with priorities higher than 2.

accept(P, edit, C, 2, all) : −

c Developer(P ), c Specification(C), p belongTo(C, T1), p workOn(P, T1). (8)

5.2.1. Rule Priority

If a large number of rules is defined to control operations, then conflicts between rules can hardly be

avoided. Rule priority is used to partly resolve rule conflicting. As shown in the “accept/reject” functor, we

assign a number between 0 and 10 to Pr as the priority to each rule clause. When two rules are found to

conflict with each other, the rule with higher priority will override the other. For example, Rule (9) states

that any operations on any contents are rejected with the priority of 0, the lowest priority, while Rule (10)

accepts the “view” operation on any contents with the priority of 1. Therefore, the “view” operation will

be always acceptable, despite of the presence of Rule (9).

reject(P, O, C, 0, all) : −operation(O), content(C). (9)

accept(P, view, C, 1, all) : −content(C). (10)

Sometimes, conflicts may still exist when two conflicted rules are given the same priority. When such

conflicts are detected, the system will report the issue and discontinue the operations. In this case, human
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intervention is required to resolve conflicting rules before any permissions may be granted to the requested

operations.

5.2.2. Property Level Access Control

Property level access control allows access control to be imposed at the property level, which is more

fine-granular and flexible. The requirement of this level of access control is common in practice. For example,

it is desirable that the salary (or other sensitive information) of an employee is only viewable by certain

participants including the employee and financial staff, while the basic information of the employee can be

viewable by all participants. In the robinet system, this can be implemented using Rules (11) and (12). Both

of the rules have the same priority level, therefore, they cannot override each other. This could lead to a

conflict if property level access control is not considered. However, when property level access is considered,

the set of accepted properties associated with the instance will be computed through the values of PropSet

from the effective rules. So in this example, the value of property hasSalary associated with the Employee

instance is only viewable by the employee himself and the financial staff while other property values can be

viewed publicly, as shown in Figure 5.

accept(P, view, C, 1, all) : −

c Employee(C). (11)

reject(P, view, C, 1, [p hasSalary]) : −

c Employee(C), P\ = C, not(c FinancialStaff(P )). (12)

5.2.3. Rule Coverage and Engineering

Obviously, it is very difficult to create a complete rule set to cover all operations properly, according

to a given security requirement, if the domain is very complex. Sometimes, even the security requirement

itself may not initially be very clear. In this case, we need to implement rule engineering to approach the

ultimate security goal.

We can define a basic rule set with relatively low priority first and then add new rules with higher priority

to override some old rules, as shown by Rules (9) and (10). A re-organization of these rules (both old and

new) should also be allowed whenever it is necessary. Through this continuing process, we can finally meet

the desired security requirement.

According to different situations, we can provide two approaches.

(1) For a situation when security is considered very seriously, we start with a set of very rigid rules and

then adjust them thoughtfully by adding new permission rules or relaxing exiting rejection rules.

(2) In a very casual situation, we can start with rules that permit almost every operations. More rejection

rules can be added in as more restrictions are needed.
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Figure 5: Different views of property values of the instance controlled by rules (a)hasSalary is viewable by Employee John
himself; (b)hasSalary is not viewable by Developer Tom.

A Prolog interpreter “JLog”4 is used to interpret and infer on the database of facts and clauses. After

the rule set is tested and validated through rule engineering, access permissions can be consulted through

the Prolog interpreter.

6. Further Discussion

The advantages and limitations of the proposed web ontology data management system in comparison

with semantic wiki systems and conventional web based content management systems is discussed below.

The main advantage of the web ontology data management system over semantic wiki systems is the

added flexible access control. As we have already indicated, reliability and security are problems of existing

semantic wiki systems. Our system uses rules to semantically restrict operations on contents according to

4http://jlogic.sourceforge.net/
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different participants. The enforcement of the rules may help protect certain information from unwanted

editing. In addition, by editing rules, we can achieve different levels of security with greater flexibility.

Conventional web and database techniques can be used to implement a similar system to perform content

management, which is a common solution nowadays. Compared to this solution, to develop a content

management system for a certain domain using our approach, the major tasks include:

(1) to model the domain ontology schemas; and

(2) to define rules restricting operations on data.

Once these tasks are performed successfully, the system is almost ready. Less programming tasks are

involved. In addition, while conventional content management systems require additional approaches to turn

their managed contents into formats conforming to semantic web standards, our system directly manages

semantic contents. Therefore, it is more compatible with the emerging semantic web.

We have tested the robinet system and asked a group of people to use and evaluate the system. An

ontology schema describing “student”, “staff”, and so forth in the university context was used in the system

for the evaluation. The overall result of the initial evaluation is satisfactory. It reveals that with a properly

developed domain ontology schema, the system can efficiently help users to publish and manage web ontology

data. In addition, by simply editing rules for access control, different access requirements can be flexibly

met. We are currently planning more detailed and systematic evaluations to gather more feedback for the

system. A test version is deployed at the address http://decide.it.uts.edu.au/robinet.

Some limitations to our system may exist. For our system to work properly, basic ontology schemas

for the system need to be well developed so that they can reflect the domains appropriately, as the system

currently does not allow users to edit the ontology schemas directly. This limitation is added to help

simplify the modeling of access control because it becomes quite complicated to do this when ontology

schemas themselves are constantly changing due to user modification. Further studies will be conducted to

deal with the situation when ontology schemas are allowed to directly change. In addition, while the rule

mechanism for access control can give us a lot of flexibility, it also implies that efforts need to be made to

create a proper set of rules for the necessary security requirement. Initially, this study was motivated by

certain scenarios mentioned earlier in the paper (e.g., IT company, university). The focus of the study is on

access control in a limited or bounded collaborative environment. When placing the access control model

into an open environment, the scalability of the model and the implementation may require further study.

7. Conclusions and Future Work

This paper discussed the collaborative management of web ontology data with a focus on the enforcement

of a flexible access control mechanism. It analyzed the desirable functions that a semantic wiki-like system

should possess to manage data. A system framework (on which the robinet system is based) was presented
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to illustrate the design of such a system and the implementation of the key functions was discussed. In

particular, a web ontology data management model that enables a flexible access control mechanism for

the system was proposed and details of its rule-based implementation were presented. Our initial tests

and evaluation have shown the advantages of the proposed web ontology data management system: flexible

access control and relative ease of use as a platform to manage web ontology data.

Our future work includes further improvement of the system interaction by using more advanced web

techniques and tighter and better integration with other function modules, for example, the function for

data quality control. In addition, the limitations of the current system, as discussed in the paper, will be

dealt with in a future study. How to utilize the managed ontology data to provide certain services through

web applications or agents will also be studied.
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