133 research outputs found

    Scalable System Design for Covert MIMO Communications

    Get PDF
    In modern communication systems, bandwidth is a limited commodity. Bandwidth efficient systems are needed to meet the demands of the ever-increasing amount of data that users share. Of particular interest is the U.S. Military, where high-resolution pictures and video are used and shared. In these environments, covert communications are necessary while still providing high data rates. The promise of multi-antenna systems providing higher data rates has been shown on a small scale, but limitations in hardware prevent large systems from being implemented

    CELLULAR-ENABLED MACHINE TYPE COMMUNICATIONS: RECENT TECHNOLOGIES AND COGNITIVE RADIO APPROACHES

    Get PDF
    The scarcity of bandwidth has always been the main obstacle for providing reliable high data-rate wireless links, which are in great demand to accommodate nowadays and immediate future wireless applications. In addition, recent reports have showed inefficient usage and under-utilization of the available bandwidth. Cognitive radio (CR) has recently emerged as a promising solution to enhance the spectrum utilization, where it offers the ability for unlicensed users to access the licensed spectrum opportunistically. By allowing opportunistic spectrum access which is the main concept for the interweave network model, the overall spectrum utilization can be improved. This requires cognitive radio networks (CRNs) to consider the spectrum sensing and monitoring as an essential enabling process for the interweave network model. Machine-to-machine (M2M) communication, which is the basic enabler for the Internet-of-Things (IoT), has emerged to be a key element in future networks. Machines are expected to communicate with each other exchanging information and data without human intervention. The ultimate objective of M2M communications is to construct comprehensive connections among all machines distributed over an extensive coverage area. Due to the radical change in the number of users, the network has to carefully utilize the available resources in order to maintain reasonable quality-of-service (QoS). Generally, one of the most important resources in wireless communications is the frequency spectrum. To utilize the frequency spectrum in IoT environment, it can be argued that cognitive radio concept is a possible solution from the cost and performance perspectives. Thus, supporting numerous number of machines is possible by employing dual-mode base stations which can apply cognitive radio concept in addition to the legacy licensed frequency assignment. In this thesis, a detailed review of the state of the art related to the application of spectrum sensing in CR communications is considered. We present the latest advances related to the implementation of the legacy spectrum sensing approaches. We also address the implementation challenges for cognitive radios in the direction of spectrum sensing and monitoring. We propose a novel algorithm to solve the reduced throughput issue due to the scheduled spectrum sensing and monitoring. Further, two new architectures are considered to significantly reduce the power consumption required by the CR to enable wideband sensing. Both systems rely on the 1-bit quantization at the receiver side. The system performance is analytically investigated and simulated. Also, complexity and power consumption are investigated and studied. Furthermore, we address the challenges that are expected from the next generation M2M network as an integral part of the future IoT. This mainly includes the design of low-power low-cost machine with reduced bandwidth. The trade-off between cost, feasibility, and performance are also discussed. Because of the relaxation of the frequency and spatial diversities, in addition, to enabling the extended coverage mode, initial synchronization and cell search have new challenges for cellular-enabled M2M systems. We study conventional solutions with their pros and cons including timing acquisition, cell detection, and frequency offset estimation algorithms. We provide a technique to enhance the performance in the presence of the harsh detection environment for LTE-based machines. Furthermore, we present a frequency tracking algorithm for cellular M2M systems that utilizes the new repetitive feature of the broadcast channel symbols in next generation Long Term Evolution (LTE) systems. In the direction of narrowband IoT support, we propose a cell search and initial synchronization algorithm that utilizes the new set of narrowband synchronization signals. The proposed algorithms have been simulated at very low signal to noise ratios and in different fading environments

    Enabling Technology and Algorithm Design for Location-Aware Communications

    Get PDF
    Location-awareness is emerging as a promising technique for future-generation wire­ less network to adaptively enhance and optimize its overall performance through location-enabled technologies such as location-assisted transceiver reconfiguration and routing. The availability of accurate location information of mobile users becomes the essential prerequisite for the design of such location-aware networks. Motivated by the low locationing accuracy of the Global Positioning System (GPS) in dense multipath environments, which is commonly used for acquiring location information in most of the existing wireless networks, wireless communication system-based po­sitioning systems have been investigated as alternatives to fill the gap of the GPS in coverage. Distance-based location techniques using time-of-arrival (TOA) mea­surements are commonly preferred by broadband wireless communications where the arrival time of the signal component of the First Arriving Path (FAP) can be con­verted to the distance between the receiver and the transmitter with known location. With at least three transmitters, the location of the receiver can be determined via trilatération method. However, identification of the FAP’s signal component in dense multipath scenarios is quite challenging due to the significantly weaker power of the FAP as compared with the Later Arriving Paths (LAPs) from scattering, reflection and refraction, and the superposition of these random arrival LAPs’ signal compo­ nents will become large interference to detect the FAP. In this thesis, a robust FAP detection scheme based on multipath interference cancellation is proposed to im­ prove the accuracy of location estimation in dense multipath environments. In the proposed algorithm, the signal components of LAPs is reconstructed based on the estimated channel and data with the assist of the communication receiver, and sub­ sequently removed from the received signal. Accurate FAP detection results are then achieved with the cross-correlation between the interference-suppressed signal and an augmented preamble which is the combination of the original preamble for com­ munications and the demodulated data sequences. Therefore, more precise distance estimation (hence location estimation) can be obtained with the proposed algorithm for further reliable network optimization strategy design. On the other hand, multiceli cooperative communication is another emerging technique to substantially improve the coverage and throughput of traditional cellular networks. Location-awareness also plays an important role in the design and imple­mentation of multiceli cooperation technique. With accurate location information of mobile users, the complexity of multiceli cooperation algorithm design can be dra­matically reduced by location-assisted applications, e.g., automatic cooperative base station (BS) determination and signal synchronization. Therefore, potential latency aroused by cooperative processing will be minimized. Furthermore, the cooperative BSs require the sharing of certain information, e.g., channel state information (CSI), user data and transmission parameters to perform coordination in their signaling strategies. The BSs need to have the capabilities to exchange available information with each other to follow up with the time-varying communication environment. As most of broadband wireless communication systems are already orthogonal frequency division multiplexing (OFDM)-based, a Multi-Layered OFDM System, which is spe­cially tailored for multiceli cooperation is investigated to provide parallel robust, efficient and flexible signaling links for BS coordination purposes. These layers are overlaid with data-carrying OFDM signals in both time and frequency domains and therefore, no dedicated radio resources are required for multiceli cooperative networks. In the final aspect of this thesis, an enhanced channel estimation through itera­ tive decision-directed method is investigated for OFDM system, which aims to provide more accurate estimation results with the aid of the demodulated OFDM data. The performance of traditional training sequence-based channel estimation is often lim­ ited by the length of the training. To achieve acceptable estimation performance, a long sequence has to be used which dramatically reduces the transmission efficiency of data communication. In this proposed method, the restriction of the training se­quence length can be removed and high channel estimation accuracy can be achieved with high transmission efficiency, and therefore it particular fits in multiceli coopera­tive networks. On the other hand, as the performance of the proposed FAP detection scheme also relies on the accuracy of channel estimation and data detection results, the proposed method can be combined with the FAP detection scheme to further optimize the accuracy of multipath interference cancellation and FAP detection

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Effects of Multipath and Oversampling on Navigation Using Orthogonal Frequency Division Multiplexed Signals of Opportunity

    Get PDF
    The Global Positioning System (GPS) has become the primary system for navigation and precise positioning. GPS has limitations, though, and is not suitable in environments where a line-of-site (LOS) path to multiple satellites is not available. Reliable alternatives need to be developed to provide GPS-like positioning when GPS is unavailable. One such alternative is to use signals of opportunity (SoOP). This concept refers to navigation using signals which inherently exist in the environment and were developed for non-navigation applications. This research focuses on exploiting the Orthogonal Frequency Division Multiplexed (OFDM) signal for the purpose of navigation. An algorithm was developed to simulate a transmitter, receiver, channel noise, and multipath propagation. A transmitter and reference receiver, both at known locations, and a mobile receiver at an unknown location were used to conduct simulations with a transmitted OFDM signal in a Rayleigh-distributed multipath environment. The OFDM signal structure was exploited by using its cyclic prefix in a correlation process to find the first symbol boundary in each received signal. Each receiver calculates statistical features about each symbol in the received signal. These two sets of data are then correlated in order find the difference in symbol arrival times. The simulations were run for varying levels of oversampling in an effort to gain more accurate results by decreasing the sample period. Results show that oversampling the signal only slightly reduces errors in the symbol boundary correlation process, while multipath has a significant impact on correlation performance. It was also found that increasing the window size significantly improved feature correlator performance and yielded promising results even in the presence of high multipath environments

    Algorithm-Architecture Co-Design for Digital Front-Ends in Mobile Receivers

    Get PDF
    The methodology behind this work has been to use the concept of algorithm-hardware co-design to achieve efficient solutions related to the digital front-end in mobile receivers. It has been shown that, by looking at algorithms and hardware architectures together, more efficient solutions can be found; i.e., efficient with respect to some design measure. In this thesis the main focus have been placed on two such parameters; first reduced complexity algorithms to lower energy consumptions at limited performance degradation, secondly to handle the increasing number of wireless standards that preferably should run on the same hardware platform. To be able to perform this task it is crucial to understand both sides of the table, i.e., both algorithms and concepts for wireless communication as well as the implications arising on the hardware architecture. It is easier to handle the high complexity by separating those disciplines in a way of layered abstraction. However, this representation is imperfect, since many interconnected "details" belonging to different layers are lost in the attempt of handling the complexity. This results in poor implementations and the design of mobile terminals is no exception. Wireless communication standards are often designed based on mathematical algorithms with theoretical boundaries, with few considerations to actual implementation constraints such as, energy consumption, silicon area, etc. This thesis does not try to remove the layer abstraction model, given its undeniable advantages, but rather uses those cross-layer "details" that went missing during the abstraction. This is done in three manners: In the first part, the cross-layer optimization is carried out from the algorithm perspective. Important circuit design parameters, such as quantization are taken into consideration when designing the algorithm for OFDM symbol timing, CFO, and SNR estimation with a single bit, namely, the Sign-Bit. Proof-of-concept circuits were fabricated and showed high potential for low-end receivers. In the second part, the cross-layer optimization is accomplished from the opposite side, i.e., the hardware-architectural side. A SDR architecture is known for its flexibility and scalability over many applications. In this work a filtering application is mapped into software instructions in the SDR architecture in order to make filtering-specific modules redundant, and thus, save silicon area. In the third and last part, the optimization is done from an intermediate point within the algorithm-architecture spectrum. Here, a heterogeneous architecture with a combination of highly efficient and highly flexible modules is used to accomplish initial synchronization in at least two concurrent OFDM standards. A demonstrator was build capable of performing synchronization in any two standards, including LTE, WiFi, and DVB-H
    corecore