17 research outputs found

    Energy Efficient CNTFET Based Full Adder Using Hybrid Logic

    Get PDF
    Full Adder is the basic element for arithmetic operations used in Very Large Scale Integrated (VLSI) circuits, therefore, optimization of 1-bit full adder cell improves the overall performance of electronic devices. Due to unique mechanical and electrical characteristics, carbon nanotube field effect transistors (CNTFET) are found to be the most suitable alternative for metal oxide field effect transistor (MOSFET). CNTFET transistor utilizes carbon nanotube (CNT) in the channel region. In this paper, high speed, low power and reduced transistor count full adder cell using CNTFET 32nm technology is presented. Two input full swing XOR gate is designed using 4 transistors which is further used to generate Sum and Carry output signals with the help of Gate-Diffusion-Input (GDI) Technique thus reducing the number of transistors involved. Proposed design simulated in Cadence Virtuoso with 32nm CNTFET technology and results is better design as compared to existing circuits in terms of Power, Delay, Power-Delay-Product (PDP), Energy Consumption and Energy-Delay-Product (EDP)

    A Novel Ultra Low-Power 10T CNFET-Based Full Adder Cell Design in 32nm Technology

    Get PDF
    Nowadays, energy consumption is the main concern in portable electronic systems such as laptops, smart mobile phones, personal digital assistances (PDAs) and so forth. Considering that the 1-bit Full adder cell has been the determinant circuit due to its wide usage in these systems, it affects the entire performance of the electronic system. In this paper, a novel low-power and low-energy 10 transistor (10T) Full Adder cell using NAND/NOR functions based on carbon nanotube field effect transistors (CNFETs) is presented. The proposed cell showed superiority in terms of power-delay product (PDP) compared to the other cells under different simulation condition, such as power supply, temperature, load and operating frequency variations. Moreover, a Monte Carlo (MC) simulation was conducted to study the reliability of the proposed cell against manufacturing process variations (i.e. the variations of diameters of carbon nanotubes). Simulations confirmed the robustness of the proposed cell

    EMERGING COMPUTING BASED NOVEL SOLUTIONS FOR DESIGN OF LOW POWER CIRCUITS

    Get PDF
    The growing applications for IoT devices have caused an increase in the study of low power consuming circuit design to meet the requirement of devices to operate for various months without external power supply. Scaling down the conventional CMOS causes various complications to design due to CMOS properties, therefore various non-conventional CMOS design techniques are being proposed that overcome the limitations. This thesis focuses on some of those emerging and novel low power design technique namely Adiabatic logic and low power devices like Magnetic Tunnel Junction (MTJ) and Carbon Nanotube Field Effect transistor (CNFET). Circuits that are used for large computations (multipliers, encryption engines) that amount to maximum part of power consumption in a whole chip are designed using these novel low power techniques

    Appropriateness of Imperfect CNFET Based Circuits for Error Resilient Computing Systems

    Get PDF
    With superior device performance consistently reported in extremely scaled dimensions, low dimensional materials (LDMs), including Carbon Nanotube Field Effect Transistor (CNFET) based technology, have shown the potential to outperform silicon for future transistors in advanced technology nodes. Studies have also demonstrated orders of magnitude improvement in energy efficiency possible with LDMs, in comparison to silicon at competing technology nodes. However, the current fabrication processes for these materials suffer from process imperfections and still appear to be inadequate to compete with silicon for the mainstream high volume manufacturing. Among the LDMs, CNFETs are the most widely studied and closest to high volume manufacturing. Recent works have shown a significant increase in the complexity of CNFET based systems, including demonstration of a 16-bit microprocessor. However, the design of such systems has involved significantly wider-than-usual transistors and avoidance of certain logic combinations. The resulting complexity of several thousand transistors in such systems is still far from the requirements of high-performance general-purpose computing systems having billions of transistors. With the current progress of the process to fabricate CNFETs, their introduction in mainstream manufacturing is expected to take several more years. For an earlier technology adoption, CNFETs appear to be suited for error-resilient computing systems where errors during computation can be tolerated to a certain degree. Such systems relax the need for precise circuits and a perfect process while leveraging the potential energy benefits of CNFET technology in comparison to conventional Si technology. In this thesis, we explore the potential applications using an imperfect CNFET process for error-resilient computing systems, including the impact of the process imperfections at the system level and methods to improve it. The current most widely adopted fabrication process for CNFETs (separation and placement of solution-based CNTs) still suffers from process imperfections, mainly from open CNTs due to missing of CNTs (in trenches connecting source and drain of CNFET). A fair evaluation of the performance of CNFET based circuits should thus take into consideration the effect of open CNTs, resulting in reduced drive currents. At the circuit level, this leads to failures in meeting 1) the minimum frequency requirement (due to an increase in critical path delay), and 2) the noise suppression requirement. We present a methodology to accurately capture the effect of open CNT imperfection in the state-of-the-art CNFET model, for circuit-level performance evaluation (both delay and glitch vulnerability) of CNFET based circuits using SPICE. A Monte Carlo simulation framework is also provided to investigate the statistical effect of open CNT imperfection on circuit-level performance. We introduce essential metrics to evaluate glitch vulnerability and also provide an effective link between glitch vulnerability and circuit topology. The past few years have observed significant growth of interest in approximate computing for a wide range of applications, including signal processing, data mining, machine learning, image, video processing, etc. In such applications, the result quality is not compromised appreciably, even in the presence of few errors during computation. The ability to tolerate few errors during computation relaxes the need to have precise circuits. Thus the approximate circuits can be designed, with lesser nodes, reduced stages, and reduced capacitance at few nodes. Consequently, the approximate circuits could reduce critical path delays and enhanced noise suppression in comparison to precise circuits. We present a systematic methodology utilizing Reduced Ordered Binary Decision Diagrams (ROBDD) for generating approximate circuits by taking an example of 16-bit parallel prefix CNFET adder. The approximate adder generated using the proposed algorithm has ~ 5x reduction in the average number of nodes failing glitch criteria (along paths to primary output) and 43.4% lesser Energy Delay Product (EDP) even at high open CNT imperfection, in comparison to the ideal case of no open CNT imperfection, at a mean relative error of 3.3%. The recent boom of deep learning has been made possible by VLSI technology advancement resulting in hardware systems, which can support deep learning algorithms. These hardware systems intend to satisfy the high-energy efficiency requirement of such algorithms. The hardware supporting such algorithms adopts neuromorphic-computing architectures with significantly less energy compared to traditional Von Neumann architectures. Deep Neural Networks (DNNs) belonging to deep learning domain find its use in a wide range of applications such as image classification, speech recognition, etc. Recent hardware systems have demonstrated the implementation of complex neural networks at significantly less power. However, the complexity of applications and depths of DNNs are expected to drastically increase in the future, imposing a demanding requirement in terms of scalability and energy efficiency of hardware technology. CNFET technology can be an excellent alternative to meet the aggressive energy efficiency requirement for future DNNs. However, degradation in circuit-level performance due to open CNT imperfection can result in timing failure, thus distorting the shape of non-linear activation function, leading to a significant degradation in classification accuracy. We present a framework to obtain sigmoid activation function considering the effect of open CNT imperfection. A digital neuron is explored to generate the sigmoid activation function, which deviates from the ideal case under imperfect process and reduced time period (increased clock frequency). The inherent error resilience of DNNs, on the other hand, can be utilized to mitigate the impact of imperfect process and maintain the shape of the activation function. We use pruning of synaptic weights, which, combined with the proposed approximate neuron, significantly reduces the chance of timing failures and helps to maintain the activation function shape even at high process imperfection and higher clock frequencies. We also provide a framework to obtain classification accuracy of Deep Belief Networks (class of DNNs based on unsupervised learning) using the activation functions obtained from SPICE simulations. By using both approximate neurons and pruning of synaptic weights, we achieve excellent system accuracy (only < 0.5% accuracy drop) with 25% improvement in speed, significant EDP advantage (56.7% less) even at high process imperfection, in comparison to a base configuration of the precise neuron and no pruning with the ideal process, at no area penalty. In conclusion, this thesis provides directions for the potential applicability of CNFET based technology for error-resilient computing systems. For this purpose, we present methodologies, which provide approaches to assess and design CNFET based circuits, considering process imperfections. We accomplish a DBN framework for digit recognition, considering activation functions from SPICE simulations incorporating process imperfections. We demonstrate the effectiveness of using approximate neuron and synaptic weight pruning to mitigate the impact of high process imperfection on system accuracy

    Robust Circuit & Architecture Design in the Nanoscale Regime

    Get PDF
    Silicon based integrated circuit (IC) technology is approaching its physical limits. For sub 10nm technology nodes, the carbon nanotube (CNT) based field effect transistor has emerged as a promising device because of its excellent electronic properties. One of the major challenges faced by the CNT technology is the unwanted growth of metallic tubes. At present, there is no known CNT fabrication technology which allows the fabrication of 100% semiconducting CNTs. The presence of metallic tubes creates a short between the drain and source terminals of the transistor and has a detrimental impact on the delay, static power and yield of CNT based gates. This thesis will address the challenge of designing robust carbon nanotube based circuits in the presence of metallic tubes. For a small percentage of metallic tubes, circuit level solutions are proposed to increase the functional yield of CNT based gates in the presence of metallic tubes. Accurate analytical models with less than a 3% inaccuracy rate are developed to estimate the yield of CNT based circuit for a different percentage of metallic tubes and different drive strengths of logic gates. Moreover, a design methodology is developed for yield-aware carbon nanotube based circuits in the presence of metallic tubes using different CNFET transistor configurations. Architecture based on regular logic bricks with underlying hybrid CNFET configurations are developed which gives better trade-offs in terms of performance, power, and functional yield. In the case when the percentage of metallic tubes is large, the proposed circuit level techniques are not sufficient. Extra processing techniques must be applied to remove the metallic tubes. The tube removal techniques have trade-offs, as the removal process is not perfect and removes semiconducting tubes in addition to removing unwanted metallic tubes. As a result, stochastic removal of tubes from the drive and fanout gate(s) results in large variation in the performance of CNFET based gates and in the worst case open circuit gates. A Monte Carlo simulation engine is developed to estimate the impact of the removal of tubes on the performance and power of CNFET based logic gates. For a quick estimation of functional yield of logic gates, accurate analytical models are developed to estimate the functional yield of logic gates when a fraction of the tubes are removed. An efficient tube level redundancy (TLR) is proposed, resulting in a high functional yield of carbon nanotube based circuits with minimal overheads in terms of area and power when large fraction of tubes are removed. Furthermore, for applications where parallelism can be utilized we propose to increase the functional yield of the CNFET based circuits by increasing the logic depth of gates

    New Logic Synthesis As Nanotechnology Enabler (invited paper)

    Get PDF
    Nanoelectronics comprises a variety of devices whose electrical properties are more complex as compared to CMOS, thus enabling new computational paradigms. The potentially large space for innovation has to be explored in the search for technologies that can support large-scale and high- performance circuit design. Within this space, we analyze a set of emerging technologies characterized by a similar computational abstraction at the design level, i.e., a binary comparator or a majority voter. We demonstrate that new logic synthesis techniques, natively supporting this abstraction, are the technology enablers. We describe models and data-structures for logic design using emerging technologies and we show results of applying new synthesis algorithms and tools. We conclude that new logic synthesis methods are required to both evaluate emerging technologies and to achieve the best results in terms of area, power and performance

    Multiple-Independent-Gate Field-Effect Transistors for High Computational Density and Low Power Consumption

    Get PDF
    Transistors are the fundamental elements in Integrated Circuits (IC). The development of transistors significantly improves the circuit performance. Numerous technology innovations have been adopted to maintain the continuous scaling down of transistors. With all these innovations and efforts, the transistor size is approaching the natural limitations of materials in the near future. The circuits are expected to compute in a more efficient way. From this perspective, new device concepts are desirable to exploit additional functionality. On the other hand, with the continuously increased device density on the chips, reducing the power consumption has become a key concern in IC design. To overcome the limitations of Complementary Metal-Oxide-Semiconductor (CMOS) technology in computing efficiency and power reduction, this thesis introduces the multiple- independent-gate Field-Effect Transistors (FETs) with silicon nanowires and FinFET structures. The device not only has the capability of polarity control, but also provides dual-threshold- voltage and steep-subthreshold-slope operations for power reduction in circuit design. By independently modulating the Schottky junctions between metallic source/drain and semiconductor channel, the dual-threshold-voltage characteristics with controllable polarity are achieved in a single device. This property is demonstrated in both experiments and simulations. Thanks to the compact implementation of logic functions, circuit-level benchmarking shows promising performance with a configurable dual-threshold-voltage physical design, which is suitable for low-power applications. This thesis also experimentally demonstrates the steep-subthreshold-slope operation in the multiple-independent-gate FETs. Based on a positive feedback induced by weak impact ionization, the measured characteristics of the device achieve a steep subthreshold slope of 6 mV/dec over 5 decades of current. High Ion/Ioff ratio and low leakage current are also simultaneously obtained with a good reliability. Based on a physical analysis of the device operation, feasible improvements are suggested to further enhance the performance. A physics-based surface potential and drain current model is also derived for the polarity-controllable Silicon Nanowire FETs (SiNWFETs). By solving the carrier transport at Schottky junctions and in the channel, the core model captures the operation with independent gate control. It can serve as the core framework for developing a complete compact model by integrating advanced physical effects. To summarize, multiple-independent-gate SiNWFETs and FinFETs are extensively studied in terms of fabrication, modeling, and simulation. The proposed device concept expands the family of polarity-controllable FETs. In addition to the enhanced logic functionality, the polarity-controllable SiNWFETs and FinFETs with the dual-threshold-voltage and steep-subthreshold-slope operation can be promising candidates for future IC design towards low-power applications

    Energy-Efficient Digital Circuit Design using Threshold Logic Gates

    Get PDF
    abstract: Improving energy efficiency has always been the prime objective of the custom and automated digital circuit design techniques. As a result, a multitude of methods to reduce power without sacrificing performance have been proposed. However, as the field of design automation has matured over the last few decades, there have been no new automated design techniques, that can provide considerable improvements in circuit power, leakage and area. Although emerging nano-devices are expected to replace the existing MOSFET devices, they are far from being as mature as semiconductor devices and their full potential and promises are many years away from being practical. The research described in this dissertation consists of four main parts. First is a new circuit architecture of a differential threshold logic flipflop called PNAND. The PNAND gate is an edge-triggered multi-input sequential cell whose next state function is a threshold function of its inputs. Second a new approach, called hybridization, that replaces flipflops and parts of their logic cones with PNAND cells is described. The resulting \hybrid circuit, which consists of conventional logic cells and PNANDs, is shown to have significantly less power consumption, smaller area, less standby power and less power variation. Third, a new architecture of a field programmable array, called field programmable threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-delay product compared to conventional FPGA using well known FPGA modeling tool called VPR. Fourth, a novel clock skewing technique that makes use of the completion detection feature of the differential mode flipflops is described. This clock skewing method improves the area and power of the ASIC circuits by increasing slack on timing paths. An additional advantage of this method is the elimination of hold time violation on given short paths. Several circuit design methodologies such as retiming and asynchronous circuit design can use the proposed threshold logic gate effectively. Therefore, the use of threshold logic flipflops in conventional design methodologies opens new avenues of research towards more energy-efficient circuits.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    On The Design Of Low-Complexity High-Speed Arithmetic Circuits In Quantum-Dot Cellular Automata Nanotechnology

    Get PDF
    For the last four decades, the implementation of very large-scale integrated systems has largely based on complementary metal-oxide semiconductor (CMOS) technology. However, this technology has reached its physical limitations. Emerging nanoscale technologies such as quantum-dot cellular automata (QCA), single electron tunneling (SET), and tunneling phase logic (TPL) are major candidate for possible replacements of CMOS. These nanotechnologies use majority and/or minority logic and inverters as circuit primitives. In this dissertation, a comprehensive methodology for majority/minority logic networks synthesis is developed. This method is capable of processing any arbitrary multi-output Boolean function to nd its equivalent optimal majority logic network targeting to optimize either the number of gates or levels. The proposed method results in different primary equivalent majority expression networks. However, the most optimized network will be generated as a nal solution. The obtained results for 15 MCNC benchmark circuits show that when the number of majority gates is the rst optimization priority, there is an average reduction of 45.3% in the number of gates and 15.1% in the number of levels. They also show that when the rst priority is the number of levels, an average reduction of 23.5% in the number of levels and 43.1% in the number of gates is possible, compared to the majority AND/OR mapping method. These results are better compared to those obtained from the best existing methods. In this dissertation, our approach is to exploit QCA technology because of its capability to implement high-density, very high-speed switching and tremendously lowpower integrated systems and is more amenable to digital circuits design. In particular, we have developed algorithms for the QCA designs of various single- and multi-operation arithmetic arrays. Even though, majority/minority logic are the basic units in promising nanotechnologies, an XOR function can be constructed in QCA as a single device. The basic cells of the proposed arrays are developed based on the fundamental logic devices in QCA and a single-layer structure of the three-input XOR function. This process leads to QCA arithmetic circuits with better results in view of dierent aspects such as cell count, area, and latency, compared to their best counterparts. The proposed arrays can be formed in a pipeline manner to perform the arithmetic operations for any number of bits which could be quite valuable while considering the future design of large-scale QCA circuits
    corecore