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ABSTRACT OF THESIS

EMERGING COMPUTING BASED NOVEL SOLUTIONS

FOR DESIGN OF LOW POWER CIRCUITS

The growing applications for IoT devices have caused an increase in the study of

low power consuming circuit design to meet the requirement of devices to operate

for various months without external power supply. Scaling down the conventional

CMOS causes various complications to design due to CMOS properties, therefore

various non-conventional CMOS design techniques are being proposed that overcome

the limitations. This thesis focuses on three of those emerging and novel low power

design techniques namely Adiabatic logic and Magnetic Tunnel Junction (MTJ) logic

and Carbon Nanotube Field Effect transistor (CNFET) logic. Circuits that are used

for large computations (multipliers, encryption engines) that amount to maximum

part of power consumption in a whole chip are designed using these novel low power

techniques.

KEYWORDS: Adiabatic logic, Differential Power Analysis, Magnetic Tunnel Junc-

tion, Carbon Nanotube Field effect Transistor.
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Chapter 1

Introduction

The ”Internet of things” (IoT) is a concept that was developed in early 2000’s accord-

ing to which any device with a wireless connection can be connected to the Internet

(and/or to each other) [3]. This includes cellphones, coffee makers, washing machines,

headphones, lamps, wearable devices and many more. This was a challenge back then

due to limitations in the technology. But now, with all the advancements, the IoT

has gained a lot of attention as it proved to change the human lives for better by

creating the pathway for smart homes, cities etc. As of now 23.14 billion devices

are connected and there is an estimation that by 2025 the connected devices will be

over 75 billion [4]. The IoT application space is characterized by two overarching

design concerns [5]. One, the IoT devices are frequently in locations without easy

access to power, therefore most of the devices are battery powered that constraints

the life time of the device [6]. So, low power consumption is the most universal con-

straint across the IoT space. The scaling of CMOS technology lowered the power

consumption significantly, which makes the recent efforts in IoT applications feasible

with a decent battery capacity. However further power reduction becomes more and

more challenging because further voltage scaling in CMOS to reduce the dynamic

computation power while providing sufficient speed conflicts with the exponentially
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increasing leakage power. This fundamentally limits the growth of functionality and

scenarios where IoT devices are powered by batteries or harvested energy.

Security is another concern in IoT sphere. Often times there are scenarios where

all objects (including sensors, wearable devices, appliances) send data to hosts via

an insecure wireless network. In order to provide secure communications crypto

algorithms are widely adopted in WSNs (Wireless Sensor Networks) [7]. Side-channel

attacks, Differential Power Analysis in particular directly relates circuit architectures

and data-dependent power consumption profile. Such attacks when performed on

RFID chips in credit cards, reveal the encryption key thus enabling the attacker to

steal the victim’s sensitive financial information. Therefore the IoT devices must be

resistant to such attacks.

The focus of this thesis is to explore various emerging novel solutions which can

be used in low power computing. This thesis talks about adiabatic logic which is

perfect to design circuits for IoT applications since power clocks are used to effi-

ciently recover the charge stored in the load capacitors thus allowing to create ultra

low power circuits. Also the adiabatic logic helps to eliminate the data power de-

pendency thus making it secure to DPA attacks. Spin based devices are emerging

devices well suited to design low power circuits because of their promising character-

istics such as near-zero standby power, non-volatility, high integration density, etc.

Among Spin based devices Magnetic Tunnel junction (MTJ) is quite extensively used

because of their superior properties such as high sensitivity, low-cost, low-power,

compatibility with complementary metaloxide semiconductor (CMOS) technology,

and room-temperature operation [8]. An upcoming novel device is Carbon Nanotube

Field Effect Transistor (CNFET) which is essentially a brilliant alternative to CMOS

in designing low power circuits. CNFETs are formed in cylindrical shape with sheets

of graphite tubes. Some of the advantages of CNFETs are such as they have higher

ON current compared to MOSFET transistors. Also, ballistic conduction of CNFETs

2



reduces the power dissipation in the transistor body.

1.1 Contribution of Thesis

The major contributions of this thesis is design of low power computing and cryp-

tographic circuits using novel computing paradigms of Adiabaltic Logic, MTJ/CMOS

and MTJ/CNFET. Below is a brief summary of the contributions of this thesis. It

also presents both CMOS/MTJ and CNFET/MTJ based hybrid compressor circuits.

Compressors are used to reduce the accumulation of partial products in a multiplier

which accounts for major share of power consumption.

1. Proposal of a novel family of Adiabatic logic called Symmetric Pass Gate Adia-

batic Logic (SPGAL). This proposed logic was used to design Buffer, AND/NAND,

XOR/XNOR gates. These logic gates reduce the power consumption by 80%

when compared to adiabatic families in current literature which suffer from

non-adiabatic losses.

2. Implementation of Bit-Parallel Cellular Multiplier over GF (24) using SPGAL

gates. Galois multipliers play a major role in the engineering applications such

as cryptography and error correcting codes. The simulation results show that

multiplier design using SPGAL gates saves upto 81% energy.

3. Implementation of AES S-Box circuit using SPGAL gates. S-Box is an integral

part of encryption engines that converts plain inputs to encrypted outputs. The

SPGAL S-Box saves upto 91% energy when compared to CMOS logic.

4. Proposal of a 4-2 compressor circuit in hybrid CMOS/MTJ and cascaded 4-2

compressor circuit in hybrid CNFET/MTJ. These designs show a significant en-

ergy reduction of 50% and 80% respectively compared to compressors designed

using CMOS logic.
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1.2 Outline of Thesis

Chapter 2 provides an overview of Adiabatic Logic, Differential Power Analysis

Attack, MTJ and CNFET. Chapter 3 presents designs of a Symmetric Pass Gate

Adiabatic gates, implementation of GF multiplier, implementation and DPA attack

on a AES S-box using the proposed SPGAL gates . Chapter 4 presents design of pro-

posed 4-2 compressor in hybrid CMOS/MTJ and CNFET/MTJ. Chapter 5 concludes

the thesis. Designs from chapter 3 were previously published in [9] (© [2018] Elsevier)

and [10] (© [2018] IEEE) . Designs from chapter 4 were previously published in [11]

(© [2018] Elsevier).
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Chapter 2

Background

This chapter will cover any background information needed to understand the succes-

sive chapters. The main focus will be on adiabatic logic, spintronic devices (MTJ),

Carbon Nanotube Field Effect Transistor (CNFET) and Differential Power Analysis

attack.

2.1 Adiabatic Logic

Adiabatic logic recycles the charge stored in the load capacitor back to the power

clock which reduces the overall energy consumed by the circuit. Fig. 2.1 shows the

adiabatic charging of the load capacitor and its recovery path. The energy dissipated

in an adiabatic circuit when considering the charge is supplied through a constant

current source is shown by,

Ediss =
RC

T
CV 2

dd (2.1)

Where T is the charging/discharging time of the capacitor, C is the load capacitor, R

is the parasitic resistance of the transistors, Vdd is the full swing of the power clock.

If the T� 2RC (time constant), the energy dissipated by the adiabatic circuit is less

than the conventional CMOS circuit. However there are certain challenges to design
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using Adiabatic logic and they are to recognize different types of losses in adiabatic

circuits. They are adiabatic loss, non-adiabatic loss and leakage loss.

F

F

GND

Power 
supply

CL1

C
L2

Inputs

Charging
Discharging to
power supply

GND

GNDV
out

Vout

Figure 2.1: Adiabatic charging/discharging[1]

Adiabatic loss

Fig. 2.2(a) illustrates the switch model for the adiabatic loss. When the switch (SW)

is turned on, the adiabatic loss is shown by,

Eadiabatic =
RonCL
T

CV 2
dd (2.2)

where Ron is the on-resistance of the switch, T is the transition period and CL is the

load capacitance. From equation 2.1, it can be seen that the adiabatic loss can be

SW

Ron

SW
C

Ron

T
(a) (b)

C C

V1 V2

1 2

Figure 2.2: illustrates the switch model for a) adiabatic loss b) non-adiabatic loss
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eliminated, if the transition period (T) reaches infinity. In practice, it is impossible

to make the transition period (T) to infinity. It is concluded that adiabatic loss is

unavoidable and can be reduced with the low frequency operated circuits [1]. In

this work, we are targeting the application of IoT devices which will operate at low

frequencies. Hence, these designs will have low adiabatic loss.

Non-adiabatic loss

Fig. 2.2(b) shows the switch model to depict the non-adiabatic loss. If any voltage

difference between two terminals of a switch exists when it is turned on, non-adiabatic

loss occurs. Non-adiabatic loss is shown by,

Enon−adiabatic =
1

2

C1C2

C1 + C2

(V1 − V2)2 (2.3)

Where C1 and C2 are the capacitances of the two nodes connected to the switch and

V1 and V2 are the voltages at the two nodes just before the switch is turned on. For

the low speed operation circuits, non-adiabatic loss is much higher than the adiabatic

loss [12]. In order to avoid non-adiabatic loss, transistor should not turn ON if there

is any potential difference between the drain and source (two nodes) of the transistor.

2.2 Differential Power Analysis Attack

Differential Power Analysis attack exploits the data leakage from the devices. No

matter how secure a cryptographic algorithm might be, its implementation on a chip

may be insecure because of unpredictable data leakage. Any change of state of a

CMOS gate can be measured on the VDD or VSS pins that reveal an intermediate

data being processed by the cryptographic device. For a successful Differential Power

Analysis attack one needs [13]:

- the measurements of the power consumption;

7



- the encryption algorithm used;

- a set of plaintexts or cipher texts.

The mathematical model of the power consumption at time t is equal to the sum

of the power dissipated of all gates at same time [14]. In Equation 2.4 is represented

a simplified mathematical model of power consumption:

P (t) = Σgf(g, t) +N(t) (2.4)

The function f(g, t) represents the power consumption of the gate g at the time t

and the function N(t) represents the noise components.

2.2.1 Differential Power Analysis Attack Process

The DPA attack is done by measuring the power consumption while ’d’ different

plain texts are encrypted. The known current trace values are written as a vector

i = (i1, i2, ..., id), where in denotes the current trace value of the nth input plain text.

During each run of the input plain text encryption, current traces are collected and

sampled. The sampled current trace values that corresponds to a particular input

plain text is given as ti = (ti,1, ti,2, ...., ti,T ) where T denotes the length of the trace.

A dXT matrix is created that stores this current samples. Next a hypothetical power

consumption matrix using Hamming distance/Hamming weight of the cipher text is

created where H(i, k) = Σm−1
j=0 HD(Oi,k, Oi−1,k).

HD(Oi,k, Oi−1,k) represents the hamming distance between ith and i-1th cipher

text.

H(i,k) =



H0,0 H0,1 H0,2 . . . H0,k−1

H1,0 H1,1 H1,2 . . . H1,k−1

...
...

...
. . .

...

Hd−1,0 Hd−1,1 Hd−1,2 . . . Hd−1,k−1


8



In the matrix H(i,K), HD values are the number of bits that differ between two

consecutive outputs. Finally each column of the H matrix is compared with the each

column of the M matrix i.e the hypothetical power consumption values for all the

keys are compared with recorded traces at different instances of time. This will result

in an another matrix R which is of size KXT. Each element of R matrix (ri,j) contains

the comparison result between the columns of hi and mj.

ri,j =
ΣD
d=1(hd,i − hi).(md,j −mj)√

ΣD
d=1(hd,i − hi)2.(md,j −mj)2

(2.5)

R =



r0,0 r0,1 r0,2 . . . r0,t

r1,0 r1,1 r1,2 . . . r1,t

...
...

...
. . .

...

rk−1,0 rk−1,1 rk−1,2 . . . rk−1,t


2.3 Magnetic Tunnel Junction

Magnetic Tunnel Junction (MTJ) is a spin based device which is most suited to use in

Logic In Memory architectures because of its short access time, small dimensions and

compatibility with CMOS technology. The structure of MTJ is a vertical nanopillar

that consists of two ferromagnetic (FM) layers and an oxide barrier [15]. In the

standard application of MTJ devices, the magnetization of one of the FM layers is

fixed, while the other FM layer is free to take one of the two orientations (parallel

and antiparallel) as shown in Fig. 2.3 [16].

Depending on the orientation of the FM layers, parallel (P) or antiparallel (AP),

MTJ device shows either a low resistance (RP) or high resistance (RAP) characteris-

tic. The resistance difference between the two configurations of MTJ device is given

by the tunnel magnetoresistance ratio TMR = (RAP −RP )/RP .

Spin transfer torque (STT) is one of the promising methods to switch MTJs [17].
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I
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I
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C

I
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C

Free layer

Oxide layer

Fixed layer

Logic 0

Logic 1

Figure 2.3: Vertical Magnetic Tunnel Junction (MTJ) nanopillar structure. MTJ
states change from P to AP and vice versa by applying proper current.

Pre-Charged Sense Amplifier (PCSA)Output

CMOS logic tree

Non-volatile STT-MRAM

Volatile Logic Data

Writing Circuit

Figure 2.4: Structure of a MTJ based circuit

Further, STT switching mechanism requires only a bidirectional current to switch the

orientations in MTJs. The states of the MTJ are switched when the current of the

MTJ (IMTJ) becomes higher than a critical current (IC) (Fig. 2.3) [18].

The first part is the writing circuit, which is used for programing memory elements.

The second part consists of STT-MRAM cells and a CMOS logic tree. STT-MRAM

cells are used to store data and the CMOS logic tree is used as a logic control block.

Finally, the last part is a sense amplifier (SA) that evaluates the output logic results.

The pre-charged sense amplifier (PCSA) is a clock based circuit and is utilized in the

MTJ based circuits because of its low power consumption and high reliability.

10



2.4 Carbon Nanotube Field Effect Transistor

CNFETs are formed in the shape of a sheet of graphite tubes. Some of the advantages

of CNFETs are such as they have higher ON current compared to MOSFET tran-

sistors. Also, ballistic conduction of CNFETs reduces the power dissipation in the

transistor body. One dimension structure of CNTs reduces the resistivity and conse-

quently the energy and the power dissipation. CNTs are grouped into Single-Walled

Carbon Nano Tube (SWCNT) and Multi-Walled Carbon Nano Tube (MWCNT).

SWCNTS are made of one cylinder and MWCNTs are made of more than one cylin-

der that are nested inside each other [19].

Several SWCNTs can be placed next to each other under the transistor gate and

its width. The width of CNFET transistor depends on the number of tubes which are

placed under the transistor gate. The width of the CNFET transistor also depends

on the distance between two adjacent tubes which is called a pitch. The width of the

CNFET transistor is given by the following equation [20]:

Wgate
∼= Min(Wmin, N × pitch) (2.6)

Where, N is the number of nanotubes that are placed under the transistor gate

and Wmin is the minimum width of the gate.

Threshold voltage of the CNFET transistors is determined by the following equa-

tions [20]:

Vth ∼=
Eg
2e

=

√
3

3

aVπ
eDCNT

∼=
0.43

DCNT (nm)
(2.7)

In the above equation, a is the carbon to carbon atom distance, Vπ is the carbon

π−π band energy in the tight bonding model, e is the unit electron charge and DCNT

is the diameter of the CNFETs.
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Chapter 3

Design of Symmetric Pass gate

Adiabatic Logic Circuits

Khatir et. al proposed Secure Adiabatic Logic (SAL) [21] which is not only energy ef-

ficient in nature but also resistance against side-channel attacks. This adiabatic logic

uses pass transistors to discharge the internal parasitic capacitances to balance the

peak current traces. But extensive analysis made in [22] reports that SAL logic exhibit

supply current dependences. Choi et. al proposed Symmetric Adiabatic Logic[23]

(SyAL) which has been modified from Efficient Charge Recovery Logic (ECRL)[24].

This logic uses symmetric discharge paths and charge sharing feature to equalize

the voltage between the output nodes and the internal nodes. This feature balances

the supply current waveforms of this logic. Monterio et. al proposed Charge Shar-

ing Symmetric Adiabatic Logic (CSSAL)[22]. This logic is implemented with charge

sharing symmetric input logic structure in SyAL. But CSSAL uses twelve trapezoidal

clock sources making their structure more complicated[25]. Recently, Secured Quasi

Adiabatic Logic was proposed in [25] which has been modified from ECRL-based[24]

adiabatic logic. This design has compact area and low energy consumption as com-

pared to all other DPA resistant adiabatic families. But still this family suffers from
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non-adiabatic loss during the evaluation of the outputs.

3.1 Design of Proposed SPGAL logic gates

Any circuit, simple or complex is build using basic logic gates like AND, OR, XOR

etc., The following sections will cover the design and working of basic logic gates that

are design using adiabatic logic.

3.1.1 SPGAL Buffer

M1 M2

C
L

A

DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

GND

Figure 3.1: SPGAL buffer

Fig. 3.1 shows the buffer design using the proposed Symmetric Pass Gate Adia-

batic Logic with the load capacitor of 10fF. The timing diagram for the buffer using

SPGAL is shown in Fig. 3.2. The proposed logic family uses a 4-phase trapezoidal

clock to efficiently recover the charge stored in the output capacitor. The main inten-

tion in designing SPGAL is to eliminate the non-adiabatic loss during the evaluate

phase of the outputs. In this family, the load capacitors are charged through the

evaluation transistors before the evaluate phase of the next cycle begins. The func-
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T1 T2 T3 T4 T5

VCLK
GND

Vtp

GND

A

A
GND

V tn

GND

tnV

GND

DISCHARGE

Abrupt change of OUT (SQAL) from 0 to Vtp 

    OUT
 (SPGAL)

   OUT
 (SQAL)

output resetted

Figure 3.2: Timing diagram for SQAL buffer and SPGAL buffer. DISCHARGE
represents the discharge signal. OUT represents the output of the buffer.

tionality of the proposed adiabatic logic family is illustrated by using the design of a

buffer. Let us assume that all the nodes are at GND initially.

M1 M2

C
L

A

DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

At T1, VCLK=0, A=0 V A=0 dd,

Figure 3.3: Switching operation of transistors in T1 phase of SPGAL buffer for A=1,
Ā=0

T1 (Wait phase): At T1, VCLK is at GND. Input A is slowly increasing from 0

to Vdd. In general, for NMOS to be turned on, Vgs must be greater than Vtn, where Vgs

is the voltage across the gate and the source of the NMOS and Vtn is the threshold
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voltage of the NMOS. When the input A is greater than Vtn, the transistor M3 is

turned on. Since the source and drain of M3 is at GND, there will not be any current

flow through the transistor. In this phase, discharge signal makes the transistors M5

and M6 to be turned on there by discharging the charges stored (due to previous

cycle) in the load capacitor to ground. All other transistors are OFF in this phase.

Switching operation of the transistors T1 phase of SPGAL buffer is shown in Fig. 3.3.

T2 (Evaluate Phase): At T2, input A is at Vdd. The discharge signal and Ā is

at GND. VCLK slowly increases from 0 to Vdd which makes the output load capacitor

to slowly get charged. At any instant of time, the potential of the clock VCLK will

be greater than potential of the output node in this phase. So, the voltage at the

output node will always follow the clock VCLK in this phase which makes the OUT

node to act as the source and clock to act as the drain of the M3 transistor. For

M1, the clock VCLK acts as the source and the OUT node acts as the drain of the

transistor. PMOS will be turned on if Vsgp is greater than Vtp. For M1 to be turned

on, Vsgp > Vtp.

Vφ − Vout > Vtp (3.1)

Vout = 0

Vφ > Vtp

So, M1 will be turned on when the clock VCLK reaches Vtp. M3 will be tuned off if

VGS < Vtn.

Vdd − Vout < Vtn (3.2)

Vout > Vdd − Vtn

When OUT reaches Vdd − Vtn, M3 will be turned off and the current will flow

through M1 to charge the load capacitor. Fig. 3.4 shows the switching operation of

the transistors in T2 phase.
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M1 M2

C
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VCLK
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A=0 A=V 
dd,VCLK=0 V

tp,

M1 M2
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DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

A=0 A=V dd,
VCLK=V 

dd
-

tp

M1 M2

C
L

A

DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

A=0 A=V dd,
-

tn dd,
V 

(V

dd
VCLK=(V V  )

At T2, A=V 
dd,

VCLK=0 Vdd, A=0, 

V  ),
tn

(a) (b)

(c)

Figure 3.4: Switching operation of transistors in T2 phase of SPGAL buffer for A=1,
Ā=0. (a) represents the switching operation of the transistors when VCLK reaches
Vtp from GND. (b) represents the switching operations when VCLK reaches from Vtp
to Vdd − Vtp. (c) represents the switching operations when VCLK reaches Vdd from
Vdd − Vtn
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M1 M2

C
L

A

DISCHARGE

VCLK

AM3 M4

M5 M6

C
L

OUT OUT

A=V 
dd,dd, A=0, At T3, VCLK=V 0 

Figure 3.5: Switching operation of transistors in T3 phase of SPGAL buffer for A=1,
Ā=0

T3 (Hold Phase): At T3, the clock VCLK is at Vdd. The transistor M3 is turned

off without non-adiabatic loss by slowly decreasing the inputs from Vdd to GND. The

output will be same as T2 in this phase. Fig. 3.5 shows the switching operation of

the transistors in T3 phase.

T4 (Recovery Phase): At T4, the clock VCLK slowly decreases from Vdd to

GND. The charges stored in the output load capacitor is slowly recovered back to

the clock through M1. Recovering of charge to the clock VCLK continues until OUT

node reaches Vtp .

VsM1
− VGM1

< Vtp

Vout − 0 < Vtp

Vout < Vtp (3.3)

When the output voltage is reduced to Vtp, M1 is turned off and the output voltage

will stay at Vtp at the end of this phase. Fig. 3.6 shows the switching operation of

the transistors in T4 phase. Charges stored in the output node at the end of the 1st
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M1 M2
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DISCHARGE
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VCLK
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OUT OUT

A=0, VCLK=V 0 A= 
tp

0, 

A=0, VCLK=V 0 A= At T4, 0, 
dd

(a) (b)

Figure 3.6: Switching operation of transistors in T4 phase of SPGAL buffer for A=1,
Ā=0. (a) represents the switching operation of the transistors when VCLK reach Vtp
from Vdd. (b) represents the switching operation of the transistors when VCLK reach
GND from Vtp .

cycle (T1-T4) is discharged to the ground in the next phase of the clock (T5) through

M5 or M6 transistor by using the discharge signal. Resetting the output node to zero

reduces the correlation between the current supplied and the data evaluated.

3.1.2 SPGAL XOR gate

M1 M2

A

DISCHARGE

VCLK

M4 M5

C
L

M3

C
L

M6

M7M8

XOR XNOR

M9 M10

B B

A

BB

Figure 3.7: Proposed XOR/XNOR gate
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This section covers the design of the proposed XOR gate. Fig. 3.7 shows the

proposed XOR/XNOR gate. M1 and M2 forms the cross coupled structure to recover

the charge stored in the output load capacitances. M9 and M10 transistors are used

to reset the output nodes to zero by discharging the redundant charge stored in the

load capacitances to ground. The rest of the transistors are used for evaluating the

input data. The functionality of the proposed XOR/XNOR gate can be understood

similar to the buffer as explained above. Fig. 3.8 shows the transient waveforms of

the SPGAL based XOR gate. The instantaneous power plot of the proposed XOR

gate for input transitions (A,B) = (0, 0)(0, 1)(1, 0)(1, 1)(0, 0) is shown in Fig. 3.9.

From Fig. 3.9, it can be seen that the SPGAL based XOR gate consumes uniform

power for various transition of the inputs. The uniform instantaneous power show

that the circuits built using the SPGAL based XOR gate can counteract the DPA

attack at the circuit level. Fig. 3.10 shows the uniform supply current waveforms of

the SPGAL based XOR gate.
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Figure 3.8: Input/output waveforms for the proposed XOR/XNOR gate
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Power consumed due to reset of outputs

Figure 3.9: Power consumed by proposed XOR gate for input 00→ 01→ 10→ 11→
00

A=0
B=0

A=0
B=1

A=1
B=0

A=1
B=1

Figure 3.10: Supply current waveforms for various input transitions for proposed
XOR gate

3.1.3 SPGAL AND gate

This section shows the design of the proposed AND gate in the Fig. 3.11 and the

input/output waveforms in the Fig. 3.12

3.1.4 Simulation results

The proposed gates are simulated in 180nm technology with the load capacitance of

10fF. The simulation results of the individual logic gates are summarized in Table

3.1 and Table 3.2. The parameter Normalized Energy Deviation (NED) is defined as

(Emax − Emin)/Emax is used to indicate the percentage difference between minimum

and maximum energy consumption for all possible input transitions. Normalized

Standard Deviation which was introduced by Bucci et.al[26] indicates the energy
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Figure 3.11: Proposed AND/NAND gate
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Figure 3.12: Input/output waveforms for proposed AND/NAND gate

consumption variation based on the inputs and it is calculated as σE
Ē

. Ē denotes the

average energy dissipation for various input transitions. In general, ’n’ input gate

will have 22n possible input transitions. For example, 2 input gate will have 16 input

transitions. σE denotes the standard deviation of the energy consumed dissipated by

the circuit and it is shown as

√∑En
i=E1

(Ei−Ē)2

n
. The calculated values of NED and NSD

for the proposed XOR gate and AND gate show the ability of the proposed logic family

to resist DPA attacks. Apart from the logical ability, it has also been shown that
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Table 3.1: Simulation and calculation results of AND logic gate for various DPA
resistant adiabatic families

Logic family CSSAL[22] SQAL[25] SPGAL
Frequency(MHz) 1.25 12.5 125 1.25 12.5 125 1.25 12.5 125
Emin(fJ) 19.76 21.45 16.65 11.89 19.02 44.70 3.34 4.23 11.08
Emax(fJ) 20.07 21.70 21.47 12.66 24.93 53.69 3.75 4.66 11.66
Eavg(fJ) 19.92 21.59 19.48 12.26 21.93 49.08 3.56 4.43 11.40
SD (fJ) 0.08 0.09 1.48 0.25 2.07 3.10 0.12 0.14 0.16
NED% 1.39 1.15 22.45 0.06 0.23 0.16 0.10 0.09 0.04
NSD% 0.44 0.42 7.59 0.02 0.09 0.06 0.03 0.03 0.01

Table 3.2: Simulation and calculation results of XOR logic gate for various DPA
resistant adiabatic families

Logic family CSSAL[22] SQAL[25] SPGAL
Frequency(MHz) 1.25 12.5 125 1.25 12.5 125 1.25 12.5 125
Emin(fJ) 19.80 21.59 16.65 9.20 13.85 30.48 1.80 1.86 6.83
Emax(fJ) 20.09 21.79 19.84 9.22 13.95 30.41 1.81 1.89 6.87
Eavg(fJ) 19.92 21.68 18.87 9.21 13.85 30.44 1.81 1.87 6.85
SD (fJ) 0.10 0.07 1.29 0.01 0.02 0.01 0.009 0.01 0.02
NED% 1.38 0.92 16.09 0.002 0.007 0.002 0.01 0.016 0.006
NSD% 0.52 0.32 6.86 0.001 0.001 0.005 0.005 0.008 0.003

the proposed logic consumes less power as compared to all the other DPA-resistant

adiabatic circuits. The proposed logic gates are simulated in Cadence virtuoso using

180nm technology. The proposed logic gates have been used to implement bit-parallel

cellular multiplier over GF (2m).

3.2 Implementation of bit parallel multiplier over

GF (2m) using SPGAL gates

3.2.1 Galois Field Arithmetic

Finite field or Galois field plays a very important role in the field of cryptography [27].

It is used in the modern cryptographic algorithms such as AES [28]. Galois Field is

identified with the following notation GF (pm), where p is a prime number and m is a
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positive number. In GF (pm), p=2 is attractive for hardware circuit design using finite

field multipliers. It is attractive because GF (2) can be represented by the signals 0

and 1 [29]. GF (2m) contains 2m elements which is an extension field of GF (2). The

finite field contains a zero element, an unit element, a primitive element and have at

least one primitive irreducible polynomial p(x) = xm + pm−1x
m−1 + ...+ p1 + p0 over

GF (2) associated with it. The polynomial p(x) is called as all one polynomial (AOP)

of degree m if pi = 1 for i = 0, 1, 2, ... [30].

3.2.2 Bit-parallel multiplier

Let α be a root of irreducible AOP of degree m over GF (2). Let us assume that

A = A0 +A1α+A2α
2 + ...+Amα

m. Let B = B0 +B1α+B2α
2 + ...+Bmα

m. Here,

the element A and B are represented with the extended basis of 1, α, α2, .., αm. The

product of multiplication A and B over GF (2m) is given by [31]:

AB = Σm
i=0Σm

j=0A<i−j>Bjα
i (3.4)

For m=4, A = A0+A1α+A2α
2+A3α

3+A4α
4, B = B0+B1α+B2α

2+B3α
3+B4α

4 are

the elements of GF (24). The product of the multiplication of A and B over GF (24)

is denoted by C = C0 + C1α + C2α
2 + C3α

3 + C4α
4. We can write

C0 = A0B0 + A4B1 + A3B2 + A2B3 + A1B4

C1 = A1B0 + A0B1 + A4B2 + A3B3 + A2B4

C2 = A2B0 + A1B1 + A0B2 + A4B3 + A3B4

C3 = A3B0 + A2B1 + A1B2 + A0B3 + A4B4

C4 = A4B0 + A3B1 + A2B2 + A1B3 + A0B4
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In the equations + denote the logic XOR operation and . denote the logic AND oper-

ation. We have used the proposed logic gates to implement the bit-parallel multiplier

[2] which is low complex design ((m + 1)2 cells) with shorter computation time of

(m + 1)(Tand + Txor), used for multiplication in GF (2m) and SPICE simulations

have been done at different frequencies to verify its functionality. The architecture

bit-parallel cellular multiplier is shown in Fig. 3.13. The clock supply and the dis-

charge signal are shifted for each row of cells. If A0 = A1 = A2 = A3 = A4 = 1

and B0 = B1 = B2 = B3 = B4 = 1, then C0 = C1 = C2 = C3 = C4 = 1.

If A0 = A2 = A4 = 0, A1 = A3 = 1, B0 = B2 = B4 = 1, B1 = B3 = 1,

C0 = C1 = C2 = C3 = C4 = 0.

3.2.3 Simulation results

SPICE simulations are performed with 180nm technology library with the load ca-

pacitance of 10fF. The length and the width for both PMOS and NMOS transistors

are 180nm and 600nm respectively. The Input and Output waveforms of bit-parallel

cellular multiplier over GF (24) implemented using SPGAL gates is shown in Fig. 3.14

and Fig. 3.15 respectively. Fig. 3.17 shows the supply current waveforms for the bit-

parallel multiplier over GF (24) implemented using SPGAL gates respectively. From

Fig. 3.17, it can be inferred that the proposed gates when implemented in complex

architecture will have uniform supply current waveforms. The transitional power dis-

sipation is derived as Ediss=
∫ t

0
Vpc(t)Ipc(t) where Ipc is the supply current waveforms

and Vpc is the potential of the power clock. The results are observed at 12.5 MHz

and compared with the existing DPA resistant adiabatic logic families. The energy

dissipation of the proposed logic (0.556 pJ/cycle) is 90% less than the CSSAL logic

(5.36 pJ/cycle) and 81% less than the SQAL logic (2.99 pJ/cycle). A plot comparing

the energy dissipation per cycle of the bit-parallel cellular multiplier over GF (24)

designed with various DPA-resistant adiabatic families at different input frequencies
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Figure 3.13: Bit-parallel cellular multiplier for GF (24) [2]
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Figure 3.14: Input waveforms for the bit-parallel cellular multiplier over GF (24)
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Figure 3.15: Output waveforms for the proposed logic based bit-parallel cellular mul-
tiplier over GF (24)

is shown in Fig. 3.16. It has to be noted that SAL logic in cellular multiplier over

GF (24) was not working at high frequencies. It is clearly seen from the plots that

the multiplier designed with the proposed adiabatic family (SPGAL) dissipates less

energy as compared to other DPA resistant adiabatic families.
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Figure 3.17: Supply current waveform for bit-parallel cellular multiplier over GF (24)
implemented using SPGAL gates

3.3 DPA attack on AES S-Box circuit implemented

using SPGAL gates

3.3.1 Implementation of S-Box circuit

In the cryptographic algorithms such as AES/DES, S-Box is the key component

for encryption/decryption operations. For example in an AES algorithm, four steps

namely, SubBytes(bytesubstitution), ShiftRows,MixColumns and AddRoundKey are

used to encrypt the data. Out of the four steps mentioned, SubBytes is the single
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non-linear step in the AES algorithm where the input byte (8-bit) are replaced by the

output of the S-Box circuit. In the AES algorithm, SubBytes operation is vulnerable

to DPA attacks [32]. Fig. 3.18 represents the partial DPA attack on S-Box circuit.

The internal circuit details of the S-Box architecture can be found in [33].

S-box
In[0:7]

Key[0:7]

Out[0:7]

DPA attack
Figure 3.18: Partial DPA attack on 8 bit S-box circuit

Proposed SPGAL gates uses four phase trapezoidal clocks to recover the charges

from the load capacitors. To build a complex structure using SPGAL, four trapezoidal

clocks which have 90° phase shift with respect to its advance clock is employed. Note

that in adiabatic circuits, the output of each gate is valid after one phase cycle of

the clock. So, it is possible to connect the circuits in sequential manner. In the

SBox circuit built using SPGAL and SQAL, buffers are inserted to synchronize the

outputs of one stage and the other. For an adiabatic circuit with n-stages cascaded,

the performance is similar to a pipeline circuit with n stages. In this case, SPGAL

based S-Box circuit give the output with a delay of 5 clock cycles. Our SPGAL based

S-box circuit is implemented in TSMC 180nm CMOS technology. The width and

length of all the transistors used in the designs are 2um and 180nm respectively.
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3.3.2 DPA attack

In order to evaluate the improvement produced by the SPGAL gates, three different

S-Boxes were designed using 1) conventional CMOS, 2) SQAL, 3) proposed SPGAL

gates. S-Boxes were designed in Cadence with 180nm technology. They are simulated

in Spectre simulator with nominal conditions and T=27°C. The simulation environ-

ment was set up with a simulation resolution capturing data at every 1ns with a clock

frequency 12.5 MHz. We have chosen to simulate the circuits at 12.5 MHz because

SPGAL based gates are proposed to counteract DPA attacks for IoT devices. IoT

based devices will work in low and medium frequencies. The simulations are done

without any external noise source in order to ensure the best possible conditions for

the attacker. The DPA attack is performed using the MATLAB after extracting the

current traces from the Spectre simulator. We have used multi-bit correlation based

DPA attack [34] to evaluate the security of SPGAL based S-box circuit. Figure 3.19

shows the DPA attack flow using the multi-bit correlation method.
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Figure 3.19: DPA attack flow using multi-bit correlation method

In our test case, DPA attack was performed with the key of (181)10 and 512

random plain texts were passed to the 8-bit S-box circuit. Figure 3.20 shows the

successful DPA attack in a conventional CMOS based S-box circuit. It has been

shown that the correct key has the maximum correlation coefficient as compared to
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the other key guesses. Figure 3.21 shows the unsuccessful DPA attack in a SPGAL

based S-box circuit.

Correct keyguess
    (key =181)

Figure 3.20: A successful DPA attack on CMOS based S-Box circuit

Hidden correct key

  (key =103)

wrong key guess

   (key =141)

Figure 3.21: A unsuccessful DPA attack on SPGAL based S-Box circuit

3.3.3 Simulation results

We have compared all our results with the SQAL based adiabatic logic because SQAL

shows better performance in terms of power consumption and area overhead as com-

pared to the existing DPA-resistant adiabatic logic families. The transistor count and

the energy dissipated per clock cycle of the SPGAL based S-Box circuit is compared

with the conventional CMOS based S-Box circuit and SQAL based S-Box circuit.
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Table ?? shows the comparison results of the SPGAL based S-Box circuit with the

SQAL and conventional CMOS based S-Box circuit. we have used 135 XOR gates

and 97 AND gates to implement the S-Box circuit. We have used 4 phase clocks to

recover the charge stored in the load capacitor. So, additional buffers are used to

synchronize the clocks from one stage of the S-Box circuit to the next stage. Since

SPGAL and SQAL uses 4 phase clocks, both the logic requires 185 buffers to syn-

chronize the clocks. Conventional CMOS logic requires 135 XOR gates and 97 AND

gates to implement the S-Box circuit. Energy Saving Factor (ESF) values are shown

in Table ??. Energy Saving Factor (ESF) is a measure of how much energy is used in

a conventional CMOS gate or system with respect to its adiabatic logic counterpart

[26].

Table 3.3: Comparison results

Logic No. of Transistors Overhead Area (µ2) Energy diss/Cycle ESF
CMOS 2202 - 0.04 11.45 pJ -

SQAL [25] 3401 54% 0.0723 2.52 pJ 4.54
SPGAL 3624 64% 0.08 0.825 pJ 13.878

The area overhead of SPGAL and SQAL based S-Box circuit is 64% and 54%

as compared to the S-Box circuit implemented using Conventional CMOS logic. Al-

though the proposed SPGAL logic has the disadvantage in terms of transistor over-

head, SPGAL shows a good improvement in terms of energy dissipation per clock

cycle over SQAL and conventional CMOS logic. Proposed SPGAL based S-Box cir-

cuit dissipates 0.825 pJ of energy per clock cycle whereas SQAL based S-Box circuit

and conventional CMOS based SBox circuit consumes 2.52 pJ and 11.45 pJ of energy

per clock cycle respectively. It is clearly seen that the SPGAL based S-Box circuit

saves up to 92% and 67% of energy as compared to the conventional CMOS and Se-

cured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. SPGAL and SQAL saves

up to 92% and 78% of energy as compared to the conventional CMOS logic. The im-

31



provement in the energy dissipation makes SPGAL an interesting adiabatic logic to

implement the secure IoT based devices. We have also simulated the SPGAL, SQAL

and conventional CMOS based S Box circuits at different frequencies. It is clearly

seen from the plot that the reduction of non-adiabatic loss in SPGAL family reduces

the overall energy dissipation of the SPGAL based S-Box circuit at low and medium

frequencies. Fig. 3.22 shows the energy dissipation comparison of the SPGAL, SQAL

and conventional CMOS based S-Box circuits at different frequencies.

Figure 3.22: Energy dissipation comparison over different frequencies

3.4 CAD Automation

This section talks about the CAD scripts that were developed for automating large

number of simulations which otherwise require time consuming manual effort to

change the parameters of the simulation, run it and then perform power, delay calcu-

lations. The scripts were developed in ocean scripting language which is a derivative

of SKILL language. SKILL language is developed by Cadence Design Systems. The

scripts are written to calculate NED/NSD values of the circuits.

In general, a ‘n’ input gate will have 22n possible input transitions. For example,

2 input gate will have 16 input transitions as shown in Table 3.4. So that are 16

simulations to be run and energy calculations to be done to find out NED and NSD
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values of a gate. This takes considerable amount of labor effort and time. Also a

wrong change in the inputs will lead to incorrect results. The S-box circuit that

was introduced in chapter 3 is an 8 input circuit, so there are 216 input transitions.

Running simulations manually does not make sense considering the amount of time

it takes and little error margin. This was the motivation to develop scripts that do

the simulations and calculations and provide with a final result conveniently.

Table 3.4: 2-Input Gate Input Transition Table

A B A B
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

This script changes the input values, runs the simulation, calculates the Energy

dissipation value and writes those values to a file. Next a post processor script parses

through the file and generates the Emax, Emin, Eavg and σ values which are used to

calculate NED/NSD values.
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3.5 Conclusion

In this chapter we have proposed basic gates using adiabatic logic which show signifi-

cant reduction in energy dissipation. Using these circuits, complex and larger designs

were implemented and compared against circuits proposed in literature in terms of

Energy Dissipation, NED and NSD. DPA attack was also performed on the AES

S-Box creating using both CMOS and proposed SPGAL gates. The plots show that

the proposed gates are resistant against such attacks. Also the motivation to develop

automation scripts is discussed. These scripts reduce the amount of manual effort

significantly eliminating the human error which can happen most likely because run-

ning the same simulation numerous times by changing the input pulse wave forms is

highly susceptible to errors. These scripts not only run the simulations but also gen-

erate the required values to compare proposed designs against the designs proposed

in literature, thus making it easy for us to work with CAD tools.
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Chapter 4

Design of proposed Magnetic

Tunnel Junction Circuits

A Logic-in-memory (LIM) paradigm can realize ultra-low-power architectures where

memory elements are distributed over logic circuits [35] [36]. Further, LIM can reduce

the delay of circuits by minimizing the long interconnection wires. Also, RAM based

circuits have zero static power dissipation and they are very appropriate to achieve

high performance and low-power designs [37]. Magnetic Tunnel Junction (MTJ) is

a spin based device which is most suited to use in LIM architectures because of its

short access time, small dimensions and compatibility with CMOS technology, etc.

[38] [36][39][40][41].

In recent years, various hybrid MTJ/CMOS logic and arithmetic circuits such

as magnetic full adder cell (MFA), magnetic flip-flop (MFF), magnetic look-up-table

(MLUT) and magnetic content addressable memory (MCAM) have been proposed

[36][42][43][44][16].
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4.1 4-2 compressor circuit

A 4-2 compressor is a module which has five inputs (X1, X2, X3, X4 and Cin) and

three outputs (Sum, Carry and Cout). The weights of the four inputs X1, X2, X3 and

X4 and the sum output are same. The weight of the carry output is one binary bit

higher than the four inputs and sum. The input to the 4-2 compressor is supplied from

the Cin of the preceding module of one binary bit lower. The Cout of the compressor

is supplied to the next compressor module of higher significance. The fundamental

equation of the 4-2 compressor is given as [45]:

X1 +X2 +X3 +X4 + Cin = Sum+ 2(Carry + Cout) (4.1)

The conventional 4-2 compressor consists of two full adder cells as shown in Fig. ??.

In order to accelerate the carry-save summation of the partial products, it is important

that carry output (Cout) is independent of carry input (Cin). The output functions

of a 4-2 compressor are shown in equations 2-5.

Cout = X1.X2.X3 +X1.X2.X3 +X1.X2.X3 +X1.X2.X3 (4.2)

S = X1⊕X2⊕X3 (4.3)

Sum = S ⊕X4⊕ Cin = X1⊕X2⊕X3⊕X4⊕ Cin (4.4)

Carry = (Cin⊕X4).S + Cin.X4 (4.5)

4.2 Proposed Hybrid MTJ/CMOS 4-2 compressor

circuit

The proposed hybrid MTJ/CMOS 4-2 compressor circuit consists of three differ-

ent modules namely, sum, carry and cout circuits. Fig. 4.1, Fig. 4.2 and Fig. 4.3

36



shows the schematics of the Cout, Sum and the Carry output of the proposed hy-

brid MTJ/CMOS 4-2 compressor. We have used the dynamic current mode method

to design our circuits. The compressor’s three modules (Cout, Sum and Carry) are

designed based on the equations 4.2 - 4.5. For example, for designing Sum output

a 5-input XOR has been implemented. Also to design the Carry module, we had to

implement a 3-input XOR and AND gates based on equation 4.5. The following sub-

sections discuss the functionality of each module of the proposed hybrid MTJ/CMOS

4-2 compressor. In this design, the value of the X3 input is stored in the MTJs.

Figure 4.1: Schematic of the Cout output
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4.2.1 Cout circuit

Fig. 4.1 shows the schematic of the Cout output of the proposed hybrid CMOS/MTJ

4-2 compressor. The design of the Cout module is much simpler than the design of

the other two modules. Based on equation 2, this circuit is a majority gate and can

be designed as a previously presented full adders carry output (Fig. 4.1) [38]. In this

circuit, when both X1 and X2 are at VDD, T3 and T4 are OFF and the Cout output

remains charged regardless of the X3 input. When both X1 and X2 are zero, T1

and T2 are OFF and Cout will be discharged to ground. If the input value stored in

MTJ1 is “1” and MTJ2 is “0”, then the state of MTJ1 and MTJ2 will be parallel and

anti-parallel, respectively and Cout will be VDD. If X3 is zero, the state of MTJ1

and MTJ2 will remain in their initial states which were anti-parallel and parallel,

respectively. Consequently, Cout will be discharged to the ground.

4.2.2 Sum circuit

The schematic of the Sum output circuit is shown in Fig. 4.2. Based on equation 4,

The Sum output is a 5-input XOR. The initial states of MTJ1 and MTJ2 are antipar-

allel and parallel, respectively. When the input X3 is changed from zero to VDD, the

MTJ states will be changed. This circuit implements a 5-input XOR and XNOR. As

it can be seen from Fig. 4.2, the top parts of the pull down circuit are XOR (X4,Cin)

and XNOR (X4,Cin) which are highlighted in the figure. In this circuit we imple-

mented XORs and XNORs hierarchically. So the circuit is designed and implemented

based on the following equation. Sum=X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin +

X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+

X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+

X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin+

X1.X2.X3.X4.Cin+X1.X2.X3.X4.Cin

The proposed designs are based on precharge logic. So, when the CLK is in precharge
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Figure 4.2: Schematic of the Sum output. Paths 1 and 2 indicate the discharge paths
for patterns 11111 and 00000 for Sum and Sum outputs respectively (Red and Green
paths)

phase (CLK=0), all the output nodes will be precharged to VDD. Let us assume that

the input for the sum circuit is 00000. With this input pattern, the Sum output will

be discharged through T15, T17, T20, T28 and MTJ2 which is shown with path 2

in Fig. 4.2. When the input pattern is 11111, Sum will be discharged through tran-

sistors T1,T3,T9, T25 and MTJ1(path 1) and consequently Sum will be VDD. If the

input pattern is 10111, the Sum output will be discharged by T16, T18, T22, T26 and

MTJ1 and thus we have zero at this output. For other input patterns, the outputs

will either remain charged or be discharged similarly based on the input patterns.
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4.2.3 Carry circuit

Figure 4.3: Schematic of the Carry output. Paths 1, 2 and 3 implement the XOR
function

The last part of the proposed 4-2 compressor is the carry generator circuit (Fig. 4.3).

According to equation 4.5, when X4 and Cin are both VDD the output is VDD. Also,

when these signals are both zero the output will be zero. If we have 01 or 10 for

X4Cin, the output will be determined based on the XOR of the other three inputs.

As shown in Fig. 4.3, when X4 and Cin are given VDD, the leftmost path (T1 and

T2) will discharge the Carry signal to the ground. If X4 and Cin are both zero,

the rightmost path (T11 and T12) will discharge the Carry signal to the ground and

we have zero at the output. In other cases, the Carry output will be discharged

and remain charged by the XOR and XNOR circuits which are implemented in the

middle of Fig. 4.3. Based on equation 5, when X4 and Cin have the same value the
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Carry output will be determined by the output of XOR (X1,X2,X3). This function

can be calculated through the paths 1, 2 and 3 shown in Fig. 4.3. Path 1 gives the

X1X2X3, path 2 gives X1X2X3 and path 3 implements X1X2X3 minterms. For

example, when the input pattern is 10101 for X1X2X3X4Cin the left and right paths

are disconnected and the Carry will be discharged through T7, T4 and MTJ1. The

resulting output will be zero. For all of the designs, the write circuits are similar

to the previous presented paper [16]. Fig. 4.4 shows the transient response of the

proposed 4-2 compressor.

Figure 4.4: Transient response of the proposed 4-2 compressor

4.2.4 Simulation results

MTJ device parameters which are used for simulation done in Cadence Virtuoso are

given in Table 4.1. The library used was 45nm library. Table 4.2 shows the Power

delay Product (PDP) comparison between the proposed 4-2 compressor circuit and

circuits proposed in [46][45].
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Table 4.1: MTJ device parameters used for simulations

Parameter Description Value
tsl Thickness of the free layer 1.3nm
a Length of surface long axis 40nm
b Width of surface short axis 40nm

tox Thickness of the Oxide barrier 0.85nm
TMR Tunnel Magneto Resistance ration 150 %
RA Resistance Area Product 5ohmµm2

Table 4.2: Simulation results with 45nm technology

Design Delay (ps) power (µW ) PDP (10−18J)
Design [45] 83.2 0.103 8.5696
Design [46] 80.2 0.122 9.784
Proposed 66.7 0.085 5.67

Table 4.3 represents the delay, power consumption and PDP of circuits in 0.9V sup-

ply voltage and 1fF load capacitor with 32nm technology. The proposed MTJ/CNFET

design has better results in all evaluation criteria compared to the CMOS based cir-

cuits.

Table 4.3: Simulation results with 32nm technology

Design Delay (ps) power (µW ) PDP (10−18J)
Design [45] 112 0.09 10.08
Design [46] 94.4 0.12 11.38

Proposed/CMOS 71.2 0.08 5.6
Proposed/CNFET 26.8 0.01 2.6

Fig. 4.5 shows the PDP variation with respect to change in Voltage, Temperature

and Threshold Voltage.

4.3 Hybrid CNFET/CMOS 4-2 compressor circuit

We utilized CNFETs in the proposed 4-2 compressor structure and implemented the

hybrid MTJ/CNFET 4-2 compressor as shown in the figure 4.6. We have used the
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(c)

Figure 4.5: Power-Delay Product (PDP) comparison of 4-2 compressor with Process,
Voltage, Temperature (PVT) variations

compact SPICE model for unipolar MOSFET-like CNTFET including all the non-

idealities, parasitics and quantum effects [47] for simulating CNFET/MTJ circuit.

Fig 4.7 shows the transient waveforms for the cascaded 4-2 compressor.

4-2 compressor 4-2 compressor

X1 X2 X3 X4 X5 X6 X7 X8

Sum1 Carry1

Cin1

Sum2 Carry2 Cout2

Figure 4.6: Structure of cascaded 4-2 compressor

4.3.1 Simulation results

Table 4.4 shows the device parameters used for CNFET models in our simulations.

Table 4.5 shows the simulation results of the cascaded 4-2 compressor. It is inferred
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Figure 4.7: Transient waveform of cascaded 4-2 compressor

that the proposed MTJ/CNFET based cascaded 4-2 compressor has lower PDP as

compared to the existing compressor designs.

Fig. 4.8 shows the PDP variation with respect to change in Voltage, Temperature

and Threshold Voltage.

4.4 Conclusion

In this chapter we proposed a hybrid MTJ/CMOS 4-2 compressor circuit that reduces

the energy consumption substantially by making use of the MTJ unique properties.

We can see that the PDP is reduced by nearly 50%. This was further improved by

replacing CMOS with CNFET.
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Table 4.4: CNFET device parameters used for simulations

arameter Description Value

Lch
Physical Channel
Length

32nm

Lgeff

The mean free path
in the intrinsic CNT
channel

100nm

Ldd

The length of doped
CNT drain side exten-
sion region

32nm

Lss

The length of doped
CNT source side ex-
tension region

32nm

Tox

The thickness of high-
k-top gate dielectric
material

1nm

Kgate

The dielectric con-
stant of high-k-top
gate dielectric mate-
rial

16

Efi
The Fermi level of
doped S/D tube

6ev

Csub

The coupling capaci-
tor between the chan-
nel region and the sub-
strate

20 pF/m

Table 4.5: Simulation results of cascaded 4-2 compressor

Design Delay (ps) power (µW ) PDP (10−16J)
Design [45] 86.2 0.5 0.4
Design [46] 83.4 0.667 0.55
Proposed 69.2 0.42 0.29
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Figure 4.8: Comparison of CMOS/MTJ and CNFET/MTJ in term of PDP variation
against PVT variation
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Chapter 5

Conclusions

In this thesis, adiabatic paradigm was explored and a novel family of Adiabatic logic

SPGAL was proposed. Using this proposed logic low power and DPA secure gates

were designed. The applications of these circuits are apt for IoT devices since they op-

erate at low frequencies and power constrained scenarios. At high frequencies (above

200 MHz) the same amount of energy is dissipated compared to circuits designed in

CMOS logic which makes adiabatic logic not a feasible option. The adiabatic logic

is also one of the techniques that removes the data and power dependency making

it difficult for the attacker to find out the encryption key used in cryptographic pro-

cessors. At the same time the energy that is dissipated is sent back to the clock

generator, thus reducing the energy consumption significantly. From the simulation

reports we can see that there is nearly 80% reduction in energy consumption when

compared to CMOS. On a system level, if each gate is implemented using SPGAL

gates, you can have atleast 70% - 80% energy savings. However these perks do come

at a cost. The adiabatic family logic is dual rail in nature, thus this leads to an area

overhead. The transistor count for even such a simple circuit like an buffer which

takes only four transistors in CMOS logic takes six transistors to design. Not just

this, the clock that is used in adiabatic logic is 4-phase trapezoidal clock. This makes
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designing larger circuits difficult because synchronizing the signals will prove to be

an ordeal. In order to synchronize them additional buffers have to be used leading to

extra area for the chip. Moreover the EDA tools do not support this kind of phased

clock distribution. Therefore this will be a manual and hectic work to have all the

signals synchronized. Adding this kind of support in EDA tools will ease the chip

designing effort tremendously, so this can be an area that people can focus on in

future to benefit from the adiabatic logic.

The hybrid MTJ/CMOS circuits proposed in this thesis show a promising 50%

reduction in Energy consumption. This was further improved by using CNFET in

place of CMOS as the PDP was reduced by nearly 80%. Designing circuits using

MTJ/CNFET is not as complex as designing with adiabatic logic since there is no

synchronization of signals needed because all the gates operate on same clock signal.

However using CNFET may pose challenge while manufacturing. Since its structure is

not as simple as CMOS and the fabs currently do not have masks developed to lay out

CNFETs on a massive scale. As of now the models are developed for MTJ/CNFETs

which can be used only for the purpose of simulation. Although the models prove

helpful to get an insight as to how using MTJ/CNFET will prove advantageous,

they are still not perfect as current CAD tools do not support these models entirely.

Energy calculations in the CAD tool generates incorrect values when done by using

the inbuilt calculator. Also multiple writes to the MTJ cells do not seem to take

effect. So, these are few problems which can be fixed so that any future work on

MTJs does not seem tedious.
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