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ABSTRACT

Silicon based integrated circuit (IC) technology is approaching its physical limits. For sub 10nm
technology nodes, the carbon nanotube (CNT) based field effect transistor has emerged as a
promising device because of its excellent electronic properties. One of the major challenges
faced by the CNT technology is the unwanted growth of metallic tubes. At present, there is no
known CNT fabrication technology which allows the fabrication of 100% semiconducting
CNTs. The presence of metallic tubes creates a short between the drain and source terminals
of the transistor and has a detrimental impact on the delay, static power and yield of CNT

based gates.

This thesis will address the challenge of designing robust carbon nanotube based circuits in the
presence of metallic tubes. For a small percentage of metallic tubes, circuit level solutions are
proposed to increase the functional yield of CNT based gates in the presence of metallic tubes.
Accurate analytical models with less than a 3% inaccuracy rate are developed to estimate the
yield of CNT based circuit for a different percentage of metallic tubes and different drive
strengths of logic gates. Moreover, a design methodology is developed for yield-aware carbon
nanotube based circuits in the presence of metallic tubes using different CNFET transistor
configurations. Architecture based on regular logic bricks with underlying hybrid CNFET
configurations are developed which gives better trade-offs in terms of performance, power,

and functional yield.



In the case when the percentage of metallic tubes is large, the proposed circuit level techniques
are not sufficient. Extra processing techniques must be applied to remove the metallic tubes.
The tube removal techniques have trade-offs, as the removal process is not perfect and
removes semiconducting tubes in addition to removing unwanted metallic tubes. As a result,
stochastic removal of tubes from the drive and fanout gate(s) results in large variation in the
performance of CNFET based gates and in the worst case open circuit gates. A Monte Carlo
simulation engine is developed to estimate the impact of the removal of tubes on the
performance and power of CNFET based logic gates. For a quick estimation of functional
yield of logic gates, accurate analytical models are developed to estimate the functional yield of

logic gates when a fraction of the tubes are removed.

An efficient tube level redundancy (TLR) is proposed, resulting in a high functional yield of
carbon nanotube based circuits with minimal overheads in terms of area and power when large
fraction of tubes are removed. Furthermore, for applications where parallelism can be utilized
we propose to increase the functional yield of the CNFET based circuits by increasing the

logic depth of gates.
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1 Introduction

1.1 Need for CMOS Alternatives

The driving force for semiconductor industry growth has been the elegant scaling nature of
CMOS technology. In nanoscale CMOS technology nodes, supply voltage (V) and
threshold voltage (V,,) must continually scale in order to sustain a performance increase,
limit energy consumption, control power dissipation, and maintain reliability. The scaling of
CMOS technology has sustained over the last four decades, but is now approaching
atomistic and quantum-mechanical physics limits [1]. Some of the main challenges faced by
the Si CMOS technology are large short channel effects resulting in an exponential increase
in leakage power, process variations resulting in large deviations in the performance of the

circuits and technological limitations.

In nano-scale CMOS devices, leakage power is the major contributor to total power
consumption. Figure 1-1 shows the six mechanisms which contribute to total leakage
power in the short channel devices. In Figure 1-1, I, is the leakage current due to the
reverse-bias pn junction, I, is the leakage current due to the subthreshold leakage, I; is the
current due to the tunneling of carriers through the thin gate oxide, I, is the current flowing
in the gate because of an injection of hot carriers, ; is the current because of Gate Induced

Drain Lowering (GIDL) and finally I, is the current because of a channel punch through.
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Figure 1-1: Different sources of leakage currents in nano-scale transistors.

The process variations result in the increased parametric variation of the CMOS devices [1].
The major impacts of process variations are on the variation in the channel length I, width
IV, and threshold voltage 17, The variations in the I, and W are mainly caused due to a
limited resolution of photolithography effects. Similatly, variations in threshold voltage are
caused by the variation in both the doping concentration in the channel, and in the oxide
thickness. The process variations result in a significant deviation in the performance and the

power of digital circuits from their nominal values.

The fabrication of CMOS transistors is obtained by patterning, which is achieved by a
combination of photolithography and masks. Therefore, the size of the smallest feature size
that can be patterned is dependent on the wavelength of light. The patterning of feature
sizes that are smaller than the wavelength of light, although possible, result in an increase of

complexity and costs of the masks. Figure 1-2 shows the evolution of optical masks starting



from 180nm technology nodes to less than 45nm technology nodes [2]. From the figure it
can be observed that migration from 180nm to 130nm technology nodes required the
Rule/Model based optical proximity correction (OPC) techniques. Similatly, for technology
nodes 65nm or below, the complexity of the masks required more advanced techniques. It
is reported in [2] that for technology nodes with a feature size of <22nm the complexity of
the processes involved in the masks may result in these approaches to be economically

unviable.

Optical view of masks (patterns)
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Figure 1-2: Evolution of optical masks for patterning of different technology nodes.

Scaling of Si CMOS is continued by innovations like the use of strained-Si channels, high

K-dielectrics and metal gate electrodes. The application of strain on silicon increases the
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mobility of carriers, which in turn improves the drive current, and performance of the
transistor. Different strain mechanisms are required for NMOS and PMOS transistors. For
an NMOS transistor, an insulating film of silicon nitride (SiN) is applied on the gate of the
NMOS transistor which creates a tensile stress on the channel. In the PMOS transistor, a
compressive stress is applied by putting the epitaxial layer of silicon germanium (SiGe) in
the source and drain slots of transistors [3]. The application of strain increases the mobility
of NMOS transistors by 40%, and PMOS transistors by 100% as compared to transistors
without the application of strain [4]. The application of high-K gate dielectrics and metal
gate electrodes help to significantly reduce the gate leakage. Figure 1-3 shows the reduction
in gate leakage by incorporating the high-k gate dielectric and metal gate [5]. From the
figure it can be observed that the application of high-k gate dielectric and metal gate
reduced the gate leakage by 25X, while migrating the technology from 65nm to 45nm. The

leakage reduction is due to the use of high-k gate dielectric.
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Figure 1-3: The scaling trend of Intel’s inversion electrical Tox and gate leakage for different
technology nodes [5].

To reduce the short channel effects, researchers have proposed double-gate MOSFET's and
finfets/tri-gate devices [6], [7]. In tri-gate devices the gate is placed on the three sides of the
channel as shown in Figure 1-4 . This results in a better control on the channel and

significant reduction in the drain to source subthreshold leakage current.
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Figure 1-4: Micrograph of a tri-gate transistor developed by Intel.

1.2  Emerging Logic Devices

Researchers have also started exploring new devices and channel materials in the sub-10nm
technology nodes that have the potential to become the successor of Si-CMOS. According
to I'TRS [8] some of the emerging logic devices which have the potential to replace Si in the

post Si era are:

a) Nanowire Field-Effect TransistorsINWFET') [9]

b) III-V compound semiconductor Field-Effect Transistors [10-13]

¢) Graphene Nanoribbon Field-Effect Transistors

d) Carbon nanotube Field-Effect Transistors (CNFETS) [14]

Nanowire Transistors: In Nanowire transistors a semiconducting nanowire of diameter

around 0.5nm is used as a channel material. The nanowire material can be of silicon (Si),
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germanium (Ge), I1I-V, In,O;, ZnO or SiC semiconductors. The remaining structure of the
silicon nanowitre transistor is similar to conventional CMOS. Nanowite transistors have
been reported by several groups [15][16].Figure 1-5 shows the schematic of a fabricated
NWFET where silicon nanowire is used as a channel material [17]. The main advantage of
using the small diameter nanowire is to obtain 1-D conduction, minimizing the short
channel effects. The fundamental challenge faced by nanowire based transistors is the
fabrication of conventional diffused P-N junctions in nanowire devices. Current
technologies use metal source drain junctions, resulting in ambipolar conduction [18]. This

produces a large OFF state current in the nanowire devices.

Si Nanowire Channel

Au/Cr or Au/Ti

5i0,
Si Substrate

Figure 1-5: Schematic diagram of nanowire FET. Silicon is used as the channel material for
nanowire.

IIT-V compound semiconductor FET: The 11I-V compound semiconductor FET uses
III-V compound semiconductor such as InSb, InAs, InGaAs as a channel material. Higher
performance can be obtained from these devices because of the high mobility of carriers in
these materials compared to CMOS devices. These III-V compound semiconductor FET's
have the potential to deliver 3X higher performance than silicon at iso-power consumption,
or can deliver the same performance as obtained by silicon transistors at one-tenth the

power consumption of silicon [19]. Figure 1-6 shows the schematic of an n-type MOSFET
7



[20]. Here, ZrO?2 is used as the gate dielectric and InGaAs is used as the channel material.
The mobility of the device is reported to be 3000 cm®/Vs[20].There are two  main
challenges faced by the III-V semiconductor devices, 7) the III-V materials have lower
bandgaps, resulting in excessive leakage and large static power consumption in III-V
semiconductor devices, 2) the problem of forming a compatible high-k dielectric interface

[21] which is essential in the electrostatic control of the device.

P-InAlAS
P-InP

Figure 1-6: Schematic of a n-type MOSFET with InGaAs used as the channel material and ZrO; as
the gate dielectric [20].

Graphene Nanotibbon Transistor. In the graphene nanoribbon transistor, a monolayer
of carbon atoms, packed into a two-dimensional honeycomb lattice is used as the channel
material. Figure 1-7(a) shows the schematic diagram of nanoribbons FET transistor
fabricated with nanoribbons with a width of ~2nm [22]. Figure 1-7(b) shows the AFM
image of the graphene nanoribbon FET, where 10nm thick SiO, is used as dielectric and

Pd is used as source and drain contacts and P is used as the backgate. An advantage of

using graphene as channel material is a very high mobility (15,000 cm’ /Vs) [23], high carrier
velocity which will result in fast switching, monolayer thin body for optimum electrostatic

scaling, and excellent thermal conductivity. It is expected that the integrated circuits
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fabricated with graphene based transistors can be 100X to 1000X faster than silicon devices
[24]. Graphene based transistors are reported by different research groups [22], [25], [26]. In
2010, a transistor operating at 100 GHz has been reported by IBM [27]. Graphene
transistors are expected to beat the performance of the fastest transistors fabricated with
other materials, if researchers can overcome the challenges faced by the graphene
technology. The major challenge faced by graphene based transistors is the comparatively
low Ion/Iopy tatio of ~7[28], a measure of how much power is consumed by the circuit
when it is in the standby state. In case of low I,/ ratio, the integrated circuit made of

billions of graphene transistors will consume an enormous amount of energy [29].

(@) (b)

Figure 1-7: (a) Schematic of a graphene nanoribbons FET (b) AFM image of graphene nanoribbon
FET with w~210.5nm.

Carbon Nanotube based FET (CNFET): The CNFET has the potential to become the
channel material of future nanoscale transistors because of the excellent electronic

properties of carbon nanotubes, such as near ballistic transport [30], high carrier mobility



(10°~10'cm?/Vs), in semiconducting CNTs [31], and easy integration of high-k dielectric

material [32] resulting in better gate electrostatics.

CNFET uses a single-walled carbon nanotube (SWCNT) as channel material. The control
electrode (gate) is placed above the conduction channel and separated from it by a thin
layer of dielectric (gate oxide). Figure 1-8 shows the side and top view of a CNFET where
an array of four single-walled CNT's is used as a channel. The first carbon nanotube based
transistor was demonstrated by Dekker et al. [33] and by IBM in 1998 [34]. After that
demonstration, significant progress was made in the fabrication of carbon nanotube based
devices and circuits. Physical implementations of inverters[35],5 stage ring oscillator[36],
NAND, NOR gates and SRAM cells [37] built with CNFET's have been demonstrated by
various research groups. In 2006, IBM announced that they built the first integrated circuit
using a single-walled carbon nanotube [38]. Rogers et al. demonstrated medium scale
integrated circuits built with CNFET based transistors on a thin plastic substrate [39].At
present, the fundamental challenges faced by carbon nanotube based technology are the
unwanted growth of metallic tubes, and the placement and alignment of an array of aligned

carbon nanotubes [40].
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(a) Side View (b) Top View

Pd

SiO;

Substrate

Figure 1-8: (a) Cross section view of CNFET (b) Top view of CNFET layout with an array of four
parallel CNTs.

The above mentioned logic devices have the potential to replace silicon in the post silicon
era. NWFET and CNFET are 1-D devices, graphene FET is a 2-D device, and the III-V
compound semiconductor transistor is a 3-D device. Out of these, 1-D devices NWFET
and CNFET) allow the ballistic transport of carriers in the channel without any scattering.
As a result, performance of these devices is superior to 2-D and 3-D devices. The absence
of dangling bonds at the CNT surface allows an easy integration of high-K dielectric
resulting in better gate electrostatics, which in turn results in lower sub-threshold slopes and
lower OFF current in CNT based devices. As previously discussed, the mobility of carriers
in III-V semiconductor FET, graphene FET, CNFET and in NWFET (depending on the
channel material used in NWFET) is higher than silicon resulting in higher carrier

velocities. The mobilities of CNFET and graphene are in the same order of magnitude

(10,000 cmz/Vs to 15,000 cmz/Vs) making them a strong candidate for future devices.
Moreover, according to I'TRS 2009(8], carbon nanotube and graphene based transistors
show the highest potential of being part of future giga-scale integrated circuits. When this
research started, R&D in CNFETSs was leading, whereas graphene was recently introduced.

Therefore, the focus of this work is on carbon nanotube based devices and circuits.
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1.3 Contributions of This Work

In the previous section the challenges faced by CNT based technology were briefly
mentioned. This dissertation focuses on the two aspects of such challenges: @) the impact of
spacing among CNTs and the variability in diameter and spacing of CNTs on the
performance of CNFETSs, and 4) the impact of the presence of metallic tubes on the
performance, power, and yield of CNFET based circuits. Two different approaches are
proposed depending upon the percentage of metallic tubes in a given CNT fabrication

technology.

131 Spacing among CNTs and variability in diameter and spacing of CNTs
The spacing between adjacent CNTs impacts the performance of CNFETSs. In chapter 4

the impact of spacing among adjacent CNTs on the performance of CNTs is analyzed.
Moreover, the fabrication of CNT results in variation in their diameter, as well as spacing
among them. The analysis of variation in the diameter and spacing is done in order to
examine their impact on the performance of CNFETs. A tool is developed to stochastically
estimate the spacing impact on the performance of drive strength of CNFETs. Finally a

methodology is developed for variation-tolerant CNFET based circuit design.

132 When the Percentage of Metallic Tubes is Smaller

As discussed in Section 1.2, one of the major challenges faced by the CNT technology is
the unwanted growth of metallic tubes, which severely impacts the yield of CNFET based
circuits. Initially, Monte Carlo simulations are used to evaluate the impact of metallic tubes
on the performance, power, and yield of CNFET based circuits. A set of novel CNFET

configurations are proposed in order to increase the yield of logic gates in the presence of
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metallic tubes. Analytical models are developed to accurately estimate the functional yield of

logic gates instead of going through the computationally intensive Monte-Catlo simulations.

A vyield aware methodology is developed, offering better trade-off among performance,
power and yield of CNFET based circuits by using our proposed architecture level
solutions. Similarly, for ASIC design style, an implementation of circuits with regular logic
bricks composed of hybrid configurations of transistors are proposed. The proposed
configurations allow the designers to obtain optimal trade-off between performance, power

and yield.

133 When the Percentage of Metallic Tubes is Higher

The circuit and architecture level solutions proposed in the previous sub-section to mitigate
the impact of the presence of unwanted metallic tubes is not sufficient when the percentage
of metallic tubes produced by the CNT growth process is higher(>7%). In this case,
researchers have proposed to remove the metallic tubes by extra processing techniques
such as Selective Chemical Etching (SCE) or VLSI-compatible metallic carbon nanotube
removal (VMR). The trade-off of these extra processing techniques is that in addition of
removing metallic tubes, they also remove a finite portion of required semiconducting
tubes. Monte-Carlo simulations are used to obtain the impact of tube removal processing
techniques on the performance, power and yield of logic gates. We have derived analytical
expressions for the quick estimation of the impact of tubes removed on the yield of logic
gates. We propose an efficient Tube Level Redundancy (TLR) technique which reduces the

impact of tube removal, and helps in achieving high yield.
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1.4  Otrganization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 provides a formal discussion of CNFETSs, different CNTs growth methods, and
the fabrication flow of CNFETSs. The chapter also highlights the different challenges faced
by CNFETSs such as spacing, variation in diameter and spacing, misalighment of CNTs,
Schottky Barrier contacts between nanotube and metal junctions, the unwanted growth of

metallic tubes, and their impact on the CNFET based circuits.

Chapter 3 introduces the CNFET device modeling, estimation of performance, power and

area and of CNFET based circuits and their functional yield.

Chapter 4 focuses on the impact of diameter, and spacing among adjacent CNTs, and
variations in the diameter and spacing on the performance of parallel tube CNFETs.
Furthermore, a novel methodology is presented to stochastically estimate the impact of
spacing among adjacent tubes because of the removal of tubes on CNFETSs with different
drive strengths. In this chapter we propose a set of strategies for variation-tolerant CNFET

based circuit design.

Chapter 5 provides the circuit level solutions to address the challenges due to the presence
of unwanted growth of metallic tubes. Different transistor configurations are proposed for
CNFETs, and the yield results of different configurations of CNFET based logic gates are
presented. In addition, analytical models are developed to quickly estimate the yield of logic

gates. Finally, architecture level solutions are presented using our proposed set of transistor
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level configurations in order to obtain a better trade-off among delay, power, and yield in

the presence of metallic tubes.

Chapter 6 contains the analysis for the yield of CNFET based circuits when the metallic
tubes are removed by extra processing techniques such as SCE, and VMR. Yield results of
logic gates are obtained from Monte Carlo simulations by considering the impact of tubes
removed from the drive and fanout gates. Analytical models are developed to estimate the
functional yield of gates when a large number of tubes are removed. In this chapter we also
report an efficient Tube Level Redundancy technique to increase the functional yield of
CNFET based circuits when a large number of tubes are removed. The analysis also shows

the impact of path depth on the yield.

Chapter 7 summarizes this work while also suggesting future work.
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2 CNFETs, Advantages and Fabrication Challenges

The excellent electronic properties of CNFETs make them a potential candidate of future
integrated circuits. The major difference between a CNFET and Si CMOS is the channel

material, which in the case of a CNFET, is a single-walled carbon nanotube (SWCNT).

2.1  Carbon Nanotube

SWCNTs are hollow cylinders in which carbon atoms are arranged in the honeycomb
lattice [41] as shown in Figure 2-1, and were first demonstrated by Bethune [42] and Iijima
[43] in 1993. For the purpose of visualization, SWCNT's are obtained by rolling a sheet of

graphene. The band structure of SWCNT can be defined by the chiral vector as given by:

C =na, + ma, @.1)

Here 7 and » are integers that specify the chirality of the tube, and @, and «, are the unit
vectors of the graphene lattice. Figure 2-1 shows the pictorial representation of the chiral
vectors of a SWCNT. The values of # and 7 determine the characteristic of the carbon
nanotube ie., metallic or semiconducting. It is observed that 2) when #=m the carbon
nanotube is metallic, and 4) when #-7=3i, where 7 is an integer, the carbon nanotube is
semiconducting with a swall bandgap [44], and ¢) when n-m#3i then CNTs are

semiconducting with a large bandgap [45].
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Figure 2-1: Pictorial representation of a single-walled carbon nanotube (SWCNT) with chiral
vector.

Figure 2-2 shows the schematic of a metallic carbon nanotube (armchair) and
semiconducting (zigzag) SWCNTs. Both metallic and semiconducting CNTs have found
many applications in Nanoelectronics. Ballistic transport of carriers can be achieved in
single-walled carbon nanotubes because of their quasi 1-D structure which restricts the
movement of carriers only along the axis of the tube. This eliminates the wide angle
scatterings of carriers and results in a ballistic transport of carriers. The 1-D structure also
restricts the wave vector K. to certain values by fulfilling the condition K..C=2j. Where j is
a constant and can take only integer values. Therefore, each band of graphene can split into

a number of 1-D sub-bands.
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Figure 2-2: A single-walled carbon nanotube (SWCNT) obtained by rolling a sheet of graphite.
Depending upon the angle with which the sheet of graphite is rolled metallic (upper) or a
semiconducting (lower) CNT is obtained.

2.2 Applications of Carbon Nanotubes in Nanoelectronics

As described in the previous section, the 1-D structure of metallic carbon nanotubes allows
the electrons to travel without scattering for longer distances. The mean free path of
metallic CNTs is estimated to be 1000nm [41], much longer than 40nm obtained for
copper interconnects (which is 25X larger than copper interconnects) at room temperature.
Moreover, the metallic carbon nanotubes current carrying capacity are almost 10" (A/cm?)
[46] which is several orders of magnitude larger than the current carrying capacity of copper
interconnects. These potential advantages of metallic carbon nanotubes make them a
suitable candidate for future interconnects as well as vertical vias. In 2008, Wong et al. [47]
demonstrated an integrated circuit in which SWCNT was used as an interconnect. The

circuit operated at a frequency of greater than 1GHz.

On-chip capacitors are required by certain analog circuits, and for decoupling purposes in
digital circuits. Current integrated circuit technology uses metal-insulator-metal (MIM) and

MOS capacitors as decoupling capacitors in the integrated circuits. However, the major
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problem with these capacitors is the small capacitance per unit area. Carbon nanotubes,
because of their low resistivity at nano-scale dimensions, make them a potential candidate
to be used as integrated capacitors in future integrated circuits [48]. Researchers have
shown that the use of CNT based integrated capacitors results in a significant increase in
capacitance per unit area, and larger quality factors than capacitors fabricated with MIM

and MOS capacitors [49], [50].

Carbon nanotubes can also be used as on-chip inductors [51], [52] because of their smaller
footprint, higher drive current and smaller curvatures. Recent research works have shown
promising results for the use of CNTs as passive inductors in Low Noise Amplifiers (LNA)

[53].

Carbon nanotubes have excellent mechanical properties, in addition to the excellent
electronic properties. Their strong mechanical strength makes them potential candidates for
being used in the fabrication of flexible electronics. Various groups have reported that the
fabrication of CNFETs [54] and CNFET based circuits [55] on flexible substrates with

performance ranging from 40MHz-6GHz.

2.3  Carbon Nanotube Growth Methods

Different methods have been used by researchers for the growth of SWCNTSs such as arc
discharge, laser ablation and chemical vapor deposition (CVD). Out of the different CNT
fabrication methods, CVD produces the most cleanly and untangled tubes, in addition the
process of CVD is compatible with the present IC fabrication process. Therefore, in this

work we are assuming that CNTs are produced by CVD.
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CNTs can be fabricated first, and then deposited on the substrate, on which CNFETSs are
later fabricated [56]. Kocabas et al. [57] demonstrated the growth of carbon nanotubes onto

single-crystal substrates of sapphire or quartz which are later transferred on a plastic
gle-cry pPp q p

substrate for the fabrication of CNFETSs.

CNTs can also be fabricated at desired locations on the substrate on which CNFETSs are

later fabricated. Kong et al. demonstrated the growth of SWCNTSs on SiO,/Si wafers [58].

Figure 2-3 shows the setup used to fabricate CNTs using CVD. In this process, a catalyst
material (Fe, Co, Pt) is heated in the furnace in the presence of hydrocarbon gas. The
reaction of the hydrocarbon gas with catalyst material results in the growth of CNT's which
are only grown on the places where the catalyst particles are deposited, therefore no further

cleaning or detangling action is required.

C H_.,, cata Igst

750 - 900°C

Figure 2-3: Setup used to fabricate CNT's using chemical vapor deposition (CVD) [59].
2.4  Carbon Nanotube Field Effect Transistors

In the previous section, CNT synthesis techniques were described. In this section, we focus

on the different types of CNFETSs using carbon nanotubes. Two main types of CNFETS
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are being explored by researchers are, the Schottky Barrier (SB) CNFETs [60], and the
MOSFET-type CNFETSs [61].Figure 2-4(a) shows the device structure and Figure 2-5(a)
shows the conduction band profile of a SB transistor. Similarly, Figure 2-4(b) shows the
device structure and Figure 2-5(b) shows the conduction band profile of MOSFET-type of
CNFETs. In a SB CNFET, the gate voltage controls the width of the Schottky Barrier at
the source end of the channel as shown in Figure 2-5(a); therefore, the presence of the
tunneling barrier at the source side of the channel controls the ON current of the SB
CNFET. SB devices exhibit ambipolar conduction. Therefore both the n-type and p-type
CNFETs can be obtained by a proper selection of the work function in metals for

source/drain contacts.
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Figure 2-4: Device structure of a (a) Schottky Barrier (SB) CNFET, (b) MOSFET-type of CNFET

[59].
(b)

Figure 2-5: Conduction band profile of (a) Schottky Barrier (SB) CNFET (b) MOSFET-type of
CNFET [59].

Figure 2-4(b) shows the schematic of a MOSFET-type N-CNFET in which source and
drain regions are chemically doped with potassium (K). Similarly, the MOSFET-type of P-
CNFETSs are demonstrated by Chen et al. [32], [62], [63] in which the source and drain
regions of the transistor are doped with tri-ethyloxonium hexachloroantimonate
(C,H4)30+8bCl (OA). In the MOSFET-type of CNFETS, the conductance of the channel

is controlled by the gate voltage as shown in Figure 2-5(b). The doping of source and drain
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regions in MOSFET-type CNFETSs suppresses the transport of either the electrons or the

holes, and hence results in unipolar conduction characteristics.

The main problem with SB transistors is that the formation of SB between the CNT and
soutce/drain contact tesults in a large subthreshold slope and ambipolar conduction in
nanoscale devices. The large subthreshold slope and ambipolar conduction severely limits
the ON current, and exponentially increase the OFF current, both of which are
unacceptable in high performance and low power digital applications. Therefore, doping
methods and using different doping materials (as described in the previous paragraph) are
used to fabricate MOSFET-type of CNFETSs with small subthreshold slopes and uni-polar
conduction characteristics. Because of the high performance and the low OFF current of
MOSFET-type of CNFETs, the focus of this work is on the MOSFET-type of CNFETSs.
For the sake of simplicity we will refer the MOSFET-type of CNFETS in the rest of the

thesis as CNFETS.

2.5  Fabrication Flow of CNFETSs

Figure 2-6 shows the sample fabrication process flow of MOSFET-type of CNFET. Here,
first SiO, is thermally grown on the Si wafers as shown in Figure 2-6(a). Then
lithographically defined alighment markers are patterned on regions as shown in Figure
2-6(b), where CNTs are later grown. Afterward, windows are opened in the photo resist to
deposit the catalyst (Fe, Co, Pt) on the substrate, as shown in Figure 2-6(c). The catalyst is
deposited either in the form of liquid drops or thin layers of metal catalyst films at specific

locations on the substrate as shown in Figure 2-6(d), and then the photo resist is etched
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away as shown in Figure 2-6(e). Then SWCNTs are synthesized on catalytically patterned

areas of the Si/SiO, substrate by CVD as shown in Figure 2-6(f).

After the growth of CNTSs, source/drain contacts are patterned by either using
photolithography or e-beam lithography. In case of e-beam lithography, the metal films
with a thickness of ~7-30nm are deposited, as shown in Figure 2-6(g). Palladium (Pd) is
used as the source and drain contacts for both n-type [61] and p-type CNFETSs [62]. The
top gate stack consisting of high-k dielectric (HfO, ZrO,), and the metal gate is fabricated
by atomic layer deposition (ALD) and the lift-off technique without overlapping the metal
source and drain contacts [64]. Figure 2-6(h) shows the patterned high-k dielectric and
metal gate using ALD and lift-off. During this process, the segments of nanotubes where
doping is performed are remained fully exposed as it can be observed in Figure 2-6(h). The
source and drain regions between the gate stack and metal source and drain contacts are
doped as depicted in Figure 2-6(1). For n-type CNFETSs the source and drain regions are
exposed to Potassium (K) vapor in vacuum [61] and for p-type CNFETSs the source and
drain regions are exposed to tri-ethyloxonium hexachloroantimonate (C2H5)30+SbCl6

(OA) [65] .
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Figure 2-6: Sample CNFET fabrication flow (a) Thermal growth of SiO; on Si wafer (b) Patterning
of alignment markers (c) Opening of windows in the photo resist (d) Deposition of catalyst resist
(e) Etching of photo resist (f) CNT grown by chemical vapor deposition (g) Fabrication of metallic
electrodes (h) Formation of top gate stack consisting of high-k gate dielectric and metal gate (i)
Doping of CNTs.
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2.6  Advantages of CNFETs

Single-walled CNFETSs are promising candidates for future integrated circuits [66], [41]
because of their excellent properties, like long scattering mean free path(MEFP) >1um[65],
resulting in near ballistic transport [30], high carrier mobilities (10°~10'cm?®/Vs) in
semiconducting CNTs [31], and the easy integration of high-k dielectric material such as
HtO, [32], or Z1O,|67] resulting in better gate electrostatics. Because of the aforementioned
properties, CNFETs have a potential to deliver higher performance and lower power as
compared to FETs built in silicon technology [68], [69]. The theoretical analysis results
show that CNFETSs is thirteen times faster than a PMOS transistor and six times faster than

an NMOS transistor [70] using 32nm technology node.

2.7  Challenges Faced by CNFETSs

Since the first demonstration of carbon nanotube field effect transistors by researchers at
Delft University [56], [71] in 1998, tremendous progress has been made in CNT based
technology. However, fabrication of CNFET-based circuits still faces major challenges
which are needed to be solved for making the CNFET technology commercially viable.

These challenges are as follows:

1. Variation in the diameter of CNTs [72]

2. Packing Density of CNTs [73]

3. Spacing and variation in spacing among adjacent CNT's

4. Misalignment of CNTs [74], [57]
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5. Schottky Barrier contact between source and drain and CNT
6. Unwanted growth of metallic CNT's

2.7.1 Variation in the Diameter of CNTs
The diameter of the SWCNT can be approximated as

Deyr =&\/n2 +m®+nm 22)
T

Where @,=0.142nm is the carbon to carbon atom distance. In case of semiconducting
nanotubes, the bandgap of the CNT is inversely proportional to the diameter of the carbon

nanotube. The relationship between the bandgap and diameter of a CNT is given as

0.8ev

E -
4 (m)

2.3)

Where E,, is the bandgap of the CNT and 4 is the diameter of the carbon nanotube in nm.
This means that tubes with smaller diameters have a larger bandgap, and tubes with larger
diameters have a smaller bandgap. The fabrication of CNTSs results in the variation in the
diameter of the tubes where normally fabricated CNTs have diameters within 1nm to 2nm

[75]. Furthermore, experimental results show that the diameter of CNTs shows a Gaussian

distribution [76]. Figure 2-7 shows the diameter distribution of CNTs with p and

30 diameter of 1.5nm and 0.5nm respectively.
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Figure 2-7: Diameter distribution of CNT's with respect to p and 36 CNT diameter of 1.5nm and
0.5nm.

In [77] the authors developed the first order model to approximate the threshold voltage of

CNFET as a function of the diameter of the CN'T.

3V,

= 2.4
th 3ed (2.4)

Here 17 is the carbon bonding energy, e is the charge on the electron, and 4 is the diameter
of the carbon nanotube. Please note the inverse dependence of the threshold voltage on
tube diameter, as a result Therefore CNFET's with tubes of smaller diameter have both ON
and OFF currents smaller. The ON current of a semiconducting tube in a CNFET can be
expressed by the equation (2.5) taken from [78], in which g, represents the
transconductance of a CNFET. [7,, is the supply voltage and according to ITRS

guidelines, it is projected at 900mV [79] for 32 nm technology node. L is the length of a
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doped CNT which acts as a source region, and p, is the resistance per unit length of the

source region.

_ Yenr (VDD _Vth)
1+ 9enr Lspos

(2.5)

ons

From equations (2.4) and(2.5) , it can be observed that there is a linear dependence of the
ON current on the diameter of CNTs. The OFF current (I;) of a semiconducting tube has
the exponential dependence on the threshold voltage, and on the subthreshold slope of the
device. Equation (2.6) is the approximation used to obtain the OFF current of a
semiconducting nanotube, where I, is the mean value of the ON current of a
semiconducting tube. A fitting parameter “7” is used to obtain the desired ratio of I,/I,;
ratio. S is the subthreshold of the device and its value varies between 63mV/decade [80] to
100mV/decade [61]. From equations (2.4) and (2.6) it can be obsetved that thetre is an

exponential dependence of CNFETSs diameter on the OFF current of the transistor.

|
Loy == 20™) 26)

2.7.2 Packing Density of CNTs

Single-tube CNFET’s are not very feasible for circuit applications because of their low
drive currents and small active areas. To produce scalable devices, an array of densely
packed CNTs is considered as a possible solution, resulting in multiple parallel transport

paths that can deliver large drive currents.
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A CNFET using an array of tubes has been demonstrated in [65], [81]. Present CNT
synthesis technologies allow us to pack almost 10-50 CNTs/um [81], [82]. However, Patil
et al. [78] analyzed that in order to obtain delay and energy gains over Si-CMOS with
future technology nodes, almost 250 CNTs/um are requited cotresponding to spacing ()
between adjacent tubes of 2.5nm for a tube diameter of 1.5nm. The spacing between
adjacent tubes in parallel tube CNFETs impacts the channel capacitance due to charge
screening effects from adjacent tubes, thus impacting the current delivered by individual CNTs.
The packing of almost 250 CNT's/pm also gives us the optimal number of CNTs as further

increase in the density of tubes results in a reduction in the drive current from the parallel

tube CNFETs.

Deng et al.[83] showed a reduction of almost 2X in the ON current of a parallel tube
CNFET when the spacing between adjacent tubes is reduced to 1nm. On the one hand, the
increase in the number of parallel tubes in the channel improves the drive current of the
transistor because of the increase in the number of conducting channels. On the other
hand, there will be a reduction in the drive current of parallel CNTs due to the increase in

charge screening because of the reduction in the spacing between adjacent tubes.

2.7.3 Spacing and Spacing Vatiation

The drive current of a parallel tube CNFET depends upon the gate to channel capacitance.
The parallel tubes in the CNFET have screening effects on the potential profile in the gate
region and therefore effects the overall gate to channel capacitance of the parallel tube
CNFET[84]. The amount of screening from adjacent tubes in parallel tube CNFETS is a

function of the spacing between adjacent CNTs. The spacing between adjacent tubes is
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inversely proportional to the gate to channel capacitance. Therefore, less spacing between
adjacent CNTs decreases the channel capacitance which implies a reduction in the drive
strength of parallel tube CNFETSs. Moreover, for fixed width CNFETS, the variation in the
spacing between adjacent tubes can also result in variation in the density of CNTs. The
variation in the charge screening because of variation in the spacing and in the density of
CNTs, results in a large variation in the drive current of CNFETS, which will be presented

in detail in Chapter 4.

2.7.4 Misalignment of CNTs
The lack of precise control on the positioning of CNTs during the fabrication of CNFET's

can result in a misalignment of the tubes [74], [57]. Significant progress has been made in
the fabrication of aligned CNTs, and less than 0.5% of CNTs fabricated on the single-
crystal quartz substrate are misaligned [81]. The misaligned tubes can cause either a short
between the output and the supply rail, or an incorrect logic function. Figure 2-8(a) shows a
NAND cell in which the misaligned tube causes a short between the 17, and output
because the entire CNT is a doped p-type. Similarly, Figure 2-8(b) shows the layout of the
gate in which the misalignment of the tube results in the incorrect logic functionality of the
gate. Therefore, even less than 0.5% of misaligned tubes can have a significant impact on

the yield of CNFET based circuits.
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Figure 2-8: (a) Short inside NAND gate caused by misaligned CNT (b) Incorrect logic function
due to misaligned CNT [85].

2.7.5 Schottky Bartier Contact

The interface between the carbon nanotubes and metals that are used as source/drain of a
CNFET forms a Schottky Barrier (SB). The formation of these energy barriers for injection
of electrons and holes due to Schottky contacts are reported by [60], [86-88]. The height of
the SB strongly depends upon the work function of the metal and the annealing conditions
used during the fabrication of CNFETSs [14], [89]. The SBs at the source and drain side of
transistors results in a significant reduction in the drain current in the transistors.
Therefore, for a high performance operation of the CNFET devices, suitable metals are
required, which can be used as source and drain contacts and also provide ohmic source

and drain contacts.

2.7.6 Unwanted Growth of Metallic Tubes

To use CNTs as the channel material, semiconducting CNTs are required. Depending on

the chirality, a SWCNT can be either metallic or semiconducting. At present, there is no
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CNT synthesis technique that can produce 100% semiconducting tubes. The percentage of
semiconducting and metallic tubes obtained by different CNT fabrications techniques is
shown in Table 2-1.In HiPco method, the SWCNTSs are grown by thermal decomposition
of catalyst Fe(CO)s in the heated flow of CO at temperatures of 800°C to 1000°C. The
fabricated tubes result in almost 68% semiconducting tubes. In a Plasma-Enhanced CVD,
catalyst Fe is heated in the presence of CH, gas at 600°C resulting in almost 90%
semiconducting tubes. In fast heating using the PECVD method, the SWCNTs are grown
by heating the catalyst Fe to 750°C in the presence of C,H, gas. In all of the above three

mentioned methods, the CNTs ate grown on SiO,/Si wafers.

Table 2-1: Percentage of semiconducting tubes produced by different CN'T synthesis processes.

CNT synthesis process Semiconducting CNTs (%)
HiPco with CO gas[90] 61%7.6
Plasma-Enhanced CVD with CH4[91] 89.3+2.3

Fast heating with PECVDI[92] 96%

In the case of metallic tubes, the gate terminal has no control over the channel due to an
ohmic short between the source and drain. Therefore, the presence of metallic tubes in
complementary CNFET circuits has a dramatic impact on static current, static noise margin

delay, and yield of CNT based circuits.

2.8  Extra Processing Steps to Remove Unwanted Metallic CNT's

In case of a large percentage of metallic tubes, other processing techniques are required to
remove the metallic tubes. The main techniques proposed by researchers to remove the

metallic tubes are:
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e Current-Induced Electrical Burning [93].
e Selective Chemical Etching(SCE) [94]
e  VLSI-Compatible Metallic Carbon Nanotube Removal (VMR)[95]

2.8.1 Current-Induced Electrical Burning

The conductance of a metallic CNT is zndependent of the gate voltage, whereas the
conductance of a semiconducting tube depends upon the gate voltage. Therefore,
semiconducting tubes charge carriers can be depleted by applying the appropriate gate
voltage. The independence of conductance of metallic tubes from the gate voltage is used
by [93] to eliminate the metallic tubes in an ensemble of metallic and semiconducting tubes.
In the electrical burning technique, a high voltage is applied at the gate and across the
source and drain side of the CNFET consisting of multiple parallel CNTs. The voltage
applied at the gate is such that it reverse biases the transistor. For example, a positive
voltage is applied at the gate of PMOS device, depleting the semiconducting CNTs of
carriers, and no current will flow through the semiconducting CNTs in the presence of the
voltage across the source and drain terminals. On the other hand as the conductance of
metallic tubes is independent of gate voltage, a high bias across the source and drain
terminals results in a large current to flow through the metallic tubes. A sufficient large
current breaks down the metallic tubes electrically. The electrical burning technique can
remove almost all of the metallic tubes, but faces some major limitations. First, it requires a
high gate voltage (~10V), and because of reliability concerns, a thick gate oxide will be
required. The thick gate oxide will reduce the performance of CNT based circuits. Second,
the electrical burning technique requires a contact with each individual transistor which is

not scalable and therefore not suitable for ultra large scale VLSI systems. And third, in

34



complex logic gates, internal contacts are not accessible and as a result some metallic tubes

will not be removed, causing detrimental power and performance impacts.

282 Selective Chemical Etching
The Selective Chemical Etching (SCE) technique, proposed by Zhang et al. [94], selectively

etches and gasifies the metallic nanotubes. The main advantage of SCE is that it is scalable,
and can be applied to future ultra large scale integrated circuits. In this technique, an
ensemble of metallic and semiconducting tubes on the substrate are subjected to methane
plasma, followed by an annealing process, hydrocarbonating the tubes depending on their
cutoff diameters. The cutoff diameters are different for metallic (D,,) and semiconducting
tubes (D). Therefore, depending on the diameter range of CNTs, it may not completely

remove all metallic tubes, while it can remove some of the needed semiconducting tubes.

Table 2-2 shows the percentages of tubes removed for different percentages of metallic
tubes present, ranging from 31% to almost 50%, when the percentage of metallic tubes
varies from 5% to 30%. CNTs have a Gaussian diameter distribution with p of 1.5nm and
30 of 0.5nm. The tubes which are removed by selective etching process are represented by

making their ON and OFF current equal to zero.
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Table 2-2: Percentage of CNTs (metallic and semiconducting) removed by the Selective Chemical
Etching (SCE) process.

% of
semiconducting % of total % of
% of metallic CNTs Removed CNTs removed CNTs metallic

removed CNTs

Pm d <1.4nm 1.4sd £2nm d <1.4nm remaining
5% 1.38 3.63 25.92 30.93 0.06
10% 2.76 7.28 24.54 34.58 0.02
15% 4.19 10.79 23.11 38.09 0.02
20% 5.46 14.56 21.84 41.86 0.03
25% 6.88 18.05 20.42 45.35 0.02
30% 8.13 21.87 19.18 49.17 0.04

283 VLSI-Compatible Metallic Carbon Nanotube Removal (VMR)
Recently, Patil et al. [95] presented a VLSI-compatible metallic CNT removal technique,

which is an extension of the current-induced electrical burning technique. The main
advantages of the VMR technique are that it is scalable, and is compatible with Ultra Large
Scale Integrated Circuit (ULSI) processing. In VMR, first a special inter-digitated electrode
structure is applied with minimal metal pitch, and then a high voltage at the back-gate is
applied to turn off the semiconducting CNTs all at once. After that, a high voltage is
applied on the supply lines which results in high current to flow through the metallic tubes
and electrically breaks down the unwanted metallic tubes. Based on the final design,
unwanted areas of CNTs, and unwanted sections of electrodes are etched away. This
technique eliminates almost all the metallic tubes. The trade-off of using VMR is that, it

also removes some of the required semiconducting tubes, similar to the SCE technique.
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2.9 Other Work on CNFETSs

To make the CNT based technology commercially viable, we need to overcome the
challenges faced by the CNT technology. The details of CNT manufacturing challenges
were discussed in the previous section. Significant work has been done by researchers in
terms of analyzing the impact of fabrication imperfections of the performance and energy
of CNFET based circuits, and various solutions have been proposed to overcome the

challenges faced by CNT technology.

Javey et al. demonstrated CNFETSs with doped source and drain regions and high-K gate
dielectrics [32], [61]. CNFETs with a perfect array(s) of alignhed CNTs have been
demonstrated by different research groups [65], [81], [82], [96]. CNFET based integrated
circuits are reported by [55], [30], [97]. Researchers have demonstrated CNFETs with
ohmic contact between CNTs and source and drain contacts [14], [61]. [32] reported that
the use of Palladium(Pd) results in ohmic contact between the Pd electrode and valence
band of CNT in a p-type CNFET. Similarly, [98] reported that the use of Scandium (Sc)
results in ohmic contact between the Sc electrode and conduction band of CNT of an n-

type CNFET.

The impact of diameter and density variation of CNT's on the performance of CNFETS is
analyzed by [99], [70], [73]. Processing techniques, such as Current-Induced Electrical
Burning [93], Selective Chemical Etching(SCE) [94], and VLSI-Compatible Metallic Carbon
Nanotube Removal(VMR) [95] have been proposed to eliminate the unwanted metallic

tubes. Patil et al. proposed a design technique to design circuits that function correctly even
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in the presence of misaligned tubes [85], [100] with minimal overhead in terms of area and

performance.

2.10 Conclusions

The high mobility and easy integration of high-K dielectrics with CNT based technology
makes them a potential candidate device in the post silicon era. However, the challenges
faced by CNT technology which are discussed in this chapter make it difficult to fabricate
large scale CNFET based circuits. Solutions to some of these challenges are addressed by
researchers, while one of the major challenges of handling the unwanted growth of metallic

tubes is presented in this work.
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3 Delay, Power, Area, and Yield Modeling

CNFET based circuits with parallel tubes have the potential to give 2X to 10X higher
performance, 7X to 2X lower energy consumption per cycle, and 15X to 20X lower energy
delay product as compared to silicon CMOS circuits[101]. However, fabrication challenges
associated with CNTs adversely impact the performance and power of CNFET based
circuits. To evaluate the power and performance of a CNFET based circuits, models are
required, which allows to analyze the impact of the fabrication imperfections on the design
parameters. Since these fabrication imperfections are unique to CNFET based devices,
innovative models are required to be developed to estimate these fabrication imperfections.
In this chapter, we model the delay/petformance and power consumption of CNFET
based logic gates, and estimate the functional yield of gates in the presence of fabrication

imperfections.

31 CNFET Device Modeling
To find the ON and OFF currents of CNFETSs, we used a circuit compatible model

developed by [83], [101] . The model considers the practical device non idealities, such as
quantum confinement effects, acoustic/optical phonon scattering, elastic scatteting,
resistance of the source and drain, the resistance of Schottky Barrier, and parasitic gate
capacitance for the computation of current vs. voltages of CNFET based circuits. The
circuit compatible model allows simulating CNFET-based circuits with multiple parallel
tubes as transistor channels and with a large range of tube diameters. The current vs.

voltage results obtained from the circuit compatible model [102] are in close agreement

with the experimental CNFET data [103].
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The equivalent circuit model of the n-type CNFET is shown in the Figure 3-1. Because of
the symmetric band structure of the CNT, a p-type CNFET model is similar to n-type
CNFET, only when the polarity of the voltages are required to be changed. It consists of
two current sources, one resistance and four capacitances between the different terminals
of the transistor. In Figure 3-1, I, is the current flowing in the semiconducting CNT

> Lseni

because of the existence of semiconducting energy sub-bands and is given by
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Here 17, cand 17, .sare the Fermi potential difference in the channel near the source side, ¢
is the charge on the electron, / is the Plank’s constant, £ is the Boltzmann constant, T'is the
temperature in Kelvin degrees, M is the number of sub-bands, T, is the transmission
probabilities of the carriers, APy is the change in the channel surface potential with respect
to voltage at the gate and the drain terminals of CNFET. A®; is obtained from Spice, and
its value depends on the diameter of the carbon nanotube and the gate to channel

capacitance. E,,is the cartier energy at the m"” subband and 0" sub-state respectively and is

obtained from equation (3.2).

REAV)

Em,0 ~ (3.2)

A 1s a constant, and its value depends on the values of integers # and 2 as given by

6C-3-(D)" C=12,.. ,mod(n-m,3) =0
A= 12 (3.3)
C C=0,1.. ,mod(n-m,3)=0
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is the major source of current flowing in the semiconducting tubes.

Similatly the current in metallic nanotubes can be obtained from equation(3.4)

4e?

I ~ (1_ mO) TTmetaIVch,DS (3.4)

metal

Here mO is the metallic sub-band. Similarly the band to band tunneling (BTBT) current in
the CNT is given as:

Vgate

— ng Lsemi — Cdg

-

Source I

SEOI 0

Vsub

Figure 3-1: Equivalent circuit model of the CNFET [83].

(evch,DS_Em,O_Ef)
l+e kT
pe? y Toe IN e x
e m,0 f
Lot = h KT Z 1+e N (3.5)
| max (eVy, ps —2E, ,,0)
chh,DS - 2Em,0

41




Here T,,, is the band-to-band tunneling (BTBT) probability, while F, is the Fermi level of
the doped source and drain nanotube in electron volt. In Figure 3-1, Cy, is the capacitance
between gate to source terminal of the transistor, C,, is the capacitance between drain and

gate terminal, C,

sb

is the capacitance between source and bulk, and C, is the capacitance

between the drain and bulk terminal of the transistor.

32 Delay

In a complementary CMOS-based circuit that has pull-up and pull-down networks, the

delay of logic gate D, is given by

D o CLVDD

—_— (3.6)
’ (ION - IOFF)

The same equation can be used for a complementary circuit build with n-type and p-type
CNFETs [104].Here 17, is the supply voltage, and . I\, and I, are the currents flowing in
the ON and OFF network of the gate. In logic gates implemented with transistors that have
channels built with parallel tubes, the ON current is a function of the number of tubes in
the ON network, and the OFF current, I, depends upon the number of tubes in the OFF
network. In cases where metallic tubes are present, there will be a large current flowing in
the OFF network of the gate. The procedure to obtain the ON and OFF currents of multi-
channel CNFETs is presented in the next section. The delay of the gate is also a strong

function of the correlation among tubes used in the pull-up and pull-down networks. The
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impact of correlation between tubes used in the pull-up and pull-down network is

presented in Chapters 5 and 6 of this dissertation.

Drive Gate Fanout Gate

Figure 3-2: Layout of a CNFET based inverter driving another inverter.

In equation(3.6), C, is the load capacitance of the gate, and is composed of different

components as given by:

C =C,atC+C, o tNy C

w_fo~g_fo (3.7

Figure 3-2 shows the layout of an inverter driving another inverter as a load. The figure
shows the different components of the load capacitance. In equation(3.7), C, , is the
parasitic capacitance of the driving gate and is a function of the W/L of the driving gate,
and Cj, is the capacitance of the interconnects. To keep the analysis simple only local
interconnects are considered. Therefore, the impact of this capacitance is negligible. C, ; is
the parasitic capacitance of the fanout gate(s) and depends on the size of the fanout gate(s).
C, s the gate capacitance of the fanout gate and is a function of the number of tubes in

the fanout gate. In cases where extra processing steps are used to remove the metallic tubes,
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the removal of tubes results in a large variation in the load capacitance of the gate, resulting

in large variation in the performance of the gates.

3.3 Power

CNFET based logic gates are very power efficient compared to logic gates implemented
with CMOS technology because of less switching capacitance. However, because of
fabrication imperfections, if metallic tubes are present in the parallel tube CNFETS, then a
large short circuit current will flow in the OFF networks of the logic gates, resulting in large
static power consumption in the CNFET based gates. Figure 3-3(a) shows the distribution
of OFF current of CNFETs when all the tubes in the CNFET are semiconducting and
Figure 3-3(b) shows the distribution in OFF current when 90% of the tubes are
semiconducting and 10% of the tubes are metallic. In Figure 3-3(b) we observe two
separate distributions of OFF current, one having small OFF current that is due to
semiconducting tubes, and the other with large OFF current due to the presence of metallic
tubes. The detailed impact of the presence of unwanted metallic tubes on the static power
is presented in Chapter 5 of the dissertation. Similarly, when metallic tubes are removed it
will result in a variation in the dynamic power dissipation. This will be addressed in the

Chapter 6 of the dissertation.
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Figure 3-3: Iorr distribution of CNFET's with respect to iU and 36 diameter of 1.5nm and 0.5nm (a)
when all the tubes are semiconducting and (b)when 90% of the tubes are semiconducting and 10%
tubes are metallic a

34 Area

It is anticipated that circuits implemented with CNTs will be more area efficient as
compared with circuits implemented with silicon CMOS. The area advantage for CNT
based circuits is due to two reasons. First, in case of CNFETS, the band structure of a CNT
is symmetrical for the conduction and valence band, and the same size N-CNFET and P-
CNFET results in symmetric performance. Because in Si-CMOS the mobility of holes is
lower than the mobility of electrons, for symmetrical performance PMOS devices have to
be sized almost 3X larger than NMOS. Second, PMOS devices are implemented in an n-
well, and design rules require at least 12\ separation between n-well and NMOS device. For
a 32-nm technology node with tube lengths used is 32-nm and with tube density of
250CNTSs/pum, it is observed that multi-channel CNFET based gates results in significant
area advantages over gates implemented with Si-CMOS. Figure 3-4(a) shows the layout of
an inverter implemented with n-type and p-type CNFETs, and Figure 3-4(b) shows the Si-

CMOS inverter implemented with NMOS and PMOS transistors. Please note that Figure
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3-4(a) and Figure 3-4(b) are not drawn to scale. Almost 6X and 3X improvement in area is

observed for inverter and 2-input NAND gate implemented using parallel tube CNFETs.
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Figure 3-4 :(a) Layout of a CNT based inverter implemented with parallel tubes (b) Layout of a Si
CMOS inverter. Note: Figures are not drawn to scale

In Chapter 5 and 6 we will be analyzing the area trade-offs in terms of circuit level

techniques and tube level redundancy techniques.

3.5 Functional Yield
The fabrication imperfections associated with the synthesis of CNTs mainly impacts the

performance and power consumption of CNT based circuits. The presence of metallic
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tubes creates a short between the source and drain of a transistor and result in an increased
delay, and static power of CNFET based gates. Similarly, if the metallic tubes are removed
by extra processing techniques as discussed in Chapter 2, then removal of tubes results in a
large variation in the delay of gates. Also if some of the metallic tubes remained that results

in large static power.

Figure 3-5 shows the Monte Catlo simulation for parallel tube inverters with number of
tubes in the gate (IN,,) is equal to16 and when 10% of the tubes is metallic. The presence of
metallic tubes impacts both the delay and static power of logic gates. We define the
maximum allowable delay and static power constraints for the gates. In the figure we define
a window of acceptable delay of 1.3X and static power constraint of 200X in the presence
of metallic tubes. These variations in delay and static power are common in nanoscale
CMOS technologies [105]. If the gates have delay and static power within the defined
constraints the gates are considered functional, and if the delay and static power of the
gates due to imperfections is greater than the defined limits, they are considered as non-
functional. The functional yield (Y) of logic gates is obtained as a function of the drive
strength of the gates, percentage of metallic tubes, and percentage of tubes removed if tube
removal process is applied. For a gate to be functional, its delay and static power after the
removal of tubes must be less than 1.3X delay as that of the fastest gate with no tubes
removed, and within 200X static power as that of the lowest static power gate under the
absence of any metallic tubes in the gate. The functional yield is then defined as the ratio of

a number of functional gates to the total number of gates.
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Figure 3-5: Monte Carlo simulation for parallel tubes inverters with N,=16, showing normalized
delay vs. static power for 10% metallic tubes
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3.6 Conclusions

The performance and power advantages of CNFET based circuits are hampered by the
CNT fabrication imperfections. In this chapter, we discussed the parameters i.e. power and
performance (delay) which will be used in the subsequent chapters to analyze the impact of
fabrication imperfections such as variation in the diameter and spacing among tubes,
unwanted growth of metallic tubes and variation resulting because of the removal of tubes

on CNFET based circuits. We also propose solutions in the subsequent chapters which
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help to mitigate the impact of fabrication imperfections and result in CNT based circuits

with acceptable levels of functional yield.
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4  Diameter and Spacing Variation

Part of this chapter will be submitted to Rehman Ashraf, Malgorzata Chrzanowska, Siva G.
Narendra,” Performance Analysis of CNFET based Circuits in the Presence of Fabrication

Imperfections”, IEEE NANO,2011

The synthesis of SWCNTs results in a variation in the diameters of the tubes. The diameter
of the tubes impacts the bandgap of CNFETSs which in turn impacts the drive current of
CNFETs. Therefore, variation in the diameter of tubes results in the variation in the drive
current of CNFET. These variations in the diameter impacts the performance of CNFET
based circuits. Similarly, for scalable devices there is a need to fabricate CNFETs with a
dense array of parallel tubes as a channel. The spacing between adjacent tubes in a parallel
tube CNFET also impacts its drive strength because of variable charge screening from the
neighboring tubes. This chapter analyzes the impact of variation in the diameter and
spacing on the performance of parallel tube CNFETs. The flowchart of Monte Carlo

simulation setup used in this chapter is provided in Section 10.3.1 of Appendix B.

41 Variation in the Diameter of CNT's

Significant progress has been made in the synthesis of CNTs with controlled diameter.

Typically CNTs have a diameter range of 1nm to 2nm, and the variation in the diameter
follows a Gaussian distribution. Therefore, we assume that CNTs have u diameter of
1.5nm and 3¢ diameter variation is 0.5nm. This results in a mean I, and I, of 38uA and
0.84nA respectively for a single-tube CNFET. Here we expressed the variations in the ON
and OFF currents in terms of sigma-to-mean (6/p) ratio which is called the coefficient of

variation. The advantage of using coefficient of variation is that the variation is expressed
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relative to the mean. Figure 4-1 shows the variations in sigma-to-mean I,y and I, currents
as a function of number of parallel CNTs (IN,,) in a transistor with the assumption that all
the tubes are present and semiconducting. The spacing ($) between adjacent CNTs is
assumed to be large enough that the tubes have no impact from the adjacent tubes. Charge
screening impact from adjacent tubes is negligible at this spacing value. Sample size (#) of

1000 transistors is used for Monte Carlo simulations. From Figure 4-1 we observe that the
o/p variation in the ON and OFF currents is decreasing with the increasing number of

tubes in the transistor. The maximum variation in the ON and OFT currents is almost 10%,
and 3.5X and is for N,,=1. Similarly, the minimum variation in the ON and OFF currents is

tr

almost 2% and 0.5X, and is for IN,,=32. This decrease in variations while increasing the
number of parallel CNTs is due to statistical averaging of currents among the multiple
tubes of the transistor. As the maximum variation in the OFF current is 3.5X, which is
more than three orders of magnitude less than that observed in nanoscale devices.
Therefore in the rest of the chapter we will be focusing on the variation in the ON current.

We present the impact of OFF current in Chapter 5 where a large current in the OFF

network of CNFETS is observed because of the presence of metallic tubes.
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Figure 4-1: Impact of CNT diameter variation on the (6/W1) ON and OFF curtents for different
drive strength as measured by number of tubes (Vw) in a transistor. The mean (d,) and sigma
(dy) of diameter distribution is 1.5nm and 0.167nm respectively.

4.2  CNT Spacing

The spacing between the adjacent parallel tubes in a CNFET impacts the drive strength of
parallel tube transistors due to screening of charge from the adjacent tubes. In [84], the
authors calculated the gate capacitance of multichannel CNFETs by considering the
coupling capacitance between the gate and one isolated CNT (C, ) and the equivalent
capacitance (C, ) due to charge screening from the adjacent tubes as given in(4.1) . In
equation (4.1), ¢, is the permittivity of free space,  is the radius of a CNT, /. is the gate

dielectric thickness between the gate and the center of CNT, and £, and £, are the dielectric

constants of gate and bulk oxide. Pis the pitch between the centers of two adjacent CNTs.
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Figure 4-2 shows a CNFET channel composed of three CNTs arranged in parallel. Two
CNTs at the both edges of the channel are getting charge screening from only one adjacent
tube each, and the middle tube is experiencing the charge screening from adjacent tubes on
both sides. In [84] the authors assumed that all spacing’s between adjacent tubes are the
same, as for example the distances $; and §, shown in Figure 4-2.This assumption results in
an accurate estimation of charge screening from the neighboring tubes when all the tubes
are present because the small variation in the spacing’s from adjacent sides. However, it will
be shown in the Section 4.4 of this chapter that when extra processing techniques are used
to remove unwanted metallic tubes, the assumption of considering the same charge
screening from adjacent tubes on both sides will result in an overestimation of charge
screening from neighboring tubes. In this work we calculate the equivalent capacitance of
the edge tubes in the same way as described in [84], with the modification of equation for

the equivalent capacitance of the tubes which are not at the edges, with adjacent tubes on

both sides (C,

7

, due to the influence of the spacing variations between tubes on the
charge screening effect. Spacing variations will play a major role after metallic tubes are
removed, as they can change significantly. This modified equation for equivalent

capacitance of the middle tubes is given in equation (4.2)
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Figure 4-2: An array of three parallel CNTs where d is the diameter of tubes, S; and S 7s the
spacing between adjacent tubes, and P; and P; is the pitch between the center of two adjacent
CNTs.

Current CNT synthesis technology allows packing of almost 10-50 CNTs/pum, which for
1.5nm diameter tubes corresponds to spacing of almost 100nm — 20nm between adjacent
tubes [81], [82]. Deng et al. [83] analyzed that when spacing between adjacent parallel
CNTs are greater or equal to 20nm, the charge screening impact from adjacent tubes is
negligible and there will be negligible impact on the drive strength of CNTs due to charge
screening from adjacent tubes. Howevet, it was evaluated that almost 250 CNTs/um are
required to obtain performance and energy gains over silicon CMOS [78]. This corresponds
to spacing (§) between adjacent tubes of 2.5nm for a tube diameter (4) of 1.5nm.This
spacing of 2.5nm between adjacent tubes will result in significant charge screening from

adjacent tubes.

Figure 4-3 shows the impact of charge screening from adjacent tubes on the mean drive

current ()], As the amount of charge screening is a function of spacing () between the
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tubes, Case $=20nm is considered as the reference case when screening from adjacent
tubes is negligible. It can be observed that reducing the spacing between adjacent tubes,
from 20nm to 2.5nm reduces the drive current of parallel tube CNFET by almost 30%

irrespective of the number of tubes in the channel.

'n:1000,d,: 150m,d_: 0.167nm :

1.4E-03

B S=20nm
B S=2.5nm

1.2E-03

1.0E-03

_58.0E-04
2 6.0E-04
4.0E-04 1

2.0E-04

0.0E+00

tur

Figure 4-3: Mean drive (ON) current in the CNFET for two values of spacing (S) between adjacent
tubes and three values of Ny $=20nm is considered as reference case when screening from
adjacent tubes is negligible.

4.3  Variations in the Pitch of CN'T

The CNTs fabrication process results in certain variability in terms of spacing between
adjacent parallel tubes. The combined variations in spacing and diameter of tubes result in
the pitch variation between adjacent parallel tubes. For fixed channel width CNFET
devices, the pitch variations will result in the variation in charge screening and in tube
density variations among different CNFETSs. Researchers in [106] analyzed the impact of
the density variations of tubes on the yield of CNFET devices. They considered the devices
to be functional if there were at least a single CNT present in the parallel tube CNFET.
Our analysis in this work shows that for the required density of 250 CNTs/um, the

maximum possible spacing variation before the tubes crossover in the CNTs will result in
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density variations, but the probability of having a transistor with no tube present in its
channel is negligible. However, the density variation results in variation in the total drive
current of the transistors because of variation in the number of conducting channels

available.

Figure 4-4 shows the impact of the pitch variation on the drive current of CNFETSs for
various transistor drive strengths represented by the number of tubes in the transistor. The
combined impact of diameter and spacing variation results in less than 8% variation in the
mean drive current of parallel tube CNFETs. Moreover, the variation decreases by
increasing the drive strength of CNFETSs. From the analysis it is observed that both the
diameter and spacing variations can be tolerated in parallel tube CNFETs. This is mainly

due to statistical averaging among multiple parallel channels.
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Figure 4-4: Impact of pitch (diameter and spacing) variation between adjacent CNTs on the (6/p)
ON cutrent as a function of number of parallel tubes (/N7 in a CNFET.

4.4 Removal of Metallic CNT's
It is mentioned in Chapter 2 that unwanted growth of metallic tubes is one of the biggest

challenges faced by the CNT technology. It will be shown in Chapter 5 that if the
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percentage of metallic tubes is larger than 5%, then post processing techniques are required
to remove the metallic tubes to build robust CNT based circuits. Based on the discussion in
Chapter 2, two post processing techniques for tube removal are of main interest, SCE and
VMR. Both of these techniques remove almost all of the metallic tubes, but as a side effect,

they also remove some of the needed semiconducting tubes.

In this work we used data based on the SCE technique and our evaluation methodology
can also be applied to the VMR technique. The removal of tubes results in large delay
variations, and in the worst case, open-circuit gates can be created due to all the tubes being
removed. Since open-circuit devices significantly reduce yield, our primary objective is to

find the minimum number of tubes (I,

W/}//'ﬂ)

needed in a CNFET prior to Selective Chemical
Etching, that produce less than 0.001% probability of open circuit CNFETSs. Now if P, is

the probability of tube being removed by SCE, and N, is the number of tubes in the
CNFET, then the probability of all the tubes removed from the transistor is equal to PrN‘”' .

Based on this I\,

turmin

can be obtained as

107
turmin g ( P j ( )

r

P_can be obtained from equation (4.4)

Pr = Ps Psr + Pm Pmr (44)
Here P, is the conditional probability that the tube is semiconducting and it is removed.

The probability of P, is obtained by
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P = I P (x)dx (4.5)

Similatly, P, is the conditional probability that the tube is metallic and is removed. P, can

mr

be obtained by

P = j P, (x)dx (4.6)

P, is the percentage of metallic tubes and P, is the percentage of semiconducting tubes

before the application of SCE. After the application of SCE process, the number of

remaining tubes left in the channel will k& N,

tur,

resulting in a reduction of the drive
current and significant increase in the variation in drive current. On the other hand,
because of removal of tubes, there will be, on average, an increase in spacing between
adjacent tubes resulting in a reduction in the charge screening effect that will cause an

increase in the drive current of CNFETSs.

Figure 4-5(a) shows a CNFET composed of N, =8 tubes prior to the application of SCE.
Tubes T,-T; are arranged in parallel in the channel of CNFET and S,-§, is the spacing
between adjacent tubes, and P,-P, is the pitch of tubes T-Tj. Figure 4-5(b) shows one
snapshot of Monte Carlo simulations of 1000 transistors when P,=5% and with 31% of
tubes removed through the SCE process. Here, tubes T, T, and T are removed after the
application of SCE. The distance between tubes T, and T; before SCE was S, and after
SCE, because of the removal of tube T the distance between T, and T}, is §,+5,+d(T;). On

the one hand, the removal of tubes T, , T; and T will results in a decrease in the overall

current of CNFET because of reduction in the number of conducting channels, while on
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the other hand, the current from the remaining CNTs will increase due to reduced charge
screening from adjacent tubes. Overall, the removal of tubes by SCE and the resulting
spacing variations between remaining tubes results in large variation in the ON current of

transistors.

(b)

Figure 4-5: CNFET consisting of parallel CNTs (a) Reference case with N.,,~8 when all tubes are
semiconducting (b) Random sample taken from Monte Carlo simulations after applying SCE. 5
tubes are remained with large variation in spacing between adjacent tubes.

Figure 4-6 shows the normalized mean drive(ON) current of parallel tube CNFETSs for
three values of tubes (IN,,) in a channel, P,=0% ,no SCE and no charge screening from

neighboring tubes (green), P,

4

=5% and SCE is applied and impact of reduction in charge
screening from adjacent tubes due to removal of tubes is considered(blue). We refer the
approach of tubes removed and considering the resulting variation in charge screening
from adjacent tubes as TRCS (Tube Removal and Charge Screening) considered, P,=5%

m

and SCE is applied but no TRCS is considered (red).
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Figure 4-6: Normalized mean drive current when P,=0% and no SCE is applied, when P,=5% and
SCE is applied and reduction in charge screening from adjacent tubes is considered, and when
P=5% and SCE is applied but no reduction in charge screening from adjacent tubes is considered
because of the removal of tubes.

Without TRCS, an almost 50% reduction in the p drive current is observed, and when
TRCS is included (realistic case) the reduction in the p drive current is 40% ,which is 10%
lower than without considering TRCS. Figure 4-7shows the combined impact of diameter
variation, spacing variation and removal of tubes on the (o/) drive cutrent as a function of
the number of parallel tubes in the CNFET. It can be observed that with a realistic example

of 5% of tubes being metallic, a less than 15% (o/p) variation in performance can be

obtained when N, = 32.
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Figure 4-7: Impact of diameter (d) , spacing (S) variations between adjacent CNTs and tube

removal on the (o/p) ON cutrent as a function of the number of parallel tubes (V) in a
CNFET.

Assuming that technology allows us to fabricate CNT's with a density of 250 CNTs/um,
from the three discussed challenges; diameter variation, spacing variation and metallic tube
removal, the first two will have negligible impacts on the performance of CNFET based
circuits. The removal of metallic tubes, however, will be a significant source of performance

degradation and variation.

4.5 Summary

In this chapter, we have analyzed the impact of different fabrication imperfections, such as
variation in the diameter, impact of spacing and variation in spacing among adjacent tubes
on the performance of parallel tube CNFETSs. Our analysis shows that both the diameter
and the spacing variations make a negligible impact on the performance of CNFET based
devices due to statistical averaging among adjacent tubes. However, the existence and
removal of metallic tubes is shown to have a significant effect resulting not only in a large
performance reduction, but also in a large increase in performance variability. The charge

screening effect between adjacent tubes in a CNFET channel has the opposite, to tube
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removal effect on the performance of CNFETs. Therefore, considering the charge

screening effect make the evaluation of device performance and its variation more accurate.
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5  Circuit Level Solutions for CNFET's with Metallic Tubes Present

Part of this chapter has been published in:

e Rehman Ashraf, Malgorzata Chrzanowska, Siva G. Narendra,” Functional Yield Estimation of
Carbon Nanotube based Logic Gates in the Presence of Defects”, IEEE Trans. Nanotechnology,
2010

e Rehman Ashraf, Malgorzata Chrzanowska, Siva G. Narendra,” Design Methodology for
Carbon Nanotube based Circuits in the Presence of Metallic Tubes”, NANOARCH,2010

e Rehman Ashraf, Malgorzata Chrzanowska, Siva G. Narendra, “Carbon Nanotube Circuit

Design Choices in the Presence of Metallic Tubes”, ISCAS, 2008

Semiconducting tubes are required for the fabrication of CNFET based circuits. However,
there is no known CNT fabrication method which can produce 100% semiconducting
tubes. Current CNT synthesis techniques yield between 4% to 40% [91], [92] metallic tubes
as discussed in Chapter 2. In the case of metallic tubes, the gate terminal has no control
over the channel due to an ohmic short between the drain and the source of a transistor.
Therefore, complementary CNFET based circuits with metallic tubes have a detrimental
impact on static power, delay, noise margin, and yield of CNFET based circuits because of
the contention current from the metallic tubes present in the OFF network of a gate. For
small percentage of metallic tubes i.e. less than 5%, circuit level techniques can be used to
handle the detrimental impact of metallic tubes. In this chapter, two CNFET
configurations are proposed [99], which reduces the statistical probability of a short
between the source and the drain terminals of a transistor in the presence of metallic tubes.
The circuit level techniques help to increase the functional yield of gates in the presence of

metallic tubes but the trade-off is in terms of reduction in the performance of the gates.
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Also in this chapter, we present a methodology for yield-aware circuit design in the
presence of metallic tubes using different CNFET transistor configurations. Similarly for
ASIC design styles, we propose to implement CNT based circuits using regular logic blocks
(bricks) proposed by [107] to reduce the systematic lithographic related variations

associated with the nanoscale fabrication technologies.

51 CNFET Configurations Proposed in the Literature
Two CNFETSs configurations have been proposed in the literature. Shared Tube (§7)

configuration was demonstrated experimentally by [65] and is shown in Figure 5-1(a). In
this configuration one long tube with alternating source and drain contacts is used to create
four parallel channels. The Parallel Tube (PT) configuration, shown in Figure 5-1(b), was
theoretically evaluated by [77], and practically demonstrated by [81]. In this configuration
four separate parallel tubes (channels) are arranged in parallel and all tubes have shared

source and drain terminals.
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Figure 5-1: Tube configurations for (a) Shared Tube (S7) and (b) Parallel tube (P7) CNFET. Both
the configurations have the same number of channels to present iso-input capacitance.

Parallel tube CNFETSs can be fabricated so that multiple transistors share the same tubes
(correlated tubes), and where performance of the transistors is highly correlated with
respect to tube variations. The transistors or tubes can also be arranged such that each
transistor has a separate set of tubes (un-correlated tubes) in which case the performance

of these CNFETS are un-correlated with respect to tube variations[99], [108], [109].

In the case of ST configuration, each transistor has only one tube, the same tube, therefore

all the channels will be highly correlated, and if that tube is metallic, an ohmic short
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between the source and the drain terminals is created. Functional yield calculation of gates
implemented in $T is deterministic once the percentage of metallic tubes is given. If a tube

is metallic it will result in a non functional gate.

5.2  Proposed Tube Configurations in CNFETSs

In PT and ST configurations, the presence of metallic tubes will result in an ohmic short
between the source and the drain of a transistor. To reduce the statistical probability of a

short between the source and the drain we proposed two new tube configurations.

Figure 5-2 (a) shows Transistor Stacking (175) configuration where two transistors with un-
correlated (different) parallel tubes are stacked through a common intermediate node
between the power and output. In Figure 5-2(b) Tube Stacking (TxS) configuration is
shown in which each stacked parallel path from the output to power is isolated from each
other by not having a shared intermediate node. These stacking configurations help to
reduce the probability of an ohmic short between the power and the output. Clearly, in the
stacked configurations, more than one tube has to be metallic to create an ohmic short
between the power and the output. To maintain iso-input capacitance, the total number of
tubes is kept the same in both stacking configurations as it is in PT" configuration. This will
result in same load on the driving gate and gates with either parallel tube or stacking
configurations can be used interchangeably. While the stacked configurations could
possibly reduce the number of ohmic shorts, it comes with a performance penalty. This
performance penalty is because of two reasons, (a) the number of parallel tubes in the
stacking configuration is reduced by half, measure of the drive strength, therefore the drive

strength is reduced by 2X, (b) and two transistors or tubes are stacked which increases the
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overall resistance of the channel by almost 2X or decreases the drive strength by 2X.

Therefore, overall stacking configurations can result in up to 4X performance penalty.
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Figure 5-2: Tube configurations for (a) Transistor Stacking (7zS) and (b) Tube Stacking (7uS)
CNFET. Both the configurations have the same number of channels to present iso-input
capacitance.

A probability of an ohmic short between the drain and the source of a transistor in the TS
configuration, as compared to 17§ configuration, is lower. Fabrication of TuS configuration,
however, requires more precise control in terms of tube alignment and positioning of
contacts. Figure 5-3 shows examples of a transistor implemented in stacked configurations
in the presence of metallic tubes. Figure 5-3(a) shows the 17§ case in which tubes T and T
are metallic, resulting in a direct short between the drain and source of the CNT transistor.

Figure 5-3(b) and Figure 5-3(c) show a transistor implemented in TxS configuration with
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two contacts, C, and C,, shorted due to lack of precision. In Figure 5-3(b), tubes T; and T;
are metallic, as in 17§ configuration of Figure 5-3(a), but in this case there is no ohmic short
between the drain and source, and Tx$ configuration is maintained with slightly changed
performance. In Figure 5-3(c), contacts C, and C; are shorted as in Figure 5-3(b) but a
different pair of tubes, T, and T, is metallic such that there is an ohmic short between the
drain and source. The worst-case, very unlikely, contact-positioning situation in TxS would
be when all contacts are shorted. Such a case is not shown in Figure 5-3 but it would be
equivalent to 17§ case. In many cases, however, contact overlaps are not critical as even
with the presence of metallic tubes in a transistor, they will not necessarily create a direct
short between the drain and source terminals of a CNT transistor in the presence of

metallic tubes.
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Figure 5-3: (a) Transistor Stacking (771S) configuration with tubes 73 and 7’ being metallic (b)
Tube Stacking (71S) configuration with tubes 73 and 7 being metallic and shortened contacts
Cz and Cj (c) Tube Stacking (7uS) configuration with tubes 73 and 7% being metallic and
shortened contacts Czand C3.

From the above analysis and examples in Figure 5-3, we can conclude that when
considering possible contact overlaps in TS in the presence of metallic tubes, only in some
percentage of cases, the yield and performance of TuS transistor will be reduced to that of

T7S case.

The other important manufacturing challenge specific to CNFET technology is the
alignment of carbon nanotubes in arrays of parallel tubes. The misaligned tubes in stacked
parallel paths in TuS configuration may result in opens in the stacked channels and hence
negatively impact the yield of the gates. This impact of un-contacted tubes on yield is

analyzed in the next section of this chapter.
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It is worth noting that if there are two semiconducting tubes stacked in series from output
to power, then there will be leakage reduction due to stack effect [110-113]. This assumes
that the CNTs are used to realize traditional FETs with unipolar conduction characteristics.
The probability of stack effect based leakage reduction is higher in TxS because there is no

node sharing in TuS configuration as compared to 175 configuration of a CNFET.

5.3 Monte Carlo Simulation for Functional Yield of Logic Gates

Monte Catlo simulations are used to generate functional yield for an inverter and NAND
gate built of CNFET transistors with different configurations of tubes. The flowchart of
Monte Carlo simulation setup used is provided in Section 10.1.1 of Appendix B. The yield
results are used to validate those obtained from analytical models developed in Section 5.4

to 5.6 of this chapter.

The functional yield is calculated as a function of drive strength of the gate as required by
the circuit design and as a function of the percentage of metallic tubes as defined by the
synthesis process. As demonstrated by available technologies the percentage of metallic
tubes is between 4% [92] and 40% [91]. The impact of the presence of metallic tubes for
different configurations of an inverter is analyzed in [99], and it is observed that by
increasing the drive strength of the gate, the functional yield of PT inverter asymptotically
approaches to 0% when more than 30% of the tubes are metallic. The detrimental impact
of the presence of metallic tubes on the performance of an inverter makes it impossible to
build circuits with acceptable performance and functional yield, when the percentage of
metallic tubes is larger than 10%. In this work, the maximum percentage of metallic tubes

considered for Monte Carlo simulations i1s 10%. It will be shown later that for more
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complex gates like NAND gate, the presence of metallic tubes has a more adverse impact
on the functional yield of gates, with even 10% of metallic tubes seeming too high to build

robust circuits with acceptable power, performance and functional yield.

5.31 Inverter

The schematic and layout of an inverter consisting of PT'CNFETs is shown in Figure 5-4.
Each transistor has four channels (tubes). To analyze the functional yield of an inverter

with Monte Carlo simulations we utilize the methodology given in Chapter 3.
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Figure 5-4: Schematic and layout of P7 inverter containing an array of four CNTs in P-CNFET
and N-CNFET.

Figure 5-5 shows normalized delay vs. normalized static power for PI' inverter
configuration generated through Monte Carlo simulation without and with a different
percentage of metallic tubes present. The number of tubes in the gate (IN,) was 16. The

data points shown are for inverters that (z) do not exceed 1.3X delay of the fastest inverter
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under absence of metallic tubes and (4) do not exceed 200X static power of the lowest static
power in an inverter under the absence of metallic tubes. These variations in delay and
static power are common in nanoscale CMOS technologies [105]. Sample size () of 10,000
was used for all Monte Carlo simulations. Figure 5-5(a) shows the impact of diameter
variation of CNTs on delay and static power of the gate. In Figure 5-5(a) a reference case of
0% metallic tubes resulting in 100% functional yield is shown. In Figure 5-5(b) when 4%
of the tubes are metallic, we will see two distributions one with gates having all the tubes
being semiconducting, and the other distribution with one of the tubes being metallic but
still not violating the maximum delay and power constraint. Results from Figure 5-5 clearly
shows that as the metallic content is increased from 0% to 4% and to 10% the number of
inverters that have no metallic tubes drop from 100% to 53% and to 19%, respectively.
The presence of metallic tubes lowers the overall functional yield from 100% to 93% and
to 67%. To increase the functional yield of gates in the presence of metallic tubes, we are

using CNFET stacking configurations as discussed in Section 5.2[99].
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Figure 5-5: Monte Carlo Simulation for Parallel Tube (P7) inverters with N.,=16, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X.

In Figure 5-6 Monte Catlo simulations of the functional yield for inverters implemented
with TuS configuration for different percentages of metallic tubes are shown. We assume
that the two arrays of un-correlated tubes used for the TuS configuration are perfectly
aligned or their misalignment is negligible. As expected, the stacking configuration
improves the functional yield as it reduces the statistical probability of a short circuit
between the power and the output at the expense of an increase in delay, but with the
reduction in static power on the positive side. The stacking configuration also helps to
reduce the variation in delay and static power as it can be seen in Figure 5-6. For all the
gates which are functional the maximum static power variation is within 10X of the
minimum static power and delay variation is within 10% of the minimum delay. This order
of magnitude reduction in static power and less variation in the delay help to implement

low power circuits with reduced variations.
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Figure 5-6: Monte Carlo simulation for Tube Stacking (7uS) inverters with Ng,=16, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X. Scale of 1.1X and 10X is used for normalized delay and static power because there are no
gates with delay and static power between 1.1X-1.3X and 10X-200X respectively.

If two un-correlated tube arrays that create TwS$ configuration are not perfectly aligned,
some of the stacked channels might be open. We use Monte Catlo simulations to analyze
yield losses due to un-contacted tubes in the presence of metallic tubes. Depending upon
the percentage of metallic tubes and the percentage of un-contacted tubes, the yield
obtained from the TuS configuration may be less than that obtained from the 1§

configuration.

Table 5-1 compares the functional yield of an inverter implemented with 17, and with Tu§
configurations with various percentages of un-contacted tubes, from 0% to 5%. The
highlighted numbers represent good design, optimal choices for various percentages of
metallic tubes and un-contacted tubes, as TuS$ configurations result in better yields as

compared to transistors implemented with 17§ configurations. From Table 5-1 it can be
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observed that for up to 4%, metallic tubes TuS gives better yield in the presence of metallic
tubes only if the tubes can be precisely aligned. For 4% to 10% of metallic tubes, TxS gives

better yield if the percentage of un-contacted tubes is not larger than 1%.

Table 5-1: Functional yield for an inverter with Transistor Stacking (71S) and Tube Stacking (7uS)
configurations for 4% and 10% of metallic tubes and three drive strengths of the inverter. The
percentage of un-contacted tubes (Prc) in 7uS configuration varies from 0%-5%.

N Y Yt Tus
m tug f_Trs
R,=0% |R~1% |[P.=2% |P,&3% |P,m~4% |[P,m5%
16| 955 | 98.7 84 .1 715 60.6 51.4 43.5
4%| 32| 99.7| 1000 976 92.1 84.5 75.8 66.6
64 | 100.0| 100.0 | 99.9 99.3 97.3 93.3 87.2
16| 77.7 | 923 78.6 66.8 56.7 48.0 40.6
10% 32| 93.1 99.5 95.7 89.2 81.1 72.1 63.0
64| 99.1| 1000 | 99.8 98.7 95.9 91.1 84.2

P

5.32 NAND

A typical standard cell library used to design integrated circuits contains other complex
gates like NAND, NOR, AND and OR. In this work, we start by analyzing the functional
yield of 2-input NAND gates designed with PT' configuration in the presence of
imperfections such as variation in the diameter of the tubes and presence of metallic tubes.
In the case of a 2-input NAND gate, two P-CNFETS are connected in parallel in the pull-
up network and two N-CNFETSs are connected in series in the pull-down network as
shown in Figure 5-7. To obtain an almost equal worst case delay for both high-to-low (D)
and low-to-high (D, ) transitions, the number of CNTs used in the transistors of the pull-

down network is twice the number of CNTs used in the transistors of pull-up network.
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Figure 5-7: CNT based schematic and layout of 2-input NAND gate containing an array of four
CNTs in P-CNFETs and an array of eight CNTs in N-CNFETs. The number of tubes in the N-

CNFET is twice the number of tubes in the P-CNFET), to make the worst case rise and fall delays
equal.

The normalized delay vs. normalized static power for PI'NAND gate generated by Monte
Carlo simulation is shown in Figure 5-8. Results indicate that the increase in the metallic
content from 0% to 4% and to 10% drops the functional yield from 100% to 66% and to
14%, respectively. Please notice in Figure 5-8(a), that the variation in the diameter of the

tubes does not impact the functional yield of NAND gates.
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Figure 5-8: Monte Carlo simulation for Parallel Tube(P7) NAND gate with Ng,=48, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X.

Figure 5-9 shows the functional yield of a NAND gate when Tube Stacking configuration
is used. It is observed that the stacking configuration increased the functional yield of
NAND gate as expected. For example, for 4% metallic tubes the yield of T#§ NAND gate

is 96%, as compared to 66% when PT configuration is used.
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Figure 5-9: Monte Carlo simulation for Tube Stacking (7uS) NAND gate with Nu,=48, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X. Scale of 1.1X and 10X is used for normalized delay and static power because there are no
gates with delay and static power between 1.1X-1.3X and 10X-200X, respectively.

5.3.3 Yield Compatison between Logic Gates

Monte Carlo simulation results for inverter and NAND gate reveals that variation in the
diameter of tubes does not produce substantial variation in delay and static power
consumption, therefore, not impacting the functional yield of the inverter and NAND
gates. However, when we compare the functional yield of NAND gate with that of an
inverter in the presence of metallic tubes, the metallic tubes have a more adverse impact on
the functional yield of NAND gate than on the inverter. For example, for 10% metallic
tubes and for the same drive strength of NAND gate and inverter, the yield of NAND gate
is only 14% as compared to 67% for the inverter. On the other hand stacking
configurations are more helpful in increasing the functional yield of complex gates like a

NAND gate than an inverter. For example, for 10% metallic tubes the functional yield of 2-
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input NAND gate TS configuration increases by 5.5X of PT configuration as compared to

1.4X for invertet.

5.4  General Analytical Model for Yield

Since Monte Carlo simulations are computationally intensive, we have developed analytical
models to quickly analyze the functional yield behavior of logic gates. As it is observed
from Monte Carlo simulation results that for a delay constraint of 1.3X, all the gates that
are functional have static power less than the maximum allowable static power constraint of
200X. Therefore, our analytical model derivation is based explicitly on the delay constraint

and the power constraint is implied.

The analytical models compute the functional yield of gates on the basis of drive strength
of a gate, number of parallel tubes in a gate, and percentage of metallic tubes. Here again
the assumption is that all of the transistors are implemented with un-correlated CNTs.
Please refer to the Appendix A for the symbols along with their definitions used in the

derivation of analytical models.

If there are a finite number of metallic tubes, statistically, there will be a finite delay penalty
compared to a gate with no metallic tubes due to contention current coming from the OFF

network. A number of parallel tubes (IN,,) in a transistor is a parameter used in all models.
All analytical models are derived using the following procedure:

Step 1: Mascimum number of metallic tubes tolerated in a network (IN,): Given a number of parallel

72y

tubes in a transistor and a value of the maximum acceptable delay ratio, X, we derive the

naxd

expression for the maximum number of metallic tubes, IN,, that can be tolerated without
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violating the acceptable delay penalty represented by the maximum delay ratio, X .. It is
assumed that for a semiconducting tube, the ON current is much larger than the OFF
current, i.e. I,,>>1,. For a metallic tube, the ON current is equal to the OFF current and

both are equal to the ON current of a semiconducting tube, i.e. 1,,=1;=I

ons®

Step 2: Probability of PU/PD network being functional (Pry,/ Pryp): Given N, one can calculate
the probability of pull-up, Pry;, and pull-down, Pr,, networks (pull-up/pull-down, Pry;/
Pr,,) being functional by meeting the delay constraints. These probabilities depend on the
type of a gate and on a tube configuration. Pr,; and Pr, are functions of N, the maximum

n

number of metallic tubes to be tolerated, IN,

tur

the number of tubes in a transistor and Pr,,
the probability of a tube being metallic. Probabilities of pull-up and pull-down networks to
be functional are calculated by adding probabilities of a network being functional with a

tolerable number of metallic tubes from zero to IN,, as shown in equation(5.1).

a

Nm
Ntur_. i Ntur
PrPU/PD = Z(l_ Prm)( ) Prrln C (5.1)
i=0

Where Pr, is the probability of 7 out of N,

tur

tubes being metallic and (7-Pr,)™"” is the
probability of (N,,-7) tubes being semiconducting. N‘“’Ci (M=) 1s the number of possible

ways of 7 metallic tubes, being present among N, tubes.

tur

Step 3: Functional yield of a gate (Y): A gate is considered functional if both the pull-up and
pull-down networks are functional. The functional yield of a gate, Y, can be expressed as a

product of the probabilities of both networks being functional as shown in equation(5.2).
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Y =Pryy xPryp (5.2)

5.5  Analytical Yield Model for Inverter

As the derivation procedure and final expressions for functional probabilities of PU (Pry)
and PD (Pr,;) networks for an inverter are the same, Prp,,=Pry,, therefore we present
derivation for the functional probability of PU network only. We first derive the analytical
model for the functional yield of PT inverter, and later extend it for two additional tube

configurations, which we proposed in [99], T7S and TuS.

5.5.1 Parallel Tube

Step 1: Mascimum number of metallic tubes that can be tolerated in PU/PD network of inverter (N, ,,,):
In case of an inverter, the pull-up and pull-down networks each consist of a single
transistor. Therefore, the maximum number of metallic tubes that can be tolerated without

violating the acceptable delay penalty can be obtained as shown in equation(5.3).

1
I\Im_lnv = \\Ntur [1_)(—”]&)(}" (53)

Step 2: Probability of PU network of PT inverter being functional (Prpy 1, pr): Given N,

I

the
probability Pry, ,,, of the pull-up network being functional is calculated using equation (5.1)

and N

tur

with N, equal to N,

m_Iny

equal to the actual number of tubes in a transistor as shown

in equation(5.4).

m_Inv

PrPU_Inv_PT = Z (1_Prm)(Nmr_i) Prrin Nmrci (5.4)
i=0
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Step 3: Functional yield of an inverter with PT transistors (Y, ,, pr): is obtained by substituting (5.4)

into (5.2) as shown in equation(5.5). Each transistor in the inverter has IN,, tubes so the

tur

total number of tubes in the gate, N, is 2N,,,.

2

Nm_lnv A .
Yf_an_PT :|: Z (1_ Prm)(O.SNtugfl) Prrln 0.5ng Ci (55)

i=0
5.5.2 Transistor Stacking

The 17§ configuration was proposed to reduce the probability of ohmic short between the
power and the output of a transistor in the presence of metallic tubes. In stacking
configurations, each transistor in both, the pull-up and pull-down networks are replaced
with a stack of two transistors. Therefore, the functional probability of PU network
depends upon the contention current coming from the PD network that consists of two
stacked transistors N, and IN,, as shown in Figure 5-10. The PU network will be functional
when (a) either OFF current of N, transistor is smaller than the maximum OFF current,

I

off_max

or (b) the OFF current of N, transistor is smaller than [

off_max

ot (¢) the OFF current of

Where I

off_nax:

both N, and N, is smaller than [ is the maximum allowable current

off_max.*

coming from the PD network, for which the PU network does not violate the maximum

allowable delay constraint and remains functional.
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Figure 5-10: CNT based schematic and layout of inverter in which transistors in the pull-up and
pull-down network are replaced by a stack of transistors.

In other words, the probability of PU network being functional is equal to the probability
of N, transistor being functional plus the probability of N, transistor being functional
minus the joint probability of both of transistors [N, and IN, being functional, as shown in

(5.6). We assume the same functional probabilities for both N, and N, transistors.

Proy v s = 2Ploy iny pr—= Ploy iy pr (5.6)
The functional probability of PD network depends upon the contention current coming
from PU network that consists of two stacked transistors, P, and P, as shown in Figure
5-10. Since in case of inverter both the PU and PD are symmetrical, and the probability of
PD network being functional can be obtained from(5.6) by substituting the functional
probabilities of N, and N, transistors with functional probabilities of P, and P, transistors.
We assume that a probability of an n-type transistor being functional is the same as the

probability of a p-type transistor. The functional yield (Y}, 5, of TrS inverter can be
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obtained by substituting the pull-up and pull-down network functional probabilities of TS

inverter gate into yield expression given by(5.2).

5.5.3 Tube Stacking

In TuS configuration, each parallel tube in a transistor is replaced with a stack of two tubes,
called a double-stacked tube, as shown in Figure 5-2(b). For a double-stacked tube an
ohmic short between source and drain contacts of a transistor can only happen when both
tubes in a double-stacked tube are metallic. Therefore, the probability of a double-stacked

tube to be metallic, Pr

s>

can be expressed as a product of a probability of one tube being

metallic and the second tube being metallic as given in

|:)rms = (Prm )2 (5.7)

The maximum number of tubes, in a double-stacked configuration, that can be tolerated to

be metallic without violating the acceptable delay penalty is obtained by replacing N,

tur

by

N, in(5.3). Here N,

tusr

is the total number of double-stacked parallel tubes in the transistor.
The functional yield (Y}, 1,s) of an inverter designed with double-stacked tubes is obtained

by replacing Pr, with Pr,, in(5.5).

m s

Nmilnv

Yf_Inv_TuS = Z (1_Prms)(0.5ng7i) Prriws 0.Sngci (58)
i=0

554 Compatison between Monte Catlo and Analytical Model for Inverter

Figure 5-11 shows the comparison between the functional yield generated by Monte Catlo
simulations and by using analytical models for an inverter with three discussed tube

configurations. Analytical model results are shown with lines, while Monte Carlo results are

84



shown with symbols. Please observe the oscillatory nature of functional yield with respect
to the number of tubes. The reason for the oscillatory nature is that by increasing the
number of tubes in a transistor/gate, the probability of the presence of metallic tubes in the
transistor/gate also increases, but the number of metallic tubes that can be tolerated can

only increase in fixed intervals.
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Figure 5-11: Functional yield, Y%y, for (a) Parallel Tube (P7) (b) Transistor Stacking (7zS) (c)
Tube Stacking (7uS), inverter as predicted by analytical model and Monte Carlo simulation for
different drive strengths as measured by number of tubes in the inverter (/Nag) and for different
percentage amount of metallic tubes (4%,7% and 10%) for allowed delay penalty of 1.3X.
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For example, in the case of PIT configuration with four tubes in a transistor no metallic
tubes can be tolerated for the transistor/gate to be functional. Increasing the number of
tubes from 4 to 8 will still not allow for any metallic tubes to be tolerated. A further
increase in the number of tubes from 8 to 12, however, will allow for one metallic tube to
be tolerated and consequently the functional yield will increase. For PT configuration with
4% to 10% of metallic tubes, the functional yield finally converges to almost 100% with an
increase in the number of tubes. If 30% of metallic tubes are present, however, the
functional yield asymptotically approaches 0% by increasing the number of the tubes as

shown in Figure 5-11(a).

Table 5-2 shows absolute differences in functional yield magnitudes between Monte Catlo
simulations and analytical models for different percentage of metallic tubes and different
number of tubes in the inverter. In our experiments the range of absolute difference in
functional yield magnitudes is between 0% to 0.9%, and absolute maximum error in
functional yield is 0.9%, and it was recorded for PT inverter with N, =8 and 10% of
metallic tubes. This small difference shows that our analytical model estimates the

functional yield with excellent accuracy without going through computationally extensive

Monte Catlo simulations.
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Table 5-2: Absolute difference in functional yield magnitudes between Monte Carlo simulations
and analytical model for different percentage of metallic tubes and different drive strengths of
inverter. All numbers are in %. Maximum yield difference is 0.9% and minimum yield difference is

0%.
N Parallel Tube Transistor Stacking Tube Stacking
wa P =4% | P =7% | P =10% | P _=4% | P _=7% | P, =10% | P _=4% | P_=7% | P_=10%
4 0.1 0.6 0.4 0.1 02 0.1 0.1 02 0.1
8 0.1 0.7 0.9 0.2 0.2 0.1 0.1 0.0 0.2
18 03 0.1 0.1 0.0 0.1 0.5 0.1 0.2 0.0
32 0.1 0.1 07 0.0 0.1 0.4 0.0 0.0 0.0

5.6  Analytical Yield Model for NAND Gate

The procedure for analytically finding the functional yield of NAND gate for different

configurations of tubes in CNT transistors requires separate analysis of the pull-up and

pull-down network for two reasons:

2.

In the pull-up network, transistors are arranged in parallel and in the pull-down

network transistors are arranged in series.

To make the worst case rise and fall delays equal, the number of tubes in the
transistors in the pull-down network, N, ., is twice the number of tubes in the

i

transistors of the pull-up network, N, .

We follow the approach used for the inverter by first deriving the analytical model for the

functional yield of PT"NAND gate and later modifying the analytical model of PT"NAND

gate to develop models for 175 and TuS NAND gates.
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5.6.1 Parallel Tube
PD network:

Step 1: Maxcimum number of metallic tubes that can be tolerated in PU network for the PD network fo be
Sunctional in NAND gate (N, nanp): In 2 NAND gate, the functionality of the pull-down
network depends upon the contention current coming from the pull-up network due to the
presence of metallic tubes. We are assuming that two P-CNFETs, connected in parallel in
the pull-up network, are equivalent to a single equivalent P-CNFET with twice the number
of tubes of an individual P-CNFET, 2N, ,. Therefore the maximum number of metallic
tubes that can be tolerated in the pull-up network for the pull-down network to be

functional (N, ninp) €an be approximated by substituting N,

tur

with N, in (5.3) as shown

in (5.9)

1
NmPU_NAND = \‘NturP (1_ X jJ (5.9)

Step 2: Probability of PD network of PT NAND being functional (Pry, nanp pr)- In the PTT'NAND
configuration the probability of the pull-down network to be functional can be calculated

by substituting N, with N i, vnpand N, with 2N, ., in (5.1) as shown in (5.10)

i tur

NmPU _ NAND . .
PrPD_NAND_PT - Z (1_ Prm)(szrP_|) Prr|n N[urPCi (510)
i=0
PU network:

Step 1: Maxcimum number of metallic tubes that can be tolerated in PD network for the PU network fo be

Sunctional in NAND gate (N,pp nnp): The functionality of the pull-up network depends

7]

upon the contention current coming from the pull-down network that consists of two N-
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CNFETs transistors connected in series, each with N, tubes. We consider the worst-case
situations in which only one P-CNFET in the pull-up network is ON to pull the output
node high, therefore only one N-CNFET in the pull-down network is OFF. Consequently,
the maximum number of metallic tubes that can be tolerated in the pull-down network,
N,pp nanps for the pull-up network to be functional is calculated by substituting N, with

tur

0.5N,,n1n (5.3) as shown in (5.11)

Ny 1
NmPD_NAND Z\‘ [ZN [1_ X jJ (5.11)

Step 2: Probability of PU network of PI' NAND being functional (Prpy; np pr): The probability of
the pull-up network being functional (Pr;) needs to be developed differently. We consider
the worst case of low-to-high transition in which one P-CNFET is ON and other is OFF,
in the pull-up network, and similarly one N-CNFET is ON and other is OFF in the pull-
down network. Therefore, we need to consider two cases in the pull-down network. Either
top IN, transistor is OFF and bottom N, transistor is ON represented by Pp;, n qnp» OF tOp
N, transistor is ON and bottom N, transistor is OFF represented by Py, nnp 1f we
assume that both cases are equally possible then the probability of the pull-up network

being functional can be expressed as in (5.12)

I:)rPU_NAND = I:)rPUl_NANDX PrPU 2_NAND (512)
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We can further assume that the worst case probabilities of the pull-up network being
functional (Pyp, nanp) and (Pp, nanp) ate the same and both can be calculated using (5.1) by

substituting N, with N, \npand N, with N, ., as shown in

tur

PrPUl_NAND_PT = PrPU 2_NAND_PT

Nmpo_ nNAND (Nor i) i N (5-13)
— Z (1_ Prm ) turN Prm turN Ci

i=0
The overall expression for the pull-up network being functional is given by substituting

(5.13) into (5.12) as shown in (5.14)

NmPDiNAND (N ) i N
turn ! 1 turl
Prou_nanp_pr = Z (@—Pr, )" Pr, "G, (5.14)

i=0

Step 3: Functional yield of NAND gate with PT transistors (Y, xnp pr): The functional yield
Y, nan pr of  PT'NAND gate, shown in (5.15), is obtained by substituting (5.10),
Prip oo pr > and (5.14),Pryy nonp 1> 1nto yield expression given in (5.2). Since each

transistor in the pull-up network of NAND gate has N,

U,

» tubes and each transistor in the

pull-down network has N, tubes, the total number of tubes in the NAND gate, N, , will

g

be ZZ\TMVP-‘F ZNﬂn\"
Niy i 2
Nipp_ NAND (1— Prm)( % )
Yf_NAND_PT = ‘ [Nm%]
=0 Pr. C,
5.15
ot (515)
NPy _ NaND (1— Prm) 3
X N
i=0 i ( m%]
x Pr, C,
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5.6.2 Transistor Stacking

The functional yield of Tr§ NAND gate is derived using the same reasoning as explained
for inverter with 17§ configuration. The functional probability of PU network depends
upon the contention current coming from the pull-down network in which all the
transistors are replaced with the stacked transistors. We again consider three cases of
network being functional; (a) either the first stacked transistor OFF current is smaller than
the maximum OFF current, I, . or (b) the OFF current of the second stacked transistor is

smaller than, I or (c) the OFF current of both stacked transistors is less than I,

> “off_max F maxct

Since the functional probabilities of both stacked transistors in the network are non-
exclusive, the functional probability of the pull-up network of Tr§ NAND gate is given by

(5.16)

2
Proy _NAND_Trs — 2Pryy _NAND_PT — PrpuiNANDipT (5.16)

The functional probability of PD network of T#§ NAND gate is obtained using (5.16) by
substituting the functional probability of PT" pull-down network of NAND gate given
in(5.10). To calculate the functional yield of T NAND gate we substitute the pull-up and

pull-down network functional probabilities of T#§ NAND gate into yield expression given

by(5.2).

5.6.3 Tube Stacking

As in the case of inverter with TuS configuration, the probability of double-stacked tubes to
be metallic can be obtained from(5.7). The maximum number of double-stacked metallic
tubes that can be tolerated in the pull-up and pull-down networks can be obtained from

(5.9)and (5.11)by replacing N,,, with N, , and N, , with N, ., respectively. Where N, ,is

turl tusrl
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the number of stacked tubes in P-CNFET of NAND gate and N, is the number of
stacked tubes in N-CNFET of NAND gate. The functional yield of TuS NAND gate

(Y, nanp_r.s) 18 obtained by replacing Pr,, with Pr, in(5.15).

m s

2

Nug /
Nimpp _ NAND (1—Prm5)( t% )

Yf_NAND_TuS = Z (NMV)
=0y Pr;15 * C,
Nug /_, (5.17)
) (1-Pr,.)" 479
y _
i—0 _ [Nm%)
x Pr! C.

ms 1

The analytical model derivation procedure for 2-input NOR gate is exactly the same as that
of 2-input NAND gate as the NOR gate is a dual of NAND gate. The expressions for the
functional yield of the pull-up and pull-down networks are switched, but the functional
yield of the NOR gate is the same as that of NAND gate. Analytical models for the
functional yield of logic gates with larger fan-in and for other complex logic gates can be

derived in a similar manner.

5.6.4 Comparison between Monte Carlo and Analytical Model for NAND Gate

Figure 5-12 shows the functional yield comparison between Monte Carlo simulations and
the analytical model results for 2-input NAND gate. Results from analytical models are
shown with lines and Monte Carlo simulation results are shown with symbols. It can be
observed that for PT'NAND gate with 10% metallic tubes the functional yield saturates at
around 35% which is very low and not good enough for robust CNT based circuits. For

4% metallic tubes the functional yield of PI" NAND asymptotically approaches 90% by
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increasing the number of tubes in the gate. TuS configuration proves very helpful in
increasing the functional yield of NAND gate in the presence of metallic tubes as shown in
Figure 5-12(c). For 4% and 10% metallic tubes the functional yield approaches almost
100% with the increase in drive strength of the gate represented by increasing the number

of tubes in the gate.
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Figure 5-12: Functional yield, Y7 nanp, for (a) Parallel Tube (P7) (b) Transistor Stacking (71S) (c)
Tube Stacking (7uS) NAND gate as predicted by analytical model and Monte Carlo simulation for
different drive strengths as measured by number of tubes in the NAND gate (Ngaz) and for
different percentage amount of metallic tubes (4%,7% and 10%) for allowed delay penalty of 1.3X.
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Table 5-3 shows the absolute differences in functional yields between data obtained from
Monte Carlo simulations and the analytical models. Results are reported for different
percentage of metallic tubes and different numbers of tubes in the NAND gate. In the
table, the range of absolute error in functional yield is between 0% and 2.5%, and the
maximum error in functional yield for NAND gate is 2.5%. The maximum error is
observed for TS configuration NAND gate with N, =48 and for 10% metallic tubes. Very
small differences in yield numbers show that we can accurately predict the functional yield
of NAND gate analytically without going through computationally expensive Monte Catlo
simulations. The maximum error of 2.5% obtained for NAND gate as compared to 0.9%

for the inverter is because of the complexity of the NAND gate as compared to the

invertet.

Table 5-3: Absolute difference in functional yield magnitudes between Monte Carlo simulations
and analytical model for different percentage of metallic tubes and different drive strengths of 2-
input NAND gate .All numbers are in %. Maximum yield difference is 2.5% and minimum yield
difference is 0%.

Parallel Tube Transistor Stacking Tube Stacking
Nug P.=4% | P, =T% | P,=10% | P, =4% | P =7% | P,=10%| P, =4% | P, =7T% | P, =10%
12 0.1 0.3 0.3 0.3 0.8 1.0 0.1 02 0.0
24 1.0 0.0 0.3 1.2 1.9 2.4 0.2 0.3 0.0
43 0.1 0.1 0.0 2.2 2.2 2.5 0.3 0.6 0.5
96 0.3 0.3 0.6 0.7 1.8 2.3 0.0 0.1 0.1
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5.7  Configuration Comparison Summary

Table 5-4 and Table 5-5 summarize the normalized mean delay, static power and yield
results for inverter and NAND gate obtained from Monte Carlo simulations for different
transistor configurations and different gate delays as measured by N, the number of tubes
in the gate. The percentage of metallic tubes, P,, is considered to be 4%, the minimum

percentage of unwanted metallic tubes reported by [92]. It is worth noting that the same

trend in functional yield is observed for different configurations of the inverter when 4% or

10% tubes are metallic. D, ,, and D, \ \p captures the mean delay of the inverter and

NAND gate and SP,, ,, and SP,, \ ,np captures the average static power (also a measure of

_imw

total static power) of the inverter and NAND gate.

From Table 5-4 and Table 5-5 it is clear that there is no single favorite configuration to be
chosen for the best of delay, static power and yield. Either $T" or PT configurations should
be chosen when delay is the primary objective — this would apply to critical paths. Fither
17§ or TuS configurations should be chosen when yield and static power are the primary
objectives — this would apply to non-critical paths. The choice between 175 and TuS
depends on how precisely the technology allows alignment of the tubes in the Tu§
configuration. If the advancement in the technology allows alighment of the tubes with
nano-scale precision then TwuS will give us a marginally higher yield than T7§ configuration
of transistors in the presence of metallic tubes. On the other hand if the technology does
not allow the precise alignment of tubes, then the T7$ configuration will be the optimal
choice to handle the metallic tubes. The better choices for delay, static power and yield for
various N, are highlighted in Table 5-4 and Table 5-5. Please note that for a given value of

N,

.. all configurations have iso-input capacitance. An architecture that utilizes an
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appropriate combination of proposed configurations and possible hybrids between them is
required to enable a better trade-off between delay, power, and yield when the percentage

of metallic tubes is small.

Table 5-4: Normalized mean delay, normalized static power and yield comparisons for inverter.
Optimal choices for delay, static power and yield for a given value of N, are highlighted.

Pm Configuration nverter
Ntug Du_Inv SPH_II‘IV Yf_lnv(%)
Shared Tube 1.1 7.3 92.3 €«
Parallel Tube 4 1.1 3.7 81.7
Transistor Stacking 4.2 0.9 99.4
Tube Stacking 4.2 0.9 99.4 €«
Shared Tube 1.1 7.3 92.3 €«
4% Parallel Tube 3 1.0 2.7 72.3
Transistor Stacking 4.2 0.7 99.0
Tube Stacking 4.2 0.6 99.2 €«
Shared Tube 1.1 7.3 92.3
Parallel Tube 32 1.1 60.7 99.4 €«
Transistor Stacking 4.2 5.1 99.7
Tube Stacking 4.1 1.2 100.0 €«
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Table 5-5: Normalized mean delay, normalized static power and yield comparisons for 2-input
NAND gate. Optimal choices for delay, static power and yield for a given value of N, are
highlighted.

. . NAND
P Configuration
Ntug Du_NAND SPu_NAND Yf_NAND(%)

Shared Tube 1.1 4.9 84.8 €

Parallel Tube 12 1.0 2.6 61.4

Transistor Stacking 4.2 0.6 98.5
Tube Stacking 4.2 0.6 98.9 €<
Shared Tube 1.1 4.9 84.8 €«

4% Parallel Tube o4 1.0 2.3 38.6

Transistor Stacking 4.1 0.6 94.6
Tube Stacking 4.1 0.5 97.9 <«

Shared Tube 1.1 4.9 84.8
Parallel Tube o6 12 43.1 88.8 €«

Transistor Stacking 4.4 3.5 95.5
Tube Stacking 4.1 0.8 99.9 €

For multiple-stage logic networks a certain level of statistical averaging in delay and power
variation can be observed depending on the logic depth. Therefore, even if performance
and power of some individual gates do not meet the specification, the circuit can still
function properly due to statistical averaging. Here we assume that based on the defined
limits of delay and static power the degradation of noise margin of logic gates in the
presence of metallic tubes will be tolerable and will not result in logic failure as the signal
can be restored in traversing through multistage logic networks. We will show the statistical
averaging impact later in this chapter by analyzing the yield of full-adder [114] and 3-input

functions implemented with regular logic bricks [114].
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5.8  Architecture Solution
5.8.1 Design of Full Adder
A full adder is implemented using inverters, 2-input NANDs and 2:1 MUX as shown in

Figure 5-13. The 2:1 MUXs are implemented with an inverter and 2-input NAND gates.

Here MUX (M) and inverter (I;) implement propagate function P =(a@®b) and MUX

(M,) and inverter (I,) implement the sum function. Similarly, NAND (IN,) and inverter (I;)
implement the generate functionG =ab . The MUX (M;) implements the carry function

¢, = G + P, . Please notice that generate and propagate are only functions of inputs « and

b, and are independent of input ¢. For multi-bit adders only gate M, is on the critical path.
As it was mentioned before, gates implemented with 175 configuration are 4X slower than
corresponding gates implemented with PT" configuration. Therefore, using 1§
configuration gates in the adder to increase the yield significantly increases the adder delay.
However, since only gate M, is on the critical path, the yield of the adder can be increased
by implementing the adder with 17§ configuration and using parallelism in the critical path

of the adder to mitigate the impact on the delay.
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Figure 5-13: Schematic diagram of full adder implemented using inverters, 2-input NAND and 2:1
MUX.

5.8.2 Adder using TrS Configuration and Parallelism
We substitute MUX (M;) with four parallel instances of M; to keep the delay of adder the

same as the delay of the PT configuration adder. The advantage of using this design is a
higher yield and much lower static power. The trade-offs are extra area because of three
additional M3 gates and additional dynamic power dissipation.

To verify advantages of the T7S adder with parallelism in the critical path, we performed
Monte Carlo simulation of n=1,000 full-adders with a different percentage of metallic tubes
and variation of tube diameters from 1nm to 2nm. Table 5-6 shows the yield results of
adders implemented with PT" and T7S configuration with parallelism in the critical path.
Significant improvements in yield are observed. For example, for 7% metallic tubes the
yield for 17§ parallelized configuration of adder is 98% as compared to 54% for the PT
adder.
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Table 5-6: Functional yield of full adder implemented with Parallel Tube (P7) and Transistor
Stacking (71S) configurations.

Configuration Pm=0% | Pm=4% | Pm=7% | Pm=10%
Parallel Tube 100.0 90.3 53.9 185
Transistor Stacking 100.0 100.0 98.1 67.5

Figure 5-14 shows the comparison between normalized delays for adders implemented
with PT and parallelized 17§ configuration. Please observe that for P,=0% the same delay
is obtained from both configurations, however, when the percentage of metallic tubes
increases, the increase in the mean delay is less for parallelized 17§ configuration as
compared to PT. For example for 7% metallic tubes the increase in the mean delay for PT'

configuration is 30% as compared to 10% for adders with parallelized 17§ configuration.

E Parallel tube  ®Transistor Stacking

111

Pm=0% Pm=4% Pm=7% Pm=10%
Percentage of Metallic Tubes

=
N

©
o

Normalized Delay
o
N

o
o

Figure 5-14: Comparison of normalized delay of full adders using P7 and parallelized 77zS
configurations for varying percentage of metallic tubes.

The static power evaluation is based on the total current flowing in the OFF network of
logic gates. This current has two components; the sub-threshold leakage current, and the
current flowing because of the presence of metallic tubes. It can be easily observed that the

contribution of the current due to the presence of metallic CNTs is much higher than the
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subthreshold leakage current. To evaluate the static power of the adder we are considering
the worst-case scenario by taking into account that the network with the higher static power
is OFF. This assumption is to capture the total OFF current due to metallic tubes. The total
static power is then obtained by adding the static power of all the gates in the adder as

given by
3 3
SPs = Zspli + ZSPMi +Sh, (5.18)
i1 i1

100

E Parallel tube
E Transistor Stacking

Normalized Static

Pm=0% Pm=4% Pm=7% Pm=10%
Percentage of Metallic Tubes

Figure 5-15: Comparison of static power consumption of full adders using PT and parallelized 7zS
configurations for varying percentage of metallic tubes.

Figure 5-15 shows the comparison between static power consumption for adders
implemented with PT and parallelized 17§ configurations. Similarly, a smaller increase in
power consumption for an increased percentage of the metallic tubes is observed when
the parallelized 17§ configuration is used. For the case of 7% metallic tubes, the increase
in static power is only 8% as compared to 58% for P1" configuration, constituting almost
8X improvement.

5.8.3 Via Configurable Logic Bricks

Circuits fabricated using CNFETs have lithographic related variations in addition to the

imperfections specific to the CNT technology. Therefore, for designs specific to ASIC
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implementations we are proposing via-configurable regular logic blocks approach [107].
There are two main advantages of implementing the designs with regular logic blocks; (7) a
reduction in the systematic process related variations in nanoscale technologies, and (2)
acceptable levels of yield can be obtained by using redundant logic blocks for larger
percentage of metallic tubes. The first advantage allows designers to focus only on
challenges associated particularly with the CNT based technology, and the second allows
for replacement of non-functional blocks that fail to meet the delay and power constraints.

Among all the logic primitives used in [107] they are able to implement all three-input
functions by using NAND, 2:1 MUXSs, inverters and buffers. A finite small set of via-
configurable logic blocks can be well tuned for manufacturability and performance. Figure
5-16 shows the schematic diagram of one of the five unique bricks used in [107] to
implement 80 unique 3-input functions. In Figure 5-16, the top input of MUX (M,) will be

(ab) or (a'b)' and similarly the lower input of MUX (M, wil be
(ab +ab) or (ab +a'b)' based on which via is configured. The possible four 3-input

functions implemented with the brick are shown below.

b+ abc :
abc+c(a®b)
0, =1- _ (5.19)
ab + abc :

5b5+c(@) :
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M, 01
M,

Figure 5-16: Sample brick to implement 3-input function [107].

Inverters I, and I; are used in the brick to make the foot print of this brick identical to that
of D flip-flop with scan. These inverters can also be used for buffering of local and global
signals. The inverters are of the minimum size and NAND gates are sized to have the same
delay as that of inverter. The flowchart of Monte Carlo simulation setup used to obtain the
delay, static power and functional yield of brick is provided in Section 10.3.1 of Appendix
B. There are two possible delay paths for the brick shown in Figure 5-16. A path delay of
the logic brick is obtained by adding the delays of all logic gates on the path as given
in(5.20). The static power of the brick is obtained in the same way as the static power of

the full adder in Section 5.8.2.

3 2
Dp, = Z D, +z D
i=1 i=1

3 2
Dpz = Z Dli + DNi +Z DMi
i=2

i=1,i=2

(5.20)

The bricks are considered functional if their delays in the presence of metallic tubes are less

than 1.3X of the delay of the fastest brick and the static power does not exceed 100X of the
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lowest static power of a brick. The fastest brick with the lowest static power is a brick with
all tubes being semiconducting.

5.84 Monte Carlo Simulation of Bricks

Functional yields of bricks are obtained through Monte Catlo simulation for »=1,000 bricks
build of 2-input NAND, 2:1 MUXs, inverters and buffers. The gates in the bricks are
implemented with PT, TrS and hybrid tube configurations. The hybrid configuration is
composed of gates with PT" gates in delay critical paths, 17§ gates where delay is less
important than power and yield contribution. For simulation purposes a diameter variation
of 1nm to 2nm is considered [75] and the percentage of metallic tubes is varied between
0% (all semiconducting) to 10%.

Initially, all setups consist of homogeneous bricks implemented with CNFETSs using only
PT and T7§ configurations of transistors used in all the logic gates inside the brick.
Functional yield, delay and static power of a brick are obtained as a function of different
percentages of the metallic tubes. The number of CNTs (represented by IN,,) used in N-
CNFET and P-CNFET of the inverter in the Parallel Tube configuration is 8.

Table 5-7 shows the functional yield results obtained for bricks implemented with CNFET's
using PT, 7S, and P1-17S hybrid configurations and the percentage of metallic tubes varied
from 0% to10%. It can be observed that the yield of bricks implemented with PT
configuration drops significantly when the percentage of metallic tubes is 7% and gets to an
extremely low level of 22% for 10% of metallic tubes. Results also show that 1§
configuration improves the functional yield of bricks in the presence of metallic tubes. For
10% metallic tubes the functional yield obtained from T7§ configuration is 81% as

compared to 22% when the brick is implemented with PT" configuration.
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Table 5-7: Functional yield of bricks implemented with parallel tube (P7), transistor stacking
(T1S) and hybrid configurations for different percentage of metallic tubes.

Brick Configuration |Pm=0% |Pm=4% |Pm=7% [Pm=10%
Parallel Tube 100.0 99.6 77.5 21.6
Transistor Stacking 100 100.0 97.7 80.5
Hybrid 100 99.6 87.5 53.5

In hybrid configurations some of the gates are implemented with PT transistors and others
with 17§ configuration. In the brick shown in Figure 5-16, we consider two critical paths
I,2M,21,2M,2I, and I, 2N, 2 M, 2, The larger of the two delays will define the delay
of the brick, therefore, our hybrid-brick design strategy is to improve yield and power of
the brick by using 17§ transistors everywhere where the delay of the brick will not increase
or will constitute a desirable trade-off. Please notice that gates I,, M, and I; are common to
both paths, so, to increase the yield we will implement these three gates with 17§
transistors. Also the delay of M, 1, in the first path is much larger than the delay of N, in
the second path, hence we can allow for an increase in N, delay and it is implemented with
I7S configuration. The hybrid configuration provides a compromise between the two
configurations by obtaining yield, which is higher than for P1 and lower than that for Tx§
configurations. The hybrid-brick delay is higher than obtained from PT and lower than that

obtained from 17§ configuration.

Figure 5-17 shows the delay of different brick configurations normalized with respect to the
delay of brick implemented with PT configuration in the presence of varying percentage of
metallic tubes. It can be observed that when comparing to PT bricks, that have the lowest

yield and smallest delay, the hybrid configuration, showing significantly improved yield, also
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reduces the delay increase to almost 2.2X as compared to 4X for homogenous 17§

implementation.

E Parallel tube ®Transistor Stacking ®hybrid
5.00

4.00

3.00
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1.00

Normalized Delay

0.00

Pm=0% Pm=4% Pm=7% Pm=10%

Percentage of Metallic Tubes

Figure 5-17: Delay of different configurations of bricks normalized to delay of a brick implemented
with parallel tube configurations when percentage of metallic tubes are 0%,4%,7% and 10%.

Figure 5-18 shows the Static Power consumption of different configurations of bricks
normalized to the static power of a brick implemented with T#%§ Stacking configurations
when percentage of metallic tubes are 0%,4%,7% and 10%. From the figure it can be
observed that for bricks implemented with PT" configuration, the static power will increase
from 40X up to 55X for 4% and 10% metallic tubes respectively. In the case of hybrid
approach the static power is increased by 18X to 22X as compared to bricks implemented
with 17§ configurations but it is three orders of magnitude less when the bricks are

implemented with PT" configuration.
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Figure 5-18: Static power consumption of different configurations of bricks normalized to the static
power of brick implemented with Tube Stacking configurations when percentage of metallic tubes
are 0%,4%,7% and 10%.

5.9 Conclusion

The undesired presence of metallic tubes is one of the major technological barriers faced by
CNT technology that hinders the development of robust CNT based circuits for real
applications. Both proposed CNFET stacking configurations are helpful in increasing the
yield of CNT-based circuits in the presence of the metallic tubes, but the trade-off is an
almost 4X increase in the delay. Moreover, the development of analytical models is helpful
in quick analysis of finding the impact of different percentage of metallic tubes for different
drive strength of logic gates. In this chapter we showed that by using innovative design
methodology, we can leverage advantages of CNFET transistor stacking configurations to
design high yield systems with low power dissipation and with delays comparable to most
efficient Parallel Tube configuration. The performance degradation of high-yield achieving
stacking configurations can also be minimized by exploiting architecture level techniques

like parallelism or implementation of circuits with hybrid configuration of CNFETS.
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6 Processing Techniques for Metallic Tubes

Part of this chapter has been published in Rehman Ashraf, Malgorzata Chrzanowska, Siva G.
Narendra,” Yield Enhancement by Tube Redundancy in CNFET-based Circuits”, ICECS,2010

and part of this chapter is ready for submission in Rehman Ashraf, Malgorzata Chrzanowska, Siva
G. Narendra,” Yield Enhancement techniques for CNFET based Circuits in the Presence of
Imperfections” , IEEE Trans. Nanotechnology, 2011

In the previous chapter, we assumed that all metallic tubes are present and we analyzed the
impact of the presence of metallic tubes on the functional yield of gates and circuits. It was
observed that the presence of metallic tubes has a detrimental impact on both the delay and
static power consumption of the gates. Extra processing techniques must be used as
described in Chapter 2, if the percentage of metallic tubes is larger than 7%. In this chapter
we focus on yield enhancement of CNFET based gates and circuits in the presence of

metallic tube removal by post processing techniques such as SCE or VMR.

6.1 Impact of Tube Removal Process

The removal of tubes by these extra processing steps increases the delay of CNFET based
gates, and results in large variability in the performance and power of CNFET based
devices. Furthermore, in the worst case, all tubes from a transistor can be removed and an
open-circuit gate is created. The probability of open circuit CNFET based devices has been
analyzed in [115]. In this chapter, we present the impact of extra processing techniques on

delay, power, and functional yield of complementary CNFET based circuits.
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6.2 Impact of Tube Correlation on the Functional Yield

It has been shown that in the presence of metallic tubes and due to their removal, the
correlation among CNTs of different transistors, and pull-up and pull-down networks of
logic gates has a strong impact on the functional yield of gates [99], [115]. It has been
shown in [116] that when metallic tubes are present the use of highly un-correlated
(different) tubes among different transistors reduces the probability of ohmic short, and

increases the functional yield of logic gates.

Now if the extra processing techniques such as SCE and VMR are used to remove the
metallic tubes, the Monte Carlo results show that both techniques remove more than
99.9% of metallic tubes. The trade-off of using these techniques is large performance
variation due to removal of metallic and semiconducting tubes. It is observed that when the
tubes are removed, the use of highly un-correlated tubes (different tubes) among different
CNFETs results in large variation in performance, and hence low functional yield. On the
other hand, when the tube removal process removes almost all the metallic tubes, then use
of highly correlated tubes results in less variation in performance and high functional yields
of CNFET based gates. Figure 6-1 shows the schematic and layout of a CNFET based
inverter in which the same set of tubes have been used for pull-up and pull-down network.

Thus, these CNTs are highly correlated in the pull-up and pull-down network.
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Figure 6-1: Schematic and layout of an inverter containing array of four CNTs in P-CNFET and
N-CNFET. Highly correlated tubes are used in the pull-up and pull-down networks.

However, for complex logic gates like NAND and NOR, if highly correlated tubes are
used in both pull-up and pull-down networks of the gate, then it results in irregular layout
and increases the area of the gates which in turn makes the gates slower. In this work, we
assume that for complex gates highly correlated tubes are used within the transistors of the
individual pull-up and pull-down networks. But CNTs used in the pull-up and pull-down

networks are un-correlated, ze. pull-up and pull down networks do not share tubes with each other.

Figure 6-2 shows the schematic and layout of a 2-input NAND gate. It can be observed
from the layout of Figure 6-2, that transistors within the pull-up network share the same
tube (tubes connected with the 1, raif). Thus tubes used by the transistors of the pull-up
network are highly correlated. The same observation can be made for the transistors in the
pull-down network. However the pull-up and pull down networks do not have any
common tubes between them. Thus pull-up and pull down networks have highly un-

correlated tubes.
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Figure 6-2: CNT based schematic and layout of 2-input NAND gate containing an array of four
CNTs in P-CNFETSs and an array of eight CNT's in N-CNFETs. Pull-up and pull-down networks
are implemented with un-correlated tubes and transistors within pull-up and pull-down networks
are implemented with highly correlated tubes.

During the analysis presented in [117], the authors assumed fanout of the logic gates to be
constant. However, this scenario is only applicable while driving internal or external
interconnect buses. In most cases, the gates will be driving other gates through local
interconnects. In this case, tubes removed from both the driving gates and fanout gates will
impact the performance of gates. If we consider the fanout to be constant then it will result
in the underestimation of the functional yield of logic gates. Therefore, in this work we

study the effect of fanout on the functional yield of logic gates.
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6.3 Monte Carlo Simulation Results

Monte Catlo simulations are used to generate functional yield for an inverter and NAND
gate built with CNFETs. The flowchart of Monte Carlo simulation setup used to obtain the
delay, static power and energy of logic gates is provided in Section 10.4.2 of Appendix B.
The yield results obtained from Monte Catlo simulations will be used to validate the yield
results obtained from the analytical models developed in the subsequent sections of this

chapter.

Figure 6-3 shows the Monte Carlo simulation yield summary for inverters (with delay
constraint of 1.3X and , static power constraint of 10X) as a function of number of tubes in the
gate (N,,),the percentage of metallic tubes(P,) prior to the application of the tube removal
process, and the percentage of metallic and semiconducting tubes removed (P). Here FO,
load is considered, and tubes are removed from both the driving gate and fanout (realistic
scenario as discussed in the previous paragraph).Sample size () of 10,000 was used for all Monte
Carlo simulations. The inset graph of Figure 6-3 shows the Monte Catlo simulation yield
for inverters when it is assumed that no tubes are removed from the fanout. From the
figure, it can be observed that extremely low yields are obtained when we consider the

fanout to be constant.
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Figure 6-3: Monte Carlo simulation yield summary for inverters with delay constraint of 1.3X, static
power constraint of 10X, as a function of Ny, Pn and P when FOyis considered and tubes are
removed from both driving and fanout gates (realistic scenario). The inset graph shows the MC
simulation yield for inverters with delay and static power constraints of 1.3X and 10X as a function
of Nz ,Prm and Prwhen it is assumed that the load is constant.

Next we consider the impact of different fanout when a finite number of tubes are
removed from the gates. Figure 6-4 shows the Functional yield of 2-input NAND gates
obtained from the Monte Carlo simulation, with different drive strengths, and with FO,
and FO,. From the figure, two parallel lines for FO, and FO, can be observed for a
constant P . The change in fanout shown by the parallel lines is within 8% difference in the
functional yield of the gates. The reason is the probabilistic nature of tube removal from

both the drive and fanout gates.
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Figure 6-4: Monte Carlo simulation yield summary for NAND gate with FO; and FO,. Yield is
obtained as a function of Ny, , P, and P for a delay constraint of 1.3X and static power constraint
of 10X.

Figure 6-5 shows the impact of removal of tubes on the yield of NAND gates, assuming
that almost all the metallic tubes are removed but no semiconducting tubes are removed
(ideal case). We use the ideal case result as a baseline for our analysis. From the figure it can
be observed that for up to 10% metallic tubes reasonable yield can be obtained at the gate
level, and the circuit level performance variation can be within acceptable limits due to
statistical averaging among gates. However, both of the tube removal processes, i.e. SCE
and VMR, are not perfect as they remove metallic as well as semiconducting tubes,

therefore, these techniques need to be improved.
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Figure 6-5: Monte Carlo simulation yield summary for NAND gate with FO; and FO,. Yield is
obtained as a function of Ny, , P, and P; for a delay constraint of 1.3X and static power constraint
of 10X.

6.4  Analytical Yield Model

Since Monte Carlo simulations are computationally intensive, we have developed analytical
models to quickly analyze the functional yield behavior of logic gates in the presence of
fabrication imperfections. It is observed from Monte Catlo simulations that both SCE and
VMR techniques are almost perfect, in terms of removal of metallic tubes, removing almost
99.99% of metallic tubes. We derive our analytical model explicitly on the delay constraint,

and the power constraint implied.

The derived analytical models compute the functional yield of logic gates as a function of )
drive strength of a gate, 4) the percentage of metallic tubes present prior to the application
of tube removal process, and ¢) the percentage of metallic and semiconducting tubes

removed after the application of the tube removal process.
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6.4.1 General Analytical Model for Yield

If a finite number of tubes are removed from the driving gate, statistically, the logic gate will
have a finite delay penalty due to the reduction in the drive strength of the gate, compared
to the case when all the tubes are present in the gate. Similarly, if a finite number of tubes
are removed from the fanout gate(s), there will be reduction in the delay of the logic gate
because of the reduction in the total load capacitance that will be driven by a gate. We
define the maximum acceptable increase in the delay, X, due to the finite number of
tubes being removed from the drive and fanout gates as compared to the delay of the gate
when all the tubes are present and semiconducting, and no tube removal process is applied.
Here the objective is to obtain the number of different possible combinations of tubes

removed from the drive and fanout gate(s) (IN,) that can be tolerated without violating the

maximum allowable delay constraint.

The delay of the gates under an ideal scenario when all the tubes are semiconducting and

no tube removal process is applied, is given by

) — CL_ideaIVDD
g_ideal N | _ N |

tu_dr “on tu_off " off

(6.1)

It is assumed that for a semiconducting tube the ON current is much larger than the OFF

current, ie. [

on

>>], and no metallic tubes are remained after the application of the tube
removal process. Similarly, the total load capacitance of the gate when all tubes are

semiconducting and no tube process is applied is given by

C, CoatC ntNy C (6.2)

_ideal = p_
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Now the delay of the gates when a finite percentage of tubes are removed due to the

application of the tube removal process is given by

C V
D — L_turm " DD (63)

g_turm
(Ntu_dr o Nturm_dr) Ion

Likewise, the load capacitance of the gate when a finite number of tubes are removed from

the drive and fanout gate(s) is given by

C =C, ,+C N (6.4)

L_turm p_ p_fo + ( Ntu_ fo~ "Mturm_fo )Cg_fo

6.4.2 Allowed Combination of Tubes Removed from Drive and Fanout Gate(s)
(N):

For a given number of parallel CNTs in the drive and fanout gates, and the maximum

acceptable delay ratio X, we obtain the different combinations of tubes removed from

naxd

the driving gate as given by

Nc
Z Nturm_dr (I) (6.5)
i=1

and the combinations of tubes removed from fanout gate(s) as given by

Nc
Z Nturm_fo (I) (6.6)
i=1

The delay of the gates which is within the acceptable limit after the tube removal process is

given by

Dg_turm = Xmax D (6.7)

g _ideal
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6.4.3 Probability of PU/PD Network Being Functional (Ptpy/ Ptpp):

After obtaining the different possible combination of tubes removed from the drive and
tanout gates (for which the delay is within acceptable limits), we calculate the probability of the
pull-up network, Pry, and the pull-down network, Pr,, being functional by meeting the

delay constraints.

Proy =Prop =

r Nturmidr(i)

NC . N
Z (1_ Pr)(Ntu_dr_Nturm_dr(l)) PNturmfdr(i) ( [U—dr)C (68)
i=0

6.4.4 Functional Yield of a2 Gate (Y):

For a gate to be functional, the worst case delay of both the pull-up and the pull-down
networks has to be less than the maximum allowable limit when a finite number of tubes
are removed. Therefore the functional yield of a gate, Y, can be expressed as the joint

probability of both PU and PD networks being simultaneously functional as shown in

Y, =Pr,y, xPr,g (6.9)

6.4.5 Analytical Model of an Inverter

For the inverter, we first obtain the total number of possible combinations of tubes
removed from the drive and fanout gates from equation(6.1),(6.3), and (6.7) . As we
implemented the pull-up and the pull-down networks of inverters with the same tubes, the
functional probabilities of pull-up and pull-down networks are the same. The computation

of Pry, is sufficient to compute the functional probability given by equation(6.8). In this
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case, the functional yield of the inverter will be equal to the functional probability of either

the pull-up or the pull-down network.

6.4.6 Analytical Model Detivation of a NAND Gate

In the case of a NAND gate we are assuming that transistors within the pull-up (or pull-
down) network are implemented with the same tubes, as shown in Figure 6-2. Furthermore,
the pull-up and pull-down networks are implemented with un-correlated tubes, i.e. these
two networks do not share any tubes between them (please see Figure 6-2). To make the
worst case rise and fall delays equal, the number of tubes in the transistors in the pull-down

network, I\,

turN>

is twice the number of tubes in the transistors of pull-up network, N, .. We
can obtain the functional probability of PU and PD networks of NAND gate by inserting
the number tubes in the transistors of pull-up and pull-down networks in equation (6.1)
,(6.3) and (6.7). Finally we can obtain the functional yield of NAND gate by substituting the
functional probability of pull-up and pull-down networks of a NAND gate obtained from

equation (0.8) in equation(6.9).

The analytical model for a 2-input NOR gate can be derived similarly as the NOR gate is
the dual of a NAND gate. The expressions for the functional yield of pull-up and pull-
down networks are switched, but the functional yield remains the same as that of a NAND
gate. Analytical models for complex gates, and gates with larger fan-in can be derived

similarly.

6.4.7 Compatison between Monte Carlo and Analytical Model for Inverter

Figure 6-6 shows the comparison between the functional yield obtained from Monte Catlo

simulations, and our analytical model for an inverter. Analytical model results are shown
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with lines and Monte Carlo results are shown with symbols. The upper inset table shows
the absolute difference in functional yield magnitudes between Monte Carlo simulations
and analytical models for ) different percentage of metallic tubes, 4) different percentage of
tubes removed, and ¢) different drive strength of the inverter. In our experiments the range
of absolute difference in functional yield magnitudes is between 0% to 2.6% for inverter
with N, = 48 and 15% of metallic tubes. This small difference shows that our analytical

model estimates the functional yield with excellent accuracy without going through

computationally extensive Monte Carlo simulations.
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Figure 6-6: Functional yield, Y%z, for multi-channel CNT based inverter gate as predicted by the
analytical model and Monte Carlo simulation for different drive strengths as measured by the
number of tubes in the inverter (Nug) gate and for a different percentage amount of metallic tubes
(5%, 10% and 15%) for allowed delay constraint of 1.3X, and static power constraint of 10X. The
upper inset table shows the absolute difference in functional yield between MC simulations and
the analytical model for a different percentage of metallic tubes and different drive strengths of
inverter gate.

Figure 6-7 shows the functional yield comparison between Monte Carlo simulations and
the analytical model results for 2-input NAND gates. Results from the analytical model are
shown with lines and Monte Catlo simulation results are shown with symbols. The upper
inset table shows the absolute difference in functional yields between data obtained from
Monte Catlo simulations and from the analytical model. Results are reported for different
percentage of metallic tubes and different numbers of tubes in the NAND gate. In the table
shown within Figure 6-7, the range of absolute error in functional yield is between 0% and
3.4%, The maximum error is observed for NAND gate with N, =96 and for 5% metallic

tubes. Very small difference in yield numbers show that we can accurately predict the
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functional yield of NAND gate analytically in constant runtime. The maximum error of
3.5% obtained for NAND gate as compared to 2.6% for an inverter is because of the

increased complexity of the NAND gate compared to an inverter.
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Figure 6-7: Functional yield, Yz nanp, for multi-channel CNT based NAND gate as predicted by
analytical model and Monte Carlo simulation for different drive strengths as measured by the
number of tubes in the NAND (Vg,) gate and for a different percentage amount of metallic tubes
(5%,10% and 15%) for allowed delay constraint of 1.3X and static power constraint of 10X. The
upper inset table shows the difference in functional yield between MC simulations and the
analytical model for a different percentage of metallic tubes and different drive strengths of NAND
gate.

6.5 Tube Level Redundancy (TLR)

From the data presented in the previous section, it can be concluded that removal of tubes
creates two main problems 7) open-circuit transistors/gates when all tubes are removed
from a transistor and 2) low functional yields because of a finite number of tubes removed
from the gates. The flowchart of Monte Carlo simulation setup used is provided in Section

10.4.3 of Appendix B. To tackle these problems, we propose tube level redundancy (TLR)
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to reduce the probability of open-circuit gates, and improve the functional yield of gates.
Our obyjective is 1o find the mininum number of tubes (IN,,,.) required in a transistor prior to tube removal

process for less than 0.001% probability of open-circuit CNFETs. N, can be calculated as shown

turmin

in (6.10).

P

r

-5
Nturmin = Iog(lo ] (610)

Table 6-1 shows the IN

turmind

required for a negligible probability of open circuit transistors
for different percentage of metallic tubes. Numbers in Table 6-1 are calculated by
assuming that the SCE technique is applied to remove metallic tubes and the cutoff
diameters for metallic and semiconducting tubes are D =1.4nm and D_.,=2nm. The same

methodology can also be applied to VMR technique.

Table 6-1: Minimum number of CNTSs required in a CNFET to produce 0.001% probability of
open circuit transistors.

P, |0%]5%]10%)|15%]20%)]25%] 30%
Neminl 21 8] 9 | 20] 12| 12| 13

Figure 6-8 shows the impact of addition of redundant tubes on the functional yield of 2-
input NAND gates. From the figure it can be observed that the functional yield of a
NAND gate is 60%, when P,=5% and P=31%. Now by increasing the number of the
tubes in the gate the functional yield of the gate increases. However to obtain the
acceptable yield almost 6X increase in the number of tubes are required. Figure 6-8(b) and
Figure 6-8(c) show the impact of the addition of redundant tubes on the area as well as
average energy consumption of the gates. From the figure it can be observed that

acceptable level of yields are obtained at the expense of almost 4.4X increase in the area
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and almost 4.7X increase in the energy of the gates. This redundancy will be very expensive
in terms of the area and energy requirements and diminishes the advantages of CNFET

over silicon CMOS technology.
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Figure 6-8: (a) Impact of redundancy on the functional yield of NAND gates, (b) Increase in mean
energy of gates by increasing the functional yield due to tube level redundancy, (c) increase in area
of gates by increasing the functional yield due to tube level redundancy on Area. Results are
obtained from Monte Carlo simulation when P,=5% and P/=31% and N.,=24. Sample size of
10,000 gates is used for Monte Carlo simulations.

An efficient TLR technique is proposed in this work which allows us to obtain acceptable
levels of yield without sacrificing too much area and power. Here we add the redundant tubes
with the objective to obtain the same mean number of tubes in the CNFET after tube removal as required
by the design prior to tube removal process. Table 6-2 shows the efficient redundancy estimation
technique to increase the functional yield of gates (when a finite number of tubes are removed)
with minimal impact on the area and energy. Here we add the redundant tubes with the
objective to obtain the same mean number of tubes in the CNFET after tube removal as
required by the design prior to the tube removal process. For example, in Table 6-2 if the
number of tubes required in a CNFET prior to tube removal are 8 and P,=10%. Then after
the tube removal process the mean tubes remaining are 5. However if put 13 tubes in the

CNFET prior to tube removal process in the CNFET, then mean number of tubes

remained after the tube removal process will be 8.
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Table 6-2: Original CNTs in a CNFET before tube removal (BTR), and after tube removal
(ATR), for different percentage of metallic tubes. The number of CNT's required in a CNFET
BTR that will produce the same mean CNTs in a CNFET after tube removal as are initially
required by design BTR.

Original Redundancy
Pn(%) CNTs BTR |u CNTs ATR| CNTs BTR | i CNTs ATR
5 5 12
10 8 5 13 8
15 5 13
5 11 24
10 16 10 25 16
15 9 26
5 22 47
10 32 20 49 32
15 19 52

Figure 6-9 shows the Monte Carlo simulation results for NAND gates for N, =48. Figure
6-9(b) shows the functional yield when P,=10% and P=35% of the tubes are removed by
the tube removal process. Here only 58% of the gates are functional. Now by adding the
redundancy based on the methodology developed in the previous paragraph, N, =72 are
required in the gate that will yield mean tubes of 48 after the tube removal process. This
added redundancy of 50% increased the functional yield from 58%to 66%. By using this
redundancy technique the increase in area is 50% as compared to 6X required in the
previous case. Similarly, as shown in Table 6-3 the mean energy of the gate increases by
17% compared to 4.7X in the previous technique. Here the yield is much less than 100%
but it is anticipated that in large circuits, multiple gates are cascaded to form multi-stage
logic network. Depending on the logic depth of logic network, certain amount of statistical

averaging in delay variation is observed. Thus less than 100% vyield at the gate Jevel is

sufficient to obtain acceptable yield at the systen level, as explained in the next section.
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Normalized Delay

Figure 6-9: Monte Carlo simulation for NAND gates showing normalized delay vs. static power for
(a) Nwu~48, 0% metallic tubes and no tube removal, (b) Nu,=48, 10% metallic tubes and 35%
tubes are removed, (¢) Nz ~72, 10% metallic tubes and 35% tubes are removed. The yield is 100%,
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redundancy (Nu;=48) and when redundancy is applied (Vg ~72).

6.6

In a complex digital system like CPU the speed of the system is determined by the delay of

the critical path. In this work we represent a typical CPU pipeline stage with the critical path

10 20

()

After TR &

Energy ideal After TR Redunancy
mean 1.00 0.78 1.17
sigma/mean| 0.00 0.08 0.05

Critical Path Analysis

composed of 9 levels of NAND gates [118].
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Figure 6-10 shows the impact of the path depth (d,,,) on the Functional yield of NAND
gates for different drive strengths as measured by the number of tubes in the gate. From
the figure it can be observed that when N, =12, the functional yield of NAND gates
decreases by increasing the depth of logic path. The reason is that by increasing the path
depth there will be higher probability of paths consisting of open circuit gates. However,

when the number of tubes in the NAND gate is 24 or higher, the probability of open
circuit gates is negligible and there we can see that the functional yield of the path increases
by increasing the logic depth of the path. Figure 6-11 shows the 6/ variation in the delay
as a function of the path depth. Again it can be observed that by increasing the number of
tubes in the gate the variation in delay decreases due to statistical averaging among the

gates.

From Figure 6-11 it can be observed that for a typical path depth of 9 NAND gates the
functional yield is still less than 100%. This deficiency in yield can be compensated by either
adding the efficient redundancy technique at the gate level as described previously, or by

further increasing the path depth.
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Figure 6-10: Impact of path depth(dpa) on the functional yield of NAND gate for different drive
strengths of NAND gates, as measured by the number of tubes in the gate(Ng;) when P,=10%
and P~=35%.
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Figure 6-11: Impact of path depth(dpssz) on (6 Delay/p Delay) of NAND gate for different drive
strengths of NAND gates as measured by the number of tubes in the gate(/Nu,) when P,=10% and

P=35%.
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Figure 6-12 shows the functional yield of a critical path consisting of 9 NAND gates
obtained from Monte Carlo simulation when the number of tubes required in the design
prior to tube removal process is 48. However, by adding the tube level redundancy as
described previously for a typical path depth of 9 gates, almost 100% functional yield is
obtained as shown in Figure 6-12(c). Table 6-4 shows the impact of tube removal on the
mean and 6/ energy for path depth of 9 NAND gates when no redundancy is applied
(N, ~48) and when redundancy is applied (IN,,,=72). From the table it can be observed that
addition of 50% more tubes results in 12% increase in the average energy, and 5% increase

in the variation in the energy as given in Table 6-4. The addition of redundant tubes results

in 50% increase in the overall area of the circuit.
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Figure 6-12: Monte Carlo simulation for NAND gates showing normalized delay vs. static power
for (a) Na,~48, 0% metallic tubes, dp.=9 and no tube removal (b) Nx,=48, 10% metallic tubes,
dpaex=9, 35% tubes are removed (c) Nag~72, 10% metallic, dp.x=9 and 35% tubes are removed.
The yield is 100%, 88% and 99% respectively.

Table 6-4: Impact of tube removal on the mean (u) and (6/ p) energy without applying the
redundancy (Nx,~48) and when redundancy is applied (Vug~72). For dpam =9 gates.

After TR &

Energy ideal After TR | Redunancy
mean 1.00 0.75 1.12
sigma/mean 0.00 0.06 0.05

We can also increase the functional yield of the gates in a path by increasing the depth of
the path instead of using the tube level redundancy. The trade-off in this case will be
reduction in performance. Figure 6-13 shows the impact of path depth on the functional
yield of NAND gates when (IN,,=48) obtained from Monte Carlo simulation. It can be
observed that almost 100% yield can be obtained when the path depth is increased to 17
gates which is almost twice the typical path depth of 9 NAND gates in digital systems. The

trade-off of increasing the path depth is almost 2X reduction in performance. However,
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same throughput can be achieved as that of the original design by using parallelism as in the
case of datapaths. In this situation, the trade-off will be ~2X increase in area, 7.5% increase

in average energy, and 1% increase in the variation in energy.
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20.0
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0 3 6 9 12 15 18

Path Depth

Figure 6-13: Impact of path depth (dp.) on the functional yield when (Nue=48) Pn,=10% and
P,=35%. Almost 100% functional yield is obtained when increasing the path depth to 17.

6.7 Conclusion

The removal of metallic tubes results in large performance variations and reduces the
functional yield of CNFET based circuits. The analysis presented in this paper considers
the impact of stochastic removal of tubes removed from the driving gates as well as from
the fanout gates. We present analytical models for the yield estimation of gates which is
extremely useful in predicting the impact of yield loss due to removal of tubes for various
percentages of metallic tubes, percentage of tubes removed, drive strengths of the gates,

and fanout of gates. An efficient tube level redundancy technique is proposed which helps
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to increase the functional yield of CNFET based circuits with minimum impact in terms of
area and energy. Analysis shows that the yield loss of CNFET based circuits due to tube
removal can also be compensated by increasing the logic path depth. The performance loss

due to increase in path depth can be compensated by architecture level parallelism.
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7  Contributions, Conclusions and Future Work

Silicon based Integrated Circuit technology has witnessed aggressive scaling over the last
four decades but now it is approaching its physical limits. Research has started in earnest
for new materials in sub-10nm technology node. The superior electrostatic properties of
CNFETSs make them a potential candidate for future integrated circuits. However, because
carbon nanotubes are grown by chemical synthesis, it is very difficult to obtain the precise
control on the exact positioning and chirality of CNTs during their growth. These CNT
growth imperfections lead to a misalignment of tubes, and the unwanted growth of metallic
tubes. In this work, we have analyzed the impact of the unwanted growth of metallic tubes
on the performance, power and yield of CNFET based circuits. Moreover solutions are
proposed which help to build robust CNFET based circuits with reduced variability in the

performance and power in the presence of fabrication imperfections.

7.1 Contributions and Conclusions

This thesis focused on the impact of fabrication imperfections on the performance, power,
and yield of CNFET based integrated circuits. In Chapter 4 we analyzed the impact of
variation in the diameter of CNTs, and spacing between adjacent CNTs on the drive
strength of parallel tube CNFETSs. The results showed that both the variations in the tube
diameter and inter-tube spacing can be tolerated to a certain extent, because of statistical

averaging among tubes in multi-channel CNFETSs.

In Chapter 5 we showed, with the help of Monte Carlo simulations, that the unwanted
growth of metallic tubes has a detrimental impact on the performance, power, and

functional yield of CNFET based circuits. We proposed two new CNFET transistor
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configurations: Transistor Stacking(17§) and Tube Stacking(TuS), which increased the
functional yield of CNFET based gates by reducing the statistical probability of an ohmic
short between the drain and source terminals of parallel tube CNFETs. Furthermore,
accurate analytical models are developed, estimating the functional yield of logic gates for
different percentages of metallic tubes, and different drive strengths of logic gates
implemented with different configurations of the CNFETSs. It is observed that, although
stacking configurations increased the functional yield significantly and reduced the static
power by an order of magnitude, the trade-off of the stacking configurations is in terms of

an almost 4X delay penalty.

The analysis shows that the delay penalty associated with the proposed stacking
configurations can be compensated by using parallelism in the critical path of circuits. The
implementation of circuits with the proposed stacking configurations, and parallelism in the
critical path results in the same performance as obtained from parallel tube configurations
of the transistors, but with 4X improvement in functional yield, and 6X reduction in the
static power. As CNTs are grown using chemical self assembly, in addition to process
variations observed in conventional CMOS fabrication, CNFET based circuits are
subjected to sources of imperfections that are unique to CNTs. To handle the process
related variations we proposed architecture based on regular logic bricks which are designed
using hybrid configurations of transistors. There are two main advantages of implementing
the designs with regular logic blocks: (1) reduction in the systematic process related
variations in nanoscale technologies, and (2) for larger percentage of metallic tubes,

acceptable levels of yield can be obtained by using redundant logic blocks. Our analysis
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showed that for up to 10% metallic tubes, logic bricks implemented with hybrid
configurations of CNFETSs can help to reduce the performance impact by 2X, as compared
to homogenous bricks implemented with only Trn§ CNFETs. In comparison to
homogenous bricks realized with PT CNFETS, the static power can be reduced by 2X and

yield can be increased by 2.5X.

The proposed circuit level techniques can handle the metallic tubes if we can reliably and
grow CNTs with less than 5% metallic tubes. For a large percentage of metallic tubes, extra
processing techniques are required to remove the unwanted metallic tubes. Significant
progress has been made by researchers, and different techniques have been developed,
selectively removing the metallic tubes from an ensemble of metallic and semiconducting
CNTs. The trade-off with these extra processing techniques is that they also remove the
finite number of semiconducting tubes. The removed metallic and semiconducting tubes
result in density variations in the CNFETS, causing a large variability in the performance
and power of CNFET based circuits, and in the worst case open circuit gates if all the tubes

from the CNFET are removed.

To analyze the impact of a removal of tubes by these extra processing techniques, we have
developed a Monte Carlo simulation engine in Chapter 6. The Monte Carlo simulation
analyzes the impact of removing of metallic and semiconducting tubes, for different drive
strengths of logic gates and for different percentages of metallic tubes before the
application of extra processing techniques, and percentages of metallic and semiconducting
tubes removed after the application of extra processing techniques. Furthermore, analytical

models are developed to allow the designers to quickly analyze the impact of tube removal

137



from the driving and fan-out gates on the yield of CNFET based gates without going

through the computationally intensive Monte Carlo simulation.

The efficient Tube Level Redundancy (TLR) technique is proposed, allowing for an
increase in the functional yield of CNFET based circuits to acceptable levels when large
fraction of tubes are removed. The trade-off of TLR is an almost 50% increase in area and
an almost 12% increase in the average power, which is much less than that associated with
the conventional redundancy techniques. Another architecture level solution is proposed
where the functional yield is increased, and variability in the CNFET circuit parameters is
reduced due to a removal of tubes by increasing the logic depth of logic gates. The trade-off
of this approach is the reduction in the performance of CNFET based circuits. However,
for applications where throughput is more important than latency, we can increase the
performance to the same level as obtained from the ideal scenario where all the tubes are
semiconducting, and no tubes are removed by using the parallelism. The trade-off of this

approach is 2X penalty in terms of area and 8% increase in the average power.

We showed that even the unwanted growth of metallic tubes has a detrimental impact on
the performance, power and yield of CNFET based circuits. Possible solutions to build
robust CNFET based circuits with acceptable performance and reasonable functional yield

can be achieved.
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In summary below is the list of specific contributions of this work

Analysis of the impact of variation in the diameter of CNTs, and spacing between

adjacent CNTs on the drive strength of parallel tube

For small percentage of metallic tubes ie. < 5%, two new CNFET transistor
configurations: Transistor Stacking(175) and Tube Stacking(1uS) are proposed,
which increased the functional yield of CNFET based gates by reducing the
statistical probability of an ohmic short between the drain and source terminals of

parallel tube CNFETS.

Accurate analytical models are developed, estimating the functional yield of logic
gates for different percentages of metallic tubes, and different drive strengths of

logic gates implemented with different configurations of the CNFETS.

Presented a methodology for yield-aware carbon nanotube based circuit design in

the presence of metallic tubes using different CNFET transistor configurations.

Architecture level techniques such as parallelism and implementation of circuits
with regular logic blocks are proposed to obtain better trade-off between delay,

power and yield parameters.

When the percentage of metallic tubes is large i.e. > 5%, we analyzed the impact of
variability in the performance and static power due to removal of tubes with the

help of Monte Carlo simulations.
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Analytical models are developed to allow the designers to quickly analyze the
impact of tube removal from the driving and fan-out gates on the functional yield
of CNFET based gates without going through the computationally intensive Monte

Catlo simulation.

The efficient Tube Level Redundancy (TLR) technique is proposed, allowing for an
increase in the functional yield of CNFET based circuits to acceptable levels when

large fraction of tubes are removed.

Another architecture level solution is proposed where the functional yield is
increased, and variability in the CNFET circuit parameters is reduced due to a

removal of tubes by increasing the logic depth of logic gates.

Conclusions

Diameter and spacing variations are issue at the tube level but not a big challenge to
parallel tube CNFET based circuits. Both the tube diameter and inter-tube spacing
can be tolerated to a certain extent, because of statistical averaging among tubes in

parallel tube CNFETS.

Unwanted growth of metallic tubes is one of the major technological barriers faced
by the CNT technology that hinders the development of CNFET based circuits for

real applications.

We showed that even the unwanted growth of metallic tubes has a detrimental

impact on the performance, power and yield of CNFET based circuits. Possible
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7.2

solutions such as stacking configurations or tube level redundancy can be used to
build robust CNFET based circuits with acceptable performance and reasonable

functional yield.

Suggestions for Future Work

This thesis has proposed a few techniques to handle the unwanted growth of metallic tubes

in CNFET based circuits. Below is the list of proposed topics for possible future works

which can be instrumental in analyzing and overcoming the challenges faced by the

commercialization of CNT based technology.

Develop integrated CNFET based development tools to allow designers to
consider the impact of different CNT fabrication imperfections, and to apply the
solutions proposed. This will allow the designers to estimate the impact of these
different sources of fabrication imperfections on the circuit parameters like area,

performance, and power.

Similarly, circuits fabricated using CNFETs have some of the lithographic related
variations in addition to the imperfections specific to the CNT technology. The
CNFET design methodology can be enhanced to incorporate the impact of

lithographic related variations.

Development of new methodology, giving the designers a fully integrated approach
to implement complete integrated circuits with semiconducting CNTs used as
channel material, metallic CNTs used as interconnects, decoupling capacitors, and

inductors. This will allow to the semiconductor industry to estimate the full
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advantage that can be obtained by using CNT technology to implement integrated
circuits, as compared to integrated circuits implemented with current process

technology.
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Appendix B

Flowcharts of Monte Carlo Simulations

B.1 MC Flow when Metallic Tubes are Present (MTP)
B.11 Flow MTP 1

Generating delay, static power distributions and calculating functional yield of logic gates

when metallic tubes are present.
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B.12 Results obtained ftom Monte Catlo simulation using Flow MTP 1
n=10000
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Ion X 10-5

Figure B-1: Distribution of ON current for CNT diameter distribution with p=1.5nm and
36=0.5nm.

B.13 Output Distributions from Monte Catlo Flow MTP 1

Distributions of delay and static Power of parallel tube inverter with N, =16
n=10,000
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Figure B-2: Monte Carlo simulation for Parallel Tube (P7) inverters with N,,=16, showing actual
delay distribution for (a) absence of metallic tubes — P,=0%, (b) Pn=4% metallic tubes and (c)
P,=10% metallic tubes.
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Figure B-3: Monte Carlo simulation for Parallel Tube (P7) inverters with Ng,=16, showing actual
static power distribution for (a) absence of metallic tubes — P,,=0%, (b) P»=4% metallic tubes and
(c) P»=10% metallic tubes.

From Figure B-2 and Figure B-3 it can be observed that the presence of metallic tubes
results in increase in the delay and static power consumption of gates. Based on the delay
and static power constraints defined in Chapter 3 we calculate the number of gates whose
delay and static power are less than the maximum defined constraints. In the dissertation
we normalized the delay and static power because we want to see the impact of metallic
tubes on the delay and static power as compared to the case when all the tubes are
semiconducting.
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B.14 MC simulation results showing both functional and non-functional gates
Figure B-4 and Figure B-5 shows the distributions of functional as well as non-functional

gates in the presence of metallic tubes.
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Figure B-4: Monte Carlo simulation for Parallel Tube (P7) inverters with Ng,=8, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X for functional yield calculation.
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Figure B-5: Monte Carlo simulation for Parallel Tube (P7) inverters with N.,=16, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=4% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X for functional yield calculation.

B.15 MC simulation results showing cut-off values of delay slicing the density
Figure B-6 and Figure B-7 shows that the defined delay constraint of 1.3X, slicing some

distribution of gates.
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Figure B-6: Monte Carlo simulation for Parallel Tube (P7) inverters with N.,=32, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P»=5% metallic
tubes and (c) P»=10% metallic tubes with delay constraint of 1.3X and static power constraint of
200X for functional yield calculation.
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Figure B-7: Monte Carlo simulation for Parallel Tube (P7) inverters with N.,=32, showing
normalized delay vs. static power for (a) absence of metallic tubes — P,=0%, (b) P,=15% metallic
tubes and (c) Pn=20% metallic tubes with delay constraint of 1.3X and static power constraint of
200X for functional yield calculation.
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B.2 Scalability Analysis of Functional Yield when MTP
Figure B-8 and Figure B-9 shows the functional yield of inverters and NAND gates for

different percentage of metallic tubes.
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Figure B-8: Functional Yield of Inverter for different number of tubes in the gates(N.z) and
different percentage of metallic tubes(Py)

The functional yield finally approaches acceptable level for up to 10% metallic tubes if we
have sufficient number of tubes in the gate. The main problem will be large increase in the

area of the gates and dynamic power consumption.
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Figure B-9: Functional Yield of NAND gate for different number of tubes in the gates(NVg,) and

different percentage of metallic tubes(Pr,)

The functional yield finally approaches acceptable level for up to 4% metallic tubes if we
put sufficient number of tubes in the gate. The trade-off will be large increase in the area of

the gates and dynamic power consumption.
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B.3 Building CNFET -based circuit Architecture
Adders are implemented with NAND gates and inverters. Based on the delay and power of

inverters and NAND gates, we obtain the delay and power of different paths of adder and
finally obtain functional yield of adders, (1) when gates in the adder are implemented with
Parallel Tube (PT) configurations of transistors, and (2) when gates in the adder are
implemented with Transistor Stacking (175) configurations of gates and Parallelism in the

critical path.
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B.4 MC flow for CNFETs when Metallic Tubes are Removed (MTR)
B.41 FlowMTR 1
Distribution of CNFETs when MTR
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B.42 FlowMTR2

Monte Carlo Simulation for distribution of delay, static power, energy and

functional yield of gates when MTR
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B.43 Flow MTR 3

Monte Carlo Simulation for distribution of delay, static powet, enetgy and

functional yield for logic paths when MTR
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