222 research outputs found

    Symbolic semantics and bisimulation for full LOTOS

    Get PDF
    No abstract avaliabl

    An adequate logic for full LOTOS

    Get PDF
    We present a novel result for a logic for symbolic transition systems based on LOTOS processes. The logic is adequate with respect to bisimulation defined on symbolic transition systems

    Supporting ODP - Translating LOTOS to Z

    Get PDF
    This paper describes a translation of full LOTOS into Z. A common semantic model is defined and the translation is proved correct with respect to the semantics. The motivation for such a translation is the use of multiple viewpoints for specifying complex systems defined by the reference model of the Open Distributed Processing (ODP) standardization initiative. The postscript version available here is an extended version of what was published

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions

    LOTOS Symbolic Semantics in Maude

    Get PDF
    We present a formal tool where LOTOS specifications without restrictions in their data types can be executed. The reflective feature of rewriting logic and the metalanguage capabilities of Maude make it possible to implement the whole tool in the same semantic framework, and have allowed us to implement the LOTOS semantics and to build an entire environment with parsing, pretty printing, and input/output processing of LOTOS specifications

    SPDL Model Checking via Property-Driven State Space Generation

    Get PDF
    In this report we describe how both, memory and time requirements for stochastic model checking of SPDL (stochastic propositional dynamic logic) formulae can significantly be reduced. SPDL is the stochastic extension of the multi-modal program logic PDL.\ud SPDL provides means to specify path-based properties with or without timing restrictions. Paths can be characterised by so-called programs, essentially regular expressions, where the executability can be made dependent on the validity of test formulae. For model-checking SPDL path formulae it is necessary to build a product transition system (PTS)\ud between the system model and the program automaton belonging to the path formula that is to be verified.\ud In many cases, this PTS can be drastically reduced during the model checking procedure, as the program restricts the number of potentially satisfying paths. Therefore, we propose an approach that directly generates the reduced PTS from a given SPA specification and an SPDL path formula.\ud The feasibility of this approach is shown through a selection of case studies, which show enormous state space reductions, at no increase in generation time.\u
    corecore