522 research outputs found

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Doctor of Philosophy

    Get PDF
    dissertationAdvancements in process technology and circuit techniques have enabled the creation of small chemical microsystems for use in a wide variety of biomedical and sensing applications. For applications requiring a small microsystem, many components can be integrated onto a single chip. This dissertation presents many low-power circuits, digital and analog, integrated onto a single chip called the Utah Microcontroller. To guide the design decisions for each of these components, two specific microsystems have been selected as target applications: a Smart Intravaginal Ring (S-IVR) and an NO releasing catheter. Both of these applications share the challenging requirements of integrating a large variety of low-power mixed-signal circuitry onto a single chip. These applications represent the requirements of a broad variety of small low-power sensing systems. In the course of the development of the Utah Microcontroller, several unique and significant contributions were made. A central component of the Utah Microcontroller is the WIMS Microprocessor, which incorporates a low-power feature called a scratchpad memory. For the first time, an analysis of scaling trends projected that scratchpad memories will continue to save power for the foreseeable future. This conclusion was bolstered by measured data from a fabricated microcontroller. In a 32 nm version of the WIMS Microprocessor, the scratchpad memory is projected to save ~10-30% of memory access energy depending upon the characteristics of the embedded program. Close examination of application requirements informed the design of an analog-to-digital converter, and a unique single-opamp buffered charge scaling DAC was developed to minimize power consumption. The opamp was designed to simultaneously meet the varied demands of many chip components to maximize circuit reuse. Each of these components are functional, have been integrated, fabricated, and tested. This dissertation successfully demonstrates that the needs of emerging small low-power microsystems can be met in advanced process nodes with the incorporation of low-power circuit techniques and design choices driven by application requirements

    A Low-Power Sigma-Delta Modulator for Healthcare and Medical Diagnostic Applications

    Get PDF
    This paper presents a switched-capacitor Sigma-Delta modulator designed in 90-nm CMOS technology, operating at 1.2-V supply voltage. The modulator targets healthcare and medical diagnostic applications where the readout of small-bandwidth signals is required. The design of the proposed A/D converter was optimized to achieve the minimum power consumption and area. A remarkable performance improvement is obtained through the integration of a low-noise amplifier with modified Miller compensation and rail-to-rail output stage. The manuscript also presents a set of design equations, from the small-signal analysis of the amplifier, for an easy design of the modulator in different technology nodes. The Sigma-Delta converter achieves a measured 96-dB dynamic range, over a 250-Hz signal bandwidth, with an oversampling ratio of 500. The power consumption is 30 μW, with a silicon area of 0.39 mm²

    Pipelined analog-to-digital conversion using current-mode reference shifting

    Get PDF
    Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresPipeline Analog-to-digital converters (ADCs) are the most popular architecture for high-speed medium-to-high resolution applications. A fundamental, but often unreferenced building block of pipeline ADCs are the reference voltage circuits. They are required to maintain a stable reference with low output impedance to drive large internal switched capacitor loads quickly. Achieving this usually leads to a scheme that consumes a large portion of the overall power and area. A review of the literature shows that the required stable reference can be achieved with either on-chip buffering or with large off-chip decoupling capacitors. On-chip buffering is ideal for system integration but requires a high speed buffer with high power dissipation. The use of a reference with off-chip decoupling results in significant power savings but increases the pads of chip, the count of external components and the overall system cost. Moreover the amount of ringing on the internal reference voltage caused by the series inductance of the package makes this solution not viable for high speed ADCs. To address this challenge, a pipeline ADC employing a multiplying digital-to-analog converter (MDAC) with current-mode reference shifting is presented. Consequently, no reference voltages and, therefore, no voltage buffers are necessary. The bias currents are generated on-chip by a reference current generator that dissipates low power. The proposed ADC is designed in a 65 nm CMOS technology and operates at sampling rates ranging from 10 to 80 MS/s. At 40 MS/s the ADC dissipates 10.8 mW from a 1.2 V power supply and achieves an SNDR of 57.2 dB and a THD of -68 dB, corresponding to an ENOB of 9.2 bit. The corresponding figure of merit is 460 fJ/step

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    Delta-Sigma Modulator based Compact Sensor Signal Acquisition Front-end System

    Full text link
    The proposed delta-sigma modulator (ΔΣ\Delta\SigmaM) based signal acquisition architecture uses a differential difference amplifier (DDA) customized for dual purpose roles, namely as instrumentation amplifier and as integrator of ΔΣ\Delta\SigmaM. The DDA also provides balanced high input impedance for signal from sensors. Further, programmable input amplification is obtained by adjustment of ΔΣ\Delta\SigmaM feedback voltage. Implementation of other functionalities, such as filtering and digitization have also been incorporated. At circuit level, a difference of transconductance of DDA input pairs has been proposed to reduce the effect of input resistor thermal noise of front-end R-C integrator of the ΔΣ\Delta\SigmaM. Besides, chopping has been used for minimizing effect of Flicker noise. The resulting architecture is an aggregation of functions of entire signal acquisition system within the single block of ΔΣ\Delta\SigmaM, and is useful for a multitude of dc-to-medium frequency sensing and similar applications that require high precision at reduced size and power. An implementation of this in 0.18-μ\mum CMOS process has been presented, yielding a simulated peak signal-to-noise ratio of 80 dB and dynamic range of 109dBFS in an input signal band of 1 kHz while consuming 100 μ\muW of power; with the measured signal-to-noise ratio being lower by about 9 dB.Comment: 13 pages, 16 figure

    Continuous-time low-pass filters for integrated wideband radio receivers

    Get PDF
    This thesis concentrates on the design and implementation of analog baseband continuous-time low-pass filters for integrated wideband radio receivers. A total of five experimental analog baseband low-pass filter circuits were designed and implemented as a part of five single-chip radio receivers in this work. After the motivation for the research work presented in this thesis has been introduced, an overview of analog baseband filters in radio receivers is given first. In addition, a review of the three receiver architectures and the three wireless applications that are adopted in the experimental work of this thesis is presented. The relationship between the integrator non-idealities and integrator Q-factor, as well as the effect of the integrator Q-factor on the filter frequency response, are thoroughly studied on the basis of a literature review. The theoretical study that is provided is essential for the gm-C filter synthesis with non-ideal lossy integrators that is presented after the introduction of different techniques to realize integrator-based continuous-time low-pass filters. The filter design approach proposed for gm-C filters is original work and one of the main points in this thesis, in addition to the experimental IC implementations. Two evolution versions of fourth-order 10-MHz opamp-RC low-pass filters designed and implemented for two multicarrier WCDMA base-station receivers in a 0.25-µm SiGe BiCMOS technology are presented, along with the experimental results of both the low-pass filters and the corresponding radio receivers. The circuit techniques that were used in the three gm-C filter implementations of this work are described and a common-mode induced even-order distortion in a pseudo-differential filter is analyzed. Two evolution versions of fifth-order 240-MHz gm-C low-pass filters that were designed and implemented for two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13-µm and 65-nm CMOS technology, respectively, are presented, along with the experimental results of both the low-pass filters and the second receiver version. The second UWB filter design was also embedded with an ADC into the baseband of a 60-GHz 65-nm CMOS radio receiver. In addition, a third-order 1-GHz gm-C low-pass filter was designed, rather as a test structure, for the same receiver. The experimental results of the receiver and the third gm-C filter implementation are presented
    corecore