71 research outputs found

    SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    Get PDF
    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.Eurpean Commission, H2020, 66210

    An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles

    Get PDF
    Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performanceEuropean Commission H2020. SWARMs European project (Smart and Networking Underwater Robots in Cooperation Meshes), under Grant Agreement No. 662107-SWARMs-ECSEL-2014-1, partially supported by the ECSEL JU, the Spanish Ministry of Economy and Competitiveness (Ref: PCIN-2014-022-C02-02)

    A new fuzzy ontology development methodology (FODM) proposal

    Full text link
    There is an upsurge in applying fuzzy ontologies to represent vague information in the knowledge representation field. Current research in the fuzzy ontologies paradigm mainly focuses on developing formalism languages to represent fuzzy ontologies, designing fuzzy ontology editors, and building fuzzy ontology applications in different domains. Less focus falls on establishing a formal methodological approach for building fuzzy ontologies. Existing fuzzy ontology development methodologies, such as the IKARUS-Onto methodology and Fuzzy Ontomethodology, provide formalized schedules for the conversion from crisp ontologies into fuzzy ones. However, a formal guidance on how to build fuzzy ontologies from scratch still lacks in current research. Therefore, this paper presents the first methodology, named FODM, for developing fuzzy ontologies from scratch. The proposed FODM can provide a very good guideline for formally constructing fuzzy ontologies in terms of completeness, comprehensiveness, generality, efficiency, and accuracy. To explain how the FODM works and demonstrate its usefulness, a fuzzy seabed characterization ontology is built based on the FODM and described step-by-step

    Robotics, AI, and Humanity

    Get PDF
    This open access book examines recent advances in how artificial intelligence (AI) and robotics have elicited widespread debate over their benefits and drawbacks for humanity. The emergent technologies have for instance implications within medicine and health care, employment, transport, manufacturing, agriculture, and armed conflict. While there has been considerable attention devoted to robotics/AI applications in each of these domains, a fuller picture of their connections and the possible consequences for our shared humanity seems needed. This volume covers multidisciplinary research, examines current research frontiers in AI/robotics and likely impacts on societal well-being, human – robot relationships, as well as the opportunities and risks for sustainable development and peace. The attendant ethical and religious dimensions of these technologies are addressed and implications for regulatory policies on the use and future development of AI/robotics technologies are elaborated

    Control of Real Mobile Robot Using Artificial Intelligence Technique

    Get PDF
    An eventual objective of mobile robotics research is to bestow the robot with high cerebral skill, of which navigation in an unfamiliar environment can be succeeded by using on‐line sensory information, which is essentially starved of humanoid intermediation. This research emphases on mechanical design of real mobile robot, its kinematic & dynamic model analysis and selection of AI technique based on perception, cognition, sensor fusion, path scheduling and analysis, which has to be implemented in robot for achieving integration of different preliminary robotic behaviors (e.g. obstacle avoidance, wall and edge following, escaping dead end and target seeking). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimization problem and thus can be analyzed and solved using AI techniques. The optimization of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A set of linguistic fuzzy rules are developed to implement expert knowledge under various situations. Both of Mamdani and Takagi-Sugeno fuzzy model are employed in control algorithm for experimental purpose. Neural network has also been used to enhance and optimize the outcome of controller, e.g. by introducing a learning ability. The cohesive framework combining both fuzzy inference system and neural network enabled mobile robot to generate reasonable trajectories towards the target. An authenticity checking has been done by performing simulation as well as experimental results which showed that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and reaching the goal efficiently

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable “engine” for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book
    corecore