23 research outputs found

    Wireless Network-Level Partial Relay Cooperation: A Stable Throughput Analysis

    Full text link
    In this work, we study the benefit of partial relay cooperation. We consider a two-node system consisting of one source and one relay node transmitting information to a common destination. The source and the relay have external traffic and in addition, the relay is equipped with a flow controller to regulate the incoming traffic from the source node. The cooperation is performed at the network level. A collision channel with erasures is considered. We provide an exact characterization of the stability region of the system and we also prove that the system with partial cooperation is always better or at least equal to the system without the flow controller.Comment: Submitted for journal publication. arXiv admin note: text overlap with arXiv:1502.0113

    Learning to be energy-efficient in cooperative networks

    Get PDF
    Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes’ selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy-efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances

    Buffer-aided 5G cooperative networks: Considering the source delay

    Get PDF
    © 2019 Association for Computing Machinery. Applying relays employed with data buffers drastically enhance the performance of cooperative networks. However, lengthening the packet delay is still a serious challenge for cooperative networks. This paper thoroughly studies a new factor affecting the packet delay which is the source delay. This factor plays a key role in calculating the total delay that messages encounter before reaching their destination. This delay is crucial especially in applications that require their messages to get transmitted as fast as possible. Markov chain is employed to model the system and analyze the source delay. Numerical simulations verify the analytical model, the results show that buffer-aided relays can beat non-buffer relays in terms of average packet delay, especially at low signal to noise ratio (SNR) range. This makes adding buffers to relays an attractive solution for the packet delay in 5G applications

    Analysis of Half-Duplex Two-Node Slotted ALOHA Network With Asynchronous Traffic

    Full text link
    Despite the long history of research on slotted ALOHA, the exact analysis of the average delay is still in question as the performance of each node is coupled with the activity of other nodes. In this paper, we consider a network comprised of two half-duplex transmitter nodes with asynchronous arrival traffic that follow the slotted ALOHA protocol. We propose a new queueing theoretic model based on the state-dependent queues to analyze the network. In addition, we derive the exact values of delay and stability region for each node. The numerical results demonstrate the accuracy of our proposed model.Comment: 5 pages, 5 figure

    On the Benefits of Network-Level Cooperation in Millimeter-Wave Communications

    Full text link
    Relaying techniques for millimeter-wave wireless networks represent a powerful solution for improving the transmission performance. In this work, we quantify the benefits in terms of delay and throughput for a random-access multi-user millimeter-wave wireless network, assisted by a full-duplex network cooperative relay. The relay is equipped with a queue for which we analyze the performance characteristics (e.g., arrival rate, service rate, average size, and stability condition). Moreover, we study two possible transmission schemes: fully directional and broadcast. In the former, the source nodes transmit a packet either to the relay or to the destination by using narrow beams, whereas, in the latter, the nodes transmit to both the destination and the relay in the same timeslot by using a wider beam, but with lower beamforming gain. In our analysis, we also take into account the beam alignment phase that occurs every time a transmitter node changes the destination node. We show how the beam alignment duration, as well as position and number of transmitting nodes, significantly affect the network performance. Moreover, we illustrate the optimal transmission scheme (i.e., broadcast or fully directional) for several system parameters and show that a fully directional transmission is not always beneficial, but, in some scenarios, broadcasting and relaying can improve the performance in terms of throughput and delay.Comment: arXiv admin note: text overlap with arXiv:1804.0945
    corecore