71 research outputs found

    Paperless Transfer of Medical Images: Storing Patient Data in Medical Images

    Get PDF
    Medical images have become an integral part ofpatient diagnosis in recent years. With the introduction of HealthInformation Management Systems (HIMS) used for the storageand sharing of patient data, as well as the use of the PictureArchiving and Communication Systems (PACS) formanipulating and storage of CT Scans, X-rays, MRIs and othermedical images, the security of patient data has become a seriousconcern for medical professionals. The secure transfer of theseimages along with patient data is necessary for maintainingconfidentiality as required by the Data Protection Act, 2011 inTrinidad and Tobago and similar legislation worldwide. Tofacilitate this secure transfer, different digital watermarking andsteganography techniques have been proposed to safely hideinformation in these digital images. This paper focuses on theamount of data that can be embedded into typical medical imageswithout compromising visual quality. In addition, ExploitingModification Direction (EMD) is selected as the method of choicefor hiding information in medical images and it is compared tothe commonly used Least Significant Bit (LSB) method.Preliminary results show that by using EMD there little to nodistortion even at the highest embedding capacity

    Survey on Reversible Data Hiding in Encrypted Images Using POB Histogram Method

    Get PDF
    This paper describes a survey on reversible data hiding in encrypted images. Data hiding is a process to embed useful data into cover media. Data invisibility is its major requirement. Data hiding can be done in audio, video, image, text, and picture. Here use an image for data hiding especially digital images and existing method (Histogram Block Shift Base Method) HBSBM or POB. Now a day's reversible data hiding in encrypted images is in use due to its excellent property which is original cover image can be recovered with no loss after extraction of the embedded data. Also, it protects the original data. According to the level and kind of application one or more data hiding methods is used. Data hiding can be done in audio, video, text, and image and other forms of information. Some data hiding techniques emphasize on digital image security, some on the robustness of digital image hiding process while other's main focus is on imperceptibility of a digital image. The capacity of digital information which has to hide is also the main concern in some of the applications. The objective of some of the papers mentioned below is to achieve two or more than two parameters i.e. Security, robustness, imperceptibility and capacity but some of the parameters are trade-off which means only one can be achieved on the cost of other. So the data hiding techniques aiming to achieve maximum requirements i.e. security, robustness, capacity, imperceptibility etc. and which can be utilized in the larger domain of applications is desired. Related work for techniques used for data hiding in a digital image is described in this paper

    A Survey on Data Hiding and Compression Schemes

    Get PDF
    ABSTRACT: Data hiding has a vital role to play in information security. Using a data hiding technique, secret information is hidden into cover digital content. Compression techniques and data hiding techniques received much less attention from the research community and from industry than cryptography. In past research many data hiding and image compression techniques has been developed, it works independent module in both sender and server side. These method cause low efficiency, less security and also the low bit rate scheme requires more time to encode. Both image compression and data hiding (EJDHC) using residual codebooks with side match vector quantization (SMVQ). In this survey is to discuss on data hiding schemas and compression techniques such as JPEG, JPEG 2000, vector quantization, VQ compression and SMVQ. KEYWORDS: Data hiding, image compression, side match vector quantization I.INTRODUCTION Data hiding is a process to hide data into cover media. The data hiding process links two sets of data and a set of the embedded data and another set of the cover media data. The relationship between these two sets of data characterizes different applications. In authentication phase embedded data are closely related to the cover media. High Data hiding in images [1] 8-bit grayscale images are selected as the cover media called as cover images. Cover images with the secret messages embedded in the images. For data hiding methods, the image quality refers to the quality of the images. Most of the hiding techniques is based on manipulating the least-signi7cant-bit (LSB) planes by directly replacing the LSBs of the cover image with the message bits. LSB methods typically achieve high capacity. Another technique introduced in Data hiding [6] also can be classified into three domains, namely, spatial, transformative, and compression. In the spatial domain each pixel in the cover image is modified to hide the secret information. In the transformative domain the cover image is transformed into coefficients using well-known transform techniques the integer wavelet transform and the integer discrete cosine transform. Then to embed the secret information, these coefficients are altered. In the compression domain, the cover image is compressed to save the storage and the bandwidth space of the embedded image. Then, the image-compressed codes are processed to hide the secret information. Many image-compressed data hiding schemes have been noted in the literature because the sizes of the compressed images will be much smaller than those of the original images before and after data hiding. Various compression techniques JPEG block truncatio

    Hiding data in images using steganography techniques with compression algorithms

    Get PDF
    Steganography is the science and art of secret communication between two sides that attempt to hide the content of the message. It is the science of embedding information into the cover image without causing a loss in the cover image after embedding.Steganography is the art and technology of writing hidden messages in such a manner that no person, apart from the sender and supposed recipient, suspects the lifestyles of the message. It is gaining huge attention these days as it does now not attract attention to its information's existence. In this paper, a comparison of two different techniques is given. The first technique used Least Significant Bit (LSB) with no encryption and no compression. In the second technique, the secret message is encrypted first then LSB technique is applied. Moreover, Discrete Cosine Transform (DCT) is used to transform the image into the frequency domain. The LSB algorithm is implemented in spatial domain in which the payload bits are inserted into the least significant bits of cover image to develop the stego-image while DCT algorithm is implemented in frequency domain in which the stego-image is transformed from spatial domain to the frequency domain and the payload bits are inserted into the frequency components of the cover image.The performance of these two techniques is evaluated on the basis of the parameters MSE and PSNR

    Digital rights management techniques for H.264 video

    Get PDF
    This work aims to present a number of low-complexity digital rights management (DRM) methodologies for the H.264 standard. Initially, requirements to enforce DRM are analyzed and understood. Based on these requirements, a framework is constructed which puts forth different possibilities that can be explored to satisfy the objective. To implement computationally efficient DRM methods, watermarking and content based copy detection are then chosen as the preferred methodologies. The first approach is based on robust watermarking which modifies the DC residuals of 4×4 macroblocks within I-frames. Robust watermarks are appropriate for content protection and proving ownership. Experimental results show that the technique exhibits encouraging rate-distortion (R-D) characteristics while at the same time being computationally efficient. The problem of content authentication is addressed with the help of two methodologies: irreversible and reversible watermarks. The first approach utilizes the highest frequency coefficient within 4×4 blocks of the I-frames after CAVLC en- tropy encoding to embed a watermark. The technique was found to be very effect- ive in detecting tampering. The second approach applies the difference expansion (DE) method on IPCM macroblocks within P-frames to embed a high-capacity reversible watermark. Experiments prove the technique to be not only fragile and reversible but also exhibiting minimal variation in its R-D characteristics. The final methodology adopted to enforce DRM for H.264 video is based on the concept of signature generation and matching. Specific types of macroblocks within each predefined region of an I-, B- and P-frame are counted at regular intervals in a video clip and an ordinal matrix is constructed based on their count. The matrix is considered to be the signature of that video clip and is matched with longer video sequences to detect copies within them. Simulation results show that the matching methodology is capable of not only detecting copies but also its location within a longer video sequence. Performance analysis depict acceptable false positive and false negative rates and encouraging receiver operating charac- teristics. Finally, the time taken to match and locate copies is significantly low which makes it ideal for use in broadcast and streaming applications
    • …
    corecore