150,934 research outputs found

    Deep learning in medical image registration: introduction and survey

    Full text link
    Image registration (IR) is a process that deforms images to align them with respect to a reference space, making it easier for medical practitioners to examine various medical images in a standardized reference frame, such as having the same rotation and scale. This document introduces image registration using a simple numeric example. It provides a definition of image registration along with a space-oriented symbolic representation. This review covers various aspects of image transformations, including affine, deformable, invertible, and bidirectional transformations, as well as medical image registration algorithms such as Voxelmorph, Demons, SyN, Iterative Closest Point, and SynthMorph. It also explores atlas-based registration and multistage image registration techniques, including coarse-fine and pyramid approaches. Furthermore, this survey paper discusses medical image registration taxonomies, datasets, evaluation measures, such as correlation-based metrics, segmentation-based metrics, processing time, and model size. It also explores applications in image-guided surgery, motion tracking, and tumor diagnosis. Finally, the document addresses future research directions, including the further development of transformers

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Nonparametric image registration of airborne LiDAR, hyperspectral and photographic imagery of wooded landscapes

    Get PDF
    There is much current interest in using multisensor airborne remote sensing to monitor the structure and biodiversity of woodlands. This paper addresses the application of nonparametric (NP) image-registration techniques to precisely align images obtained from multisensor imaging, which is critical for the successful identification of individual trees using object recognition approaches. NP image registration, in particular, the technique of optimizing an objective function, containing similarity and regularization terms, provides a flexible approach for image registration. Here, we develop a NP registration approach, in which a normalized gradient field is used to quantify similarity, and curvature is used for regularization (NGF-Curv method). Using a survey of woodlands in southern Spain as an example, we show that NGF-Curv can be successful at fusing data sets when there is little prior knowledge about how the data sets are interrelated (i.e., in the absence of ground control points). The validity of NGF-Curv in airborne remote sensing is demonstrated by a series of experiments. We show that NGF-Curv is capable of aligning images precisely, making it a valuable component of algorithms designed to identify objects, such as trees, within multisensor data sets.This work was supported by the Airborne Research and Survey Facility of the U.K.’s Natural Environment Research Council (NERC) for collecting and preprocessing the data used in this research project [EU11/03/100], and by the grants supported from King Abdullah University of Science Technology and Wellcome Trust (BBSRC). D. Coomes was supported by a grant from NERC (NE/K016377/1) and funding from DEFRA and the BBSRC to develop methods for monitoring ash dieback from aircraft.This is the final version. It was first published by IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7116541&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A36%29%26pageNumber%3D5

    Retrospective registration of tomographic brain images

    Get PDF
    In modern clinical practice, the clinician can make use of a vast array of specialized imaging techniques supporting diagnosis and treatment. For various reasons, the same anatomy of one patient is sometimes imaged more than once, either using the same imaging apparatus (monomodal acquisition ), or different ones (multimodal acquisition). To make simultaneous use of the acquired images, it is often necessary to bring these images in registration, i.e., to align their anatomical coordinate systems. The problem of medical image registration as concerns human brain images is addressed in this thesis. The specific chapters include a survey of recent literature, CT/MR registration using mathematical image features (edges and ridges), monomodal SPECT registration, and CT/MR/SPECT/PET registration using image features extracted by the use of mathematical morphology

    Medical image registration by neural networks: a regression-based registration approach

    Get PDF
    This thesis focuses on the development and evaluation of a registration-by-regression approach for the 3D/2D registration of coronary Computed Tomography Angiography (CTA) and X-ray angiography. This regression-based method relates image features of 2D projection images to the transformation parameters of the 3D image by a nonlinear regression. It treats registration as a regression problem, as an alternative for the traditional iterative approach that often comes with high computational costs and limited capture range. First we presented a survey of the methods with a regression-based registration approach for medical applications, as well as a summary of their main characteristics (Chapter 2). Second, we studied the registration methodology, addressing the input features and the choice of regression model (Chapter 3 and Chapter 4). For that purpose, we evaluated different options using simulated X-ray images generated from coronary artery tree models derived from 3D CTA scans. We also compared the registration-by-regression results with a method based on iterative optimization. Different image features of 2D projections and seven regression techniques were considered. The regression approach for simulated X-rays was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach. Neural Networks obtained accurate results and showed to be robust to large initial misalignment. Third, we evaluated the registration-by-regression method using clinical data, integrating the 3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images (Chapter 5). For the evaluation of the image registration, a gold standard registration was established using an exhaustive search followed by a multi-observer visual scoring procedure. The influence of preprocessing options for the simulated images and the real X-rays was studied. Several image features were also compared. The coronary registration–by-regression results were not satisfactory, resembling manual initialization accuracy. Therefore, the proposed method for this concrete problem and in its current configuration is not sufficiently accurate to be used in the clinical practice. The framework developed enables us to better understand the dependency of the proposed method on the differences between simulated and real images. The main difficulty lies in the substantial differences in appearance between the images used for training (simulated X-rays from 3D coronary models) and the actual images obtained during the intervention (real X-ray angiography). We suggest alternative solutions and recommend to evaluate the registration-by-regression approach in other applications where training data is available that has similar appearance to the eventual test data
    • …
    corecore