18 research outputs found

    Automated Sensing System for Monitoring Road Surface Condition Using Fog Computing

    Full text link
    The principle point of this task is to build up an Intelligent Monitoring System used to screen the Road Surface Condition using Fog Computing that increases the road safety. Multiple solutions have been proposed which make use of mobile sensing, more specifically contemporary applications and architectures that are used in both crowd sensing and vehicle based sensing. Nonetheless, these initiatives have not been without challenges that range from mobility support, location awareness, low latency as well as geo-distribution. As a result, a new term has been coined for this novel paradigm, called, fog computing

    Toward an RSU-unavailable lightweight certificateless key agreement scheme for VANETs

    Get PDF
    Vehicle ad-hoc networks have developed rapidly these years, whose security and privacy issues are always concerned widely. In spite of a remarkable research on their security solutions, but in which there still lacks considerations on how to secure vehicle-to-vehicle communications, particularly when infrastructure is unavailable. In this paper, we propose a lightweight certificateless and one-round key agreement scheme without pairing, and further prove the security of the proposed scheme in the random oracle model. The proposed scheme is expected to not only resist known attacks with less computation cost, but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication, especially in no available infrastructure circumstance. A comprehensive evaluation, including security analysis, efficiency analysis and simulation evaluation, is presented to confirm the security and feasibility of the proposed scheme

    Toward an RSU-unavailable lightweight certificateless key agreement scheme for VANETs

    Full text link

    Cryptanalysis of Certificateless Signcryption Schemes and an Efficient Construction Without Pairing

    Get PDF
    Certificateless cryptography introduced by Al-Riyami and Paterson eliminates the key escrow problem inherent in identity based cryptosystems. Even though building practical identity based signcryption schemes without bilinear pairing are considered to be almost impossible, it will be interesting to explore possibilities of constructing such systems in other settings like certificateless cryptography. Often for practical systems, bilinear pairings are considered to induce computational overhead. Signcryption is a powerful primitive that offers both confidentiality and authenticity to noteworthy messages. Though some prior attempts were made for designing certificateless signcryption schemes, almost all the known ones have security weaknesses. Specifically, in this paper we demonstrate the security weakness of the schemes in \cite{BF08}, \cite{DRJR08} and \cite{CZ08}. We also present the first provably secure certificateless signcryption scheme without bilinear pairing and prove it in the random oracle model

    Generic Construction of Certificateless Signcryption Scheme

    Get PDF
    Confidentiality and message authentication are the most important security goals that can be achieved simultaneously by Signcryption scheme. It is a cryptographic technique that performs both the functions of digital signature and public key encryption in a single logical step significantly at a lower cost than that of conventional method of signature-then-encryption. The paper proposes an efficient Certificateless Signcryption Scheme(CLSC) in random oracle model on bilinear mapping. It is provably secure under the assumptions of intractability of k-CAA, Inv-CDH, q-BDHI and CDH problems

    Further Observations on Certificate-Base Encryption and its Generic Construction from Certificateless Public Key Encryption

    Get PDF
    Certificate-based encryption (CBE) is a new asymmetric encryption paradigm which was introduced to solve the certificate management problem in traditional public key encryption (PKI). It combines PKE and identity-based encryption (IBE) while preserving some of their most attractive features. CBE provides an efficient implicit certificate mechanism which eliminates the third-party queries and simplifies the certificate revocation problem in the traditional PKI. It also solves the key escrow problem and key distribution problem inherent in IBE. In this paper, we introduce the key replacement attack and the malicious-but-passive certifier attack into CBE, and define a class of new security models for CBE under different security levels according to the power of the adversaries against CBE. Our new security models are more elaborated and stronger compared with other existing ones. Then, we propose a generic construction of CBE from certificateless public key encryption and prove its security under the proposed security models in the standard model. We also show a concrete conversion using the proposed generic construction

    CCA2 Secure Certificateless Encryption Schemes Based on RSA

    Get PDF
    Certificateless cryptography, introduced by Al-Riyami and Paterson eliminates the key escrow problem inherent in identity based cryptosystem. In this paper, we present two novel and completely different RSA based adaptive chosen ciphertext secure (CCA2) certificateless encryption schemes. The new schemes are efficient when compared to other existing certificatless encryption schemes that are based on the costly bilinear pairing operation and are quite comparable with the certificateless encryption scheme based on multiplicative groups (without bilinear pairing) by Sun et al. \cite{SZB07} and the RSA based CPA secure certificateless encryption scheme by Lai et al. \cite{LDLK09}. We consider a slightly stronger security model than the ones considered in \cite{LDLK09} and \cite{SZB07} to prove the security of our schemes

    Certificateless Proxy Re-Encryption Without Pairing: Revisited

    Get PDF
    Proxy Re-Encryption was introduced by Blaze, Bleumer and Strauss to efficiently solve the problem of delegation of decryption rights. In proxy re-encryption, a semi-honest proxy transforms a ciphertext intended for Alice to a ciphertext of the same message for Bob without learning anything about the underlying message. From its introduction, several proxy re-encryption schemes in the Public Key Infrastructure (PKI) and Identity (ID) based setting have been proposed. In practice, systems in the public key infrastructure suffer from the \textit{certificate management problem} and those in identity based setting suffer from the \textit{key escrow problem}. Certificateless Proxy Re-encryption schemes enjoy the advantages provided by ID-based constructions without suffering from the key escrow problem. In this work, we construct the \textit{first} unidirectional, single-hop CCA-secure certificateless proxy re-encryption scheme \textit{without} \textit{pairing} by extending the PKI based construction of Chow et al. proposed in 2010. We prove its security in the random oracle model under the Computational Diffie-Hellman (CDH) assumption. Prior to this work, the only secure certificateless proxy re-encryption scheme is due to Guo et al. proposed in 2013 using bilinear pairing. They proved their construction is RCCA-secure under qq-weak Decisional Bilinear Diffie-Hellman assumption. The construction proposed in this work is more efficient than that system and its security relies on more standard assumptions. We also show that the recently proposed construction of Yang et al. is insecure with respect to the security model considered in this work

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities
    corecore