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Abstract. Certificateless cryptography, introduced by Al-Riyami and Paterson eliminates the key
escrow problem inherent in identity based cryptosystem. In this paper, we present two novel and
completely different RSA based adaptive chosen ciphertext secure (CCA2) certificateless encryption
schemes. The new schemes are efficient when compared to other existing certificatless encryption
schemes that are based on the costly bilinear pairing operation and are quite comparable with the
certificateless encryption scheme based on multiplicative groups (without bilinear pairing) by Sun et
al. [18] and the RSA based CPA secure certificateless encryption scheme by Lai et al. [11]. We consider
a slightly stronger security model than the ones considered in [11] and [18] to prove the security of our
schemes.

Keywords. Certificateless encryption, Adaptive Chosen Ciphertext Secure (CCA2), RSA Assumption, Ran-
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1 Introduction

Cryptosystem based on Public Key Infrastructure (PKI) allows any user to choose his own private key and
the corresponding public key. The public key is submitted to a certification authority (CA), which verifies
the identity of the user and issues certificates linking his identity and the public key. Thus, a PKI based
system needs digital certificate management that is too cumbersome to maintain and manage. Adi Shamir
introduced the notion of Identity Based Cryptography (IBC) [15] to reduce the burden of a PKI due to digital
certificate management. In IBC, the private key of a user is not chosen by him, instead it is generated and
issued by a trusted authority called the Private Key Generator (PKG) or Trust Authority (TA). This private
key corresponds to the user’s public key which is generated from strings that represent the user’s identity,
avoiding the need for certificates altogether. The inherent weakness of IBC is the key escrow problem. The
PKG is responsible for generating the private keys of all the users in the system and it knows the private
keys of all the users in the system, which is informally called as the key escrow problem. Certificateless
Cryptography (CLC) introduced by Al-Riyami and Paterson [1] addresses this issue to some extent, while
avoiding the use of certificates and the need for CA. The principle behind CLC is to partition the private
key of a user into two components: an identity based partial private key (generated by the PKG) and a non-
certified private key (which is chosen by the user and not known to the PKG). This technique potentially
combines the best features of IBC and PKI.

CLC also uses identities that uniquely identify a user in the system as in IBC but the public key of a
user is not his identity alone but it is a combination of his identity and the public key corresponding to the
non-certified private key chosen by the user. CLC involves a trusted third party as in IBC, named as the
Key Generation Center (KGC), who generates partial private keys for the users registered with it. Each user
selects his own secret value and a combination of the partial private key and the secret value acts as the
full private key of the user. The authors of [1] have shown realization for certificateless encryption (CLE),
signature (CLS) and key exchange (CLK) schemes in their paper. Huang et al. [10] and Castro et al. [4]
independently showed that the signature scheme in [1] is not secure against Type-I adversary (explained in
later sections), i.e. it is possible to launch a key replacement attack on the scheme and they also gave a new
certificateless signature scheme. Lot of CLE schemes were proposed, whose security were proved both in the
random oracle model [2, 5, 16, 18] and standard model [12, 14]. Recently, Dent [6] has given a survey on the
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various security models for CLE schemes, mentioning the subtle difference in the level of security offered
by each model. Dent has also given the generic construct and an efficient construction for CLE. The initial
constructs for certificateless cryptosystem were all based on bilinear pairing [5, 16, 12, 14]. Baek et al. [2] were
the first to propose a CLE scheme without bilinear pairing. Certificateless cryptosystem are prone to key
replacement attack because the public keys are not certified and anyone can replace the public key of any
legitimate user in the system. The challenging task in the design of certificateless cryptosystem is to come
up with schemes which resists key replacement attacks. The CLE in [2] did not withstand key replacement
attack, which was pointed out by Sun et al. in [18]. Sun et al. fixed the problem by changing the partial key
extract and setting public key procedures.
Related Works. Both the aforementioned schemes, namely [2] and [18] were based on multiplicative groups.
Lai et al. in [11] proposed the first RSA-based CLE scheme. They have proved their scheme secure against
chosen plaintext attack (CPA). In fact they left the design of a CCA secure system based on RSA as open.
One may be tempted to think that the CPA secure scheme of Lai et al. in [11] can be made CCA secure by
using any well known transformations like [9], [8] but giving access to the secret value of the target identity
and strong decryption oracle to the Type-I adversary makes the resulting scheme insecure. Moreover, the
scheme in [11] cannot be directly extended to a CLE scheme, whose Type-I and Type-II security relies on
RSA assumption without making considerable changes in the scheme, hence we design a totally new scheme
from scratch.

Our Contribution. In this paper, we propose two CLE schemes. The Type-I security of the first scheme
is based on the RSA assumption and the Type-II security is based on the composite computational Diffie
Hellman assumption (CCDH). Both Type-I and Type-II securities of our second scheme are based on the
RSA assumption. Thus, we provide a scheme which is partially RSA based (like [11], but CCA2 secure)
and another scheme which is fully RSA based. We formally prove both our schemes to be Type-I and
Type-II secure under adaptive chosen ciphertext attack (CCA2) in the random oracle model. This is the
strongest security notion for any encryption scheme. One of the striking features of our schemes is the novel
key construction algorithm, which is completely new and different from other key constructs used so far
in designing CLE. Moreover, the security model for the two existing secure schemes, [11] and [18] do not
provide access to the secret value corresponding to the target identity during the Type-I confidentiality
game. We also provide the strong decryption oracle for Type-I adversary. Strong decryption oracle means
the decryption corresponding to a ciphertext is provided by the challenger even if the public key of a user is
replaced after the generation of the ciphertext [6]. We provide these oracle queries to the Type-I adversary
of both the schemes and prove the security of our schemes in this stronger model. We stress that our second
scheme is the major contribution in this paper and the first scheme is a stepping stone towards our fully
RSA secure scheme. Even though computation of bilinear pairing has become efficient, finding out pairing
friendly curves are difficult [7] and most of the efficient curves and means of compressing are patented. Thus,
we have only a hand full of elliptic curves that support pairing for designing cryptosystem. Besides, since
the RSA patent expired in the year 2000, designing cryptographic schemes based on RSA assumption gets
more attention these days. Hence, the research in pairing free protocol is a very important and worthwhile
effort.
We use the following well known hard problems to establish the security of our new schemes:
Definition 1. (The RSA Problem): Given an RSA public key (n, e), where n = pq, p, q, (p − 1)/2 and
(q−1)/2 are large prime numbers, e is an odd integer such that gcd(e,φ(n)) = 1 and b ∈R Z∗

n, finding a ∈ Z∗
n

such that ae ≡ b (modn) is referred as the RSA problem.
An RSA problem solver with ε advantage is a probabilistic polynomial algorithm ARSA which solves the

RSA problem and ε = Prob[a ← ARSA(n, e, b = ae)].

Definition 2. (The Composite Computational Diffie Hellman Problem (CCDH) [17], [13]) Given
p, q, n, 〈g, ga, gb〉 ∈ Z∗

n, where n is a composite number with two big prime factors p and q, also (p−1)/2 and
(q− 1)/2 are prime numbers, finding gab mod n is the Composite Computational Diffie Hellman Problem in
Z∗

n, where a, b ∈ Zodd
n .

The advantage of any probabilistic polynomial time algorithm A in solving the CCDH problem in Z∗
n is

defined as
AdvCCDH

A = Pr
[
A(p, q, n, g, ga, gb) = gab | a, b ∈ Zodd

n

]

The CCDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCCDH
A

is negligibly small.



2 Framework and Security Models

In this section, we discuss the general framework for CLE. We adopt the definition of certificateless public
key encryption, given by Baek et al. [2]. Their definition of CLE is weaker than the original definition by
Al-Riyami and Paterson [1] because the user has to obtain a partial public key from the KGC before he can
create his public key (While in Al-Riyami and Paterson’s original CLE this is not the case). We also review
the notion of Type-I and Type-II adversaries and provide the security model for CLE.

2.1 Framework for CLE

A certificateless public-key encryption scheme is defined by six probabilistic, polynomial-time algorithms
which are defined below:
Setup: This algorithm takes as input a security parameter 1κ and returns the master private key msk and
the system public parameters params. This algorithm is run by the KGC in order to initialize a certificateless
system.
Partial Key Extract: This algorithm takes as input the public parameters params, the master private key
msk and an identity IDA ∈ {0, 1}∗ of a user A. It outputs the partial private key sA and a partial public
key PPKA of user A. This algorithm is run by the KGC once for each user and the corresponding partial
private key and partial public key is given to A through a secure and authenticated channel.
Set Private Key: This algorithm is run once by each user. It takes the public parameters params, the user
identity IDA and A’s partial private key sA as input. The algorithm generates a secret value yA ∈ S, where
S is the secret value space. Now, the full private key DA is a combination of the secret value yA and the
partial private key sA of A.
Set Public Key: This algorithm run by the user, takes as input the public parameters params, a user,
say A’s partial public key PPKA and the full private key DA. It outputs a public key PKA for A. This
algorithm is run once by the user and the resulting full public key is widely and freely distributed. The full
public key of user A consists of PKA and IDA.
Encryption: This algorithm takes as input the public parameters params, a user A’s identity IDA, the
user public key PKA and a message m ∈M. The output of this algorithm is the ciphertext σ ∈ CS. Note
that M is the message space and CS is the ciphertext space.
Decryption: This algorithm takes as input the public parameters params, a user, say A’s private key DA

and a ciphertext σ ∈ C. It returns either a message m ∈M - if the ciphertext is valid, or Invalid - otherwise.

2.2 Security model for CLE

The confidentiality of any CLE scheme is proved by means of an interactive game between a challenger C
and an adversary. In the confidentiality game for certificateless encryption (IND-CLE-CCA2) the adversary
is given access to the following five oracles. These oracles are simulated by C:
Partial Key Extract for IDA: C responds by returning the partial private key sA and the partial public
key PPKA of the user A.
Extract Secret Value for IDA: If A’s public key has not been replaced then C responds with the secret
value yA for user A. If the adversary has already replaced A’s public key, then C does not provide the
corresponding private key to the adversary.
Request Public Key for IDA: C responds by returning the full public key PKA for user A. (First by
choosing a secret value if necessary).
Replace Public Key for IDA: The adversary can repeatedly replace the public key PKA for a user A
with any valid public key PK ′

A of its choice. The current value of the user’s public key is used by C in any
computations or responses.
Decryption for ciphertext σ and identity IDA: The adversary can issue a decryption query for cipher-
text σ and identity IDA of its choice, C decrypts σ and returns the corresponding message to the adversary.
C should be able to properly decrypt ciphertexts, even for those users whose public key has been replaced, i.e.
this oracle provides the decryption of a ciphertext, which is generated with the current valid public key. The
strong decryption oracle returns Invalid, if the ciphertext corresponding to any of the previous public keys
were queried. This is a strong property of the security model (Note that, C may not know the correct private



key of the user). However, this property ensures that the model captures the fact that changing a user’s
public key to a value of the adversary’s choice may give the adversary an advantage in breaking the scheme.
This is called as strong decryption in [6]. Our schemes provides strong decryption for Type-I adversary.
There are two types of adversaries (namely Type-I and Type-II) to be considered for any certificateless
encryption scheme. The Type-I adversary models the attack by a third party attacker, (i.e. anyone except
the legitimate receiver or the KGC) who is trying to gain some information about a message from the
encryption. The Type-II adversary models the honest-but-curious KGC who tries to break the confidentiality
of the scheme. Here, the attacker is allowed to have access to master private key msk. This means that we
do not have to give the attacker explicit access to partial key extraction, as the adversary is able to compute
these value on its own. The most important point about Type-II security is that the adversary modeling the
KGC should not have replaced the public key for the target identity before the challenge is issued.
The IND-CLE-CCA2 security model distinguishes the two types of adversary Type-I and Type-II with the
following constraints.

– Type-I adversary AI is allowed to change the public keys of users at will but does not have access to the
master private key msk.

– Type-II adversary AII is equipped with the master private key msk but is not allowed to replace public
keys corresponding to the target identity.

IND-CLE-CCA2 game for Type-I Adversary: The game is named as IND-CLE-CCA2-I. This game,
played between the challenger C and the Type-I adversary AI , is defined below:
Setup: Challenger C runs the setup algorithm to generate master private key msk and public parameters
params. C gives params to AI while keeping msk secret. After receiving params, AI interacts with C in
two phases:
Phase I: AI is given access to all the five oracles. AI adaptively queries the oracles consistent with the
constraints for Type-I adversary described above.
Challenge: At the end of Phase I, AI gives two messages m0 and m1 of equal length to C on which it
wishes to be challenged. C randomly chooses a bit δ ∈R {0, 1} and encrypts mδ with the target identity
ID∗’s public key to form the challenge ciphertext σ∗ and sends it to AI as the challenge. (Note that the
partial Private Key corresponding to ID∗ should not be queried by AI but the secret value corresponding
to ID∗ may be queried. This makes our security model stronger when compared to the security models of
[11] and [18].)
Phase II: AI adaptively queries the oracles consistent with the constraints for Type-I adversary described
above. Besides this AI cannot query Decryption on (σ∗, ID∗) and the partial private key of the receiver
should not have been queried to the Extract Partial Private Key oracle.
Guess: AI outputs a bit δ′ at the end of the game. AI wins the IND-CLE-CCA2-I game if δ′ = δ. The
advantage of AI is defined as -

AdvIND−CLE−CCA2−I
AI

= |2Pr [δ = δ′]− 1|

IND-CLE-CCA2 game for Type-II Adversary: The game is named as IND-CLE-CCA2-II. This game,
played between the challenger C and the Type-II adversary AII , is defined below:
Setup: Challenger C runs the setup algorithm to generate master private key msk and public parameters
params. C gives params and the master private key msk to AII . After receiving params, AII interacts with
C in two phases:
Phase I: AII is not given access to the Extract partial Private Key oracle because AII knows msk, it
can generate the partial private key of any user in the system. All other oracles are accessible by AII . AII

adaptively queries the oracles consistent with the constraints for Type-II adversary described above.
Challenge: At the end of Phase I, AII gives two messages m0 and m1 of equal length to C on which it
wishes to be challenged. C randomly chooses a bit δ ∈R {0, 1} and encrypts mδ with the target identity
ID∗’s public key to form the challenge ciphertext σ∗ and sends it to AII as the challenge. (Note that the
Secret Value Corresponding to ID∗ should not be queried by AII and the public key corresponding to ID∗

should not be replaced during Phase I.)
Phase II: AII adaptively queries the oracles consistent with the constraints for Type-II adversary described
above. Besides this AII cannot query Decryption on (σ∗, ID∗) and the Secret Value corresponding to the



receiver should not be queried to the Extract Secret Value oracle and the public key corresponding to ID∗

should not be replaced during Phase I.
Guess: AII outputs a bit δ′ at the end of the game. AII wins the IND-CLE-CCA2-II game if δ′ = δ. The
advantage of AII is defined as -

AdvIND−CLE−CCA2−II
AII

= |2Pr [δ = δ′]− 1|

3 Basic RSA-Based CLE Scheme (RSA-CLE1)

In this section, we propose the basic RSA based certificateless encryption scheme RSA-CLE1 and also prove
the security of the scheme against both Type-I and Type-II adversaries under adaptive chosen ciphertext
attack (CCA2). For this scheme the Type-I security relies on the RSA assumption and the Type-II security
is based on the composite computational Diffie Hellman assumption (CCDH).
Notation: We use the notation Zodd

n to represent the odd numbers from [0, n]. Throughout the paper, in
order to choose a random odd number from the range [1, n], we randomly pick an element in Zn and check
whether it is odd, if it is odd, we accept it, else we subtract 1 from the chosen number. These numbers are
represented as Zodd

n .

3.1 The RSA-CLE1 Scheme

The proposed scheme comprises the following six algorithms. Unless stated otherwise, all computations
except those in the Setup algorithm are done mod n.

Setup: The KGC does the following to initialize the system and to setup the public parameters.
– Chooses two primes p and q, such that p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also primes.
– Computes n = pq and the Euler’s totient function φ(n) = (p− 1)(q − 1).
– It also chooses four cryptographic hash functions H : {0, 1}∗ → Z∗

n, H1 : {0, 1}∗ × Z∗
n → Zodd

n ,
H2 : {0, 1}l × Z∗

n → Zodd
n and H3 : Z∗

n × Z∗
n × {0, 1}∗ → {0, 1}l+|Zodd

n |, where l is the size of the
message.

– Now, KGC publicizes the system parameters, params = 〈n, H,H1,H2,H3〉 and keeps the factors of
n, namely p and q as the master private key.

Note: Since n is a product of two strong primes, a randomly chosen number in Zodd
n is relatively prime

to φ(n) with overwhelming probability. The RSA modulus n is set to n = pq and p, q are chosen such
that p = 2p′ + 1, q = 2q′ + 1 where both p′ and q′ are also large primes. Considering φ(n) = 22p′q′ with
only three factors 2, p′, q′, the probability of any odd number being co-prime to φ(n) is overwhelming,
because finding a number not co-prime to 4p′q′ is equivalent to finding p′ or q′ or finding p or q. Thus,
hardness of factoring implies that the random odd number in Zn is relatively prime to φ(n) with very
high probability.

Partial Key Extract: Our partial key extraction is not a deterministic algorithm, i.e. this algorithm gives
different partial keys for the same identity when queried more than once. Examples for this type of key
extraction can be found in [2] and [18]. This algorithm is executed by the KGC and upon receiving the
identity IDA of a user A the KGC performs the following to generate the corresponding partial private
key dA.
– Chooses xA ∈R Zodd

n .
– Computes gA = H(IDA).
– Computes the partial public key PPKA = gxA

A
– Computes the value eA = H1(IDA, PPKA).
– Computes dA such that eAdA ≡ 1 mod φ(n) and sends the partial private key sA = xA + dA mod

φ(n) and the partial public key PPKA to the user through a secure channel.
The validity of the partial private key can be verified by user A by performing the following check:

(gxA
A )eAgA

?= (gA)sAeA (1)

Note: However, this can be made deterministic by obtaining the randomness used in the computation
of the partial public key through a secure MAC (Message Authentication Code) with the identity of the
user as input and the master private key as the key to the MAC.



Set Private Key: On receiving the partial private key the user with identity IDA does the following to
generate his full private key.
– Chooses yA ∈R Zodd

n as his secret value.
– Sets the private key as DA = 〈D(1)

A , D(2)
A 〉 = 〈sA, yA〉. (Note that both the KGC and the corresponding

user knows D(1)
A and the user with identity IDA alone knows D(2)

A ).
Set Public Key: The user with identity IDA computes the public key corresponding to his private key as

described below:
– Computes gA = H(IDA).

– Computes the value g
D(2)

A
A .

– Makes PKA = 〈PK(1)
A , PK(2)

A , PK(3)
A 〉 = 〈PPKA, g

D(2)
A

A , g
D(1)

A
A 〉 public.

Note that gxA
A was sent by KGC to the user while setting IDA’s partial private key. The validity of the

public key can be publicly verified using the following verification test:
– Compute eA = H1(IDA, PK(1)

A ).
– Check whether the following holds:

(PK(3)
A )eA ?= (PK(1)

A )eAgA (2)

Encryption: To encrypt a message m to a user with identity IDA, one has to perform the following steps:
– Check the validity of the public key corresponding to IDA.
– Choose r ∈R Zodd

n .
– Compute eA = H1(IDA, PK(1)

A ), gA = H(IDA) and h = H2(m, r).

– Compute c1 = gh
A, and c2 = (m‖r)⊕H3

(
(PK(1)

A )heA , (PK(2)
A )h, IDA

)
.

Now, σ = (c1, c2) is send as the ciphertext to the user A.
Decryption: The receiver with identity IDA does the following to decrypt a ciphertext σ = (c1, c2):

– Retrieves (m‖r) = H3

(
(c1)D(1)

A eA

c1
, (c1)D(2)

A , IDA

)
⊕ c2.

– Computes h′ = H2(m, r) and checks whether c1
?= gh

A.
User A accepts the message only if the above check holds.

Correctness of the Public Key verification test:

L.H.S= (PK(3)
A )eA= g(xA+dA)eA

A

= gxAeA
A gdAeA

A
= gxAeA

A gA, since dAeA ≡ 1 mod φ(n)
= (PK(1)

A )eAgA=R.H.S

Correctness of the scheme: During decryption there are two key components in the computation of the H3

hash function, namely
(c1)D(1)

A eA

c1
and (c1)D(2)

A . The correctness for the first component is shown below:

(c1)D(1)
A eA

c1
=

(gh
A)(xA+dA)eA

gh
A

=
(gxA+dA

A )heA

gh
A

=
gxAheA+dAheA

A

gh
A

=
gxAheA+h

A

gh
A

, since dAeA ≡ 1 mod φ(n)

= gxAheA
A = (PK(1)

A )heA

The correctness for the second component follows, because,

(c1)D(2)
A = (gh

A)yA = (gyA

A )h = (PK(2)
A )h



3.2 Security Proof

In order to prove the confidentiality of a certificateless encryption scheme, it is required to consider the
attacks by Type-I and Type-II adversaries. In the two existing secure schemes [11] and [18], the Type-I
adversary is not allowed to extract the secret value corresponding to the target identity. In order to capture
the ability of the adversary who can access the secret keys of the target identity, we give access to the
user secret value of the target identity to the Type-I adversary. We also state that, allowing the extract
secret value query corresponding to the target identity makes the security model for Type-I adversary more
stronger.

Confidentiality against Type-I Adversary:

Theorem 1. Our certificateless public key encryption scheme RSA-CLE1 is IND-RSA-CLE1-CCA2-I secure
in the random oracle model, if the RSA problem is intractable in Z∗

n, where p, q, (p− 1)/2 and (q− 1)/2 are
large prime numbers.

Proof: The challenger C is challenged with an instance of the RSA problem, say 〈n, e ∈R Zodd
n , b〉 ∈ Z∗

n,
where n is a composite number with two big prime factors p and q, (p− 1)/2 and (q − 1)/2 are also primes.
Let us consider that there exists an adversary AI who is capable of breaking the IND-RSA-CLE1-CCA2-I
security of the RSA-CLE1 scheme. C can make use of AI to compute a such that ae ≡ b mod n, by playing
the following interactive game with AI .

Setup: C begins the game by setting up the system parameters as in the RSA-CLE1 scheme. C takes n from
the instance of the RSA problem that C has received and sends params = 〈n〉 to AI . C also designs the four
hash functions H, H1, H2 and H3 as random oracles OH , OH1 , OH2 and OH3 . C maintains four lists L, L1,
L2 and L3 in order to consistently respond to the queries to the random oracles OH , OH1 , OH2 and OH3

respectively. To maintain the consistency of the private key request and public key request oracle queries, C
maintains lists LS and LP respectively. A typical entity in list Li will have the parameters of Hi (for i = 1
to 4) followed by the corresponding hash value returned as the response to the hash oracle query. The list
LS consists of the tuples of the form 〈IDi, D

(1)
i , PK(1)

i , D(2)
i 〉 and that of LP consists of the tuples of the

form 〈IDi, PK(1)
i , PK(2)

i , PK(3)
i ,H1(IDi, g

xi
i )〉. The game proceeds as described in the security model for

Type-I adversary in section 2.2.

Phase I: AI performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by AI are described below:
Note: We assume that OH(.) oracle is queried with IDi as input, before any other oracle is queried with
the corresponding identity, IDi as one of the inputs.
OH(IDi): We follow the proof methodology introduced in [3] and make a simplifying assumption that AI

queries the OH oracle with distinct identities in each query. This is because, if the same identity is repeated,
by definition, the oracle consults the list L and gives the same response. Thus, we assume that AI asks qH

distinct queries for qH distinct identities. Among this qH identities, a random identity has to be selected as
target identity by C. C selects a random index γ, where 1 ≤ γ ≤ qH and C does not reveal γ to AI . When
AI generates the γth query on IDγ , C fixes IDγ as target identity for the challenge phase.
For answering the OH query, C performs the following, for 1 ≤ γ ≤ qH

– If a tuple of the form 〈IDi, ei,βi, gi〉 exists in the list L then C retrieves the corresponding gi.
– Else,

• If i ,= γ, C performs the following:
∗ C chooses ei ∈R Zodd

n , βi ∈R Z∗
n and computes gi = βei

i .
∗ Generates the partial private key corresponding to IDi as follows:

· Chooses si ∈R Zodd
n .

· Computes
gsi

i

βi
. Let

gsi
i

βi
= gxi

i for some xi. (Note that xi is not known to C.)

· Chooses yi ∈R Zodd
n and adds the tuple 〈IDi, si, g

xi
i , yi〉 in the list LS .

∗ Adds the tuple 〈IDi, g
xi
i , ei〉 in the list L1.

∗ Computes gyi
i and gsi

i , adds the tuple 〈IDi, g
xi
i , gyi

i , gsi
i , ei〉 into the list LP .



Lemma 1 below shows that the value in the list L1, LS and LP form a consistent set of private key /
public key values for IDi.

Lemma 1. The value in the list L1, LS and LP form a consistent set of private key / public key values
for IDi for all i ,= γ.

Recall that the structure of LS and LP must be of the form LS = 〈IDi, D
(1)
i , PK(1)

i , D(2)
i 〉 and LP =

〈IDi, PK(1)
i , PK(2)

i , PK(3)
i ,H1(IDi, g

xi
i )〉 respectively.

From LP we infer that PK(1)
i = gxi

i and H1(IDi, PK(1)
i ) = H1(IDi, g

xi
i ) = ei and thus is consistent

with the entry in the list L1.
Since the L list entry corresponding to IDi is 〈IDi, ei,βi, gi〉 , we get H(IDi) = gi. Recall from equation
(1) that the partial private key formed above will be valid set of values if they satisfy the following
condition:

(gxi
i )eigi

?= (gi)siei (3)

Let di be such that
eidi ≡ 1 mod phi(n) (4)

Therefore,
gi = βei

i ⇒ βi = gdi
i (5)

Now,
gsi

i

βi
=

gsi
i

gdi
i

= gsi−di
i = gxi

i and this implies

si − di = xi (6)

Using equation (6) we can show that the validity of equation (3). In fact,

LHS = g(si−di)ei

i gi = g(siei)
i g−1

i gi = gsiei
i = RHS

!
• If i = γ, C performs the following:

∗ C chooses βi ∈R Z∗
n and ω ∈R Zodd

n and computes z = ω2. Let z = x−1
i d2, for some xi. Sets ei = e

and computes gi = β
ze2

i
i .

Note: It is to be noted that the tuple 〈IDγ , eγ ,βγ , gγ〉 in the list L is equal to 〈IDγ , e,βγ ,βze2

γ 〉.
∗ Chooses yi ∈R Zodd

n and computes PKi = 〈PK(1)
i , PK(2)

i , PK(3)
i 〉 = 〈βi, g

yi
i ,βiβ

zei
i 〉. C now

adds the tuple 〈IDi,βi, g
yi
i ,βiβ

zei
i , ei〉 into the list LP . The public key thus generated passes the

verification test done by AI as shown below:
(PK(3)

i )ei= (βiβ
zei
i )ei = (βei

i β
ze2

i
i ) = (PK(1)

i )eigi (Since β
ze2

i
i = gi)

∗ Adds the tuple 〈IDi, g
xi
i = βi, ei〉 in the list L1.

– C adds the tuple 〈IDi, ei,βi, gi〉 to the list L and returns gi to AI .

OH1(IDi,∆i): To respond to this query, C retrieves the tuple that corresponds to IDi, which is of the form
〈IDi, g

xi
i , gyi

i , gsi
i , ei〉 from the list LP and performs the following:

– If gxi
i = ∆i, a tuple of the form 〈IDi,∆i, ei〉 will exist in the list L1, C returns the corresponding ei.

– If gxi
i ,= ∆i, C chooses êi ∈R Zodd

n , adds the tuple 〈IDi,∆i, êi〉 in the list L1 and returns êi as the
response.

OH2(m, r): To respond to this query, C checks whether a tuple of the form 〈m, r, h〉 exists in the list L2. If a
tuple of this form exists, C returns the corresponding h, else chooses h ∈R Zodd

n , adds the tuple 〈m, r, h〉 to
the list L2 and returns h to AI .
OH3(k1, k2, IDi): To respond to this query, C checks whether a tuple 〈k1, k2, IDi, h3〉 exists in the list L3. If
a tuple of this form exists, C returns the corresponding h3 else chooses h3 ∈R {0, 1}l+|Zodd

n |, adds the tuple
〈k1, k2, IDi, h3〉 to the list L3 and returns h3 to AI .
OPartialKeyExtract(IDi): To respond to this query, C does the following:

– If i = γ, C aborts the game.



– If i ,= γ, C retrieves the tuple of the form 〈IDi, si, g
xi
i , yi〉 from list LS and returns si as the partial

private key and PPKi = gxi
i as the partial public key corresponding to the identity IDi.

OExtractSecretV alue(IDi): C retrieves a tuple of the form 〈IDi, si, g
xi
i , yi〉 from the list LS and returns the

corresponding yi as the secret value corresponding to the identity IDi. If the entry corresponding to yi in
the tuple is “−” then AI has replaced the private key corresponding to IDi.
Note: Our security model is stronger when compared to the models in [18] and [11] where the Type-I
adversary is not provided the extract secret value query oracle for the target identity IDγ . It should be
noted, that the scheme in [11] is not secure if the secret value of the target identity is revealed to the Type-I
adversary. We consider the model wherein the secret value corresponding to the target identity is given to
the Type-I adversary AI , which makes it stronger.
ORequestPublicKey(IDi): C retrieves the tuple of the form 〈IDi, g

xi
i , gyi

i , gsi
i , ei〉 from the list LP and returns

PKi = 〈βi, g
yi
i ,βiβ

ei
i 〉 as the public key corresponding to the identity IDi.

OReplacePublicKey(IDi, PK
′

i): To replace the public key of IDi with a new public key PK
′

i = 〈PK
′(1)
i ,

PK
′(2)
i , PK

′(3)
i 〉, chosen by AI , C does the following:

– Updates the corresponding tuples in the list LP as 〈IDi, PK
′(1)
i , PK

′(2)
i , PK

′(3)
i , ei〉, only if (PK

′(3)
i )ei =

(PK
′(1)
i )eigi, where gi corresponding to IDi is retrieved from the list L.

– Return Invalid, otherwise.

OStrongDecryption(σ, IDi, PKi): This oracle provides the decryption of a ciphertext, which is generated with
the current valid public key. It should be noted that the strong decryption oracle returns Invalid, if the
ciphertext corresponds to any of the previous public keys. ”Giving access to the secret value corresponding
to the target identity for a Type-I adversary, captures the scenario where the user secret value of the target
identity is compromised (some how comes to know) by the adversary”. Hence it is a stronger type of adversary.
C performs the following to decrypt the ciphertext σ = 〈c1, c2〉:

– C performs the following to decrypt the ciphertext σ = 〈c1, c2〉:
• Checks the validity of PKi and rejects the ciphertext σ if this check fails, else proceeds with the

following steps.
• Retrieves the tuple 〈IDi, g

xi
i , ei〉 from list L.

• For each 〈m, r, h〉 ∈ L2 list performs the following:
∗ Checks whether gh

i
?= c1.

∗ If True, computes k1 = (PK(1)
i )eih and k2 = (PK(2)

i )h.
∗ Checks in list L3, for an entry corresponding to (k1, k2, IDi). If a tuple exists then retrieves the

corresponding h3 value and checks whether c2 ⊕ h3
?= (m‖r), where m, r are retrieved from the

list L2.
∗ If True, outputs m as the message.

• If no tuple satisfies all the above tests, returns Invalid.

Challenge: At the end of Phase I , AI produces two messages m0 and m1 of equal length and an identity
ID∗. C aborts the game if ID∗ ,= IDγ , else randomly chooses a bit δ ∈R {0, 1} and computes a ciphertext
σ∗ with IDγ as the receiver by performing the following steps:

– Set c∗1 = bz, where b is taken from the RSA problem instance received by C and z is the value chosen
during the OH(.) oracle query corresponding to IDγ .

– Choose c∗2 ∈R {0, 1}l+|Zodd
n |.

Now, σ∗ = 〈c∗1, c∗2〉 is sent to AI as the challenge ciphertext. It should be noted that with overwhelming
probability, σ∗ is a invalid ciphertext and since AI is disallowed to query the strong decryption oracle with
σ∗ as input, AI will not be able to identity whether σ∗ is valid or not.
Phase II: AI performs the second phase of interaction, where it makes polynomial number of queries to
the oracles provided by C with the following conditions:

– AI should not have queried the Strong Decryption oracle with (σ∗, PKγ , IDγ) as input. (It is to be
noted that PKγ is the public key corresponding to IDγ during the challenge phase. AI can query the
decryption oracle with (σ∗, PK∗, IDγ) as input, ∀PK∗ ,= PKγ)



– AI should not query the partial private key corresponding to IDγ .
– AI can query the secret value corresponding to IDγ and PKγ .

Guess: At the end of Phase II , AI produces a bit δ′ to C, but C ignores the response and performs the
following to output the solution for the RSA problem instance.

– For each tuple of the form 〈k1, k2, IDi, h3〉 in list L3, C checks whether ke
1

?= b. (where e and b are taken
from the RSA problem instance.)

– Outputs the corresponding k1 value for which the above check holds as the solution (i.e, a = k1) for the
RSA problem instance.

Correctness: Below, we show that the k1 value obtained through the above steps is indeed a, such that b = ae

mod n

– The public key corresponding to IDγ is set to be PKγ = 〈PK(1)
γ , PK(2)

γ , PK(3)
γ 〉=〈βγ , g

yγ
γ ,βγβze

γ 〉 by C.
Since gγ = βze2

γ , βγ = gz−1e−2

γ = gz−1d2

γ (because d ≡ e−1 mod φ(n)). Thus PKγ = 〈gz−1d2

γ , g
yγ
γ , gz−1d2

γ gd
γ〉.

– The partial private key corresponding to this public key is sγ = D(1)
γ = xγ + dγ = z−1d2 + d which is

unknown to C. This is due to the following facts:

PK(3)
γ = βγβze

γ = gz−1d2

γ gd
γ

= gz−1d2+d
γ = H(IDγ)z−1d2+d, (since H(IDγ) = gγ)

PK(1)
γ = βγ = gz−1d2

γ , (since gγ = βze2

γ )
= H(IDγ)z−1d2

, (since H(IDγ) = gγ)

We know that PK(3)
γ = H(IDγ)xγ+dγ and PK(1)

γ = H(IDγ)xγ . Thus, xγ = d2 and dγ = d.
– C has set the c∗1 component of the challenge ciphertext σ∗ as “bz” (where b is taken from the RSA problem

instance) during the challenge phase.

– In order to decrypt the cipher text σ∗, AI should have computed a value (c∗1)D
(1)
γ eγ

c∗1
and queried the H3

oracle with it as the k1 component. (It should be further noted that AI could make a number of queries
to the OH2 oracle and see if the resulting h satisfies c∗1 = (gh

γ ) but this cannot be true because choosing
the correct r will be negligible. Even if r has to be obtained from σ∗, AI should have computed the OH3

oracle.)

– We show that (c∗1)D
(1)
γ eγ

c∗1
= a, such that ae mod n = b. (Here e, b and n are the elements from the RSA

problem instance.) It is known that D(1)
γ = z−1d2 + d and eγ = e. Therefore,

(c∗1)D
(1)
γ eγ

c∗1
= (bz)(z−1d2+d)e

bz = (bz)(z−1d+1)

bz = bd = a (Since d ≡ e−1 mod φ(n))

Thus, C obtains the solution to the RSA problem with almost the same advantage of AI in the IND-RSA-
CLE1-CCA2-I game. !
Analysis: We now derive the advantage of C breaking the RSA problem using the adversary AI . The
simulations of H, H1, H2 and H3 clearly shows that the hash oracles are perfectly random. Let ε be the
advantage of AI in winning the IND-RSA-CLE1-CCA2-I game.
The events in which C aborts the game and the respective probabilities are given below:

1. E1 - The event in which C aborts when AI queries the partial private key corresponding to IDγ .
2. E2 - The event in which IDγ is not chosen as the target identity by AI for the challenge.

Suppose AI has made qH number of OH queries and qppk number of OPartialKeyExtract queries, then: Pr[E1]=
qppk

qH
and Pr[E2]= 1− 1

qH − qppk
.

Therefore, Pr[¬abort]=[¬E1 ∧ ¬E2]=
[
1− qppk

qH

]
.

[
1− 1− 1

qH − qppk

]
=

1
qH

.

Therefore, the advantage of C solving the RSA problem is ε′ ≥
(

ε.
1

qH

)
.



Confidentiality against Type-II Adversary: The master private key of the RSA-CLE1 scheme are the
prime factors p and q of the composite modulus n. Since the Type-II adversary in CLE should be given
access to the master private key, the security against Type-II adversary of the RSA-CLE1 scheme cannot be
reduced to RSA assumption. The situation in the RSA based scheme in [11] is also the same. That is why,
the scheme in [11] as well as RSA-CLE1, the Type-II security is related to CCDH problem. However, in our
next scheme RSA-CLE2 the security against Type-II adversary is based on RSA problem.

Theorem 2. Our certificateless public key encryption scheme RSA-CLE1 is IND-RSA-CLE1-CCA2-II se-
cure in the random oracle model, if the CCDH problem is intractable in Z∗

n, where n = pq and p, q, (p−1)/2,
(q − 1)/2 are large prime numbers.

Proof: Suppose an adversary AII is capable of breaking the IND-RSA-CLE1-CCA2-II security of our RSA-
CLE1 scheme and a challenger C is challenged with an instance of the CCDH problem say p, q, n, 〈g, ga, gb〉
∈ Z∗

n, where n is a composite number with two big prime factors p and q also (p − 1)/2 and (q − 1)/2 are
primes. C can make use of AII to compute gab, by playing the following interactive game with AII .
Setup: C begins the game by setting up the system parameters as in the RSA-CLE1 scheme. C takes p, q, n
and g as in the instance of the CCDH problem and sends params = 〈n〉 and p, q as the master private key
msk to AII . C also designs the four hash functions H, H1, H2 and H3 as random oracles OH , OH1 , OH2 and
OH3 . C maintains four lists L, L1, L2 and L3 in order to consistently respond to the queries to the random
oracles OH , OH1 , OH2 and OH3 respectively and to maintain the consistency of the private key request and
public key request oracles, C maintains lists LS and LP respectively.
Phase I: AII performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by AII are described below. We assume that
OH(.) oracle is queried with IDi as input, before any other oracle is queried with the corresponding identity,
IDi as one of the input parameters.
OH(IDi): We will make a simplifying assumption that AII queries the OH oracle with distinct identities in
each query. If the same identity is repeatedly queried to this oracle, by definition, the oracle consults the list
L and gives the same response. Thus, we assume that AII asks qH distinct queries for qH distinct identities.
C selects a random index γ, where 1 ≤ γ ≤ qH and C does not reveal γ to AII . When AII generates the γth

query on IDγ , C fixes IDγ as target identity for the challenge phase.
In order to answer a query to the OH oracle, C checks whether a tuple of the form 〈IDi, gi〉 exists in the

list L and if a tuple of this form exists, C returns the corresponding gi. If it does not exist, C checks whether
i

?= γ:

– If i ,= γ, C chooses gi ∈R Z∗
n, adds the tuple 〈IDi, gi〉 to the list L and returns gi to AII .

– If i = γ, C sets gi = g (where g is taken from the CCDH instance), adds the tuple 〈IDi, gi〉 to the list L
and returns gi to AII .

OH1(IDi, g
xi
i ): To respond to this query, C checks whether a tuple of the form 〈IDi, g

xi
i , ei〉 exists in the list

L1. If it exists, C returns the corresponding ei, else C chooses ei ∈R Zodd
n , adds the tuple 〈IDi, g

xi
i , ei〉 to the

list L1 and returns ei to AII .
OH2(m, r): To respond to this query, C checks whether a tuple of the form 〈m, r, h〉 exists in the list L2. If
a tuple of this form exists, C returns the corresponding h else chooses h ∈R Zodd

n , adds the tuple 〈m, r, h〉 to
the list L2 and returns h to AII .
OH3(k1, k2, IDi): To respond to this query, C checks whether a tuple of the form 〈k1, k2, IDi, h3〉 exists in
the list L3. If a tuple of this form exists, C returns the corresponding h3 else chooses h3 ∈R {0, 1}l+|Zodd

n |,
adds the tuple 〈k1, k2, IDi, h3〉 to the list L3 and returns h3 to AII .
OPartialKeyExtract(IDi): To respond to this query, C does the following: C checks whether a tuple of the
form 〈IDi, xi, di, si, g

xi
i , yi〉 exists in list LS .

– If it exists then, C outputs the corresponding si as the partial private key and PPKi = gxi
i as the partial

public key corresponding to the identity IDi.
– If a tuple does not exist then, C performs the following:

• Chooses xi, ei ∈R Zodd
n .

• Retrieves the tuple 〈IDi, gi〉 from the list L.



• Computes gxi
i , di = e−1

i mod φ(n) (Note that this is possible because C knows the prime factors of
n) and si = xi + di

• Stores the tuple 〈IDi, xi, di, si, g
xi
i ,−〉 in the list LS and the tuple 〈IDi, g

xi
i , ei〉 in the list L1.

• Returns si as the partial private key and PPKi = gxi
i as the partial public key corresponding to the

identity IDi.

OExtractSecretV alue(IDi): C checks whether i
?= γ:

– If i = γ then, C aborts the game.
– If i ,= γ then, C checks for a tuple of the form 〈IDi, xi, di, si, g

xi
i , yi〉 in list LS and returns the cor-

responding yi as the secret value corresponding to the identity IDi. If the entry corresponding to yi

in the tuple is ′′ − ” then, C chooses yi ∈R Zodd
n , updates the corresponding tuple in the list LS as

〈IDi, xi, di, si, g
xi
i , yi〉 and returns yi to AII .

ORequestPublicKey(IDi): C checks for an entry of the form 〈IDi, g
xi
i , gyi

i , gsi
i 〉 in list LP and performs the

following accordingly:

– If an entry of this form exists, C returns 〈gxi
i , gyi

i , gsi
i 〉 as the public key corresponding to the identity

IDi.
– If no tuple exists then, C checks whether i

?= γ:
• If i ,= γ, C retrieves the tuple 〈IDi, gi〉 from the list L and the tuple 〈IDi, xi, di, si, g

xi
i , yi〉 from

the list LS and computes gyi
i and gsi

i , adds the tuple 〈IDi, g
xi
i , gyi

i , gsi
i 〉 into the list LP and returns

〈gxi
i , gyi

i , gsi
i 〉 as the public key corresponding to the identity IDi.

• If i = γ, C retrieves the tuple 〈IDi, gi〉 from the list L and the tuple 〈IDi, xi, di, si, g
xi
i ,−〉 from the

list LS . C sets PKi = 〈PK(1)
i , PK(2)

i , PK(3)
i 〉 = 〈gxi

i , ga, gsi
i 〉. C now adds the tuple 〈IDi, g

xi
i , ga, gsi

i 〉
into the list LP and returns 〈gxi

i , ga, gsi
i 〉 as the public key corresponding to the identity IDi. (Note

that ga is taken from the CCDH problem instance and gi = g, set during the OH(IDi) query.)

OReplacePublicKey(IDi, PK
′

i): To replace the public key of IDi with a new public key PK
′

i = 〈PK
′(1)
i ,

PK
′(2)
i , PK

′(3)
i 〉, chosen by AII , C checks whether i

?= γ and does the following:

– If i = γ then, C aborts the game.
– If i ,= γ then, updates the corresponding tuples in the list LP as 〈IDi, PK

′(1)
i , PK

′(2)
i , PK

′(3)
i 〉, only if

(PK
′(3)
i )ei = (PK

′(1)
i )eigi, where gi corresponding to IDi is retrieved from the list L.

Note: The replace public key oracle for Type-II adversary was not considered in both [18] and [11].
ODecryption(σ, IDi, PKi): C performs the following to decrypt the ciphertext σ = 〈c1, c2〉:

– If i ,= γ, C performs decryption in the normal way since C knows the private key corresponding to IDi.
– If i = γ, C performs the following to decrypt the ciphertext σ = 〈c1, c2〉:

• Retrieves the tuple 〈IDi, g
xi
i , ei〉 from list L1.

• For each 〈m, r, h〉 ∈ L2 list performs the following
∗ Checks whether gh

i
?= c1.

∗ If True, computes k1 = (PK(1)
i )eih and k2 = (PK(2)

i )h.
∗ Checks in list L3, for an entry corresponding to (k1, k2, IDi). If a tuple exists then retrieves the

corresponding h3 value and checks whether c2 ⊕ h3
?= (m‖r), where m, r is retrieved from the

list L2.
∗ If True, outputs m as the message.

• If no tuple satisfies all the above tests, returns Invalid.

Challenge: At the end of Phase I , AII gives C two messages m0,m1 of equal length. C aborts the game
if ID∗ ,= IDγ , else C randomly chooses a bit δ ∈R {0, 1} and computes a ciphertext σ∗ with IDγ as the
receiver by performing the following steps:

– Set c∗1 = gb. (Where gb is taken from the CCDH instance.)
– Choose c∗2 ∈R {0, 1}l+|Zodd

n |.



Now, σ∗ = 〈c∗1, c∗2〉 is sent to AII as the challenge ciphertext.
Phase II: Again AII can perform polynomially bounded number of queries to the oracles provided by C
with the following conditions:

– AII should not have queried the decryption oracle with (σ∗, PKγ , IDγ) as input. (It is to be noted that
PKγ is the public key corresponding to IDγ during the challenge phase. AII is allowed to query the
decryption oracle with (σ∗, PK∗, IDγ) as input, ∀PK∗ ,= PKγ).

– AII should not have queried the secret value corresponding to IDγ .
– AII should not have replaced the public key corresponding to the identity IDγ .

Guess: At the end of Phase II , AII produces a bit δ′ to C but C ignores the response and performs the
following to output the solution to the CCDH problem instance.

– Randomly picks a k2 value from the list L3 and outputs it as the solution to the CCDH problem instance.

Correctness: Below, we show that the k2 value obtained through the above step is indeed gab.

– The public key component PK(2)
γ corresponding to IDγ is set to be ga by C during the request public

key query and thus H(IDγ)yγ = ga.
– Since H(IDγ) = gγ = g, D(2)

γ = yγ = a
– C has set the c∗1 component of the challenge ciphertext σ∗ as gb during the challenge phase.
– In order to decrypt the ciphertext σ∗, AII should have computed a value (c∗1)

D(2)
γ and queried the H3

oracle with it as the k2 component.
– Now, (c∗1)

D(2)
γ = (gb)a = gab.

Thus, C obtains the solution to the CCDH problem with almost the same advantage of AII in the IND-
RSA-CLE1-CCA2-II game. !
Analysis: We now derive the advantage of C breaking the CCDH problem using the adversary AII . The
simulations of H, H1, H2 and H3 clearly shows that the hash oracles are perfectly random. Let ε be the
advantage of AII in winning the IND-RSA-CLE1-CCA2-I game.
The events in which C aborts the game and the respective probabilities are given below:

1. E1 - The event in which C aborts when AII queries the secret value corresponding to IDγ .
2. E2 - The event in which C aborts when AII replaces the public key corresponding to IDγ .
3. E3 - The event in which IDγ is not chosen as the target identity by AII for the challenge.

Suppose AII has made qH number of OH queries, qsv number of OExtractSecretV alue queries, qrpk number of
identities for which OReplacePublicKey queries and qsrk be the total number of identities for which the secret
value is extracted and the public key is replaced, then:

Pr[E1]=
qsv

qH
, Pr[E2]=

qrpk

qH
and Pr[E3]= 1− 1

qH − qsv
.

Therefore,

Pr[¬abort]=[¬E1 ∧ ¬E2 ∧ ¬E3]

=
[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1−

[
1− 1

qH − qsrk

]]
=

[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1

qH − qsrk

]
.

Therefore, the advantage of C solving the CCDH problem is ε′ ≥
(

ε.

[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1

qH − qsrk

])
.

4 Fully RSA Based CLE Scheme (RSA-CLE2)

In this section, we propose the fully RSA based certificateless encryption scheme RSA-CLE2. The Type-I
security is similar to that of the Type-I security proof of RSA-CLE1. We prove the security of the scheme
against Type-II attacks under adaptive chosen ciphertext attack (CCA2) assuming the hardness of RSA
problem.



4.1 The RSA-CLE2 Scheme

The proposed scheme comprises the following six algorithms. Unless stated otherwise all computations except
those in the setup algorithm are done mod n.
Setup: The KGC does the following to initialize the system and to setup the public parameters.

– Chooses two primes p and q, such that p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also primes.
– Computes n = pq and the Euler’s totient function φ(n) = (p− 1)(q − 1).
– It also chooses three cryptographic hash functions H : {0, 1}∗ → Z∗

n, H1 : {0, 1}∗ × Z∗
n → Zodd

n ,
H2 : {0, 1}l × Z∗

n → Zodd
n and H3 : Z∗

n × {0, 1}∗ × {0, 1}∗ → {0, 1}l+|Z∗n|, where l is the size of the
message.

– Now, KGC publicizes the system parameters, params = 〈n, H,H1,H2,H3〉 and keeps the factors of
n, namely p and q as the master private key.

Partial Key Extract: This algorithm is executed by the KGC and upon receiving the identity IDA of a
user A the KGC performs the following to generate the corresponding partial private key dA.
– Chooses xA ∈R Zodd

n .
– Computes gA = H(IDA).
– Computes the partial public key PPKA = gxA

A
– Computes the value eA = H1(IDA, PPKA).
– Computes dA such that eAdA ≡ 1 mod φ(n) and sends the partial private key sA = xA + dA mod

φ(n) and the partial public key PPKA to the user through a secure channel.
Set Private Key: On receiving the partial private key the user with identity IDA does the following to

generate his secret key.
– Chooses two primes PA and QA, such that PA = 2P

′

A + 1 and QA = 2Q
′

A + 1, where P
′

A and Q
′

A are
also primes.

– Computes NA = PAQA and the Euler’s totient function φ(NA) = (PA − 1)(QA − 1).
– Chooses êA ∈R Zodd

NA
as the user public key and computes d̂A ≡ ê−1

A mod φ(NA).
– Sets the private key as DA = 〈D(1)

A , D(2)
A , D(3)

A , D(4)
A 〉 = 〈sA, d̂A, PA, QA〉.

Set Public Key: The user with identity IDA computes the public key corresponding to his private key as

PKA = 〈PK(1)
A , PK(2)

A , PK(3)
A , PK(4)

A 〉 = 〈PPKA, g
D(1)

A
A , êA, NA〉 and makes it public.

Note that gxA
A was sent by KCG to the user while setting IDA’s partial private key. The validity of the

public key can be publicly verified using the following verification test:
– Compute eA = H1(IDA, PK(1)

A ) and gA = H(IDA).
– Check whether (PK(2)

A )eA
?= (PK(1)

A )eAgA
Encryption: To encrypt a message m to a user with identity IDA, one has to perform the following steps:

– Check the validity of the public key corresponding to IDA.
– Choose r ∈R Zodd

n and ĝ ∈R Z∗
NA

.
– Compute eA = H1(IDA, PK(1)

A ), gA = H(IDA) and h = H2(m, r).
– Compute c1 = gh

A, c2 = ĝPK(3)
A mod NA and c3 = (m‖r)⊕H3

(
(PK(1)

A )heA , ĝ, IDA

)
.

Now, σ = (c1, c2, c3) is send as the ciphertext to the user A.
Decryption: The receiver with identity IDA does the following to decrypt a ciphertext σ = (c1, c2, c3):

– Computes k1 =
(c1)D(1)

A eA

c1
and k2 = (c2)D(2)

A mod NA.

– Retrieves (m‖r) = H3 (k1, k2, IDA)⊕ c3.
– Computes h′ = H2(m, r) and checks whether c1

?= gh
A.

User A accepts the message only if the above check holds.

Correctness of the scheme: During decryption there are two key components in the computation of the H3

hash function, namely k1 and k2. The correctness for the first component is shown below:

k1 =
(c1)D(1)

A eA

c1
=

(gh
A)(xA+dA)eA

gh
A

=
(gxA+dA

A )heA

gh
A

=
gxAheA+dAheA

A

gh
A

=
gxAheA+h

A

gh
A

(since dAeA ≡ 1 mod φ(n))

= gxAheA
A = (PK(1)

A )heA

The correctness for the second component follows, because,

k2 = (c1)D(2)
A mod NA = (ĝêA)d̂A mod NA=ĝ (Since êAd̂A ≡ 1 mod φ(NA))



Confidentiality against Type-I Adversary:

Theorem 3. Our certificateless public key encryption scheme RSA-CLE2 is IND-RSA-CLE2-CCA2-I secure
in the random oracle model, if the RSA problem is intractable in Z∗

n, where p, q, (p− 1)/2 and (q− 1)/2 are
large prime numbers.

The proof for this theorem is similar to that of the Type-I proof of RSA-CLE1 (IND-RSA-CLE1-CCA2-I).

Confidentiality against Type-II Adversary:

Theorem 4. Our certificateless public key encryption scheme RSA-CLE2 is IND-RSA-CLE2-CCA2-II se-
cure in the random oracle model, if the RSA problem is intractable in Z∗

N , where N = PQ and P , Q,
(P − 1)/2, (Q− 1)/2 are large prime numbers.

Proof: Suppose an adversary AII is capable of breaking the IND-RSA-CLE2-CCA2-II security of our RSA-
CLE2 scheme and a challenger C is challenged with an instance of the RSA problem say 〈N, ê, b〉, where
N is a composite number with two big prime factors P and Q, (P − 1)/2 and (Q − 1)/2 are also primes,
ê ∈R Zodd

N and b ∈ Z∗
N . C can make use of AII to compute a, such that aê ≡ b mod N , by playing the

following interactive game with AII . It is to be noted that both P and Q are not known to C.
Setup: C begins the game by setting up the system parameters as in the IND-RSA-CLE2-CCA2-II scheme.
C chooses two big primes p and q, computes n = pq and sends params = 〈n〉 and, p and q as the master
private key to AII . C also designs the four hash functions H, H1, H2 and H3 as random oracles OH , OH1 ,
OH2 and OH3 . C maintains three lists L, L1, L2 and L3 in order to consistently respond to the queries to
the random oracles OH , OH1 , OH2 and OH3 respectively and to maintain the consistency of the private key
request and public key request oracles, C maintains lists LS and LP respectively.
Phase I: AII performs a series of queries to the oracles provided by C. The descriptions of the oracles and
the responses given by C to the corresponding oracle queries by AII are described below. We assume that
OH(.) oracle is queried with IDi as input, before any other oracle is queried with the corresponding identity,
IDi as one of the input parameters.
OH(IDi): We will make a simplifying assumption that AII queries the OH oracle with distinct identities in
each query. If the same identity is repeatedly queried to this oracle, by definition, the oracle consults the list
L and gives the same response. Thus, we assume that AII asks qH distinct queries for qH distinct identities.
C selects a random index γ, where 1 ≤ γ ≤ qH and C does not reveal γ to AII . When AII generates the γth

query on IDγ , C fixes IDγ as target identity for the challenge phase.
In order to answer a query to the OH oracle, C checks whether a tuple of the form 〈IDi, gi〉 exists in

the list L and if a tuple of this form exists, C returns the corresponding gi. If it does not exist, C chooses
gi ∈R Z∗

n, adds the tuple 〈IDi, gi〉 to the list L and returns gi to AII .
OH1(IDi, g

xi
i ): To respond to this query, C checks whether a tuple of the form 〈IDi, g

xi
i , ei〉 exists in the list

L1. If it exists, C returns the corresponding ei, else C chooses ei ∈R Zodd
n , adds the tuple 〈IDi, g

xi
i , ei〉 to the

list L1 and returns ei to AII .
OH2(m, r): To respond to this query, C checks whether a tuple of the form 〈m, r, h〉 exists in the list L2. If
a tuple of this form exists, C returns the corresponding h else chooses h ∈R Zodd

n , adds the tuple 〈m, r, h〉 to
the list L2 and returns h to AII .
OH3(k1, k2, IDi): To respond to this query, C checks whether a tuple of the form 〈k1, k2, IDi, h3〉 exists in
the list L3. If a tuple of this form exists, C returns the corresponding h3 else retrieves Ni corresponding to
IDi from the list LP , chooses h3 ∈R {0, 1}l+|Z∗Ni

|, adds the tuple 〈k1, k2, IDi, h3〉 to the list L3 and returns
h3 to AII .
OPartialKeyExtract(IDi): To respond to this query, C does the following: C checks whether a tuple of the
form 〈IDi, xi, di, si, g

xi
i , d̂i, Pi, Qi〉 exists in list LS .

– If it exists then, C outputs the corresponding si as the partial private key and PPKi = gxi
i as the partial

public key of the identity IDi.
– If a tuple does not exist then, C performs the following:

• Chooses xi, ei ∈R Zodd
n .

• Retrieves the tuple 〈IDi, gi〉 from the list L.



• Computes gxi
i , di = e−1

i mod φ(n) (Note that this is possible because C knows the prime factors of
n) and si = xi + di

• Stores the tuple 〈IDi, xi, di, si, g
xi
i ,−,−,−, 〉 in the list LS and the tuple 〈IDi, g

xi
i , ei〉 in the list L1.

• Stores the tuple 〈IDi, g
xi
i , gsi

i , ei,−,−, 〉 in the list LP .
• Returns si as the partial private key and PPKi = gxi

i as the partial public key corresponding to the
identity IDi.

OExtractSecretV alue(IDi): C checks whether i
?= γ:

– If i = γ then, C aborts the game.
– If i ,= γ then, C checks for a tuple of the form 〈IDi, xi, di, si, g

xi
i , d̂i, Pi, Qi〉 in list LS and returns the

corresponding d̂i, Pi, Qi as the secret values corresponding to the identity IDi. If the entries corresponding
to (d̂i, Pi, Qi) in the tuple are (′′−”,′′−”,′′−”) then, C performs the following:
• Chooses two big primes Pi and Qi and computes Ni = PiQi,
• Chooses d̂i ∈R Z∗

Ni
and computes êi ≡ d̂−1

i mod φ(Ni),
• Updates the corresponding tuple in the list LP as 〈IDi, g

xi
i , gsi

i , ei, êi, Ni, 〉,
• Updates the corresponding tuple in the list LS as 〈IDi, xi, di, si, g

xi
i , d̂i, Pi, Qi〉 and

• Returns (d̂i, Pi, Qi) as the secret values to AII .

ORequestPublicKey(IDi): We assume that this query is executed only after OPartialKeyExtract(IDi) and
OExtractSecretV alue(IDi) queries. C performs the following to respond to this query:

– If i ,= γ then an entry of the form 〈IDi, g
xi
i , gsi

i , ei, êi, Ni, 〉 must exist in the list LP , C returns
〈gxi

i , gsi
i , êi, Ni〉 as the public key corresponding to the identity IDi.

– If i = γ, C performs the following:
• Retrieves the tuples 〈IDi, gi〉, 〈IDi, g

xi
i , ei〉 and 〈IDi, xi, di, si, g

xi
i ,−,−,−〉 from the lists L, L1 and

LS respectively.
• C sets PKi = 〈PK(1)

i , PK(2)
i , PK(3)

i , PK(4)
i 〉 = 〈gxi

i , gsi
i , ê, N〉. (It is to be noted that ê and N are

taken from the RSA problem instance received by C.)
• C now adds the tuple 〈IDi, g

xi
i , gsi

i , ei, ê, N〉 into the list LP and returns 〈gxi
i , gsi

i , ê, N〉 as the public
key corresponding to the identity IDi.

OReplacePublicKey(IDi, PK
′

i): To replace the public key of IDi with a new public key PK
′

i = 〈PK
′(1)
i ,

PK
′(2)
i , PK

′(3)
i , PK

′(4)
i 〉, chosen by AII , C checks whether i

?= γ and does the following:

– If i = γ then, C aborts the game.
– If i ,= γ then, updates the corresponding tuples in the list LP as 〈IDi, PK

′(1)
i , PK

′(2)
i , ei, PK

′(3)
i PK

′(4)
i 〉,

only if (PK
′(2)
i )ei = (PK

′(1)
i )eigi, where gi corresponding to IDi is retrieved from the list L.

Note: This oracle was not considered in both [18] and [11] for Type-II adversary.
ODecryption(σ, IDi, PKi): C performs the following to decrypt the ciphertext σ = 〈c1, c2, c3〉:

– If i ,= γ, C performs decryption in the normal way since C knows the private key corresponding to IDi.
– If i = γ, C performs the following to decrypt the ciphertext σ = 〈c1, c2, c3〉:

• Retrieves the tuple 〈IDi, g
xi
i , ei〉 from the list L1.

• For each 〈m, r, h〉 ∈ L2 list performs the following:
∗ Checks whether gh

i
?= c1.

∗ If True, computes k1 = (PK(1)
i )eih.

∗ Checks in list L3, for the tuples of the form 〈k1, k2, IDi, h3〉 (Note that there may be more than
one tuple in the list with the same k1). Picks up the tuple for which the value kei

2 = c2 and
retrieves the corresponding h3 value. Checks whether c3 ⊕ h3

?= (m‖r), where m, r is retrieved
from the list L2.

∗ If True, outputs m as the message.
• If no tuple satisfies all the above tests, returns Invalid.



Challenge: At the end of Phase I , AII gives C two messages m0,m1 of equal length and an identity ID∗

for the challenge. C aborts the game if ID∗ ,= IDγ , else C randomly chooses a bit δ ∈R {0, 1} and computes
a ciphertext σ∗ with IDγ as the receiver by performing the following steps:

– Chooses h ∈ Zodd
n

– Computes c∗1 = gh
i .

– Sets c∗2 = b (Here b is taken from the RSA problem instance.)
– Choose c∗3 ∈R {0, 1}l+|Z∗n|.

Now, σ∗ = 〈c∗1, c∗2, c∗3〉 is sent to AII as the challenge ciphertext.
Phase II: Again AII can perform polynomially bounded number of queries to the oracles provided by C
with the following conditions:

– AII should not have queried the decryption oracle with (σ∗, PKγ , IDγ) as input. (It is to be noted that
PKγ is the public key corresponding to IDγ during the challenge phase. AII is allowed to query the
decryption oracle with (σ∗, PK∗, IDγ) as input, ∀PK∗ ,= PKγ).

– AII should not have queried the secret value corresponding to IDγ .
– AII should not have replaced the public key corresponding to the identity IDγ .

Guess: At the end of Phase II , AII produces a bit δ′ to C but C ignores the response and performs the
following to output the solution to the RSA problem instance.

– Randomly picks a k2 value from the list L3 and outputs it as the solution to the RSA problem instance.

Correctness: Below, we show that the k2 value obtained through the above step is indeed a, such that aê = b.

– The public key components PK(3)
γ and PK(4)

γ corresponding to IDγ were set to be ê and N by C during
the request public key query, therefore the private key component D(2)

γ = d̂ mod N , such that d̂ ≡ ê mod
φ(N) (It is to be noted that C does not know d̂).

– C has set the c∗2 component of the challenge ciphertext σ∗ as b during the challenge phase.
– In order to decrypt the ciphertext σ∗, AII should have computed a value (c∗2)

D(2)
γ mod N and queried

the H3 oracle with it as the k2 component.
– We show that (c∗2)

D(2)
γ mod N = a,

(c∗2)
D(2)

γ mod N= bd̂ mod N = aêd̂ mod N = a mod N (Since d̂ ≡ ê mod φ(N))

Thus, C obtains the solution to the RSA problem with almost the same advantage of AII in the IND-RSA-
CLE2-CCA2-II game. !
Analysis: We now derive the advantage of C breaking the CCDH problem using the adversary AII . The
simulations of H, H1, H2 and H3 clearly shows that the hash oracles are perfectly random. Let ε be the
advantage of AII in winning the IND-RSA-CLE2-CCA2-I game.
The events in which C aborts the game and the respective probabilities are given below:

1. E1 - The event in which C aborts when AII queries the secret value corresponding to IDγ .
2. E2 - The event in which C aborts when AII replaces the public key corresponding to IDγ .
3. E3 - The event in which IDγ is not chosen as the target identity by AII for the challenge.

Suppose AI has made qH number of OH queries, qsv number of OExtractSecretV alue queries, qrpk number of
identities for which OReplacePublicKey queries and qsrk be the total number of identities for which the secret
value is extracted and the public key is replaced, then:

Pr[E1]=
qsv

qH
, Pr[E2]=

qrpk

qH
and Pr[E3]= 1− 1

qH − qsv
.

Therefore,

Pr[¬abort]=[¬E1 ∧ ¬E2 ∧ ¬E3]

=
[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1−

[
1− 1

qH − qsrk

]]
=

[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1

qH − qsrk

]
.

Therefore, the advantage of C solving the CCDH problem is ε′ ≥
(

ε.

[
1− qsv

qH

]
.

[
1− qrpk

qH

]
.

[
1

qH − qsrk

])
.



5 Comparison Study

We compare our schemes with the two existing secure schemes [11] and [18]. We compare the level of security
offered by each schemes and the assumptions used to prove the security against the two adversaries. The
Type-I security of the scheme in [11] is based on RSA assumption and thus operates on composite groups and
is CPA secure against both Type-I and Type-II adversaries. The Type-II security is based on the composite
computational Diffie Hellman Assumption (CCDH). Both Type-I and Type-II securities of the scheme in [18]
are based on the CDH assumption in multiplicative groups with prime order. Our schemes are based on RSA
assumption and operates on composite groups. The major operations in all the schemes are multiplication
and exponentiation, still, we do not consider them for the comparison due to the fact that the security
parameters are different for RSA based schemes and schemes based on multiplicative groups with prime
order.

Scheme Security Assumption
Type-I Type II

Lai et al. [11] CPA RSA CCDH
Sun et al. [18] CCA2 CDH CDH
RSA-CLE1 CCA2 RSA CCDH
RSA-CLE2 CCA2 RSA RSA

Table-1: Comparison of level of security and assumptions
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7 Conclusion

In this paper, we have proposed two CCA2 secure certificateless encryption schemes. For the first scheme the
Type-I security is based on the RSA assumption and Type-II security is based on the composite computa-
tional Diffie Hellman assumption. Both Type-I and Type-II securities of our second scheme are based on the
RSA assumption. Our schemes are quite novel and based on entirely different key construct and protocol.
It should be further noted that the existing schemes [11] and [18] consider a security model in which the
Type-I adversary is not provided the extract secret value oracle, for the target identity. Our security model is
stronger because we permit the extract secret value oracle corresponding to the target identity to the Type-I
adversary. In fact, the scheme in [11] is not secure with this oracle access. However, in our security model the
secret value corresponding to the target identity is given to the Type-I adversary, which makes it stronger.
Moreover, we provide strong decryption oracle for Type-I adversary, i.e, the decryption of a ciphertext is
provided by the challenger even if the public key of the corresponding user is replaced after the generation
of the ciphertext. Thus we provide a CCA2 secure CLE whose security is partly based on RSA and another
scheme which is fully based on RSA assumption. We have proved the security of our schemes in the random
oracle model. We leave it an interesting open problem to design a CLE scheme in the original model [1] with
the security of the scheme fully based on RSA assumption.
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