4 research outputs found

    Ensuring Reliable Measurements In Remote Aquatic Sensor Networks

    Full text link
    A flood monitoring system comprises an extensive network of water sensors, a bundle of forecast simulations models, and a decision-support information system. A cascade of uncertainties present in each part of the system affects a reliable flood alert and response. The timeliness and quality of data gathering, used subsequently in forecasting models, is affected by the pervasive nature of the monitoring network where aquatic sensors are vulnerable to external disturbances affecting the accuracy of data acquisition. Existing solutions for aquatic monitoring are composed by heterogeneous sensors usually unable to ensure reliable measurements in complex scenarios, due to specific effects of each technology as transitional loss of availability, errors, limits of coverage, etc. In this paper, we introduce a more general study of all aspects of the criticality of sensor networks in the aquatic monitoring process, and we motivate for the need of reliable data collection in harsh coastal and marine environments. It is presented an overview of the main challenges such as the sensors power life, sensor hardware compatibility, reliability and long-range communication. These issues need to be addressed to improve the robustness of the sensors measurements. The development of solutions to automatically adjust the sensors measurements to each disturbance accordingly would provide an important increase on the quality of the measurements, thus supplying other parts of a flood monitoring system with dependable monitoring data. Also, with the purpose of providing software solutions to hardware failures, we introduce context-awareness techniques such as data processing, filtering and sensor fusion methods that were applied to a real working monitoring network with several proprietary probes (measuring conductivity, temperature, depth and various water quality parameters) in distant sites in Portugal. The goal is to assess the best technique to overcome each detected faulty measurement without compromising the time frame of the monitoring process

    Desenho de modelos neuronais para a deteção de sismos

    Get PDF
    A performance dos detetores sísmicos atualmente utilizados pode e deve ser melhorada. Atualmente existem vários algoritmos para a deteção de sismos de forma automática, desde os sistemas simples baseados em STA/LTA, aos mais sofisticados baseados em reconhecimento de padrões. Este estudo pretende dar continuidade ao desenvolvimento de uma abordagem de deteção de eventos sísmicos ao nível da estação local, utilizando uma técnica bastante conhecida, chamada Máquina de Vetores de Suporte (SVM). SVM é amplamente utilizada em problemas de classificação, devido a sua boa capacidade de generalização. Nesta experiência, a técnica baseada em SVM é aplicada em diferentes modos de operações. Os resultados mostraram que a técnica proposta dá excelentes resultados em termos de sensibilidade e especificidade, além de exigir um tempo de deteção suficientemente pequeno para ser utilizado num sistema de aviso precoce (early-warning system). Começamos pela classificação de dados de forma Off-line, seguido da validação do classificador desenvolvido. Posteriormente, o processamento de dados é executado de forma contínua (On-line). Os algoritmos foram avaliados em conjuntos de dados reais, provenientes de estações sísmicas da Rede de Vigilância Sísmica de Portugal, e em aplicações reais da área de Sismologia (simulação de funcionamento em ambiente real). Apesar de apenas duas estações serem consideradas, verificou-se que utilizando a combinação de detetores, consegue-se uma percentagem de deteção idêntica para quando utilizado um único modelo (Abordagem OR) e o número de falsos alarmes para a combinação de modelos é quase inexistente (Abordagem AND). Os resultados obtidos abrem várias possibilidades de pesquisas futuras

    A support vector machine seismic detector for early-warning applications

    No full text
    This paper extends a Support Vector Machine (SVM) approach for the detection of seismic events, at the level of a seismic station. In previous works, it was shown that this approach produced excellent results, in terms of the Recall and Specificity measures, whether applied off-line or in a continuous scheme. The drawback was the time taken for achieving the detection, too large to be applied in a Early-Warning System (EWS). This paper shows that, by using alternative input features, a similar performance can be obtained, with a significant reduction in detection time. Additionally, it is experimentally proved that, whether off-line or in continuous operation, the best results are obtained when the SVM detector is trained with data originated from the respective seismic station

    Artificial neural network models: data selection and online adaptation

    Get PDF
    Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings have the biggest proportion in energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. Hence this PhD was intended towards managing the energy consumed by Heating, Ventilating and Air Conditioning (HVAC) systems in buildings benefiting from Model Predictive Control (MPC) technique. To achieve this goal, artificial intelligence models such as neural networks and Support Vector Machines (SVM) have been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not noise-free. In this PhD, Radial Basis Function Neural Networks (RBFNN) as a promising class of Artificial Neural Networks (ANN) were considered to model a sequence of time series processes where the RBFNN models were built using Multi Objective Genetic Algorithm (MOGA) as a design platform. Regarding the design of such models, two main challenges were tackled; data selection and model adaptation. Since RBFNNs are data driven models, the performance of such models relies, to a good extent, on selecting proper data throughout the design phase, covering the whole input-output range in which they will be employed. The convex hull algorithms can be applied as methods for data selection; however the use of conventional implementations of these methods in high dimensions, due to their high complexity, is not feasible. As the first phase of this PhD, a new randomized approximation convex hull algorithm called ApproxHull was proposed for high dimensions so that it can be used in an acceptable execution time, and with low memory requirements. Simulation results showed that applying ApproxHull as a filter data selection method (i.e., unsupervised data selection method) could improve the performance of the classification and regression models, in comparison with random data selection method. In addition, ApproxHull was employed in real applications in terms of three case studies. The first two were in association with applying predictive models for energy saving. The last case study was related to segmentation of lesion areas in brain Computed Tomography (CT) images. The evaluation results showed that applying ApproxHull in MOGA could result in models with an acceptable level of accuracy. Specifically, the results obtained from the third case study demonstrated that ApproxHull is capable of being applied on large size data sets in high dimensions. Besides the random selection method, it was also compared with an entropy based unsupervised data selection method and a hybrid method involving ApproxHull and the entropy based method. Based on the simulation results, for most cases, ApproxHull and the hybrid method achieved a better performance than the others. In the second phase of this PhD, a new convex-hull-based sliding window online adaptation method was proposed. The goal was to update the offline predictive RBFNN models used in HVAC MPC technique, where these models are applied to processes in which the data input-output range changes over time. The idea behind the proposed method is capturing a new arriving point at each time instant which reflects a new range of data by comparing the point with current convex hull presented via ApproxHull. In this situation the underlying model’s parameters are updated based on the new point and a sliding window of some past points. The simulation results showed that not only the proposed method could efficiently update the model while a good level of accuracy is kept but also it was comparable with other methods.Devido aos processos de industrialização e globalização o consumo de energia tem aumentado de forma contínua. A investigação sobre o consumo mostra que os edifícios consomem a maior fatia de energia. Por exemplo nos países da União Europeia essa fatia corresponde a cerca de 40% de toda a energia consumida. Assim, esta tese de Doutoramento tem um objetivo prático de contribuir para melhorar a gestão da energia consumida por sistemas Heating, Ventilating and Air Conditioning (HVAC) em edifícios, no âmbito de uma estratégia de controlo preditivo baseado em modelos. Neste contexto foram já propostos modelos baseados em redes neuronais artificiais e máquinas de vetores de suporte, para mencionar apenas alguns. Estas técnicas têm uma grande capacidade de modelar relações não-lineares entre entradas e saídas de sistemas, e são aplicáveis em ambientes de operação, que, como sabemos, estão sujeitos a várias formas de ruído. Nesta tese foram consideradas redes neuronais de função de base radial, uma técnica consolidada no contexto da modelação de séries temporais. Para desenhar essas redes foi utilizada uma ferramenta baseada num algoritmo genético multi-objectivo. Relativamente ao processo de desenho destes modelos, esta tese versa sobre dois aspetos menos estudados: a seleção de dados e a adaptação em linha dos modelos. Uma vez que as redes neuronais artificiais são modelos baseados em dados, a sua performance depende em boa medida da existência de dados apropriados e representativos do sistema/processo, que cubram toda a gama de valores que a representação entrada/saída do processo/sistema gera. Os algoritmos que determinam a figura geométrica que envolve todos os dados, denominados algoritmos convex hull, podem ser aplicados à tarefa de seleção de dados. Contudo a utilização das implementações convencionais destes algoritmos em problemas de grane dimensionalidade não é viável do ponto de vista prático. Numa primeira fase deste trabalho foi proposto um novo método randomizado de aproximação ao convex hull, cunhado com o nome ApproxHull, apropriado para conjuntos de dados de grande dimensão, de forma a ser viável do ponto de vista das aplicações práticas. Os resultados experimentais mostraram que a aplicação do ApproxHull como método de seleção de dados do tipo filtro, ou seja, não supervisionado, pode melhorar o desempenho de modelos em problemas de classificação e regressão, quando comparado com a seleção aleatória de dados. O ApproxHull foi também aplicado em três casos de estudo relativos a aplicações reais. Nos dois primeiros casos no contexto do desenvolvimento de modelos preditivos para sistemas na área da eficiência energética. O terceiro caso de estudo consiste no desenvolvimento de modelos de classificação para uma aplicação na área da segmentação de lesões em imagens de tomografia computorizada. Os resultados revelaram que da aplicação do método proposto resultaram modelos com uma precisão aceitável. Do ponto de vista da aplicabilidade do método, os resultados mostraram que o ApproxHull pode ser utilizado em conjuntos de dados grandes e com dados de grande dimensionalidade. Para além da comparação com a seleção aleatória de dados, o método foi também comparado com um método de seleção de dados baseado no conceito de entropia e com um método híbrido que resulta da combinação do ApproxHull com o método entrópico. Com base nos resultados experimentais apurou-se que na maioria dos casos estudados o método híbrido conseguiu melhor desempenho que os restantes. Numa segunda fase do trabalho foi proposto um novo método de adaptação em linha com base no algoritmo ApproxHull e numa janela deslizante no tempo. Uma vez que os processos e sistemas na envolvente do sistema HVAC são variantes no tempo e dinâmicos, o objetivo foi aplicar o método proposto para adaptar em linha os modelos que foram primeiramente obtidos fora de linha. A ideia base do método proposto consiste em comparar cada novo par entrada/saída com o convex hull conhecido, e determinar se o novo par tem dados situados fora da gama conhecida. Nessa situação os parâmetros dos modelos são atualizados com base nesse novo ponto e num conjunto de pontos numa determinada janela temporal deslizante. Os resultados experimentais demonstraram não só que o novo método é eficiente na atualização dos modelos e em mantê-los num bom nível de precisão, mas também que era comparável a outros métodos existentes
    corecore