
HAMID REZA KHOSRAVANI 

 

 

ARTIFICIAL NEURAL NETWORK MODELS:  

DATA SELECTION AND ONLINE ADAPTATION 

 

 

 

 

 

 

 

 

 

 

UNIVERSIDADE DO ALGARVE 

Faculdade de Ciências e Tecnologia 

2017 

 

 



 

 
 

  



 

 
 

HAMID REZA KHOSRAVANI 

 

 

ARTIFICIAL NEURAL NETWORK MODELS:  

DATA SELECTION AND ONLINE ADAPTATION 

 

 

 

Doutoramento em Engenheira Informática 

(Especialidade em Inteligência Artificial) 

Trabalho efeuado sob a orientação de: 

António Eduardo de Barros Ruano e Pedro Miguel Frazão F. Ferreira 

 

 

 

UNIVERSIDADE DO ALGARVE 

Faculdade de Ciências e Tecnologia 

2017 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

ARTIFICIAL NEURAL NETWORK MODELS:  

DATA SELECTION AND ONLINE ADAPTATION 

 

Declaração de autoria de trabalho 

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados 

estão devidamente citados no texto e constam da listagem de referências incluída. 

 

_________________________________________________ 

Hamid Reza Khosravani 

 

 

 

 

Copyright: Hamid Reza Khosravani 

A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no 

Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, 

independentemente do meio utilizado, bem como de a divulgar através de repositórios 

científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de 

investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor 

respetivos. 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

To my love, Elmira 

To my parents, Parvin and Mehdi 

To my brother, Ehsan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Acknowledgements 

Undoubtedly doing this PhD would have not been possible without the sincere support and 

guidance that I received from many people throughout four years studying at the University of 

Algarve. First of all, I would like to express my special thanks to my supervisors Prof. 

Antonio Ruano and Prof. Pedro Ferreira for all their precious advices and encouragements 

allowing me to grow as a research scientist. They were not only continuously supporting me 

but also gave me a chance to find myself in academic atmosphere.  

 

I greatly appreciate the Erasmus Mundus SALAM scholarship program for kindly funding me 

towards this PhD. I also would like to particularly acknowledge Prof. Hamid Shahbazkia as 

the coordinator of SALAM scholarship program for all his supports during these years. 

 

Many thanks also to my friend, Sergio Silva, as the CSI laboratory’s administrator for his 

non-stop help and support in providing all stuffs that I needed to proceed my PhD. I also 

would like to appreciate Prof. Eslam Nazemi who was one the most influent people in my 

academic life for his great guidance towards my PhD. 

 

My deepest acknowledgement goes to my beloved, resilient and patient wife Elmira for 

bearing and accompanying me shoulder to shoulder in ups and downs throughout last four 

years. 

 

Last but not least, I would like to express my special appreciate to my parents and my brother 

Ehsan for their ever support and encouragement during my life that enabled me to achieve 

this goal. 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

I 
 

Abstract 

Energy consumption has been increasing steadily due to globalization and industrialization. 

Studies have shown that buildings have the biggest proportion in energy consumption; for 

example in European Union countries, energy consumption in buildings represents around 

40% of the total energy consumption. Hence this PhD was intended towards managing the 

energy consumed by Heating, Ventilating and Air Conditioning (HVAC) systems in buildings 

benefiting from Model Predictive Control (MPC) technique. To achieve this goal, artificial 

intelligence models such as neural networks and Support Vector Machines (SVM) have been 

proposed because of their high potential capabilities of performing accurate nonlinear 

mappings between inputs and outputs in real environments which are not noise-free. In this 

PhD, Radial Basis Function Neural Networks (RBFNN) as a promising class of Artificial 

Neural Networks (ANN) were considered to model a sequence of time series processes where 

the RBFNN models were built using Multi Objective Genetic Algorithm (MOGA) as a design 

platform. Regarding the design of such models, two main challenges were tackled; data 

selection and model adaptation. 

Since RBFNNs are data driven models, the performance of such models relies, to a good 

extent, on selecting proper data throughout the design phase, covering the whole input-output 

range in which they will be employed. The convex hull algorithms can be applied as methods 

for data selection; however the use of conventional implementations of these methods in high 

dimensions, due to their high complexity, is not feasible. As the first phase of this PhD, a new 

randomized approximation convex hull algorithm called ApproxHull was proposed for high 

dimensions so that it can be used in an acceptable execution time, and with low memory 

requirements. Simulation results showed that applying ApproxHull as a filter data selection 

method (i.e., unsupervised data selection method) could improve the performance of the 

classification and regression models, in comparison with random data selection method. In 

addition, ApproxHull was employed in real applications in terms of three case studies. The 

first two were in association with applying predictive models for energy saving. The last case 

study was related to segmentation of lesion areas in brain Computed Tomography (CT) 

images. The evaluation results showed that applying ApproxHull in MOGA could result in 

models with an acceptable level of accuracy. Specifically, the results obtained from the third 

case study demonstrated that ApproxHull is capable of being applied on large size data sets in 

high dimensions. Besides the random selection method, it was also compared with an entropy 

based unsupervised data selection method and a hybrid method involving ApproxHull and the 
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entropy based method. Based on the simulation results, for most cases, ApproxHull and the 

hybrid method achieved a better performance than the others. 

 

In the second phase of this PhD, a new convex-hull-based sliding window online adaptation 

method was proposed. The goal was to update the offline predictive RBFNN models used in 

HVAC MPC technique, where these models are applied to processes in which the data input-

output range changes over time. The idea behind the proposed method is capturing a new 

arriving point at each time instant which reflects a new range of data by comparing the point 

with current convex hull presented via ApproxHull. In this situation the underlying model’s 

parameters are updated based on the new point and a sliding window of some past points. The 

simulation results showed that not only the proposed method could efficiently update the 

model while a good level of accuracy is kept but also it was comparable with other methods. 

 

Keywords: Neural Networks; Multi-Objective Genetic Algorithm; Data Selection; Online 

Adaptation. 
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Resumo 

Devido aos processos de industrialização e globalização o consumo de energia tem 

aumentado de forma contínua. A investigação sobre o consumo mostra que os edifícios 

consomem a maior fatia de energia. Por exemplo nos países da União Europeia essa fatia 

corresponde a cerca de 40% de toda a energia consumida. Assim, esta tese de Doutoramento 

tem um objetivo prático de contribuir para melhorar a gestão da energia consumida por 

sistemas Heating, Ventilating and Air Conditioning (HVAC) em edifícios, no âmbito de uma 

estratégia de controlo preditivo baseado em modelos. Neste contexto foram já propostos 

modelos baseados em redes neuronais artificiais e máquinas de vetores de suporte, para 

mencionar apenas alguns. Estas técnicas têm uma grande capacidade de modelar relações não-

lineares entre entradas e saídas de sistemas, e são aplicáveis em ambientes de operação, que, 

como sabemos, estão sujeitos a várias formas de ruído. Nesta tese foram consideradas redes 

neuronais de função de base radial, uma técnica consolidada no contexto da modelação de 

séries temporais. Para desenhar essas redes foi utilizada uma ferramenta baseada num 

algoritmo genético multi-objectivo. Relativamente ao processo de desenho destes modelos, 

esta tese versa sobre dois aspetos menos estudados: a seleção de dados e a adaptação em linha 

dos modelos. 

Uma vez que as redes neuronais artificiais são modelos baseados em dados, a sua 

performance depende em boa medida da existência de dados apropriados e representativos do 

sistema/processo, que cubram toda a gama de valores que a representação entrada/saída do 

processo/sistema gera. Os algoritmos que determinam a figura geométrica que envolve todos 

os dados, denominados algoritmos convex hull, podem ser aplicados à tarefa de seleção de 

dados. Contudo a utilização das implementações convencionais destes algoritmos em 

problemas de grane dimensionalidade não é viável do ponto de vista prático. Numa primeira 

fase deste trabalho foi proposto um novo método randomizado de aproximação ao convex 

hull, cunhado com o nome ApproxHull, apropriado para conjuntos de dados de grande 

dimensão, de forma a ser viável do ponto de vista das aplicações práticas. Os resultados 

experimentais mostraram que a aplicação do ApproxHull como método de seleção de dados 

do tipo filtro, ou seja, não supervisionado, pode melhorar o desempenho de modelos em 

problemas de classificação e regressão, quando comparado com a seleção aleatória de dados. 

O ApproxHull foi também aplicado em três casos de estudo relativos a aplicações reais. Nos 

dois primeiros casos no contexto do desenvolvimento de modelos preditivos para sistemas na 

área da eficiência energética. O terceiro caso de estudo consiste no desenvolvimento de 
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modelos de classificação para uma aplicação na área da segmentação de lesões em imagens de 

tomografia computorizada. Os resultados revelaram que da aplicação do método proposto 

resultaram modelos com uma precisão aceitável. Do ponto de vista da aplicabilidade do 

método, os resultados mostraram que o ApproxHull pode ser utilizado em conjuntos de dados 

grandes e com dados de grande dimensionalidade. Para além da comparação com a seleção 

aleatória de dados, o método foi também comparado com um método de seleção de dados 

baseado no conceito de entropia e com um método híbrido que resulta da combinação do 

ApproxHull com o método entrópico. Com base nos resultados experimentais apurou-se que 

na maioria dos casos estudados o método híbrido conseguiu melhor desempenho que os 

restantes. 

Numa segunda fase do trabalho foi proposto um novo método de adaptação em linha com 

base no algoritmo ApproxHull e numa janela deslizante no tempo. Uma vez que os processos 

e sistemas na envolvente do sistema HVAC são variantes no tempo e dinâmicos, o objetivo 

foi aplicar o método proposto para adaptar em linha os modelos que foram primeiramente 

obtidos fora de linha. A ideia base do método proposto consiste em comparar cada novo par 

entrada/saída com o convex hull conhecido, e determinar se o novo par tem dados situados 

fora da gama conhecida. Nessa situação os parâmetros dos modelos são atualizados com base 

nesse novo ponto e num conjunto de pontos numa determinada janela temporal deslizante. Os 

resultados experimentais demonstraram não só que o novo método é eficiente na atualização 

dos modelos e em mantê-los num bom nível de precisão, mas também que era comparável a 

outros métodos existentes. 

 

Palavras-chave: Redes Neuronais; Algoritmo Genético Multi-Objectivo; Seleção de dados; 

Adaptação on-line. 
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1. Introduction 

1.1. Motivation 

In European Union countries, primary energy consumption in buildings represents about 40% 

of the total energy consumption, and, with variations from country to country, half of this 

energy is spent for indoor climate conditioning. Advanced techniques for the control of 

HVAC systems, and in particular, Model Predictive Control (MPC), offer enormous potential 

for huge savings in building energy consumption. Regarding the application of MPC 

technique in energy sectors, authors in [1] have shown in simulations that savings of energy in 

the order of 30% could be obtained, while maintaining a convenient temperature regulation. 

In a more recent work [2, 3], authors were able to control, in real-time, the air conditioning 

systems of several rooms in a building. Average savings of 50% were obtained, in summer 

and winter conditions, while maintaining thermal comfort. The MPC technique uses several 

ANN models. There are already some available state-of-the-art tools for designing neural 

network models [4], in terms of input selection, model structure determination and parameter 

estimation. On the other hand, as ANNs are data driven models, the data used to design the 

models has a direct influence on the models’ performance and, ultimately, on the performance 

of the HVAC MPC technique. It is very important that the data which is selected to design 

ANN models involve the boundary samples; those samples that reflect the whole input-output 

range in which the underlying process is modeled. To catch such samples out of the whole 

data set, convex hull algorithms [5-12] as one of the fundamental concepts in computational 

geometry, can be applied (i.e., please refer to Chapter 3). 

The standard convex hull algorithms suffer from both time and space in high dimensions (i.e., 

more than three dimensions). They take 𝑂(𝑛⌊
𝑑

2
⌋) time and space in the worst case where 𝑛 and 

𝑑 denote the number of samples and the dimension, respectively. Hence this problem prevents 

us from employing convex hull algorithms in real applications where we are interested in 

applying them to data sets containing larger numbers of samples and higher dimensions. The 

first phase of this PhD proposes a state-of-the-art approach to tackle the challenges of 

standard convex hull algorithms in high dimensions. 

Regarding the HVAC MPC technique, the processes involved are time-varying and dynamic. 

For instance, models designed with winter data will have their performance degraded on 

summer data. Furthermore, the temperature in a room depends on the occupancy and on 

equipment being used in the room. Whether the variation has seasonal and/or dynamic 
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origins, it causes changes in the input-output range of the data applied to the models. To deal 

with these problems, an online adaptation method is required to update the model parameters. 

The adaptation method should be capable of capturing the new input-output ranges presented 

by the newly arrived samples throughout time. Based on that newly selected data, the models 

should become efficiently updated and appropriate for a real time application. The second 

phase of this PhD is one step towards proposing a state-of-the-art online adaptation method. 

 

1.2. Main contributions 

As the first phase of this PhD, a new randomized approximation convex hull algorithm in 

high dimensions coined ApproxHull was proposed. The performance of ApproxHull as a filter 

type data selection method was evaluated for a number of classification and regression 

problems. This was done by comparing ApproxHull with other data selection methods 

including random selection, an entropy based unsupervised method [13] and a hybrid method 

involving ApproxHull and the entropy based method. Since the main goal of this PhD was 

employing ApproxHull to construct proper data sets for designing ANN models for the 

HVAC MPC technique, it was exploited in two related case studies.  

In the first case study [14, 15], ApproxHull was used to provide data sets for designing 

several time series predictive RBFNN models to forecast the one-step-ahead measures of 

outside climate variables, including outside air temperature, outside relative humidity and 

outside solar radiation, so that all models were integrated in an intelligent weather station. 

Additionally, another series of RBFNN models were also designed to predict the one-step-

ahead of inside climate variables which have a significant role in the HVAC MPC technique. 

In order to design these models, the Multi-Objective Genetic Algorithm was applied to select 

model structures optimized for the specific task. 

The second case study resulted from a collaboration between the University of Algarve in 

Portugal and the University of Almeria in Spain. It was aimed at the development of time 

series predictive RBFNN models to forecast the one-step-ahead value of the electricity power 

demand for a building inside the campus of the University of Almeria. As for the previous 

case study, ApproxHull was applied to supply data sets for the MOGA model design 

framework. In this case study, a selected MOGA generated model was compared to a RBFNN 

model designed by means of statistical and analytical tools.  

ApproxHull was also exploited by other researchers in the field of biomedical image 

processing where the goal was presenting an RBFNN based diagnosis system for automatic 
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identification of Cerebral Vascular Accident (CVA) through analysis of Computed 

Tomographic images. In this case study, ApproxHull was applied on a large size data set in 

high dimensions (i.e., 1,867,602 samples with 52 features). The simulation results obtained 

from the case studies showed that not only the proposed method is capable of being applied in 

real applications but also its performance is comparable with other data selection methods. 

In the second phase of this PhD a new convex-hull-based sliding window online adaptation 

method was proposed. Since at a given time instant the current convex hull reflects the whole 

input-output range of all observed data, this method enables the comparison of newly arrived 

samples to the current convex hull to find out whether it presents data outside the known 

range. In case it does, the current convex hull is updated and consequently the training sliding 

window is also updated. Afterwards, the model is adjusted based on the modified sliding 

window. To verify the proposed online adaptation method, a time series predictive RBFNN 

model for outside air temperature was considered. The simulation results demonstrated that 

not only the model could be efficiently updated, but it could also preserve relevant input-

output pairs that had been presented over time. 

As a result of the efforts carried out in this PhD, the following articles were published. 

 

1. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M. 

G. & FERREIRA, P. M. 2014. Seismic detection using support vector machines. 

Neurocomputing, 135, 273-283. 

 

2. MESTRE, G., RUANO, A., DUARTE, H., SILVA, S., KHOSRAVANI, H., PESTEH, S., 

FERREIRA, P. M. & HORTA, R. 2015. An Intelligent Weather Station. Sensors, 15, 31005–

31022. 

 

3. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M., 

KHOSRAVANI, H. & HORTA, R. 2015. The IMBPC HVAC system: a complete MBPC 

solution for existing HVAC systems. Energy and Buildings,120, pp- 145-158 

 

4. KHOSRAVANI, H., CASTILLA, M., BERENGUEL, M., RUANO, A. & FERREIRA, P. 

M. 2016. A Comparison of Energy Consumption Prediction Models Based on Neural 

Networks of a Bioclimatic Building. Energies, 9, 57. 
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5. KHOSRAVANI, H., RUANO, A. & FERREIRA, P. M. 2016. A Convex Hull-based Data 

Selection Method for Data Driven Models. Applied Soft Computing, 47, pp. 515-533 

 

6. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M. 

G. & FERREIRA, P. M. A Support Vector Machine Seismic Detector for Early-Warning 

Applications. In: FERREIRA, P. M., ed. Intelligent Control and Automation Science (ICONS 

2013), 2-4 Sept 2013 Chengdu, China. IFAC, 400-405. 

 

7. KHOSRAVANI, H. R., RUANO, A. E. & FERREIRA, P. M. A Simple Algorithm for 

Convex Hull Determination in High Dimensions.  8th IEEE International Symposium on 

Intelligent Signal Processing (WISP 2013), Sep, 16-18, 2013 Funchal, Madeira, Portugal. 109 

- 114. 

 

8. RUANO, A., KHOSRAVANI, H. R. & FERREIRA, P. M. 2015. A Randomized 

Approximation Convex Hull Algorithm for High Dimensions. IFAC-PapersOnLine, 48, 123-

128. 

 

9. RUANO, A. E., MESTRE, G., DUARTE, H., SILVA, S., PESTEH, S., KHOSRAVANI, 

H. R., FERREIRA, P. M. & HORTA, R. A Neural-Network based Intelligent Weather 

Station.  9th IEEE International Symposium on Intelligent Signal Processing (WISP 2015), 

15-17 May 2015 Siena, Italy. 96-101. 

 

10. RUANO, A. E., SILVA, S., PESTEH, S., FERREIRA, P. M., DUARTE, H., MESTRE, 

G., KHOSRAVANI, H. R. & HORTA, R. Improving a neural networks based HVAC 

predictive control approach.  9th IEEE International Symposium on Intelligent Signal 

Processing (WISP 2015), 15-17 May 2015 Siena, Italy. 90-95. 

 

11. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M., 

KHOSRAVANI, H. & HORTA, R. PVM-based intelligent predictive control of HVAC 

systems.  4th IFAC International Conference on Intelligent Control and Automation Sciences 

(ICONS 2016) 1-3 Jun 2016 Reims, France. IFAC. 
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1.3. Thesis structure 

This dissertation is organized in 9 chapters. Chapter 2 addresses the introduction of the 

theoretical concepts which were relevant for this PhD. In this chapter, two well-known data-

driven models; ANNs and SVMs as well as a number of renowned standard learning 

algorithms for ANNs are explained. Moreover, the GA, the MOGA, information theory 

concepts and two statistical tests are presented in this chapter. Chapter 3 introduces a number 

of standard convex hull algorithms in low and high dimensions. This chapter also discusses an 

effort done in recent years to deal with the very high time and space complexity of standard 

convex hull algorithms in high dimensions. Chapter 4 addresses a review of instance selection 

methods and introduces ApproxHull as the-state-of-the-art in the convex-hull-based data 

selection domain. In addition, a number of experiments to verify and evaluate the 

performance of the ApproxHull regarding time and memory requirements are presented and 

analyzed in Chapter 4. Since, in this PhD, most of the models were designed by the MOGA, 

Chapter 5 addresses the evaluation of ApproxHull’s performance within the MOGA model 

design framework. To verify and evaluate ApproxHull’s performance in real applications, 

Chapter 6 introduces three case studies in which ApproxHull has been applied to design 

RBFNN models. To further analyze the ApproxHull’s performance, Chapter 7 compares it 

with three data selection methods, including random selection method, an entropy based 

unsupervised method and a hybrid method involving ApproxHull and the entropy based 

method. All methods were applied for classification and regression. In the second phase of the 

PhD, Chapter 8 addresses a brief overview on online adaptation method and then introduces a 

new convex-hull-based, sliding-window online adaptation method. Furthermore, to verify and 

evaluate the performance of the proposed method, several online adaptation experiments 

associated with two case studies along with the corresponding results and comparisons with 

other methods are explained in this chapter. Finally, a brief conclusion of all efforts done in 

this PhD as well as some future work directions are discussed in Chapter 9.  
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2. Theoretical background 

2.1. Introduction 

Since this PhD thesis aims to propose new data selection and online model adaptation 

methods for data driven models, in this chapter two well-known classes of data driven 

models, ANNs and SVMs, are introduced. Additionally, some basic concepts related to the 

design of data driven models are explained. This chapter is organized as follows. Section 2.2 

addresses the introduction of several types of ANNs. Section 2.3 introduces the SVM as 

another class of data driven models applied to classification problems. Well-known ANNs 

supervised learning methods are discussed in Section 2.4. The most common criteria used to 

evaluate the performance of regression and classification problems are introduced in Section 

2.5. As in this study a Genetic Algorithm (GA) was used in the proposed data selection 

method, and most ANN models were designed by means of the MOGA, Section 2.6 explains 

the basic concepts of GA and MOGA. Section 2.7 discusses the application of MOGA to the 

design of ANN models. 

As the proposed data selection method was compared with an entropy based unsupervised 

method proposed in [13], two key concepts of information theory, entropy and mutual 

information, are explained in Section 2.8. Additionally, in this PhD thesis, two statistical tests 

were employed to compare the performance of the proposed data selection method with other 

methods. Section 2.9 describes these two statistical tests. 

      

2.2. Artificial Neural Networks 

The fundamental concepts of ANNs were introduced in the 1940s by McCulloch and Pitts 

[16] with the aim of simulating brain behavior in information processing and computations, 

where each part of the brain, responsible to perform a particular task, consists of a network 

with a huge number of neurons as processing units. Since then, ANNs have been used in a 

wide variety of applications such as image processing, pattern recognition, signal processing, 

modeling and time series, to mention a few [17]. ANNs are mainly divided into two groups 

[18]: 1- feed-forward networks 2- recurrent/feedback networks. Each of these two groups, in 

turn, is divided into several subgroups. Fig. 2.1 shows a brief classification of ANNs. 
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Fig. 2.1. A classification of ANNs [18]. 

 

Since in this PhD, specifically, the Multi-Layer Perceptron, Radial Basis Function and B-

Spline networks were employed, the following subsections address only these types of 

networks. 

 

2.2.1. Multi-Layer Perceptron Neural Network 

The Multi-Layer Perceptron (MLP), as one of the renowned feed-forward networks, has been 

extensively applied to classification and regression problems over years. The fully connected 

structure of the MLP is organized in three types of layers including input, hidden and output 

layers. Each layer has a number of neurons and each neuron in a layer is connected to all 

neurons of its predecessor layer via weighted links. Fig. 2.2 illustrates an MLP network with 

two hidden layers. As it can be seen, each input signal which can be translated into an input 

variable or a feature is linked to a particular neuron in the input layer while each neuron in the 

output layer corresponds to a specific output signal/variable. When an input signal is fed into 

the input layer, several mappings are done through hidden neurons with smooth, nonlinear 

activation functions to produce the corresponding output signal. Generally speaking, the MLP 
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is a black box function approximator that reflects a nonlinear relationship between input and 

output signals. 

Bounded functions such as sigmoid or hyperbolic tangent are mostly used as the activation 

functions of the hidden neurons. Eq. (2.1) shows a sigmoid function. 

𝜑𝑖
𝑙(𝐰𝑙, 𝐱) =

1

1 + 𝑒
−(𝑏𝑖

𝑙+∑ 𝑤𝑖,𝑗
𝑙 𝜑𝑗

𝑙−1(𝐰𝑙−1,𝐱)
𝑛𝑙−1
𝑗=1

)
 

 

(2.1) 

 

where 𝜑𝑖
𝑙 is the output of the i

th
 neuron at hidden layer l . 𝑛𝑙−1 and 𝑏𝑖

𝑙 denote the number of 

neurons in hidden layer 𝑙 − 1 and the bias of hidden layer 𝑙, respectively. 𝑤𝑖,𝑗
𝑙  refers to the 

weight connecting the 𝑗th neuron in hidden  layer 𝑙 − 1 to the 𝑖th neuron in hidden layer l.  

The outputs of the MLP network are obtained by Eq. (2.2) which is a linear combination of 

the activation functions of the last hidden layer. 

𝑦𝑜 = 𝑏𝑜
𝐿 +∑𝑤𝑜,𝑘

𝐿 𝜑𝑘
𝐿

𝑛𝐿

𝑘=1

 

 

(2.2) 

 

where 𝑦𝑜 and 𝐿 denote the 𝑜th
 output neuron and the number of hidden layers, respectively. In 

the design process, the structure of the MLP network, which is specified by the number of 

layers and the number of neurons in each layer, should be determined. This structure 

determination should be done in such a way that the overfitting phenomenon is avoided. 

Overfitting refers to a situation where the number of neurons, and consequently the number of 

parameters, is larger than needed [19].    
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Fig. 2.2. An MLP network with two hidden layers. 

 

2.2.2. Radial Basis Function Neural Network 

The Radial Basis Function (RBF) Neural Network (NN) was firstly proposed by Broomhead 

and Lowe [20] . It is another type of feed-forward neural network that has received much 

attention due to its universal approximation and robustness to outlier points. From the 

structural point of view, RBFNNs, like MLPs, have three types of layers including input, 

hidden and output layers. Fig. 2.3 illustrates a RBFNN with three layers. As it can be seen in 

Fig. 2.3, each feature of the input pattern is connected to a node of input layer via a link 

without weight. The input neurons are only simple sensory nodes passing the input pattern 

without any changes toward the hidden layer. To each hidden node, a radial basis function is 

assigned implementing a nonlinear relation between the input and the output spaces. For the 

most cases, Gaussian radial basis function, thin-plate spline, multiquadrics and inverse 

multiquadrics are used as the activation function for the hidden neurons as Eq. (2.3).  

 

𝜑𝑖(𝐱, 𝐜𝑖 , 𝜎𝑖) = 𝑒
−
‖𝐱−𝐜𝑖‖

2

2𝜎𝑖
2

 

 

(2.3) 
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where 𝜑𝑖 denotes the activation function of the 𝑖th hidden neuron. 𝒄𝑖 and 𝜎𝑖 refer to the 

corresponding nonlinear parameters, the center and spread of 𝜑𝑖, respectively. The 𝜑𝑖 are 

localized functions around each 𝒄𝑖, whose localization degree is defined by 𝜎𝑖 [21]. 𝐱 is the 

input pattern.  

The output of the RBFNN is obtained by Eq. (2.4) which is a linear combination of the 

outputs of the hidden layer. 

𝑦(𝐱) = 𝑤0 + ∑𝑤𝑖𝜑𝑖

𝑛

𝑖=1

(𝐱) 
 

(2.4) 

 

where 𝑛 is the number of hidden neurons and 𝑤𝑖 denotes the corresponding weight of 𝑖th 

hidden neuron. 𝑤0 refers to the bias. 

 

 
Fig. 2.3. A RBFNN structure. 

 

2.2.3. B-Spline Network 

B-spline neural networks belong to the class of networks denoted as lattice-based associative 

memory networks [22, 23]. In this type of networks, the basis functions are polynomial 

functions with a predefined order 𝑘. The range of each input variable is divided into 𝑛𝑖 

intervals and throughout the intervals, there are exactly 𝑘 active functions. The 𝑛𝑖 intervals 

are formed by defining 𝑟𝑖 internal knots over the input range as well as  by defining the 
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nonlinear parameters of the network [24]. The 𝑗th interval of the 𝑖th input variable is defined as 

Eq. (2.5). 

 

𝐼𝑖,𝑗 = {
[𝜆𝑖,𝑗−1, 𝜆𝑖,𝑗)          𝑓𝑜𝑟 𝑗 = 1,⋯ 𝑟𝑖 

[𝜆𝑖,𝑗−1, 𝜆𝑖,𝑗]           𝑖𝑓     𝑗 = 𝑟𝑖 + 1
 

 

(2.5) 

 

where 𝜆𝑖,𝑗 denotes the 𝑗th knot of the 𝑖th input variable. According to Eq. (2.5), 𝜆𝑖,0 and 𝜆𝑖,𝑟𝑖+1 

denote the minimum and the maximum value of the input range, respectively. By dividing the 

range of each input variable into several intervals, the input space is organized into a lattice 

where for each cell, there exist exactly ∑ 𝑘𝑖
𝑑
𝑖=1  active functions where 𝑑 denotes the input 

dimension. In case 𝑑 = 1, the 𝑗th univariate basis function of order 𝑘, denoted by Ψ𝑘
𝑗
, is 

defined in a recursive manner as Eq. (2.6). 

Ψ𝑘
𝑗
(𝑥) = (

𝑥 − 𝜆𝑗−𝑘

𝜆𝑗−1 − 𝜆𝑗−𝑘
)Ψ𝑘−1

𝑗−1
(𝑥) + (

𝜆𝑗 − 𝑥

𝜆𝑗 − 𝜆𝑗−𝑘+1
)Ψ𝑘−1

𝑗
(𝑥) 

 

(2.6) 

 

Ψ1
𝑗(𝑥) = {

1             𝑖𝑓 𝑥 ∈ 𝐼𝑗 ,

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

In the case of multidimensional input space, the multidimensional basis functions Ψ𝑘
𝑗
 are 

obtained by applying a tensorial product of univariate basis functions defined over input 

variables as Eq. (2.7). 

Ψ𝑘
𝑗(𝒙) =∏Ψ𝑘𝑖

𝑗 (𝑥𝑖)

𝑑

𝑖=1

 

 

(2.7) 

 

Fig. 2.4 shows an example of two B-Spline quadratic (𝑘 = 3) functions for one and two 

dimensional input spaces. 

Regarding B-Spline networks, the complexity increases exponentially with respect to the 

dimension (i.e., the number of variables). In one hand, in order to overcome the complexity, 

and on the other hand to make a model with a high level of generalization, the ASMOD 

(Adaptive Spline Modeling of Observation data) algorithm [25, 26] is an efficient design 

technique to generate parsimonious models using observed data. In this way, a set of low 

dimensional B-Spline sub-models are generated instead of one high dimensional B-Spline 

model. Each sub-model depends on a subset of all the input variables. The final model output 

is a linear combination of sub-models’ output, as given by Eq. (2.8), 
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𝑜(𝑥) =∑𝑐𝑖𝑏𝑖(𝑥)

𝑀

𝑖=1

 

 

(2.8) 

 

where 𝑀 is the number of sub-models. 𝑏𝑖 and 𝑐𝑖 denote the 𝑖th B-Spline sub-model and its 

corresponding coefficient, respectively. 

The ASMOD algorithm consists of two main steps including refining and pruning. It starts 

with a simple model with a small number of input variables. In the refining step, it tries to 

make the simple model complicated by adding and coupling more input variables, by 

changing the internal structure and by increasing the degree of the basis functions. In the 

pruning step, the variables are decoupled which results in a number of subsets of input 

variables. The internal structure is also simplified and the degree of the basis functions is 

decreased. These two steps are repeated until some termination criteria are met. 

 

 
(a) 

 
(b) 

Fig. 2.4. B-Spline quadratic (𝑘 = 3) functions for (a) one and (b) two dimensional feature 

spaces [24].  

 

2.3. Support Vector Machines 

The Support Vector Machine was proposed by Vapnik and et al [27, 28] as an efficient  

powerful machine learning method for two class classification problems where data are 

nonlinearly separable with respect to the target feature. The main idea behind SVMs is 

transferring the original input feature space to a higher dimensional feature space in which 

data are linearly separable and then finding the optimal hyperplane separating the two classes. 

The optimal hyperplane has the largest distance to the closest training samples of each class. 

This distance is so called the maximal margin and the samples located on the margin are 

marked as support vectors. Fig. 2.5 shows an example of an optimal hyperplane and 

associated support vectors. As it can be seen, the two classes of samples are separated from 
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each other (i.e., the samples of the first class are shown by unfilled circles and the samples of 

the second class are shown by black filled circles) by the optimal hyperplane. The samples of 

both classes surrounded by a red circle are the support vectors.    

 

 
Fig. 2.5. An example of SVM [28]. 

 

The determination of the optimal hyperplane is translated into solving a constrained quadratic 

optimization problem where the Lagrangian stated in Eq. (2.9) should be maximized with 

respect to 𝛼𝑖 subject to the constraints given in Eq. (2.10), 

𝐿 =∑𝛼𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖, 𝐱𝑗)

𝑁

𝑖,𝑗=1

 

 

(2.9) 

∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖 = 0    𝑎𝑛𝑑    0 ≤ 𝛼𝑖 ≤ 𝐶 

 

 

(2.10) 

where 𝑁 and 𝛼𝑖 denote the number of samples of the training set and the corresponding 

Lagrange multiplier of the 𝑖th sample, respectively. 𝐱𝑖 and 𝑦𝑖 ∈ {−1,+1} refer to the 𝑖th input 

pattern and the corresponding target, respectively. The target value indicates the class of the 

input pattern. 𝐾(𝐱𝑖, 𝐱𝑗) is the inner-product kernel stated in Eq. (2.11) and 𝐶 a user specified 

parameter that establishes a trade-off between the SVM complexity and the number of non-

separable patterns, often called the regularization parameter. 



 

  15  
 

𝐾(𝐱𝑖, 𝐱𝑗) =∑𝜙𝑧(𝐱𝑖)𝜙𝑧(𝐱𝑗)

𝑚

𝑧=1

 
 

(2.11) 

   

In Eq. (2.11), 𝑚 is the dimension of the destination feature space (i.e., the higher dimensional 

feature space) and 𝜙𝑧(𝐱𝑖) is equal to the 𝑧th
 dimension of the transformed sample 𝐱𝑖 in the 

destination feature space. Common kernels used in SVMs are given in Eqs. (2.12) to (2.14). 

 

 Homogeneous polynomial 

 

 

𝐾(𝐱𝒊, 𝐱𝒋) = (𝐱𝒊. 𝐱𝒋)
𝑑

 (2.12) 

 Inhomogeneous polynomial 

 
𝐾(𝐱𝒊, 𝐱𝒋) = (𝐱𝒊. 𝐱𝒋 + 𝟏)

𝑑
 (2.13) 

 

 Gaussian radial basis function 𝐾(𝐱𝒊, 𝐱𝒋) = 𝑒𝑥𝑝(−
‖𝐱𝒊 − 𝐱𝒋‖

𝟐

2𝜎2
) 

 

(2.14) 

 

The output of a SVM model can be obtained by Eq. (2.15). 

 

𝑓(𝐱) = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖
∗𝐾(𝐱, 𝐱𝑖)

𝑖∈𝑆𝑉

− 𝜃) 
 

(2.15) 

 

where 𝛼𝑖
∗s are the solution of the constrained optimization problem stated in Eq. (2.9). 𝑆𝑉 are 

the indices of the support vectors in the training set and 𝜃 is a user-defined threshold [29]. 

 

2.4. Learning methods 

In order to fit the parameters of any data driven classification or regression model, learning 

methods are applied to adjust the model parameters by means of a data set of training 

samples. Learning methods can be considered from three points of view [18]. 

In the first aspect, they are categorized into four classes including supervised, unsupervised, 

combination of supervised and unsupervised, and reinforcement methods. In supervised 

learning methods, data samples are labeled so that each input pattern corresponds to a target 

value. In this case the parameters of the model are adjusted based on the comparison between 

the model outputs and corresponding target values. On the other hand, in unsupervised 

learning methods, unlabeled data samples are employed. In this case the methods try to group 

data samples into a number of clusters so that those samples which are more similar to each 

other are located in the same cluster. In some cases, in order to improve the performance of 
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models, a combination of supervised and unsupervised learning methods is applied to fit the 

parameters. Finally, reinforcement learning methods are another class of learning methods 

that try to learn from their consecutive actions and from the interaction with the operational 

environment.  

From a second point of view, learning methods can be categorized into offline or online. In 

the offline case a set of samples are first collected from the process or system and then 

processed at the same time by the learning method. In the online case the model is inserted (or 

simulated) in the operational environment and every time a new pattern is generated, the 

model parameters are possibly readjusted. 

In the third aspect, learning methods can be classified into deterministic or stochastic. If the 

method follows a specific path to update the parameters, it is considered deterministic. 

Otherwise it is stochastic in the sense that it follows a randomized behavior to fit the 

parameters. 

Fig. 2.6 briefly illustrates a taxonomy of learning methods. In the following subsections 

supervised and unsupervised learning methods are described. 
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Fig. 2.6. Classification of learning methods [18]. 

 

 

2.4.1. Supervised learning methods 

Supervised learning methods adjust the model parameters based on the labeled samples, 

where each input pattern along with its corresponding target value is presented to the learning 

method. Then the model parameters are adjusted on the basis of the comparison between the 

model outputs and corresponding target values. Actually, the goal of supervised learning 

methods is fitting the parameters so that the error obtained from the comparisons is globally 

minimized. The following discussion introduces a number of well-known supervised learning 

methods. 
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2.4.1.1. Steepest decent method 

One of the simplest and the most common gradient based methods is the steepest descent. 

This method is applied to solve unconstrained optimization problems. Given a cost function  

Ω(𝑤0, 𝑤1, … , 𝑤𝑛) where the 𝑤𝑖s are linear or nonlinear parameters, the steepest decent 

method tries to obtain optimal values for 𝑤𝑖 that minimize Ω, based on its gradient with 

respect to each 𝑤𝑖. At the first step the parameters are initialized and then updated in a 

recursive way over a number of iterations. Eq. (2.16) shows the update of parameters by the 

steepest decent method, 

 

𝑤𝑘
(𝑡+1)

= 𝑤𝑘
(𝑡)
− 𝛼

𝜕

𝜕𝑤𝑘
(𝑡)
Ω(𝑤0

(𝑡)
, 𝑤1

(𝑡)
, … , 𝑤𝑛

(𝑡)
),   𝑘 = 0,1,2, … , 𝑛 

 

(2.16) 

 

where  𝑤𝑘
(𝑡)

 denotes the value of 𝑘th
 parameter in the 𝑡th

 iteration. 𝛼 denotes the learning rate, 

indicating the step size that the steepest decent method takes in the direction of a local minima 

of the cost function Ω. The disadvantage of this method is its likelihood of being trapped into 

a local minimum instead of obtaining the global minimum. Fig. 2.7, shows an example of 

minimizing a cost function with two parameters 𝑤0 and 𝑤1. As it can be seen in Fig. 2.7, the 

minimum value of the cost function that is found by the method depends on the initial point in 

parameter space. By starting from point 𝑎, after a number of iterations the local minimum is 

achieved at 𝑏, while by starting from point 𝑐, another local minimum is reached at 𝑑. 

 
Fig. 2.7. An Example of parameters update by steepest decent method. 

  

 



 

  19  
 

2.4.1.1.1. Back propagation technique 

In order to apply the steepest descent method in MLP neural networks, the Back Propagation 

(BP) algorithm is employed. The cost function used in BP is given in Eq. (2.17), 

Ω(𝐰)  =
1

2N
×∑(y(𝐱𝑖, 𝐰) − 𝑡𝑖)

2

𝑁

𝑖=1

 

 

(2.17) 

 

where 𝑁 is the number of samples in the training set. 𝐰 denotes the weights as the linear 

parameters of the MLP. 𝐱𝑖 and 𝑡𝑖 refer to the i
th

 input pattern and its corresponding target 

value, respectively. y(𝐱𝑖, 𝐰) denotes the MLP output for 𝐱𝑖 with respect to 𝐰. Each weight of 

the MLP in any layer is updated based on the update rule stated in Eq. (2.18), 

 

𝑤𝑎𝑏
𝑙  (𝑗)

= 𝑤𝑎𝑏
𝑙 (𝑗−1)

− 𝛼
𝜕

𝜕𝑤𝑎𝑏
𝑙  (𝑗−1)

 Ω(𝐰) 
 

(2.18) 

 

where 𝑤𝑎𝑏
𝑙  (𝑗−1)

 is the weight of the link connecting neuron 𝑎 in layer 𝑙 to neuron 𝑏 in layer 

𝑙 − 1 in the (𝑗 − 1)th
 iteration. 𝛼 denotes the learning rate and 

𝜕

𝜕𝑤𝑎𝑏
𝑙  (𝑗−1)  Ω(𝐰) refers to the 

gradient of the cost function Ω(𝐰) with respect to 𝑤𝑎𝑏
𝑙 (𝑗−1)

. 

The learning process has two passes: the forward pass and the backward propagation. In the 

forward pass, the MLP outputs are calculated for each input pattern while in the backward 

propagation pass, for each node in layer 𝑙, the contribution of the neuron to the outputs error 

of the MLP is computed for each input pattern in (𝑗 − 1)th
 iteration. Suppose the MLP has 𝐿 

hidden layers so the layer 1 is assigned to the input layer and layer (𝐿 + 1) corresponds to the 

output layer. The contribution of neuron 𝑎 in layer 𝑙 to the output error of the MLP is defined 

in terms of the partial gradient (i.e., denoted by 𝛿𝑎
𝑙 (𝑗−1)

 ) of Ω(𝐰) with respect to the input of 

neuron 𝑎 in layer 𝑙 in the (𝑗 − 1)th
 iteration. If neuron 𝑎 is an output neuron,  𝛿𝑎

𝑙 (𝑗−1)
 is 

directly computed from the output error of the MLP. In the case that neuron 𝑎 is a hidden 

neuron, it is computed in a recursive way as stated in Eq. (2.19), 

𝛿𝑎
𝑙 (𝑗−1)

= 𝑔′(𝑧𝑎
𝑙 (𝑗−1)

) ∑ 𝛿𝑘
(𝑙+1) (𝑗−1)

𝑁𝑙+1

𝑘=1

𝑤𝑘𝑎
𝑙+1  (𝑗−1)

,          2 ≤ 𝑙 ≤ 𝐿 

 

(2.19) 

 

where 𝑔′ is the first derivative of the activation function defined in Eq. (2.20) and 𝑧𝑎
𝑙 (𝑗−1)

 is 

the input of neuron 𝑎 in layer 𝑙 in iteration (𝑗 − 1)th 
defined in Eq. (2.21). 𝑁𝑙+1 denotes the 
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number of neurons in layer 𝑙 + 1. 𝑤𝑘𝑎
𝑙+1  (𝑗−1)

 refers to the weight of the link connecting 

neuron 𝑘 in layer 𝑙 + 1 to neuron 𝑎 in layer 𝑙 in iteration (𝑗 − 1)th
. In Eq. (2.21), 𝐱𝑖 denotes 

the 𝑖th input pattern. 

 

𝑔′(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧)) where  𝑔(𝑧) =
1

1+𝑒−𝑧
 

(2.20) 

 

 

𝑧𝑎
𝑙 (𝑗−1) 

=

{
 

 
𝐰1 (𝑗−1)𝐱𝑖                  ,    𝑙 = 2

∑ 𝑤𝑎𝑘
(𝑙)  (𝑗−1)

∗ 𝑧𝑘
(𝑙−1) (𝑗−1)

𝑁𝑙−1

𝑘=1

,    3 ≤ 𝑙 ≤ L
        

 

(2.21) 

 

Backward propagation is done for all samples and then the gradient of the cost function 

Ω(𝐰) with respect to 𝑤𝑎𝑏
𝑙  (𝑗−1)

 is obtained by Eq. (2.22), 

 

𝜕

𝜕𝑤𝑎𝑏
𝑙   (𝑗−1)

Ω(𝐰) =
1

𝑚
×∑𝜑𝑏

(𝑙−1)  (𝑗−1)
(𝐱𝑖)𝛿𝑎

(𝑙)  (𝑗−1)
(𝐱𝑖)

𝑚

𝑖=1

 
 

(2.22) 

 

where 𝜑𝑏
(𝑙−1)  (𝑗−1)

 is the output of neuron 𝑏 in layer 𝑙 − 1 for input pattern 𝐱𝑖 in (𝑗 − 1)th 

iteration.  

    

2.4.1.2. Newton’s method 

Since the convergence speed of the steepest descent method is slow, Newton’s method was 

proposed to speed up the learning process. In Newton’s method an approximation of the cost 

function Ω(𝐰) is considered by using the second order Taylor expansion of Ω(𝐰) around 

point 𝐰(𝑡) = (𝑤0
(𝑡), 𝑤1

(𝑡), … , 𝑤𝑛
(𝑡)). This approximation gives rise to the quadratic 

optimization problem stated in Eq. (2.23). 

Ω(𝐰) ≈  Ω(𝐰(𝑡)) + ∇𝐰(𝑡) × (𝐰−𝐰
(𝑡))𝑇 +

1

2
× (𝐰 −𝐰(𝑡))𝑇𝐇(𝑡)(𝐰 −𝐰(𝑡)) 

(2.23) 

 

Where ∇𝐰(𝑡) and 𝐇(𝑡) denote the first and second derivatives of Ω(𝐰) with respect to 𝐰, 

respectively. 𝐇(𝑡) is also called the Hessian matrix. The minimum value for the estimated cost 

function Ω(𝐰) is obtained by solving Eq. (2.24). 

∇𝐰(𝑡) + 𝐇
(𝑡)(𝐰 −𝐰(𝑡)) = 0 (2.24) 
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The solution of Eq. (2.24) is obtained by Eq. (2.25) which is the Newton’s update method. 

 

𝐰 = 𝐰(𝑡) − (𝐇(𝑡))−1∇𝐰(𝑡) (2.25) 

 

In order to update the parameters 𝐰 in each iteration by Eq. (2.25), 𝐇(𝑡) must be positive 

definite which is not always guaranteed by Newton’s method [17]. In addition, computing the 

inverse of  𝐇(𝑡) takes 𝑂(𝑛3) time for each iteration 𝑡 where 𝑛 is the number of parameters. In 

order to deal with this limitation of Newton’s method, several efficient methods were 

proposed. In the following, we will introduce some of them. 

 

2.4.1.3. Quasi-Newton method 

The Quasi-Newton method updates 𝐇(𝑡) based on the changes between the gradient of the 

current iteration and that of the previous one, instead of completely computing 𝐇(𝑡)  in each 

iteration. Several methods have been proposed to gradually update 𝐇(𝑡) including the 

Davidon–Fletcher–Powell formula (DFP), SR1 formula (Symmetric Rank one), the BHHH 

method, the BFGS method and the low memory extension of BFGS called L-BFGS [30]. 

Among these, the BFGS stated in Eq. (2.26) is considered the most effective method for a 

general unconstrained optimization problem [18]. 

 

𝐇𝐵𝐹𝐺𝑆
(𝑡+1)

= 𝐇(𝑡) + (1 +
(𝐪(𝑡))𝑇𝐇(𝑡)𝐪(𝑡)

(𝐬(𝑡))𝑇𝐪(𝑡)
)
𝐬(𝑡)(𝐬(𝑡))𝑇

(𝐬(𝑡))𝑇𝐪(𝑡)
− (

𝐬(𝑡)(𝐪(𝑡))𝑇𝐇(𝑡) +𝐇(𝑡)𝐪(𝑡)(𝐬(𝑡))𝑇

(𝐬(𝑡))𝑇𝐪(𝑡)
) 

(2.26) 

 

where 𝐬(𝑡) = 𝐰(𝑡+1) −𝐰(𝑡) and  𝐪(𝑡) = 𝛻𝐰(𝑡+1) − 𝛻𝐰(𝑡). 

 

2.4.1.4. Gauss-Newton method 

As another alternative to Newton’s method, the Gauss-Newton method applies an 

approximation of  𝐇(𝑡) with the assumption that the underlying problem is a nonlinear least 

square one with the cost function defined in Eq. (2.27), 

 

Ω(𝐰) =
1

2
∑𝐞𝑖

2(𝐰)

𝑚

𝑖=1

 , 𝐰 = (𝑤0, 𝑤1, … , 𝑤𝑛) 
 

(2.27) 
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where 𝑚 is the number of training samples and 𝒆𝑖(𝐰) denotes the model output for 𝑖th input 

pattern.  𝐰 refers to the parameters vector. The first-order partial derivative of Ω(𝐰) with 

respect to each parameter 𝒘𝑗 for 𝑗 = 0,1,⋯ , 𝑛  is obtained by Eq. (2.28), 

 

∇𝑤𝑗=∑𝐞𝑖
𝜕𝐞𝑖
𝜕𝒘𝑗

𝑚

𝑖=1

=∑𝐞𝑖𝐉𝑖𝑗

𝑚

𝑖=1

  , 𝑗 = 0,1, … , 𝑛 
 

(2.28) 

 

where 𝐉𝑖𝑗 is the element in 𝑖th row and 𝑗th column of the 𝑚 × 𝑛 matrix  𝐉, which is the so called 

Jacobean matrix. The relation between the gradient vector 𝛁𝒘 and Jacobean matrix 𝐉 in 𝑡th
 

iteration is expressed by Eq. (2.29) which is the matrix notation of Eq. (2.28). 

 

𝛁𝐰(𝑡) = (𝐉
(𝑡))𝑇𝐞(𝑡) (2.29) 

 

In practice, the Hessian matrix  𝐇 is a squared matrix of size 𝑛 × 𝑛 whose elements are 

computed by Eq. (2.30), 

 

𝐇𝑗𝑘 =∑(
𝜕𝐞𝑖
𝜕𝐰𝑗

𝜕𝐞𝑖
𝜕𝐰𝑘

+ 𝐞𝑖
𝜕2𝐞𝑖

𝜕𝐰𝑗𝜕𝐰𝑘
)

𝑚

𝑖=1

 ,   𝑗, 𝑘 = 0,1, … , 𝑛 
 

(2.30) 

 

where 𝐇𝑗𝑘 is the element in 𝑗th row and 𝑘th
 column of 𝐇. The Gauss-Newton method presents 

an approximation to 𝐇 by eliminating the second term in Eq. (2.30). Hence the approximation 

of 𝐇 can be stated as Eq. (2.31), 

 

𝐇𝑗𝑘 ≈∑(
𝜕𝐞𝑖
𝜕𝐰𝑗

𝜕𝐞𝑖
𝜕𝐰𝑘

) =∑𝐉𝑖𝑗𝐉𝑖𝑘

𝑚

𝑖=1

𝑚

𝑖=1

 ,   𝑗, 𝑘 = 0,1, … , 𝑛 
 

(2.31) 

 

whose matrix notation is given by Eq. (2.32), 

  

𝐇(𝑡) = (𝐉(𝑡))𝑇𝐉(𝑡) (2.32) 

 

where 𝐇(𝑡) and 𝐉(𝑡) denote the Hessian and the Jacobean matrix in 𝑡th
 iteration. By replacing 

Eqs. (2.29) and (2.32) in Eq. (2.25), the Gauss-Newton update rule in 𝑡th
 iteration can be 

obtained as Eq. (2.33). 
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𝐰 = 𝐰(𝑡) − ((𝐉(𝑡))𝑇𝐉(𝑡))−1(𝐉(𝑡))𝑇𝐞(𝑡) (2.33) 

 

 

2.4.1.5. Levenberg-Marquardt method 

Although the approximation of the Hessian matrix 𝐇 in the Gauss-Newton method rprovides 

increased speed of the method, the invertibility of ((𝐉(𝑡))𝑇𝐉(𝑡)) is still not guaranteed [31]. To 

deal with this problem the Levenberg-Marquardt method [32, 33] was proposed. In each 

iteration the term 𝛿𝐈 (a diagonal matrix) is added to ((𝐉(𝑡))𝑇𝐉(𝑡)) to guarantee that it becomes 

a nonsingular matrix that is invertible. 𝛿 is a variable scalar value that changes in every 

iteration by a given factor and 𝐈 is the identity matrix so that  ((𝐉(𝑡))
𝑇
𝐉(𝑡) + 𝛿𝐈) is invertible. 

The Levenberg-Marquardt update rule is stated in Eq. (2.34). 

 

𝐰 = 𝐰(𝑡) − ((𝐉(𝑡))
𝑇
𝐉(𝑡) + 𝛿𝐈)−1(𝐉(𝑡))𝑇𝐞(𝑡) (2.34) 

 

The value of 𝛿 has a critical role to change the behavior of Levenberg-Marquardt. For small 

values of 𝛿, ((𝐉(𝑡))𝑇𝐉(𝑡)) has significant influence in parameters update. In this case, the 

behavior of the Levenberg-Marquardt method is the same as the Gauss-Newton method. In 

the case of assigning large values to  𝛿, ((𝐉(𝑡))𝑇𝐉(𝑡)) does not have significant contribution in 

parameters update. In this situation, the Levenberg-Marquardt behaves like the steepest decent 

method where only (𝐉(𝑡))𝑇𝐞(𝑡), as the gradient of cost function, (according to Eq. (2.29)) has 

an important effect on the update. The method starts with a small value of 𝛿, therefore 

behaving close to the Gauss-Newton method and continues decreasing 𝛿 as long as the error 

decreases Whenever the error increases in an iteration, the parameters are reset to the values 

obtained in the previous iteration and 𝛿 is made larger with the aim of changing the behavior 

of the Levenberg-Marquardt method in the direction of the steepest decent method. 

By considering the cost function as a least squares problem, the performance of learning 

algorithms can be improved by separating parameters into linear and nonlinear in the learning 

process [24]. Suppose 𝐮 and 𝛖 denote linear and nonlinear parameters, respectively. The 

model output can be stated as Eq. (2.35). 

𝐲 = 𝛟(𝛖)𝐮 (2.35) 
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where 𝛟 denotes the output matrix of the last hidden layer possibly including a column of 

ones corresponding to the model output bias. By replacing Eq. (2.35) in Eq. (2.27), the 

following nonlinear least squares problem is obtained, 

 

Ω(𝐮, 𝛖) =
1

2
∑𝐞𝑖

2(𝐮, 𝛖)

𝑚

𝑖=1

=
‖𝐭 − 𝛟(𝛖)𝐮‖2

2

2
 

 

(2.36) 

 

where 𝐭 is the target vector. Considering any constant value of 𝛖, the optimum value of 𝐮 

minimizing Ω(𝐮, 𝛖) can be obtained using the pseudo-inverse method: 

 

�̂�(𝛖) = 𝛟(𝛖)+𝐭 (2.37) 

 

By replacing Eq. (2.37) in Eq. (2.36), a new training criterion is obtained where the cost 

function only depends on the nonlinear parameters 𝛖: 

 

𝜓(𝛖) =
‖𝐭 − 𝛟(𝛖)𝛟(𝛖)+𝐭‖2

2

2
 

(2.38) 

 

To minimize the criterion in Eq. (2.38), the corresponding gradient must be computed. It has 

been proven in [34] that the gradient of  𝜓(𝛖) can be determined in such a way that, firstly, 

the optimal value of  𝐮 is obtained by Eq. (2.37) and then it is replaced in Eq. (2.36). 

Afterwards, the gradient of  𝜓(𝛖) can be obtained by performing the usual calculation. The 

new criterion has several advantages when compared to the classic one in Eq. (2.36): 

 It decreases the dimension of the optimization problem since only nonlinear parameters 

are considered. 

 It makes the Levenberg-Marquardt method faster since each iteration of the learning 

process becomes computationally cheaper. 

 A small number of iterations is needed to converge to the local minimum of the cost 

function since the initial values obtained by using Eq. (2.38) are much lower than those 

obtained by using Eq. (2.36). Moreover, the new criterion results in a faster rate of 

convergence. 
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2.4.1.6. Four strategies for training RBFNNs 

The strategies considered for training RBFNNs differ on how the centers and spreads of the 

hidden neurons are computed [17, 35, 36]. Regarding the basic strategy used in the standard 

RBFNN proposed by Broomhead and Lowe [20], each sample of the training set corresponds 

to a particular center of the RBFNN producing an interpolating surface which exactly passes 

throughout all samples of the training set. In case of the presence of a large size training set, a 

large size RBFNN is produced. Moreover, in application, the exact curve fitting is neither 

useful nor desirable since it may lead to anomalous interpolation properties [20]. To relax the 

strict interpolation, three main strategies can be employed. 

In the first strategy [37], the center of each hidden neuron corresponds to a random input 

pattern in the training set and for all hidden neurons, the same spread is considered as given 

by Eq. (2.39), 

 

𝜎 =
𝑑𝑚𝑎𝑥

√2𝑛
 

(2.39) 

 

where 𝑛 is the number of centers and  𝑑𝑚𝑎𝑥  is the maximum Euclidean distance between the 

selected centers. Afterwards, the linear parameters 𝐮 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑛, ] can be obtained with 

the application of pseudo-inverse method (see Eq. (2.37)).  

The second strategy [38] benefits from both supervised and unsupervised learning methods. 

In this strategy, which is also called self-organized selection of centers, the centers of the 

hidden neurons are determined by applying for instance a clustering method like k-means or 

any extended version of that. First, the samples in the training set are grouped into a number 

of clusters and then the center of each cluster is considered as a center of a hidden neuron. 

Afterwards, the spread of each hidden neuron can be determined by Eq. (2.39) or other 

heuristics that have been proposed [24]. 

Once the centers and the spreads, as nonlinear parameters, are determined, the output linear 

weights of the RBFNN model can be found as the solution of a linear least square 

optimization problem (see Eq. 2.37). 

The strategies described above determine the non-linear parameters by using stochastic or 

heuristic methods. Therefore there is no guarantee that the non-linear parameters are the 

optimal ones in the minimization of the training error criterion. The third strategy has already 

been mentioned in Section 2.4.1.5 where the linear parameters can be obtained optimally by 

using the pseudo-inverse operation and then the nonlinear parameters are determined using a 
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nonlinear least squares optimization problem. This way all the parameters are involved in the 

minimization of the training error criterion. 

The fourth strategy which benefits from Orthogonal Least Squares (OLS) method is an 

iterative task that starts with an empty hidden layer and continues with adding a center at a 

time and updating the linear parameters (i.e., weights) until some criteria are met. Some 

approaches based on OLS can be seen in [39-41].  

 

2.4.1.7. Termination criteria in training process 

The training process should be ended when a desired level of accuracy is obtained. In order to 

achieve this goal, four approaches may be applied to terminate the training process. 

The first approach focuses on a fixed number of iterations which is determined as a user-

defined threshold. The main disadvantage is that for a given problem it is not clear how many 

iterations are necessary to guarantee that a desired level of accuracy is obtained. 

In order to deal with the problem of the first approach, the second approach simultaneously 

checks three termination criteria shown in Eqs. (2.40) to (2.42), that reflect the accuracy and 

parameter convergence of the model [24]. Whenever all criteria are met, the training process 

ends. 

 

Ω[𝑘 − 1] − Ω[k] < θ[k] (2.40) 

 

‖𝐰[𝑘 − 1] − 𝐰[𝑘]‖ < √𝜏𝑓 . (1 + ‖𝐰[𝑘]‖) (2.41) 

 

‖𝐠[𝑘]‖ ≤ √𝜏𝑓
3 . (1 + |Ω[𝑘]|) (2.42) 

 

θ[k] = 𝜏𝑓 . (1 + Ω[𝑘]) (2.43) 

    

 In these criteria 𝑘 denotes the 𝑘th
 iteration. Ω,  𝐰 and 𝐠 refer to the cost function, the 

parameters vector and the gradient vector, respectively. 𝜏𝑓 is a user-defined threshold 

denoting a measure of the desired number of correct digits in the cost function. 𝜏𝑓 has a 

critical role in the training process. For example, assigning a small value to 𝜏𝑓 may lead to 

have an over-trained model. An over-trained model has a high level of accuracy for the 

training samples but not an acceptable level of generalization for unseen data [24].    

To avoid the over-training phenomenon, the third approach, which is called early stopping 

method, is considered. The model is evaluated not only on the training samples but also on 

another set of samples called testing set. In each iteration, the model error is computed for 
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both training and testing sets. If both training and testing errors are decreasing in comparison 

to the error in previous iterations, the training process is allowed to continue. In the case that 

the training error is decreasing but the testing error is increasing, the training process 

terminates since the model started losing its generalization capability. In this situation, the 

values of the parameters may be set to the values obtained in an appropriate previous 

iteration. Fig. 2.8 illustrates how the early stopping method works. 

 

 
Fig. 2.8. Early stopping method. 

 

2.5. Performance Criteria    

Once models are trained, there are various criteria to evaluate their performance. These 

criteria must allow the comparison of different types of models in terms of their 

performances. Regarding regression problems,  the performance criteria express how much 

the model’s outputs (i.e., predicted values) are close to their corresponding real values (i.e., 

measured values). Hence, they are specified in terms of the errors obtained between the real 

and the predicted values. Some criteria used in regression problems are the Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error (MRE), Mean Absolute 

Percentage Error (MAPE), Maximum Absolute Error (MaxAE) and standard deviation of 

predicted values (𝜎). These can be calculated by Eqs. (2.44) to (2.49).    
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (2.44) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (2.45)  

𝑀𝑅𝐸 =
1

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑁

𝑖=1

 (2.46)  

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖|

𝑁

𝑖=1

 (2.47) 

𝑀𝑎𝑥𝐴𝐸 = max (𝐴𝐸(𝑦, �̂�)) (2.48)  

𝜎 = √
1

𝑁
∑(�̂�𝑖 − �̂��̅�(𝑖))

2

𝑁

𝑖=1

 (2.49)  

In Eqs. (2.44) to (2.49), 𝑁, 𝑦𝑖 and 𝑦�̂� denote the number of samples, and the real and predicted 

values of the output variable for the  𝑖𝑡ℎ sample, respectively. 

Regarding classification problems, the most common criteria are the Classification Rate (CR), 

the specificity and the sensitivity. These criteria can be calculated by using Eqs. (2.50) to 

(2.52). 

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
𝑇𝑃 + 𝑇𝑁

𝑁
 

(2.50) 
 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.51) 
 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2.52) 

 

𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote True Positive, True Negative, False Positive and False Negative, 

respectively. The corresponding definitions are as follows: 

𝑇𝑃: The number of positive samples which have been correctly classified by the model. 

𝑇𝑁: The number of negative samples which have been correctly classified by the model. 

𝐹𝑃: The number of negative samples which have been wrongly classified as positive ones 
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by the model. 

𝐹𝑁: The number of positive samples which have been wrongly classified as negative ones 

by the model. 

 

2.6. Genetic Algorithm 

The Genetic Algorithm was inspired by the natural process of evolution and was considered 

as an optimization method where it, as a guided search method, tries to find an acceptable or 

satisfactory solution in a search space. The problem being solved by a GA is viewed as a 

black box system with a number of input parameters and one output parameter. In a more 

formal way, the input parameters that describe a possible solution are encoded in a 

representation called the chromosome, whereas the output parameter is usually the result of a 

function that captures the fitness of the candidate solution to the problem being addressed. 

The goal is finding a combination of input parameters’ values resulting in a satisfactory value 

for the output parameter [42]. To find an optimal solution, GA starts with an initial population 

of the potential solutions for the underlying problem. Each solution in the population, termed 

an individual, is evaluated by the problem specific fitness function reflecting the problem 

goal. Afterwards, the initial population is evolved by applying genetic operators that mimic 

the natural process of evolution. The canonical GA considers, mating selection, parent 

recombination, mutation and replacement operators. This way the initial population is 

replaced by a new generation by mating the elitists of the initial population so that the 

individuals in the new generation are expected to be more fit to the problem. The evolution 

process continues by producing a number of generations, expecting that, eventually after an 

appropriate number of generations, suitable individuals in terms of their fitness are available. 

The following subsections describe the GA operators. 

 

2.6.1. Selection 

Once an initial population is generated and a fitness value is assigned to each individual in the 

population, some of them should be selected to produce a new generation. There are several 

well-known selection methods including roulette wheel (or Fitness Proportionate Selection), 

Stochastic Universal Sampling (SUS), Tournament selection and Truncation selection. The 

following briefly introduces these methods. 
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 Roulette wheel 

In this method, firstly, the individuals are sorted in an ascending order based on their 

fitness values. Suppose that fitness value 𝑓𝑖 is assgind to the 𝑖th individual. In the second 

step, for each individual, the corresponding normalized fitness value is computed as: 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝐼
𝑘=1

 
 

(2.53) 

 

where 𝐼 is the number of individuals. Accually, the normalized fitness value 𝑝𝑖 denotes 

the probability of 𝑖th individual to be selected. In the third step, for each individual, a 

probability interval based on the accumulated normalized fitness values is computed as: 

 

[𝑙𝑖, 𝑙𝑖 + 𝑝𝑖) = [∑𝑝𝑗

𝑖−1

𝑗=1

,∑𝑝𝑗

𝑖−1

𝑗=1

+ 𝑝𝑖) 
 

(2.54) 

 

where 𝑙𝑖 denotes the lower bound of the interval corresponding to 𝑖th individual. It is 

notable that for the first individual, 𝑙1 is equal to zero. In the fourth step, a random number 

𝑟 from the range [0,1] is selected and then the individual whose interval includes 𝑟 is 

selected for mating. This step is repeated for a number of iterations to produce a pool of 

parents for mating. Based on this method, the individuals with large fitness values have 

more chance to be selected than the others. They are also likely to be selected more than 

once throughout the selection process. 

 Stochastic Universal Sampling 

The Stochastic Universal Sampling method is the extended version of roulette wheel 

method where multiple evenly spaced pointers are considered at a time instead of using a 

single pointer to select an individual. Hence, in SUS, multiple individuals are selected at a 

time. The advantage of SUS is giving a chance to weaker individuals to be selected as 

well. This method reduces the unfair behavior of the roulette wheel method which mostly 

ignores the weaker individuals. In SUS method, firstly, a random value 𝑟 is selected from 

the range [0, 𝑘] where 𝑘 is obtained as: 

𝑘 =
𝐹

𝐼
 

 

(2.55) 

 

where 𝐹 and 𝐼 are the summation of fitness values and the number of individuals that are 

supposed to be selected by the method, respectively. In the second step, 𝐼 pointers are 

generated as: 
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𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 = [𝑝1, 𝑝2,⋯,𝑝𝑁],           𝑝𝑖 = 𝑟 + (𝑖 − 1) ∗ 𝑘          𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐼 (2.56) 

 

Like roulette wheel method, for each pointer 𝑝𝑖, the individual whose interval includes 𝑝𝑖 

is selected for mating.  

 Tournament 

Tournament selection method tries to randomly select a subset of size 𝑘 (i.e., tournament 

size) of the current population for several times. In each tournament, the best individual is 

selected as a parent to reproduce the next generation. If 𝑘 is a large value, the weaker 

individuals have a lower chance to be selected. On the other hand, when 𝑘 = 1, 

tournament method acts as the random selection method. 

 Truncation 

Truncation method is one the simplest selection methods where firstly, the individuals are 

sorted based on their fitness value and then some proportion, 𝑝, of the best individuals are 

selected. 

 

2.6.2. Recombination 

The children are generated through the combination of their parents’ genes in form of new 

chromosomes. Combining the genes is performed by the genetic operator called crossover. 

The crossover operator is done with a probability called crossover rate which usually takes a 

large value of probability (e.g., 0.7). A number of crossover methods have been proposed. 

Among them, single-point, two-point, Cut and Splice and Uniform are well-known crossover 

methods. Suppose that a chromosome is a binary string so that each gene takes a value from 

{0,1}. The follwoing explaines the crossover methods mentioned above. 

 Single-point crossover 

In single-point method, a common crossover point is selected for both parents and then all 

genes beyond the point are swapped between the two parents which results in having two 

children whose lengths are the same as that of their parents. Fig. 2.9 shows an example of 

single-point crossover method. 

 

 Two-point crossover 

In two-point method, two common crossover points are selected rather than one point. In 

this method, all genes between two points are swapped between the two parents which 
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results in having two children whose lengths are the same as that of their parents. Fig. 

2.10 shows an example of two-point crossover method. 

 

 

Fig. 2.9. Single-point crossover 

 

 

 

Fig. 2.10. Two-point crossover 

 

 Cut and Splice crossover 

Cut and Splice method is similar to single-point method but with the difference that each 

parent has its own crossover point. All genes beyond each point are swapped between the 

two parents which results in having two children with different lengths. Fig. 2.11 

illustrates an example of Cut and Splice method. 
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Fig. 2.11. Cut and Splice crossover 

 

 Uniform crossover 

Unlike previous methods, in Uniform method, the parents have contribution in producing 

the children in gene level instead of segment level. In other words, each gene is decided 

whether to be exchanged with its corresponding gene in the other parent or to be kept 

unchanged. In this method, each gene is swapped with a fixed probability, typically 0.5 

where for each child, approximately half of its genes belong to the first parent and the 

other half is inherited from the second parent. Fig. 2.12 shows an example of Uniform 

method. 

 

Fig. 2.12. Uniform crossover 
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2.6.3. Mutation 

In order to bring diversity to the next generation, another genetic operator called mutation is 

performed on a generated child where one or more genes of the corresponding chromosome 

is/are modified. Unlike the crossover rate, the mutation rate takes a very small value. The 

common mutation method modifies the value of a gene with a probability 
1

𝑙
 where 𝑙 is the 

length of the chromosome. 

 

2.6.4. Replacement 

Once a population of children is generated and evaluated, the last decision is how to replace 

the current generation with it. The common way is replacing the current population with all 

generated children. In some advanced methods, the parents of the current population are 

allowed to compete with the children where a percentage of the current population migrates to 

the next generation. Some advanced methods can be found in [43]. 

   

2.6.5. Multi-Objective Genetic Algorithm 

In the real world, the optimization of an engineering problem is a complicated task due to the 

presence of multiple objectives which, most of the time, are conflicting with each other. This 

means that improving one may deteriorate the other. In this case, there is a Pareto-optimal or 

non-dominated set of solutions in which each solution is not better than the other with respect 

to the multiple objectives. Fig. 2.13 shows an example of a minimization problem with two 

objectives. The whole space of solutions is divided into two groups: the shaded region 

presents the dominated solutions while the solid curve illustrates the non-dominated set of 

solutions regarding objectives obj.1 and obj.2. As it can be seen in Fig. 2.13, A and B denote 

two non-dominated solutions. 

The goal of a multi-objective optimizer is improving the surface of non-dominated solutions 

(i.e., the solid curve) in such a way that it approaches the origin (i.e., point ‘O’ in Fig. 2.13) as 

much as possible. 

GAs are well established tools to deal with multi-objective optimization problems [44-46]. In 

the Multi Objective Genetic Algorithm [4, 24, 46, 47], each individual in the population is 

evaluated in the space of  multiple objectives rather than in one single objective. In addition, 

at the end of one run of MOGA, a Pareto set of solutions is provided instead of achieving one 

solution that is better than all others. 
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Fig. 2.13. Bi-objective minimization problem. The shaded region presents dominated 

solutions and the solid curve illustrates non-dominated solutions [47]. 

 

An efficient Pareto-based ranking method has been proposed in [43, 47]. In this method, each 

individual is ranked based on the number of individuals by which they are dominated. For 

non-dominated individuals, rank 0 is considered; if an individual is dominated by 𝑚 

individuals, rank 𝑚 will be assigned to it. Fig. 2.14 shows an example of Pareto-based 

ranking for two objectives that should be minimized.  

 
Fig. 2.14. An example of Pareto ranking [48, 49]. 

 

 

In most applications, it is common to assign different priorities to the objectives or define 

different goals for them which the MOGA tries to achieve. In the case that all objectives have 

the same priorities, for those individuals which satisfy all goals, their corresponding rank is 

similarly equal to the number of individuals by which they are dominated. Those individuals 

which do not meet some goals are penalized by a higher rank. Fig. 2.15 illustrates an example 
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of Pareto-based ranking for two objectives which have the same priorities. For each objective 

a predefined goal is considered that should be met.   

 
Fig. 2.15. An example of Pareto-based ranking for two objectives with the same priorities. For 

each objective, a predefined goal is considered [43, 47]. 

 

In the case that, objective 2 has higher priority than objective 1, individuals which meet goal 

𝑔2 are ranked based on how well they optimize objective 1. Others that do not satisfy 𝑔2 are 

assigned the worst rank without considering their performance with respect to objective 1. 

Fig. 2.16 shows an example of this case.  

 
Fig. 2.16. An example of Pareto-based ranking for two objectives in the case that objective 2 

has higher priority than objective 1. For each objective, a predefined goal is considered [43, 

47]. 
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2.7. Neural network based model design by MOGA 

The problem of designing a neural network based model can be divided into two sub-

problems as follows [4]: 

 Neural network structure: It denotes the network inputs, the number of hidden layers, and 

the number of neurons in each layer. 

 Neural network parameters: They depend on the model chosen and are usually 

determined by a suitable learning algorithm. 

 

Since the RBFNN models considered in this thesis were designed by a MOGA, the remaining 

of this section details the MOGA application to the design of RBFNN models for 

classification and regression problems. 

 

The output of a RBFNN model is given by Eq. (2.57): 

 

𝑜[𝑘] = 𝑤𝑙+1 + ∑ 𝑤𝑚𝑒

‖𝒊𝑗[𝑘]−𝑪(𝑚)]‖2
2

2𝜎𝑚
2

𝑙

𝑚=1

 

 

(2.57) 

 

In Eq. (2.57), 𝑜[𝑘] and 𝒊𝑗[𝑘] denote the model output and the 𝑗th input at time instant 𝑘, 

respectively. 𝒘 represents the vector of the linear weights, 𝐂(𝑚) refers to the vector 

(extracted from the 𝐂 matrix) of the center associated with the 𝑚th
 hidden neuron, σm is its 

corresponding spread, and 
2

 represents the Euclidean distance. The network parameters 

which will be denoted as the parameter vector 𝐩, are therefore 𝐂, 𝛔 and 𝐰. In order to design 

a RBFNN model that satisfies a set of defined goals, it is necessary to define a set of quality 

measures in the form of objectives for each sub-problem mentioned above. 

Assume that 𝑫 = (𝑿, 𝒚) is a data set composed of 𝑁 input-output pairs, which is divided into 

a training set, 𝑫𝑡, a generalization or testing set 𝑫𝑔 and a validation set 𝑫𝑣. Assume also that 

𝐹 is a set of all possible input features (delayed values of the modeled and exogenous 

variables in time-series regression problems). The problem of designing RBFNN model by 

MOGA can be expressed as follows: 

The Dataset 𝑫, the allowed range  𝑑 ∈ [𝑑𝑚, 𝑑𝑀] of input features from 𝐹 and the range  

𝑛 ∈ [𝑛𝑚, 𝑛𝑀] of hidden neurons are given as design parameters to the MOGA. After the 

execution it generates a non-dominated set of RBFNN models that minimize [𝜇𝑝, 𝜇𝑠], where 
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𝜇𝑝 and 𝜇𝑠 denote a set of objectives related to the RBFNN’s parameters 𝐩 and its structure, 

respectively. 𝜇𝑠 includes only one objective,  

 s O      (2.58) 

 

that denotes the model complexity which is a function of the number of input features and the 

number of the hidden neurons. 

Since the specification of  𝜇𝑝 is different in the classes of problems considered, the following 

subsections address the specification of 𝜇𝑝 for each class. 

  

2.7.1. Specification of 𝝁𝒑 in classification problems 

In classification problems, we are mainly interested to minimize 𝐹𝑃 and 𝐹𝑁 criteria (see 

Section 2.5). Hence the corresponding objectives for 𝜇𝑝 are considered as: 

 

𝜇𝑝 = [𝐹𝑃𝑫𝑡 , 𝐹𝑁𝑫𝑡 , 𝐹𝑃𝑫𝑔 , 𝐹𝑁𝑫𝑔] (2.59) 

 

where 𝐹𝑃𝑫𝑡  and 𝐹𝑁𝑫𝑡  denote the 𝐹𝑃 and 𝐹𝑁 on the training set 𝑫𝑡, respectively. Similarly, 

𝐹𝑃𝑫𝑔  and 𝐹𝑁𝑫𝑔  refer to the 𝐹𝑃 and 𝐹𝑁 on the testing set 𝑫𝑔, respectively. 

 

2.7.2. Specification of 𝝁𝒑 in regression problems 

The specification of 𝜇𝑝 in for the case of regression problems relies on the minimization of 

the error between model outputs and desired values. Therefore, the corresponding objectives 

for 𝜇𝑝 are defined as: 

 

𝜇𝑝 = [휀(𝑫
𝒕), 휀(𝑫𝑔)] (2.60) 

 

where 휀(𝑫𝑡) and  휀(𝑫𝑔) denote the Root Mean Square Errors (RMSE) of the model 

considering training 𝑫𝑡 and the testing set 𝑫𝑔. 

 

2.7.2.1. Specification of 𝝁𝒑 in time series prediction problems 

Regarding time series prediction problems, the basic objectives specified for regression 

problems are also taken into account. Besides these, an additional objective, 휀(𝑫𝑠, 𝑃𝐻), is 

also considered. Hence the corresponding objectives for 𝜇𝑝 can be defined as: 



 

  39  
 

 

𝜇𝑝 = [휀(𝑫𝑡), 휀(𝑫𝑔), 휀(𝑫𝑠, 𝑃𝐻)] (2.61) 

 

To understand 휀(𝑫𝑠, 𝑃𝐻), assume 𝑬(𝑫𝑠, 𝑃𝐻) is an error matrix defined over the simulation 

set 𝑫𝑠 as expressed in Eq. (2.62), where 𝑫𝑠 is composed of a number of consecutive samples 

with respect to the time instant. 

 

𝐸(𝑫𝑠, 𝑃𝐻) = [

𝑒[1,1] 𝑒[1,2] ⋯ 𝑒[1, 𝑃𝐻]
𝑒[2,1] 𝑒[2,2] ⋯ 𝑒[2, 𝑃𝐻]
⋮ ⋮ ⋱ ⋮

𝑒[𝑚 − 𝑃𝐻, 1] 𝑒[𝑚 − 𝑃𝐻, 2] ⋯ 𝑒[𝑚 − 𝑃𝐻, 𝑃𝐻]

] 

 

(2.62) 

 

where  ,e i j  is the model prediction error taken from instant i of sD  at step j within the 

prediction horizon PH.  Denoting  ., i  as the RMS function operating over the i
th

 column 

of its argument matrix, then 휀(𝑫𝑠, 𝑃𝐻) is defined as: 

 

휀(𝑫𝑠, 𝑃𝐻) =∑𝜌(𝑬(𝑫𝑠, 𝑃𝐻), 𝑖)

𝑃𝐻

𝑖=1

 

(2.63) 

 

This value is proportional to the area below the curve defined by 𝜌(𝑬(𝑫𝑠, 𝑃𝐻), 𝑖) for 𝑖 within 

the prediction horizon, reflecting the model accuracy over the complete prediction horizon for 

the data set considered.  

  

2.7.3. Model representation in MOGA 

Each RBFNN model in the population has a chromosome representation consisting of two 

components. The first corresponds to the number of hidden neurons and the second one to a 

string of integers, each one representing the index of a particular feature in 𝐹. The 

chromosome representation is shown in Fig. 2.17. 
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Fig. 2.17. Chromosome representation in MOGA. 

 

Before being evaluated in the MOGA, each model has its parameters determined by a 

Levenberg-Marquardt algorithm [32, 33] minimizing the error criterion in Eq. (2.38) that 

exploits the linear-nonlinear relationship of the RBFNN model parameters [34, 50]. The 

initial values of the nonlinear parameters (𝑪 and 𝝈)  are chosen randomly, or by the use of a 

clustering algorithm, 𝒘 is determined as a linear least-squares solution, and the procedure is 

terminated using the early-stopping approach [17] within a maximum number of iterations. 

 

2.7.4. Model design cycle 

There are three main actions in the model design cycle: problem definition, solution(s) 

generation and analysis of results. In the problem definition stage, the data sets, the ranges of 

features and neurons are defined, as well as the objectives. After this stage, the MOGA 

execution performs a search to obtain models that satisfy the predefined objectives and goals. 

In the third stage, the set of models obtained by the MOGA that lie in the Pareto front are 

analyzed. For this purpose, the performance of the models in the validation set (not involved 

in the training) is also considered and is of paramount importance. If good solutions are 

found, the process stops. Otherwise, based on the analysis of results, the search space can be 

reduced, and/or the objectives and goals can be redefined, therefore restricting the trade-off 

surface coverage. A more detailed description on the application of the MOGA to the design 

of ANN models can be found, for instance, in [4, 24]. 
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2.8. Information Theory 

Information theory addresses the quantification, storage and communication of information. 

Entropy, as one of the basic concepts in information theory, measures the expected value of 

the information contained in any random variable. For a given discrete random variable 𝑿 

with 𝑁 possible observations, the Shannon entropy is defined as Eq. (2.64) [51].  

𝐻(𝑿) = −∑𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)

𝑁

𝑖=1

 

 

(2.64) 

 

where 𝑃(𝑥) denotes the Probability Density Function (PDF) of 𝑿. Mutual Information (MI) as 

another key concept in information theory measures the dependency between variables. 

Unlike the correlation coefficient that measures only the linear relationship between variables, 

MI does not consider any assumption for the underlying relationship. In addition, MI can be 

defined between groups of variables [52]. MI between two variables 𝑿 and 𝒀 (they can be 

univariate or multivariate variables) denoted by 𝐼(𝑿; 𝒀) can be interpreted in several ways. 

Informally, 𝐼(𝑿; 𝒀) measures the amount of information that 𝑿 and 𝒀 share. Formally, 

𝐼(𝑿; 𝒀) measures the amount of knowledge of 𝑿 that reduces the uncertainty about 𝒀 and vice 

versa [53]. It is also translated into the degree of predictability of the second variable knowing 

the first one [54]. In the case that 𝑿 (i.e., with 𝑁 possible observations) and 𝒀 (i.e., with 𝑀 

possible observations) are discrete variables, MI is computed by Eq. (2.65).  

 

𝐼(𝑿; 𝒀) =∑∑𝑃(𝑥𝑖 , 𝑦𝑗) log
𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑥𝑖). 𝑃(𝑦𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 

 

 

(2.65) 

  

where 𝑃(. , . ) and 𝑃(. ) denote the joint and marginal PDF, respectively. Since the 

computation of entropy and MI depends on the PDF, the related problematic issue is the 

estimation of the PDF. The most common methods for PDF estimation are histograms and 

kernel estimators [55, 56]. Moreover, there is another approach allowing us to directly 

estimate entropy and MI from data instead of PDF estimation. Some methods for estimating 

entropy and MI can be seen in [57, 58]. 
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2.9. Overview of two statistical tests 

In order to compare the performance of machine learning methods on classification and 

regression problems, from a statistical point of view, several statistical tests have been 

proposed. In this way, at the first step, the two involved classification or regression methods 

are independently applied on to the same data sets. At the second step, based on the 

corresponding evaluation results (i.e., they can be in terms of RMSE and classification rate 

for regression and classification problems, respectively) obtained by each method, the 

comparison of the methods’ performances are statistically verified by rejecting or accepting a 

null hypothesis (i.e., the null hypothesis is equivalent to the assumption that the two methods 

perform equally well). In this section, the two statistical tests which have been applied in this 

thesis are explained. 

 

2.9.1. Sign test 

Applying Sign test [59] is one of the simple ways to compare the performances of two 

methods. In this test, two methods are compared with each other in terms of the number of 

times that the first method has performed better than the second one. This number is also 

known as the number of wins. In case of tie, the corresponding count is evenly split between 

them; if there is an odd number of them, one is ignored. In case that multiple methods should 

be compared, pairwise comparisons are organized in a matrix. Typically, for a large number 𝐿 

of data sets, the critical number of wins with the significance level of 𝛼 = 0.05 is equal to 

𝐿/2 + (1.96√𝐿)/2 or 𝐿/2 + √𝐿. The first method performs better than the second one, if its 

number of wins is greater than or equal to the critical value. 

  

2.9.2. Wilcoxon signed-ranks test    

According to the suggestion of [60], a Wilcoxon signed-ranks test [59] is a proper alternative 

for 𝑡-test. Firstly, Wilcoxon signed-ranks test is safer than 𝑡-test since it does not assume the 

normal distributions. Secondly, the outliers have less effect on the Wilcoxon’s performance 

than they have on the 𝑡-test. This is a non-parametric test, which ranks the differences in 

performances of two methods for each data set, ignoring the signs, and compares the ranks for 

the positive and the negative differences. Assume that 𝑑𝑖 is the difference between the 

performance scores of the two methods on the i
th

 out of 𝐿 data sets. The differences are ranked 

according to their absolute values; average ranks are assigned in case of ties. Let 𝑅+ be the 
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sum of ranks for the data sets on which the second method outperformed the first, and 𝑅− the 

sum of ranks for the opposite. Ranks of 𝑑𝑖 = 0 are split evenly among the sums; if there is an 

odd number of them, one is ignored. Eqs. (2.66) and (2.67) present R
+
 and R

−
, respectively. 

 

   
0 0

1

2
i i

i i

d d

R Rank d Rank d

 

  
 

(2.66) 

   
0 0

1

2
i i

i i

d d

R Rank d Rank d

 

    
(2.67) 

 

Assume that 𝑇 is the minimum of the sums, 𝑇 = min (𝑅+, 𝑅− ). For a small number of data 

sets (i.e., 𝐿 < 60), most books in general statistics contain a table of exact critical values of 𝑇 

based on some different significance levels of 𝛼. For a large number of data sets (i.e., 𝐿 ≥

60), the statistic 

)12)(1(
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1
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z   is distributed approximately normally. With 

𝛼 = 0.05, the null hypothesis can be rejected if z is smaller than -1.96. 
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3. Convex hull algorithms and state of the art 

3.1. Introduction 

The convex hull of a dataset is a widely known concept in computational geometry. It has 

been applied in many fields such as computer graphics, pattern recognition, image processing, 

file searching, statistics, cartography, metallurgy, etc. For example, in some applications, the 

size of an object can be computed through its image. In case that some pixels of the image 

might be lost or not be visible, convex hull can provide us an approximated shape of the 

underlying object. In machine vision applications, convex hull can be applied to detect 

collisions while navigating over a field of obstacles, where the objects can be substituted with 

their corresponding convex hull.  

The convex hull of a set of data can be presented in terms of vertices and facets where the 

vertices refer to the boundary points of the data set and the facets denote the connections 

among the vertices. Since convex hull vertices are useful and informative points reflecting the 

whole range of data, convex hull can also be considered in the data selection phase in machine 

learning and data mining tasks. 

This chapter is intended to address the explanation of the basic concept of convex hull as well 

as introducing some standard convex hull algorithms applicable to low and high dimensions. 

The rest of this chapter is organized as follows: the definition of convex hull along with an 

overview of convex hull algorithms are explained in Section 3.2. In Section 3.3, some 

standard convex hull algorithms for low dimensions are introduced. As a state-of-the-art, a 

proposed convex hull algorithm in high dimensions is introduced in Section 3.4 and finally 

some conclusions are drawn in Section 3.5. 

 

3.2. An overview of convex hull algorithms 

From a computational geometry’s point of view, an object in Euclidean space is convex if for 

any pair of points within the object, the straight line segment that joins them is also within the 

object. A set is convex if, for any pair, 𝑥, 𝑦 ∈ 𝑆, and all 𝑡 ∈ [0,1], the point (1 − 𝑡)𝑥 + 𝑡𝑦 

is in 𝑆 otherwise 𝑆 is a concave set. Moreover, if 𝑆 is a convex set, for any 𝑢1, 𝑢2, … , 𝑢𝑟 ∈ 𝑆, 

and any nonnegative numbers {𝜆1, 𝜆2, … , 𝜆𝑟}: ∑ 𝜆𝑖 = 1𝑟
𝑖=1 , the vector ∑ 𝜆𝑖𝑢𝑖

𝑟
𝑖=1  is called a 

convex combination of  𝑢1, 𝑢2, … , 𝑢𝑟. Intuitively, Figs. 3.1(a) and 3.1(b) illustrate convex and 

concave sets, respectively.  

S
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(a) 
 

(b) 

Fig. 3.1. (a): convex set, (b): concave set 

 

According to the definitions above, the convex hull or convex envelope of a set 𝑋 of points in 

the Euclidean space can be defined in terms of convex sets or convex combinations [61-63]: 

 the minimal convex set containing 𝑋, or 

 the intersection of all convex sets containing 𝑋, or 

 the set of all convex combinations of points in 𝑋. 

Based on the definition of convex hull, a 𝑘-simplex is a 𝑘-dimensional polytope which is the 

convex hull of 𝑘 + 1 affinely independent points. Intuitively, 0-simplex, 1-simplex, 2-simplex 

and 3-simplex correspond to a point, a line segment, a triangle and a tetrahedron, respectively. 

Generally, a 𝑘-simplex consists of the elements called 𝑖-faces where 𝑖 ≤ 𝑘 − 1. 0-faces, 1-

faces and (𝑘 − 1)-faces are called vertices, edges and facets of the 𝑘-simplex, respectively. 

Fig. 3.2 shows the convex hull of a set of points. 

Convex hull algorithms can be categorized from three points of view. An algorithm can be 

deterministic or randomized depending on the order of vertices found. If the order is fixed 

from execution to execution, the algorithm is deterministic [6]; otherwise, it is randomized 

[12]. Furthermore, an algorithm can be considered as a real or approximation algorithm. If it 

is capable of identifying all vertices of the real convex hull, the algorithm is classified as real 

[8]; otherwise, it is an approximation [10, 64]. Finally, we can also classify convex hull 

algorithms into offline and online algorithms. The former uses all the data to compute the 

convex hull, while the latter employs newly arrived points to adapt an already existing convex 

hull [5]. Fig 3.3 shows the main categories of convex hull algorithms from the three points of 

view. 
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Fig. 3.2. Convex hull of a set of points. 

 

 

 

Fig. 3.3. Categories of convex hull algorithms. 

 

3.3. Introduction of convex hull algorithms in two and three dimensions 

In one dimension, the convex hull vertices of a set of 𝑛 points are the minimum and 

maximum values (i.e., the corresponding convex hull involves two vertices). Hence the time 

complexity of finding convex hull in one dimension is 𝑂(𝑛). For 2 and 3-dimensional 

Euclidean space, some standard algorithms have been proposed so that the time complexity of 

most of them is 𝑂(𝑛 log 𝑛). For 2-dimensional Euclidean space, some basic algorithms have 

been proposed which are strongly similar to standard sort algorithms where they produce the 

convex hull vertices in a counterclockwise order. The following introduces some standard real 

algorithms as well as approximation, online and randomized algorithms in two and three 

dimensions. 

 

3.3.1. Graham’s scan 

Graham’s scan [6] is one of earliest real deterministic offline algorithm in two dimensions. 

This algorithm which outputs the vertices in counterclockwise order works based on three 
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elements including the angle between each point and the center of points, the distance of each 

point to the center and the left turn concept. 

Three points 𝒑𝟏 = (𝑝11, 𝑝12), 𝒑𝟐 = (𝑝21, 𝑝22) and 𝒑𝟑 = (𝑝31, 𝑝32) make a left turn when 

|

𝑝11 𝑝12 1
𝑝21 𝑝22 1
𝑝31 𝑝32 1

| is positive where |. | denotes the determinant operation. The positive value 

demonstrates that the three points are in counterclockwise order while the non-positive value 

refers to clockwise order corresponding to the right turn. 

In Graham’s scan, first, all points are lexicographically sorted with respect to the polar angle 

and the distance from the center of points. In the second step, the lowest leftmost point, called 

the start point, as well as the two consecutive points after that are inserted in the vertices list. 

Then the algorithm starts traversing the points onwards in a circular way. At each traverse, the 

new point is compared with the last two vertices found in the previous traverses. If the new 

and the last two vertices make a left turn then the new point is inserted into the list and the 

traverse progresses; otherwise, the last vertex is deleted from the list and again the left turn 

examination is done. This backward elimination is repeated as long as the left turn 

examination is not met. The algorithm stops when all points are traversed. Fig. 3.4 illustrates 

an example of applying Graham’s scan on a set of 10 points. As it can be seen in Fig. 3.4, the 

origin of coordinates is transferred to the center point and then all points are sorted with 

respect to the polar angle and the distance from the center. Consequently, the sorted list is 

obtained as {𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖, 𝒑𝟗, 𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏}. In Fig. 3.4, 𝑺𝒕𝒂𝒓𝒕 is the lowest 

rightmost point which is definitely a vertex of convex hull. Three points, 𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏 and 𝒑𝟐 

are selected as vertices of convex hull and then the next point which is 𝒑𝟑 is examined. As it 

can be seen in Fig. 3.4, triple (𝒑𝟏, 𝒑𝟐, 𝒑𝟑) makes a left turn so 𝒑𝟑 is selected as a convex hull 

vertex. In the next traverse, point 𝒑𝟒 is considered. As it can be observed in Fig. 3.4, triple  

(𝒑𝟐, 𝒑𝟑, 𝒑𝟒) makes a right turn so 𝒑𝟑 is removed from the vertices list and then triple 

(𝒑𝟏, 𝒑𝟐, 𝒑𝟒) is examined. Since this triple makes a left turn, the algorithm traverses the next 

point which is 𝒑𝟓. Triple (𝒑𝟐, 𝒑𝟒, 𝒑𝟓) makes a left turn therefore 𝒑𝟓 is inserted to the vertices 

list and it allows the algorithm to examine triple (𝒑𝟒, 𝒑𝟓, 𝒑𝟔). As this triple makes a right 

turn, 𝒑𝟓 is removed from the vertices list and then triple  (𝒑𝟐, 𝒑𝟒, 𝒑𝟔) is examined that allows 

the algorithm to traverse the next point 𝒑𝟕. This procedure continues until all points are 

traversed. Finally Graham’s scan outputs the vertices list as {𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏, 𝒑𝟐, 𝒑𝟒, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖}. 

The time complexity of Graham’s scan is 𝑂(𝑛 log 𝑛). 
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Fig. 3.4. Graham’s scan on ten points. 

 

3.3.2. Jarvis’s march 

Jarvis’s march [7] is another instance of real deterministic offline methods . It works based on 

the theorem stating that a segment line between two points is an edge of the convex hull in 

planar space if and only if all the remaining points are located in the same side of the edge [5]. 

The algorithm starts with the lowest rightmost point as the new origin (i.e., the original 

coordinates is transferred to the new origin) which is a vertex of convex hull. Then the point 

with the smallest angle with respect to the positive 𝑥 axis is selected as the second vertex of 

the convex hull. In the next step, the second vertex is set as the new origin and then another 

point with the smallest angle with respect to the positive 𝑥 axis is selected as a new vertex. 

This procedure continues until it gets to the highest rightmost point. From this point, the 

algorithm continues to find a new point with the smallest angle with respect to the negative 𝑥 

axis. The algorithm terminates when we get to the lowest rightmost point. Fig. 3.5 illustrates 

an example of applying Jarvis’s march on a set of 10 points. As it can be seen in Fig. 3.5, the 

algorithm starts with 𝑺𝒕𝒂𝒓𝒕 as the lowest rightmost point which is definitely a vertex of the 

convex hull. In next step, the coordinates are transferred to 𝑺𝒕𝒂𝒓𝒕 as the origin and then 𝒑𝟏 as 

a point with the smallest angle with respect to the positive 𝑥 axis is selected as a convex hull 

vertex. In next step, the coordinates are transferred to 𝒑𝟏 as the origin and then 𝒑𝟐 as a point 

with the smallest angle with respect to the positive 𝑥 axis is selected as a convex hull vertex. 

In next step 𝒑𝟒 is selected as another vertex. Since 𝒑𝟒 is the highest rightmost point, for next 

steps, the smallest angle is considered with respect to the negative 𝑥 axis. Considering 𝒑𝟒 as 

the origin, 𝒑𝟔 is selected as another vertex rather than 𝒑𝟓. This procedure continues until we 

get to the 𝑺𝒕𝒂𝒓𝒕. Ultimately, Jarvis’s march results in a vertices list  

{𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏, 𝒑𝟐, 𝒑𝟒, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖}. 
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The time complexity of Jarvis’s march is 𝑂(𝑛𝑓) where 𝑛 and 𝑓 denote the number of points 

and the number of convex hull vertices, respectively. Hence this algorithm is an example of 

output-sensitive algorithms where the time complexity depends not only on the input size but 

also on the output size. In the worst case, when all points are located on the hull (i.e., no point 

is identified as an inner point), the time complexity is 𝑂(𝑛2). 

 

 

Fig. 3.5. Jarvis’s march on ten points. 

 

3.3.3. Quickhull 

Quickhull [8] as a promising real deterministic offline algorithm is faster than other proposed 

algorithms in two dimensions and it can be extended to more than two dimensions. The idea 

behind Quickhull is growing the current convex hull in each iteration by finding the furthest 

point with respect to the facets of the current convex hull. In each iteration, the current convex 

hull is presented in terms of both vertices and facets. The algorithm starts with an initial 

convex hull which is the maximum 2-simplex being translated to a triangle with maximum 

area (i.e., the initial convex hull has three vertices). In the next step, the points inside the 

initial convex hull are marked as inner points and then removed from the set of points. In this 

step, the initial convex hull with three facets divides the whole space into three subspaces. 

Afterwards, inside each subspace, the point which has the maximum distance to its 

corresponding facet is marked. Among the marked points, the point with maximum distance, 

called the furthest point, is selected as a new vertex of the convex hull. In the next step, two 

new facets are generated in such a way that each new facet involves the furthest point and one 

of the two vertices of the corresponding facet. Consequently, a new triangle is generated. 

Afterwards, the points inside the triangle are marked as the inner points and are removed from 

the set. Then the corresponding facet of the furthest point is removed to update the current 
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convex hull. This procedure continues with the current convex hull and stops when no 

furthest point is identified. Fig. 3.6 illustrates the steps of Quickhull applied on a set of 20 

points.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Fig. 3.6. The steps of Quickhull applied on 20 points. 
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As it can be observed in Fig. 3.6, in each step, the furthest point with respect to the current 

convex hull is identified and marked as a convex hull vertex. Afterwards, two new facets are 

generated and based on those, the inner points are removed from the underlying set. Then the 

corresponding facet of the furthest point is removed. This procedure continues until no new 

vertex is found.   

From the time complexity point of view, for dimensions 𝑑 ≤ 3, Quickhull runs in time 

𝑂(𝑛 log 𝑟), where 𝑛 and 𝑟 are the number of all points and the number of processed points, 

respectively. In the worst case, the time complexity is 𝑂(𝑛2). For 𝑑 ≥ 4, Quickhull runs in 

time 𝑂(𝑛𝑓𝑟/𝑟), where 𝑓𝑟 is the maximum number of facets for 𝑟 vertices. Since 𝑓𝑟 =

𝑂(𝑟⌊
𝑑

2
⌋/ ⌊

𝑑

2
⌋ !), for high dimensions, a massive number of facets would be generated for 𝑟 

vertices. Consequently, Quickhull is not feasible for high dimensions, both in terms of 

execution time and memory requirements. 

 

3.3.4. A divide and conquer based convex hull algorithm  

Preparata and Hong [9] proposed a convex hull algorithm based on the divide and conquer 

technique. This algorithm starts with sorting set 𝑆 of points with respect to the first dimension 

denoted as 𝑥 (i.e., the second dimension is denoted as 𝑦).  Then 𝑆 is divided into two equal 

size subsets 𝑆1 and 𝑆2 so that the first half of points is assigned to 𝑆1 and the second one to 𝑆2. 

The algorithm is recursively performed on 𝑆1 and 𝑆2. Sorting points produces a set of 

nonintersecting sub-convex hulls throughout the execution of the algorithm. Any standard 

convex hull algorithm in 2-dimensional space can be applied to obtain the sub-convex hull of 

each subset. Another phase of the algorithm is merging any two sub-convex hulls. Fig. 3.7 

shows the steps of the divide and conquer based algorithm applied on a set of 20 points. As it 

can be seen in Fig. 3.7, the underlying set is divided into the subsets recursively. Generating 

sub-convex hulls and merging them are also done in a recursive manner. Sorting the points 

takes 𝑂(𝑛 log 𝑛) operations. The time complexities of generating a set of sub-convex hulls 

and merging them are 𝑂(𝑛 log 𝑛) and 𝑂(𝑛), respectively. To sum up, the time complexity of 

the algorithm is 𝑂(𝑛 log 𝑛). The extended version of the algorithm in 3-dimensional 

Euclidean space also takes 𝑂(𝑛 log 𝑛) time. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 3.7. The steps of the divide and conquer based algorithm applied on 20 points. 

 

3.3.5. Approximation Algorithms for Convex Hulls 

As mentioned earlier, there exists a subclass of convex hull algorithms called approximation 

algorithms where a subset of vertices of real convex hull is obtained. The approximation 

algorithms are proper for real time applications. Approximation algorithms are also suitable 

for statistical applications in which data observations are not accurate. Since the obtained real 

convex hull from inaccurate data is not the same as the one obtained from the accurate data, 

one can rely on an approximation convex hull. Authors in [10] proposed approximation 

algorithms for two and three dimensions. The basic idea behind these algorithms is selecting a 

subset 𝑆 of the whole set containing 𝑛 points and then applying any convex hull algorithm on  
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𝑆 to obtain an approximation convex hull. The key point in these algorithms is proposing a 

method based on data partitioning to select the subset 𝑆. In two dimensions, firstly the 

minimum and maximum points with respect to 𝑥 axis (i.e., the first dimension) are included in 

𝑆. In second step, the points are partitioned into 𝑘 equally spaced strips with respect to 𝑥 axis. 

In third step, in each strip, the minimum and maximum points with respect to 𝑦 (i.e., the 

second dimension) are included in 𝑆 and finally a convex hull algorithm is applied on 𝑆 to 

obtain an approximation convex hull. The steps of the algorithm applied on 22 points (i.e., 

𝑛 = 22) with 8 equally spaced strips (i.e.,  𝑘 = 8) are illustrated in Fig. 3.8. As it can be seen 

in Fig. 3.8(c), one outer point which is a vertex of the real convex hull has not been identified 

by the approximation algorithm. The time complexity of the approximation algorithm in two 

dimensions is 𝜃(𝑛 + 𝑘). In a 3-dimensional Euclidean space, firstly, the minimum and 

maximum points with respect to both 𝑥 and 𝑦 axis are included in 𝑆. In the second step, the 

points are partitioned into a 𝑘 × 𝑘 grid of squares obtained with respect to 𝑥 and 𝑦 axis. In the 

third step, in each square, the minimum and maximum points with respect to 𝑧 axis (i.e., the 

third dimension) are also included in 𝑆 and finally any convex hull algorithm for three 

dimensions can be applied on 𝑆 to result in an approximated convex hull. The time 

complexity of the approximation algorithm in three dimensions is 𝜃(𝑛 + 𝑘2 log 𝑘). 

 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.8. The steps of the approximation convex hull algorithm applied on 22 points. 
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3.3.6. Online convex hull algorithms 

Unlike offline algorithms, online convex hull algorithms process points at a time in the sense 

that the current convex hull is gradually updated whenever a new arriving point is received. 

The online convex hull problem can be described as follows: firstly, the convex hull of a 

given 𝑁 points 𝑝1, ⋯ , 𝑝𝑁 is identified and then the convex hull is updated by the new arriving 

point 𝑝𝑖. Throughout the convex hull update process, three cases may happen. In the first 

case, the new arriving point is an inner point meaning that the new point is located inside the 

current convex hull. In this case, the new point is rejected and the current convex hull is kept 

unchanged. In the second case, the new point is an outer point meaning that the point is 

located outside the current convex hull. This situation causes elimination of some vertices of 

the current convex hull which have been already converted to inner points. In the third case, 

the new point is an outer point but does not affect the vertices of the current convex hull. In 

this case, the new point is appended into the list of vertices.  

One of the earliest online convex hull algorithms in 2-dimensional spaces was proposed by 

Preparat and Shamos [11]. The main idea behind their algorithm is updating the current 

convex hull benefiting from two support lines (i.e., left and right support lines). A support line 

is a line which passes through the new arriving point and one of the vertices of the current 

convex hull so that the remaining points lie in the same side of the line. If no support line is 

founded, it means that the new point is an inner point. In case that the new point is an outer 

point, all vertices between two support lines are marked as inner points and will be eliminated 

in the update process. Fig. 3.9 shows the update process of the online convex hull algorithm 

based on the support lines.  

 

 

Fig. 3.9. The update process of the online convex hull algorithm based on support lines. 
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The online algorithm takes 𝜃(𝑛 log 𝑛) time for obtaining the convex hull of 𝑛 points with 

𝜃(logn 𝑛) update time. The extended version of this algorithm in 3-dimensional Euclidean 

space also takes 𝜃(𝑛 logn 𝑛) time. 

 

3.3.7. Randomized algorithms 

Unlike deterministic convex hull algorithms, randomized algorithms construct the structure of 

convex hull in a random manner. They are similar to online algorithms in the sense that the 

convex hull is incrementally formed due to processing random points at a time. In online 

algorithms, however, the initial convex hull is formed based on a limited number of points 

while in random algorithms, all points are available to be processed. Therefore, some 

information of the resulting convex hull can be obtained before it is constructed.  

In randomized incremental algorithms, a convex hull is incrementally constructed in three 

steps. In the first step, an unprocessed random point is selected. In the second step, the 

boundary of visible facets with respect to the point is identified. This boundary is called 

horizon ridges. Afterwards, new facets are generated using the point and the horizon ridges. 

Finally, the visible facets as well as the inner points are eliminated. This procedure is repeated 

until no unprocessed point remains [8]. In this method, the convex hull is presented as a set of 

a finite number of extreme points which are the convex hull vertices. Hence, this 

representation of the convex hull is known as vertex representation or V-representation [65]. 

The time complexity of such randomized algorithms is 𝑂(𝑛 log 𝑛) for 𝑑 ≤ 3. Convex hull can 

also be defined in terms of the intersection of a finite number of half-spaces in the form of a 

system of linear inequalities as follows:  

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑑𝑥𝑑 ≤ 𝑏1
 ⋮    ⋮     ⋮  ⋮

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑑𝑥𝑑 ≤ 𝑏𝑚

 

 

Each inequality denotes a half-space where 𝑚 and 𝑑 are the number of halfspaces defining the 

convex polytope and the dimension, respectively. The concise form of the above system can 

be represented in the form of matrix inequality as 𝑨𝒙 ≤ 𝒃 where each row of 𝑨 and 𝒃 

together correspond to the definition of a supporting hyperplane of the convex polytope in 

terms of normal and offset, respectively. This presentation of convex hull is known as half-

space representation or H-representation [65]. 

One of the earliest randomized convex hull algorithms which provides H-representation of the 

convex hull was proposed by Clarkson and Shor [12]. In each iteration of the algorithm, an 
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unprocessed random half-space is added into the current convex polytope by intersecting it 

with the previous half-spaces enveloping the convex polytope. The algorithm takes 𝑂(𝑚 +

𝑛 log 𝑛) expected time and 𝑂(𝑛) space in the worst case, where 𝑛 and 𝑚 denote the number 

of points and the number of intersecting pairs reported.  

 

3.4. Introduction of convex hull algorithms in higher dimensions 

In higher dimensions 𝑑 ≥ 4, two main methods are considered to identify the convex hull: 1- 

gift wrapping method [5, 66] 2- beneath-beyond method [63].  

The idea behind the gift wrapping method is constructing the convex hull by starting a facet 

and finding the adjacent facets. This procedure is iteratively conducted for each new 

identified facet. Since each facet is linked to its corresponding adjacent facets, the way in 

which the convex hull formed is like wrapping around a convex polytope in 𝑑-dimensional 

space. Jarvis’s march algorithm introduced in Section 3.3.2 is a special case of the gift 

wrapping method in a 2-dimensional space. Like Jarvis’s march, the gift wrapping method in 

high dimensions is an output-sensitive method whose time complexity also depends on the 

size of output 𝑓 which can be the number of facets of the generated convex hull. Therefore, 

the time complexity of the gift wrapping method in high dimensions is 𝑂(𝑛𝑓). Based on the 

upper bound theory, the number of generated facets is 𝑂(𝑣⌊
𝑑

2
⌋) where 𝑣 is the number of 

convex hull vertices. In the worst case where 𝑛 = 𝑣, the time complexity of the gift wrapping 

method is 𝑂(𝑛⌊
𝑑

2
⌋+1). An improved version of the original gift wrapping method was proposed 

by Seidel [66] where the algorithm takes 𝑂(𝑛2 + 𝑓 log 𝑛) time. Based on the upper bound 

theory, in the worst case, the time complexity of the algorithms is 𝑂(𝑛⌊
𝑑

2
⌋ log 𝑛).  

The Beneath-beyond method is considered as an incremental approach constructing the 

convex hull by adding one point into the current convex hull at a time. The update process of 

the current convex hull includes adding new facets into the current convex hull and removing 

the visible facets with respect to the new point. The Quickhull algorithm, as a deterministic 

incremental algorithm stated in Section 3.3.3, and also the randomized incremental 

algorithms, described in Section 3.3.7, where the convex hull is presented in terms of vertices 

(i.e., V-representation) are special beneath-beyond methods in a 2-dimensionl Euclidean 

space. The time complexity of the beneath-beyond method in high dimensions is 𝑂(𝑛 log 𝑛 +

𝑛⌊
(𝑑+1)

2
⌋) with 𝑂(𝑛⌊

𝑑

2
⌋) space [63]. The method was improved by [67] through derandomizing 

the randomized incremental algorithm proposed by [12] . The time complexity of the 



 

  58  
 

improved version is 𝑂(𝑛 log 𝑛 + 𝑛⌊
𝑑

2
⌋). Since both time and memory requirement increase 

exponentially with respect to dimension 𝑑 ≥ 4 with a fixed number of samples, applying the 

traditional convex hull algorithms in very high dimensions with a huge number of samples is 

not feasible.  

As the state of the art, one of the recent work done to overcome these challenges in high 

dimensions is the proposal of  an approximation convex hull algorithm by Wangs and et al. 

[68]. The proposed algorithm represents the convex hull in terms of vertices with the aim of 

including extreme points in the training set for online adaptation process of SVM models. The 

algorithm is based on samples partitioning where for each partition, the corresponding sub-

convex hull is obtained and then the union of vertices of all sub-convex hulls is considered as 

the set of vertices of an approximation convex hull. The algorithm results an approximation 

convex hull throughout three steps. In the first step, 𝑑 + 1 samples are selected as the vertices 

of the initial convex hull so that these samples can constitute a 𝑑-simplex as large as possible 

where 𝑑 is the dimension. Since the 𝑑-simplex has 𝑑 + 1 facets, it divides the space into 

𝑑 + 1 partitions. For example, Fig. 3.10 illustrates a 2-simplex which is translated into a 

triangle. As it can be seen in Fig. 3.10, the vertices of the 2-simplex are {𝑥1, 𝑥2, 𝑥3}. Assume 𝑜 

is the center of the 2-simplex. As can be seen in Fig. 3.10, the rays 𝑜𝑥1, 𝑜𝑥2 and 𝑜𝑥3 divide 

the samples outside the 2-simplex into three partitions named 𝑃1, 𝑃2 and 𝑃3. 

 

Fig. 3.10. Constructing a large 2-simplex 

 

In the second step, each partition whose number of samples is greater than a user-defined 

threshold 𝐿 is divided into 𝑑 new partitions based on the furthest sample to the corresponding 

facet of the partition. Afterwards, the furthest sample is appended into the list of convex hull 
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vertices. This procedure continues until there exists no partition whose number of samples 

exceeds 𝐿. For example, in Fig. 3.11, partition 𝑃3 is divided into two new smaller partitions 

named 𝑃31 and 𝑃32 based on the furthest sample named 𝑥4 to the facet 𝑥2𝑥3. As it can be seen 

in Fig. 3.11, the facet 𝑥2𝑥3 is removed and two new facets 𝑥2𝑥4 and 𝑥3𝑥4 are generated. 

 

 

Fig. 3.11. Partitioning step 

 

At the end of this step, each facet is considered as a sub-convex hull including 𝑑 vertices. In 

the third step, each sub-convex hull is tried to be expanded by identifying the furthest sample 

to the whole sub-convex hull and appending it into the list of the sub-convex hull vertices. 

This procedure continues until an approximation convex hull with at most 𝑀 vertices is 

obtained, where 𝑀 is a user-defined threshold. The time complexity of the algorithm is at 

most 𝑂(𝑛𝑑4) where 𝑛 is the number of samples. Although the algorithm can cope with the 

time complexity in high dimensions, as it will be shown in Section 4.4.1, it presents some 

points as vertices of the approximation convex hull that do not belong to the vertices of the 

corresponding real convex hull. 

 

3.5. Conclusions 

Convex hull, as one of the fundamental concepts in computational geometry, has been applied 

in a wide variety of applications such as data selection, image processing, pattern recognition, 

collision detection, file searching, cluster analysis, etc. Convex hull algorithms can be 

considered from three points of view: deterministic or randomized, in terms of vertices order, 
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real or approximation, depending if all convex hull points are found, or not, and offline and 

online, depending on the use of data.   

To the best of our knowledge, the standard algorithms in two and three dimensions that have 

been proposed by far, present the real convex hull in the time complexity 𝑂(𝑛 log 𝑛). 

Moreover, the proposed standard real algorithms in high dimensions (i.e., more than three 

dimensions) take 𝑂(𝑛⌊
𝑑

2
⌋) time and space in the worst case; where 𝑛 and 𝑑 denote the number 

of samples and the dimension, respectively. Since in practice, applying the standard real 

algorithm on a huge number of samples in high dimensions is not feasible, approximation 

algorithms have received much attention to cope with challenges in high dimensions. As one 

of the state of the art, Wangs and et al. [68] proposed an approximation algorithm in high 

dimensions with the time complexity 𝑂(𝑛𝑑4). Since this algorithm marks some points as the 

convex hull vertices which do not belong to the vertices of the real convex hull, a randomized 

approximation convex hull algorithm for high dimensions is proposed in Section 4.3. The 

proposed algorithm not only overcomes the time and space complexity in high dimensions, 

but also presents a subset of informative vertices of the corresponding real convex hull. 
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4. A convex hull-based data selection method for data driven 

models 

4.1. Introduction 

As stated in Section 3.4, the standard convex hull algorithms suffer from high time and space 

complexity in high dimensions (i.e., the latter being 𝑂(𝑛⌊
𝑑

2
⌋) where 𝑛 and 𝑑 are the number of 

samples and dimensions, respectively.). Hence, in practice, they cannot be applied in high 

dimensions. For example, if Quickhull [8], a real deterministic convex hull algorithm 

described in Section 3.3.3, is applied to an artificial dataset including 1000 uniformly 

distributed random samples in just 9 dimensions, in a computer with Ubuntu Linux OS, Intel 

Core i5 processor and 4 Gigabytes of RAM, one can see that it suffers from insufficient 

memory.  

A small number of efforts have been done to overcome these problems in high dimensions. 

The approximation algorithm proposed in [68] has significantly reduced the time complexity 

to 𝑂(𝑛𝑑4). The problem of the algorithm, as reported previously, is that some points which 

are marked as convex hull vertices do not belong to the real convex hull.  

This chapter  introduces a randomized approximation convex hull algorithm called 

ApproxHull , with the aim of being applied as a filter data selection method to design data 

driven models. ApproxHull not only is capable of being applied on large size data sets in high 

dimensions but also presents a set of informative vertices which all belong to the real convex 

hull. The main application of ApproxHull in the data selection phase is constructing a training 

set that reflects the whole input-output range of the design data. To do that, the training set 

incorporates the convex hull points obtained from ApproxHull, as well as some random points 

from the whole data.    

This chapter is organized as follows. A review on instance selection methods is presented in 

Section 4.2. ApproxHull is introduced in Section 4.3. To verify and evaluate the performance 

of the algorithm, a number of experiments were carried out. Section 4.4 explains the 

simulation results obtained. The run time and memory requirements of ApproxHull are 

discussed in Section 4.5 and 4.6, respectively. Finally, some conclusions are given in Section 

4.7.         
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4.2. A review on instance selection methods 

In many machine learning and data mining problems two basic tasks have to be considered:  

feature selection and instance selection. The former denotes choosing a subset from all 

available features so that the selected subset has the strongest relation to the model output and 

yields improved model performance. The latter refers to sample selection where we are 

interested in selecting a subset of useful and informative data samples (denoted by 𝑆) among 

all existing data samples (denoted by 𝑇). The goal is that the model obtained using 𝑆 can 

maintain or even exceed the performance level (for instance, accuracy) that would be attained 

using 𝑇. The instance selection process not only helps decreasing the run time of the training 

process but also has the benefit of reducing the memory requirements of learning algorithms. 

This is important when classification or regression tasks rely on existing large-size training 

sets. 

Generally speaking, instance selection methods can be classified from the search direction and 

selection criterion points of view. Regarding the search direction, the methods are categorized 

as incremental or decremental. In the former, the selection process starts with 𝑆 = ∅ and 

progresses iteratively by inserting selected samples from 𝑇 into 𝑆. In the latter, in contrast, the 

selection process starts with 𝑆 = 𝑇 and superfluous samples are discarded from 𝑆 in an 

iterative manner. Finally, for both methods, we have 𝑆 ⊂ 𝑇 by the end of the selection process 

[69, 70].  

From the selection criterion point of view, instance selection methods are classified as 

wrapper or filter methods. Wrapper methods use a model as a selection criterion, where the 

performance of the model is evaluated based on a subset of samples iteration by iteration to 

select those samples which have the most contribution on the model accuracy. Most works 

found in literature on wrapper methods relate to classification tasks. Unlike wrapper methods, 

filter methods employ a model independent selection function to choose informative samples 

[69]. This means that the accuracy of the model does not have any contribution in the 

selection criterion; instead, a selection rule is applied. 

Fig. 4.1 shows the two main classes of instance selection methods along with their subgroups.  

The following details wrapper and filter methods along with some related works. 
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Fig. 4.1. Classification of instance selection methods 

 

4.2.1. Wrapper instance selection methods 

Collectively, wrapper methods may be further subcategorized into three groups. The first 

gathers methods which are based on 𝑘 − 𝑁𝑁 (𝐾 Nearest Neighbors) classifiers [71], whereas 

the second group involves a broad class of wrapper methods that can be based on any 

classifier. The second group which is mostly based on search algorithms tries to find an 

optimal set 𝑆 from 𝑇 to keep the classifier in a desirable level of accuracy. The third group 

benefits from SVM [27] where they are applied to constitute set 𝑇𝑠, containing only support 

vectors of 𝑇 , which is used for 𝐾 − 𝑁𝑁 classifiers. The following addresses the three groups 

of wrapper instance selection methods. 

 

4.2.1.1. 𝑲−𝑵𝑵 rule based methods 

One of the earliest incremental method called CNN (Condensed Nearest Neighbor rule) was 

proposed by Hart [72]. It focuses on misclassified samples as critical samples that matter the 

most to the 𝑘 − 𝑁𝑁 classifier to ensure that unlabeled samples which are similar to the 

misclassified ones are correctly classified [73]. This method constitutes set 𝑆 from set 𝑇 by 

randomly selecting samples of each class. Afterwards, all samples in 𝑇 are classified by the 

1−𝑁𝑁 rule using 𝑆 as the training set. Then all misclassified samples are included in 𝑆 to 

ensure that the unlabeled samples similar to the misclassified samples are correctly classified. 

The main disadvantage of this method is to allow noisy samples to be included in 𝑆 since they 

are mostly misclassified based on their neighbors. As another version of the CNN, Ritter et 

al.[74] proposed the SNN (Selective Nearest Neighbor rule). In this method, set 𝑆 is 

composed in such a way that, for each sample in set 𝑇, its nearest neighbor can be found in set 

𝑆. Hence, a sample of 𝑇 is correctly classified based on the 1 − 𝑁𝑁 rule using 𝑆. In 
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classification tasks, the samples which are close to the decision boundary involve useful 

information to discriminate classes from each other. Since in the CNN and some of its 

variations samples are randomly selected from each class without considering their position 

with respect to the decision boundary, the boundary samples may be selected occasionally. To 

deal with this problem, some extended versions of the CNN were proposed.  

Gowda and Krishna [75] proposed a method in which the set 𝑆 is formed using the concept of 

mutual nearest neighborhood for selecting the boundary samples. If for two samples 𝑥𝑖 and 

𝑥𝑗, 𝑥𝑗 being the 𝑚th
 nearest neighbor of 𝑥𝑖 and correspondingly , 𝑥𝑖 being the 𝑛th

 nearest 

neighbor of 𝑥𝑗, the mutual neighborhood value of sample 𝑥𝑖 with respect to sample 𝑥𝑗 is 

defined as 𝑀𝑁𝑉(𝑥𝑖 , 𝑥𝑗) = 𝑚 + 𝑛. The proposed method, firstly, measures 𝑀𝑁𝑉 for each 

sample of 𝑇 with respect to its nearest sample in the opposite class. Samples that are close to 

the decision boundary have a low 𝑀𝑁𝑉. Afterwards, the samples of 𝑇 are sorted in ascending 

order based on their 𝑀𝑁𝑉 and the first sample of 𝑇 is inserted in 𝑆; the remaining samples are 

classified based on the 1 − 𝑁𝑁 rule using 𝑆. Then, misclassified samples are included in 𝑆. 

This process is repeated iteration by iteration until no misclassified sample is detected. As 

another extended version of the CNN, GCNN (Generalized Condensed Nearest Neighbor 

rule) was introduced by Chou et al [76]. In this method, sample 𝑥 as a prototype of 𝑇 is 

included in 𝑆 if it violates the absorption criterion ‖𝑥 − 𝑞‖ − ‖𝑥 − 𝑝‖ > 𝛿 where 𝑝 is the 

nearest neighbor of 𝑥 in the class to which 𝑥 belongs and 𝑞 is the nearest neighbor of 𝑥 in the 

opposite class. 𝛿 is a user defined threshold and ‖. ‖ denotes the 2-norm operation. 

So far, all introduced methods were based on 1 − 𝑁𝑁 rule. The authors in this literature have 

also proposed the methods based on 𝑘 − 𝑁𝑁 where 𝑘 > 1. One of the earliest decremental 

method known as 𝐸𝑁𝑁 (Edited Nearest Neighbor rule) using 𝑘 − 𝑁𝑁 rule was proposed by 

Wilson [77]. In this method, 3 − 𝑁𝑁 rule is applied to remove the noisy samples from 𝑇 in 

such a way that each sample of 𝑇 is classified using three nearest neighbors where the 

majority class is considered for labeling the sample. Then, the misclassified samples are 

removed from 𝑇. Finally, the reduced set 𝑇 is considred as set 𝑆 to classify new samples using 

1 − 𝑁𝑁 rule. An extended version of the ENN called 𝑎𝑙𝑙 𝑘 − 𝑁𝑁 was introduced by Tomek 

[78]. In this method, the ENN is repeated for different values of 𝑘 on set 𝑇 and those samples 

which are incorrectly classified for at least one value of 𝑘 are removed from 𝑇.  

A family of five incremental methods coined DROP1 to DROP5 (Decremental Reduction 

Optimization Procedure, 1 to 5) can be seen in [70]. These methods, which are based on the  

𝑘 − 𝑁𝑁 rule, remove noisy samples using the associates concept. The associates of sample 𝑥 
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are those samples for which 𝑥 is one of their 𝑘 nearset neighbors. These methods remove 

sample 𝑥 from 𝑇 whenever its associates are correctly classified without considering 𝑥. This 

is because, in most cases, the majority of associates of a noisy sample belong to the opposite 

class. Brighton and Mellish [79] introduced a method known as ICF (Iterative Case Filtering) 

which applies two concepts, reachability and coverage, corresponding to the neighborhood 

and associate sets, respectively. The reachable set does not have a fixed size; instead, it is 

bounded by the number of nearest samples from the opposite class. The ICF method focuses 

on removing noisy and superfluous samples from 𝑇. At the first stage, it applies the method 

ENN proposed by Wilson [77] to remove noisy samples. Afterwards, it tries to discard the 

superfluous samples relying on reachable and coverage sets. In this method, each sample 𝑥 

which meets the condition |𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑥)| > |𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥)| is discarded from 𝑇. It is 

translated to this fact that sample 𝑥 is far from the decision border. Hence 𝑥, as a superfluous 

sample, can be removed from 𝑇 since their neighbors can correctly classify new arriving 

similar samples to the 𝑥. 

 

4.2.1.2. Instance selection methods based on search algorithms  

So far, all the introduced methods were based on the 𝑘 − 𝑁𝑁 classifier model. In this 

literature, there is another group of wrapper instance selection methods which are mostly 

based on search algorithms. In this group of wrapper methods, the instance selection process 

is carried out by evaluating an arbitrary classifier model iteratively. Among search algorithms, 

evolutionary algorithms, as general-purpose search algorithms, have received much attention 

in the literature of instance selection process. Specifically, GA-based methods have been 

considered in this domain (for further information about GA, please consult Section 2.6). In 

this group of instance selection methods, each chromosome 𝒄 corresponds to a subset 𝑆 of 

𝑇 which is commonly presented by a binary string as 𝒄 = [0,1,1,0,1,1,0,0,⋯ ,0] so that 

|𝒄| =  𝑁 where 𝑁 is the size of 𝑇. Each element 𝒄𝑗  of 𝒄 for 𝑗 = 1,2,⋯ ,𝑁 denotes the presence 

or absence of 𝑗th sample of 𝑇 in 𝑆 [69, 80, 81]. 

When GA is customized for instance selection problem, the fitness value of a chromosome 

representing a subset 𝑆 of 𝑇 is computed in terms of the model accuracy and the percentage of 

instance reduction as Eq. (4.1) [80, 81]. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) =  𝜆 . 𝐶𝑟𝑎𝑡𝑒(𝑆) + (1 − 𝜆). 𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑆) (4.1) 
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where 𝐶𝑟𝑎𝑡𝑒 and 𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 denote the classification rate obtained by the evaluation of the 

model using 𝑆 and the percentage of instance reduction of 𝑆 with respect to 𝑇, respectively. In 

order to compromise between the model accuracy and the size of 𝑆, 𝜆 is usually set to 0.5. 

The percentage of instance selection is also computed by Eq. (4.2) [80, 81]. 

 

𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑆) =
#(𝑇) − #(𝑆)

#(𝑇)
 . 100 

(4.2) 

where #(. ) denotes the size of underlying set. 

In the literature of evolutionary instance selection, some variants of GA have been applied 

from the most classic version to the most complex versions. Six evolutionary instance 

selection methods including Generational Genetic Algorithm (GGA), Steady-State Genetic 

Algorithm (SSGA), CHC Adaptive Search Algorithm,  Intelligent Genetic Algorithm (IGA), 

Steady-State Memetic Algorithm and Population-Based Incremental Learning (PBLI) have 

been employed in [80, 81]. Moreover, some works that use GA in the application of instance 

selection to improve the accuracy of 𝑘 − 𝑁𝑁 classification can be seen in [82-84]. 

As other works related to search based instance selection methods, the authors in [85, 86] 

introduced the instance selection methods based on Tabu search [87] to find the best subset 𝑆 

from 𝑇 for 1 − 𝑁𝑁 classification. Tabu search, so called adaptive memory programming, is 

considered as a very efficient and straightforward optimization method to solve NP-hard 

problems.  

Tabu search benefits from short-term memory, called Tabu list, and neighborhood exploration 

which make it distinctive from other search methods in terms of low computational cost and 

better space exploration. Tabu search method starts with an initial solution 𝑆𝑖. Afterwards, a 

set of possible moves with respect to the current solution 𝑆𝑐 is considered, in a sense that each 

move is a neighbor solution of the 𝑆𝑐 , with a little bit modification in 𝑆𝑐. In the next step, all 

neighbor solutions are evaluated and the best one is selected considering those Tabu moves 

which have been previously inserted into the Tabu list (i.e., a short-term memory which is 

usually managed by FIFO policy to keep track the recently examined solutions). Finally, the 

Tabu list is checked to see if the best solution already exists within. If not, it will be inserted 

in the Tabu list. This process continues until a termination criterion is met. The termination 

criterion is: 

1. exceeding a given number of iterations or 

2.  when there is no improvement with respect to the overall best solutions throughout a 

given number of consecutive iterations. 
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As a further effort in applying search based methods, authors in [88] proposed Backward 

Sequential Edition method (BSE) as a decremental selection method benefiting from 

backward sequential search [89] to select an optimum set 𝑆 from 𝑇. This method iteratively 

discards a sample from the current set 𝑆 which has the minimum contribution on the 

classification accuracy. This procedure stops when the classification accuracy starts to 

decrease. Since this method is based on backward sequential method, the eliminated samples 

have no chance to be reconsidered in the selection process in a forward manner. In order to 

deal with this disadvantage of BSE, authors in [90] introduced the Restricted Floating Object 

Selection (RFOS) which relies on sequential floating search [91] in a restricted manner due to 

its extreme run time that allows the eliminated samples to be reconsidered in a forward 

direction. 

 

4.2.1.3. SVM based methods 

In this group of methods, SVMs are applied to reduce the size of 𝑇. Authors in [92] proposed 

an SVM based instance selection method. This method uses the algorithm DROP2 proposed 

in [70] to discard noisy samples from 𝑇𝑠.  𝑇𝑠 contains the support vectors obtained by applying 

SVM on 𝑇. Then, a new sample 𝑥 is classified by 1 − 𝑁𝑁 rule using 𝑇𝑠.  

The SVM based method proposed in [93], uses 𝑘 −𝑚𝑒𝑎𝑛𝑠 clustering algorithm to cluster 𝑇𝑠 

and then each support vector 𝑣 of 𝑇𝑠 is assigned a weight based on the proportion of its class 

label in the cluster to which 𝑣 belongs. It is defined as 
𝑁(𝑐𝑙𝑎𝑠𝑠(𝑣)

𝑁𝑐
 where 𝑁(𝑐𝑙𝑎𝑠𝑠(𝑣)) and 𝑁𝑐 

denote the number of samples in the cluster which have the same class label as 𝑣 and total 

number of samples in the cluster of 𝑣. Afterwards, a new sample 𝑥 is classified using 𝑘 − 𝑁𝑁 

rule in such a way that firstly the weights of the nearest neighbors of the same class are 

summed up and then the class label corresponding to the maximum summation is considered 

as the class label of 𝑥. 

 

4.2.2. Filter instance selection methods 

As mentioned earlier, unlike wrapper methods, in filter methods, a classifier independent 

criterion is applied to select instances. Mainly, filter methods can be organized into three 

groups including clustering based methods, weighting based methods and information theory 

based methods. Besides these groups, a few methods were proposed which do not belong to 
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any specific group. The following describes three main groups of filter methods as well as 

some other methods. 

 

4.2.2.1. Clustering based methods 

Among all efforts done in filter methods, some clustering based methods have been proposed 

with the aim of obtaining a set of prototypes so that each of them is a representative of a 

group of original instances in 𝑇. The idea behind this group of filter methods is clustering the 

original instances and then considering the centers of obtained clusters as a set of prototypes 

representing all instances in 𝑇 where finally unlabeled samples are classified based on the 

obtained set of prototypes. Authors in [94] introduced Generalized Modified Change 

Algorithm (GMCA) in which a merging strategy is exploited to merge two same-class nearest 

clusters and then the new center is considered as a new prototype. The method proposed in 

[95] called Nearest Subclass Classifier (NSB) clusters each class separately using Maximum 

Variance Cluster Algorithm [96] where the number of clusters is different from class to class 

as the distribution of samples may be different from class to class. In [97], a method known as 

Object Selection by Clustering (OSC) was presented to select both border and interior 

instances using clustering. In this method, the centers of homogeneous clusters are considered 

as prototypes representing the interior instances while from heterogeneous clusters, the border 

instance 𝑃 is selected. Instance 𝑃 in cluster 𝐶𝑗 is a border instance if it is the nearest neighbor 

of another instance in cluster 𝐶𝑗 with different class label. 

 

4.2.2.2. Weighting based methods 

Weighting based methods, as another group of filter methods, work as follows: In the first 

step, a weight is assigned to each instance; then, a percentage of instances based on a user-

defined threshold on their weights is selected as a subset 𝑆 of 𝑇. Authors in [98] proposed a 

new approach based on instance weighting where weights 𝜎𝑖 (i.e., corresponding to the 𝑖th 

sample) are obtained by minimizing cost function 𝐽(𝜎) using a gradient descent method.  𝐽(𝜎)  

is a function of 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 dissimilarity between each instance and its 

corresponding nearest neighbor, and also between the instance and its nearest enemy (i.e., the 

nearest neighbor of the opposite class). Those instances whose weights are larger than a user-

defined threshold are removed from the whole training set 𝑇.  



 

  69  
 

As another weighting based method, Prototype Selection by Relevance (PSR) was introduced 

in [99]. The idea behind the method is based on the fact that some instances in 𝑇 which 

belong to the same class are more relevant than the others and they should be selected. Hence, 

this method assigns a weight to each instance reflecting its amount of relevance. The 

relevance of each instance is computed based on the average similarity of the instance to the 

others. Heterogeneous Value Difference Metric (HVDM) [100] is applied as the similarity 

function. Afterwards, 𝑟 most relevant instances of each class are selected and through them, 

some border instances bringing useful information of class discrimination regions are also 

chosen. 

 

4.2.2.3. Information theory based methods 

Recently another group of filter instance selection methods specifically for regression tasks 

has received attentions. This group of methods benefits from information theory to select a 

subset 𝑆 from 𝑇 so that 𝑆 contains the most informative samples which have the most 

contribution in model fitting. Authors in [101] proposed a Mutual Information based method 

for instance selection aimed to be applied in time series prediction. In fact, MI between two 

random variables measures how much information of one of two variables reduces 

uncertainty of the other. In this work, MI was applied to compute how much information can 

be obtained about the target variable using the information of input variables in the form of 

input patterns. The basic idea behind the work is that if the amount of MI loss due to the 

absence of an input pattern 𝒙𝑖 in the whole training set 𝑇 is similar to that due to absence of 

each of its 𝑘 nearest neighbors, the input pattern 𝒙𝑖 should be selected for subset 𝑆. As 

another effort in exploiting of information theory in instance selection for time series 

prediction, a MI based methodology was presented in [53]. The idea behind this work is 

selecting those instances which share a significant amount of MI with the current predicted 

instance at each step of the prediction horizon. In this method, at each step of prediction 

horizon, the current input patterns are ranked based on MI between them and the current 

predicted instance. Then, those input patterns whose ranks are greater than a user-defined 

threshold constitute a subset 𝑆 of the current training set. Ferreira in [13] proposed an 

unsupervised selection method based on Shannon’s information entropy [51, 102] which 

measures the amount of information content of the data. In this method, firstly, the probability 

of the presence of each instance in 𝑇 is estimated using a kernel based density estimation 

proposed in [56] known as Parzen window method. Afterwards, a fitness value based on 
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information entropy is assigned to each instance where this value reflects the amount of 

informativeness of the instance. Finally the subset 𝑆 with size 𝑘 is selected from 𝑇 using SUS 

method [103]. 

 

4.2.2.4. Other methods 

Besides the three groups of filter methods, some works have been done which do not belong 

to any specific group. Authors in [104] presented POP (Pattern by Ordered Projections) 

method to remove interior instances and select some border instances based on the Weakness 

concept. An instance 𝑃𝑖 of class 𝐶𝑗 is a border instance if 𝑃𝑖 is the nearest neighbor for an 

instance of another class 𝐶𝑘, otherwise it is an interior instance. The concept Weakness 

indicates how many times an instance is not a border instance with respect to each of its 

features’ values. This method removes the irrelevant instance 𝑃, which is  the instance whose 

Weakness is equal to 𝑚 , where 𝑚 denotes the number of features.  

The method proposed in [105] applies 𝑘𝑑-trees structure [106] which are binary trees to select 

a subset 𝑆 of 𝑇. Based on 𝑘𝑑-trees structure, the root of the tree includes all instances in 𝑇. 

Afterwards, 𝑇 is partitioned into two groups so that one of them corresponds to the left child 

and the other corresponds to the right one. The separation of 𝑇 is performed using the 

𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion. To calculate 𝑀𝑎𝑥𝑑𝑖𝑓𝑓, first the feature with maximum distance along 

with consecutive samples (i.e., samples are sorted in ascending order with respect to the 

feature) is considered and then the value of the corresponding feature of the sample which has 

the maximum distance with its successor is considered as a pivot to split 𝑇. Those samples 

whose values of the corresponding feature is less than or equal to the pivot constitute the left 

child and the remaining forms the right one. The 𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion is satisfied if the pivot 

value is greater than a user-defined threshold, otherwise the variance along features is 

considered. If the maximum variance is greater than another user-defined threshold, the mean 

value through the corresponding feature is considered as a pivot. This procedure is repeated 

for each child. In the case that neither 𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion nor the maximum variance is 

satisfied, the algorithm is terminated and the samples which are located in the leaves of the 

tree are considered as a subset 𝑆 of 𝑇. 

Regarding the design of ANNs and SVMs as two examples of well-established data driven 

machine learning approaches for classification and regression tasks, some filter instance 

selection methods including Principal Components Analysis (PCA), convex hull and decision 

tree have been proposed [68, 107-110]. In the design phase of such models, it is very 
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important that subset 𝑆 covers the whole input-output range in which the underlying process 

is modeled. To achieve this goal, convex hull algorithms can be employed to identify the 

boundary points reflecting the whole range of data.  

 

4.3. ApproxHull: A randomized approximation convex hull algorithm for 

high dimensions 

In this Section, ApproxHull as a randomized approximation convex hull algorithm for high 

dimensions is introduced, providing a subset of all possible vertices of the corresponding real 

convex hull in a stochastic manner. ApproxHull, which was inspired by Quickhull [8] (please 

see Section 3.3.3) tries to identify some informative vertices of the real convex hull, relaying 

on two fundamental concepts hyperplane [111, 112] and convex hull distance [68]. Hence 

before addressing ApproxHull, these two concepts are explained in the following sections. 

 

4.3.1. Hyperplane 

Any hyperplane in a d-dimensional Euclidean space partitions it into two subspaces; positive 

and negative subspaces. Any point in the positive subspace has a positive distance to the 

hyperplane while the points located in the negative subspace have a negative distance to the 

hyperplane. Computing the equation of a hyperplane based on some predetermined points, 

which lie on the hyperplane, is intensively applied in computational geometry. Some convex 

hull algorithms like Quickhull need to compute the corresponding hyperplane equations of the 

current convex hull’s facets to find the next vertices. In the following we shall describe how 

these equations can be obtained, starting by introducing the distance of a point to an 

hyperplane.   

 

4.3.1.1. Hyperplane distance  

Suppose 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑑]
𝑇 is a point, 𝑭 is a d-vertex facet (each facet of d-dimensional 

convex hull involves exactly 𝑑 vertices), and 𝐻 is the corresponding hyperplane of facet 𝑭 in 

a d-dimensional Euclidean space. The general equation of an hyperplane 𝐻 is given as: 

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑𝑥𝑑 + 𝑏 = 0 (4.3) 

 

where 𝒏 = [𝑎1, 𝑎2, … , 𝑎𝑑]
𝑇 and 𝑏 are the normal vector and the offset of 𝐻, respectively. 

The normalized distance from point 𝒑 to hyperplane 𝐻 is computed by Eq. (4.4). 
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𝑑𝑠(𝒑, 𝐻) =
𝑎1𝑝1 + 𝑎2𝑝2 +⋯𝑎𝑑𝑝𝑑 + b

√𝑎1
2 + 𝑎2

2 +⋯𝑎𝑑
2

 
(4.4) 

4.3.1.2. Hyperplane computation 

Suppose that facet 𝑭 = [𝒗1, 𝒗2, ⋯ , 𝒗𝑑]
𝑇 consists of 𝑑 vertices 𝒗𝑖 = [𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝑑]

𝑇 , for  

𝑖 = 1,2,⋯ , 𝑑 , and also that 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑑]
𝑇 is the center point of the current convex hull . 

Since any vertex 𝒗𝑖 is located on the hyperplane 𝐻 which includes facet 𝑭, Eq. (4.3) is 

satisfied by 𝒗𝑖 as (4.5). 

 

𝑎1𝑣𝑖1 + 𝑎2𝑣𝑖2 +⋯+ 𝑎𝑑𝑣𝑖𝑑 = −𝑏 (4.5) 

 

By adding (−𝑎1𝑐1 − 𝑎2𝑐2 −⋯− 𝑎𝑑𝑐𝑑) to the both side of Eq. (4.5), Eq. (4.6) is obtained.  

 

𝑎1(𝑣𝑖1 − 𝑐1) + 𝑎2(𝑣𝑖2 − 𝑐2) + ⋯+ 𝑎𝑑(𝑣𝑖𝑑 − 𝑐𝑑) = −(𝑎1𝑐1 + 𝑎2𝑐2 +⋯+𝑎𝑑𝑐𝑑 + 𝑏) (4.6) 

 

Suppose that point 𝒄  is located on the negative subspace with respect to 𝐻. Hence the 

distance of 𝒄 to 𝐻 is negative as stated in (4.7). 

 

𝑑𝑠(𝒄, 𝐻) =
𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b

√𝑎1
2 + 𝑎2

2 +⋯𝑎𝑑
2

< 0 
(4.7) 

 

 According to (4.7), (𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b) should have  a negative value. Assume this 

negative value is equal to -1. By replacing (𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b) with -1 in the right 

side of Eq. (4.6), Eq. (4.8) is obtained. 

 

𝑎1(𝑣𝑖1 − 𝑐1) + 𝑎2(𝑣𝑖2 − 𝑐2) +⋯+ 𝑎𝑑(𝑣𝑖𝑑 − 𝑐𝑑) = 1 (4.8) 

 

Since facet 𝑭 consists of 𝑑 vertices, a system of equations can be obtained based on all 

vertices: 
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[
 
 
 
𝑎1(𝑣11 − 𝑐1) + 𝑎2(𝑣12 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣1𝑑 − 𝑐𝑑)

𝑎1(𝑣21 − 𝑐1) + 𝑎2(𝑣22 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣2𝑑 − 𝑐𝑑)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎1(𝑣𝑑1 − 𝑐1) + 𝑎2(𝑣𝑑2 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣𝑑𝑑 − 𝑐𝑑)]

 
 
 

= [

1
1
⋮
1

] 

(4.9) 

 

 

By solving (4.9), the normal vector 𝒏 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑑]
𝑇of 𝐻 is obtained. Afterwards, the 

offset 𝑏 of 𝐻 is obtained using Eq. (4.10). 

  

𝑏 =  −1 − (𝑎1𝑐1 + 𝑎2𝑐2 +⋯+ 𝑎𝑑𝑐𝑑) (4.10) 

 

 

4.3.2. Convex hull distance 

Given a set 𝑃 = {𝑥𝑖}𝑖=1
𝑛 ⊂ ℝ𝑑 and a point 𝑥 ∈ ℝ𝑑, the Euclidean distance between 𝑥 and the 

convex hull of P, denoted by 𝑐𝑜𝑛𝑣(𝑃), can be computed by solving the quadratic 

optimization problem stated in (4.11). 

𝑚𝑖𝑛
𝑎
 
1

2
𝑎𝑇𝑄𝑎 − 𝑐𝑇𝑎

𝑠. 𝑡.  𝑒𝑇𝑎 = 1, 𝑎 ≥ 0

 
(4.11) 

 

where 𝑒 = [1,1,⋯ ,1]𝑇 , 𝑄 = 𝑋𝑇𝑋  and  𝑐 = 𝑋𝑇𝑥,  with  𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]. 

Suppose that the optimal solution of (4.11) is 𝑎∗; then the distance of point 𝑥 to 𝑐𝑜𝑛𝑣(𝑃) is 

given by Eq. (4.12). 

𝑑𝑐(𝑥, 𝑐𝑜𝑛𝑣(𝑃)) = √𝑥
𝑇𝑥 − 2𝑐𝑇𝑎∗ + 𝑎∗

𝑇
𝑄𝑎∗ 

(4.12) 

 

4.3.3. The Proposed Algorithm 

The idea behind ApproxHull is inspired from Quickhull, where the vertices of the real convex 

hull are identified, based on the hyperplane distance of samples to the facets of the current 

convex hull. Like Quickhull, ApproxHull is an incremental algorithm; it starts with an initial 

convex hull and then the current convex hull grows iteratively by adding the new vertices into 

it. In order to overcome the challenges of time complexity and memory requirements in high 

dimensions, ApproxHull has two main properties. Firstly, it is an approximation algorithm 

which is translated into obtaining a subset of the most informative vertices of the real convex 
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hull using a user-defined threshold. On the contrary, Quickhull finds the total vertices of the 

real convex hull which prevents it to be applicable in large, high dimensional datasets. 

Secondly, the convex hull obtained by the ApproxHull is only given by vertices, whereas 

Quickhull presents the convex hull in terms of both vertices and facets, which makes it 

infeasible to be run for high dimensional datasets, due to the problem of high time complexity 

and memory requirements. 

A pre-processing phase is performed on the original data set before applying ApproxHull. 

Duplicated rows (equal samples) and columns (equal features), rows with missing values, and 

rows having non-numerical values are removed to decrease the risk of generating a singular 

matrix corresponding to a random invalid facet in ApproxHull. 

ApproxHull consists of five main steps: 

Step 1: Scaling each dimension to the range [-1, 1]. 

Step 2: Identifying the maximum and minimum samples with respect to each dimension. 

These samples are considered as vertices of the initial convex hull. 

Step 3: Generating a population of 𝑘 facets based on the current vertices of convex hull.  In 

this step, the validity of all generated facets is checked in each iteration. A facet 𝐹 of 𝑑 points 

in 𝑑 dimensions is valid if 𝐹 is a full rank matrix. In ApproxHull, to guarantee that the 

population contains valid facets, two actions are considered. First, when 𝑑 vertices of the 

current convex hull are selected to constitute a facet of the population, its validity is checked. 

Invalid facets are ignored, being substituted by another combination of 𝑑 vertices of the 

current convex hull until a valid facet is found. Second, in the case that there is a potential of 

generating invalid facets iteratively, in order to reduce the time being spent to ignore the 

invalid facets and generate the valid substitutions for them, the joggling method used in 

Quickhull [113] can be employed as an optional action in the data preprocessing phase. 

Joggling the input is performed to solve precision error in computational geometry context. 

Mainly, in joggling (also called random perturbation) the input of each cell of the data set is 

modified by a small random quantity (positive or negative) to solve the problem of coplanar 

points that have the potential of generating invalid facets. 

Step 4: Identifying the furthest points to each facet in the current facets population as new 

vertices of convex hull, if they have not been detected before. To detect the furthest points 

(i.e., those samples whose hyperplane distances are maximum with respect to a particular 

facet), firstly, the corresponding hyperplane equation of the facet is obtained by Algorithm 4.1 

in terms of the normal vector and the offset. Secondly, the hyperplane distance of samples to 

the corresponding hyperplane is computed by Eq. (4.4). In fact, Algorithm 4.1 computes the 
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hyperplane equation relying on the fact that the distance of the center point (a row vector 

whose elements are obtained by averaging each dimension of the dataset) to the hyperplane is 

a negative value. Algorithm 4.1 obtains the equation of the corresponding hyperplane 

equation of the facet in form 𝐴𝑥 = 𝑏 where 𝐴 and 𝑏 are normal and offset of the hyperplane 

equation respectively. 

Step 5: Updating the current convex hull by adding the newly found vertices to the current set 

of vertices. 

Steps 3 to 5 are executed iteratively until one of the following two termination criteria is met: 

 There are no newly found vertices in Step 4 

 Let 𝑑𝑐 be the maximum of the approximated distances of the furthest points to the 

current convex hull in each iteration. If there are new vertices as a consequence of 

Step 4, and the difference between the maximum and the minimum of  𝑑𝑐  over the 𝑤  

last iterations is less than a user-defined threshold 𝛽 (default value of 0.1), the 

algorithm ends. 

 

Algorithm 4.1: Obtaining the corresponding hyperplane of a facet 

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples and  𝐹 = {𝑣𝑖}𝑖=1

𝑑  as a particular facet so that 𝑣𝑖 is a row 

vector which denotes a specific sample in 𝐷𝑆.  

  1. Let 𝑐 is a row vector which denotes th𝑒 center point of all samples in 𝐷𝑆. 

  2. 𝑈 = {𝑢𝑖| 𝑢𝑖 = 𝑣𝑖 − 𝑐}𝑖=1
𝑑  

  3. 𝐴 = {} 

  4. 𝑏 = {} 

  5. 𝐴 = 𝑈−1𝑒  where 𝑒 = [1,1,… ,1]𝑇 

  6. 𝑏 = 1 + 𝑐𝐴 

  7. 𝑡 = √∑ 𝑎𝑖
2𝑑

𝑖=1  where 𝑎𝑖 ∈ 𝐴   𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑑  

  8. n𝐴 = {
𝑎𝑖

𝑡
| 𝑎𝑖 ∈ 𝐴}𝑖=1

𝑑   

  9. 𝑛𝑏 =
𝑏

𝑡
     

Output: 𝑛𝐴  and  𝑛𝑏. 

 

The basic idea behind the second criterion is to avoid selecting new vertices that are very 

close to the current convex hull, not contributing this way with new information. As the 

convex hull generated by ApproxHull grows iteratively, the 𝑑𝑐 has a descending trend over 
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iterations. Hence when the difference between the maximum and minimum of 𝑑𝑐 over the 𝑤 

last iterations is small, meaning the new found vertices are very close to the current convex 

hull, they can be ignored and ApproxHull can be terminated. 

In the ApproxHull algorithm the facets population size, the sliding window width, and the 

user-defined threshold 𝛽, can be tuned to manage the number of vertices of the approximated 

convex hull. As an example, in the experimental part of this work we are interested in having 

at most half of the training set points from the convex hull and the remaining points selected 

randomly from the complete data set. The value 𝛽 = 0.1, which was obtained by trial and 

error, satisfies our expectation for a facet population size <1000 and a sliding window width 

<10, in cases where the data was uniformly or normally sampled. In other applications where 

the data size (number of samples and dimensions) is high and the data distribution is 

unknown, the value of 𝛽 can be tuned differently to meet the user-defined specification of the 

maximum percentage of approximated convex hull vertices in the training set. 

Since computing the distance from a point to the current convex hull by solving the quadratic 

optimization problem defined in Eq. (4.11) is complex and time consuming in high 

dimensions, in ApproxHull the approximated distance of a newly found vertex to the current 

convex hull is computed based on 2 ∗ 𝑑 vertices, where 𝑑 denotes dimension, which are the 

nearest neighbors to the newly found vertex in the current convex hull. 

In Step 3 of ApproxHull, in order to generate a population of facets based on the vertices of 

the current convex hull, two policies were tested: 1- a stochastic policy; 2- a GA based policy. 

In the first policy,  𝑘 facets are generated in such a way that each vertex of a specific facet is 

generated by random selection among the vertices of the current convex hull. The stochastic 

policy algorithm is summarized in Algorithm 4.2.  

In the GA-based policy, 𝑘 facets are generated by a GA so that 𝑘 = 𝑝 ∗ 𝑛𝑔, where 𝑝 and 𝑛𝑔 

denote the population size and the number of generations of the GA, respectively. In each 

generation of the GA execution, a new population of 𝑝𝑠 facets is created after employing 

crossover and mutation operators. In this policy, the population of each generation is 

appended to the total population so that, in the end, there is a total population of facets with 

size 𝑝 ∗ 𝑛𝑔. The GA-based algorithm is summarized in Algorithm 4.3. 

Since the idea behind ApproxHull is generating many different facets to help finding new 

vertices of the real convex hull, the diversity of generated facets is an important issue in the 

algorithm. In other words, more diversity in facets population provides a higher chance of 

detecting new vertices. Hence, the fitness value of a facet can be defined in terms of the 
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inverse of occurrence ratio of its vertices over the current population. The fitness value of a 

specific facet is high if, in average, the occurrence ratio of its vertices over the current 

population is low. In ApproxHull with GA-based Policy, the fitness value of a facet in the 

population is measured by (4.13): 

𝑝 ∗ 𝑑

∑ 𝑁𝑖
𝑑
𝑖=1

 
(4.13) 

 

where 𝑝, 𝑑 and 𝑁𝑖 are the population size, dimension and number of facets in the current 

population which share the 𝑖th vertex of the facet, respectively. 

In each iteration of the GA, parents are selected for mating using the Roulette Wheel method. 

Uniform crossover [114]  is applied with a swapping probability of 0.5. The crossover 

probability is set to 0.7. For mutation, a vertex of a facet is selected randomly and replaced 

with another random vertex which has not been seen in the current population. The mutation 

probability is set to 0.05. Fig. 4.2 illustrates a simplified flowchart of the operations involved 

in ApproxHull. 
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Algorithm 4.2: ApproxHull with Stochastic Policy 

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples obtained 

after the preprocessing of the original data, 𝑝 denotes 

the population size of facets in d-dimensional space , 𝑤 

is an integer value as width of the sliding window and 𝛽 

as a user-defined threshold.   

1. Scaling each dimension of  𝐷𝑆 to the range [−1, 1]. 

2. Let 𝑉 denotes the  maximum and minimum 

  samples with respect to each dimension in 

       𝐷𝑆. 

3. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝐹𝑎𝑙𝑠𝑒 

4. 𝐷𝑖𝑓𝑓 = 𝐹𝑎𝑙𝑠𝑒 

5. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 

6.  𝐷𝐶 = {} 

7. While (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑  and  not 𝐷𝑖𝑓𝑓) do 

8.   Let  𝑃  be an empty population. 

9.   For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do 

10.     𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝐹𝑎𝑙𝑠𝑒 

11.     While (not 𝑖𝑠𝑉𝑎𝑙𝑖𝑑) do 

12.       𝑗 = 1 

13.      Let  𝐹 be an empty facet. 

14.       While(𝑗 ≤ 𝑑) do 

15.         Select randomly a vertex  𝑣  from  𝑉 

16.         If (𝑣  is  not  in  𝐹) then 

17.           𝐹 = 𝐹 ∪ {𝑣} 

18.           𝑗 = 𝑗 + 1 

19.         End If 

20.       End While 

21.       If (det(𝐹)  ≠ 0) then 

22.         𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝑇𝑟𝑢𝑒 

23.       End If  

24.     End While 

25.     𝑃 = 𝑃 ∪ {𝐹} 

26.   End For 

27.   𝑛𝑒𝑤𝑉 = {} 

28.   For each facet  𝐹  in  𝑃 do 

29.     

Let 𝐻 be the corresponding hyperplane 

  equation of facet  𝐹  which is obtained 

           by Algorithm 4.1. 

30.     𝑚𝑑𝑠 = 𝑚𝑎𝑥𝑥𝑖∈𝐷𝑆𝑑𝑠(𝑥𝑖 , 𝐻) 

31.     𝐹𝑃 = {𝑥|𝑥 ∈ 𝐷𝑆 𝑎𝑛𝑑 𝑑𝑠(𝑥, 𝐻) =
𝑚𝑑𝑠} 

32.     For each point  𝑓𝑝 in  𝐹𝑃  do 

33.       If (𝑓𝑝  is  not  in  𝑉) do 

34.         𝑛𝑒𝑤𝑉 = 𝑛𝑒𝑤𝑉 ∪ {𝑓𝑝} 

35.       End If 

36.     End For 

37.   End For 

38.   If (𝑛𝑒𝑤𝑉 = {}) then 

39.     𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝑇𝑟𝑢𝑒 

40.   End If 

41.   If (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑) then  

42.    𝐷 = ∅ 

43.     For (𝑖 = 1; 𝑖 ≤ |𝑛𝑒𝑤𝑉|; 𝑖 + +) do 

44.       𝑁𝑖 = ∅, 𝑇 = 𝑉 

45.       For (𝑘 = 1; 𝑘 ≤ 2 ∗ 𝑑; 𝑘 + +) do 

46.              
𝑛𝑛 = arg𝑚𝑖𝑛 ‖𝑧𝑖 − 𝑣𝑗‖2
𝑣𝑗 ∈ 𝑇, 𝑗 = 1,⋯ , |𝑇|

 

               where 𝑧𝑖 ∈ 𝑛𝑒𝑤𝑉 

47.         𝑁𝑖 = 𝑁𝑖 ∪ {𝑛𝑛} 

48.         𝑇 = 𝑇\{𝑛𝑛} 
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49.       End For 

50.       𝐷 = 𝐷 ∪ {𝑑𝑐(𝑧𝑖, 𝑁𝑖)}   

51.     End For 

52.     𝑑𝑐 = max𝐷 

53.     𝐷𝐶 = 𝐷𝐶 ∪ {𝑑𝑐} 

54.     If (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑤) then 

55.       Let  𝑑𝑐𝑚𝑖𝑛 be the minimum of  𝑑𝑐  in  

             𝐷𝐶 over  𝑤  last iterations. 

56.       Let  𝑑𝑐𝑚𝑎𝑥 be the maximum of  𝑑𝑐  in 

             𝐷𝐶 over  𝑤  last iterations. 

57.       If ((𝑑𝑐𝑚𝑎𝑥 − 𝑑𝑐𝑚𝑖𝑛) < β) then 

58.         𝐷𝑖𝑓𝑓 = 𝑇𝑟𝑢𝑒 

59.       Else 

60.         𝑉 = 𝑉 ∪ {𝑛𝑒𝑤𝑉} 

61.       End If 

62.     End If 

63.   End If 

64.   𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 

65. End While 

Output: V 
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Algorithm 4.3: ApproxHull with GA-based Policy 

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples 

obtained after the preprocessing of the original data, 

𝑝 as population size, 𝑝𝑐 as crossover probability, 𝑝𝑚 

as mutation probability, 𝑛𝑔 as number of generation 

for GA,   𝑤 is an integer value as width of the sliding 

window and 𝛽 as a user-defined threshold. 

1. Scaling each dimension of  𝐷𝑆 to the range [-1, 1]. 

2. Let 𝑉 denotes the  maximum and minimum  

       samples  with respect to each dimension in 𝐷𝑆. 

3. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝐹𝑎𝑙𝑠𝑒 

4. 𝐷𝑖𝑓𝑓 = 𝐹𝑎𝑙𝑠𝑒 

5. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 

6.  𝐷𝐶 = {} 

7. While (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑  and  not 𝐷𝑖𝑓𝑓) do 

8.   Let  𝑃  be an empty population with maximum 

          size  𝑝 ∗  𝑛𝑔. 

9.   Let  𝐺  be an empty population with maximum  

         size  𝑝. 

10.   For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do 

11.     𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝐹𝑎𝑙𝑠𝑒 

12.     While (not 𝑖𝑠𝑉𝑎𝑙𝑖𝑑) do 

13.       𝑗 = 1 

14.       Let  𝐹 be an empty facet. 

15.       While(𝑗 ≤ 𝑑) do 

16.         Select randomly a vertex  𝑣  from  𝑉 

17.         If (𝑣  is  not  in  𝐹) then 

18.           𝐹 = 𝐹 ∪ {𝑣} 

19.           𝑗 = 𝑗 + 1 

20.         End If 

21.       End While 

 

 

22.       If (det (𝐹) ≠ 0) then 

23.         𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝑇𝑟𝑢𝑒 

24.       End If 

25.     End While   

26.     𝐺 = 𝐺 ∪ {𝐹} 

27.   End For 

28.   𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 

29.   While (𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑛𝑔) do 

30.     𝑃 = 𝑃 ∪ 𝐺 

31.     𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = {} 

32.     For each  𝑖𝑛𝑑𝑣  in  𝐺  do 

33.       Compute the corresponding fitness value of   

              𝑖𝑛𝑑𝑣. 

34.     End For 

35.     Let  𝑀𝑃𝑜𝑜𝑙  denotes an empty mating pool. 

36.     For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do 

37.       Select one random parent  𝑃1 from  𝐺  

              using Roulette Wheel method. 

38.       𝑀𝑃𝑜𝑜𝑙 = 𝑀𝑃𝑜𝑜𝑙 ∪ {𝑃1} 

39.     End For 

40.     𝑗 = 0 

41.     While (𝑗 < 𝑝) do 

42.        Select two random parents  𝑃1  and  𝑃2  from 

               𝑀𝑃𝑜𝑜𝑙.  

43.       Let  𝑟𝑐  is a random number from range [0, 1]. 

44.       If (𝑟𝑐 ≤ 𝑝𝑐) 

45.         Do uniform crossover on  𝑃1 and P2  and  

                consider 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 for the result of crossover. 

46.         For each 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do 
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47.           Let  𝑟𝑚 is a random number from  

                    range [0, 1] 

48.           If (𝑟𝑚 ≤ 𝑝𝑚) 

49.             Do mutation on 𝑐ℎ𝑖𝑙𝑑 

50.           End If 

51.         End For  

52.         For each 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do 

53.            If (det (𝑐ℎ𝑖𝑙𝑑) ≠ 0) then  

54.              𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ∪ {𝑐ℎ𝑖𝑙𝑑} 

55.            End If 

56.          End For   

57.          𝑗 = |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠| 

58.       End If 

59.     End While 

60.     Let  G includes the first 𝑝 individuals of  

           𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠. 

61.     𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 

62.   End While 

63.   𝑛𝑒𝑤𝑉 = {} 

64.   For each facet  𝐹  in  𝑃 do 

65.     Let 𝐻 be the corresponding hyperplane  

           equation of facet  𝐹  which is obtained  

           by Algorithm 4.1. 

66.     𝑚𝑑𝑠 = 𝑚𝑎𝑥𝑥𝑖∈𝐷𝑆𝑑𝑠(𝑥𝑖, 𝐻) 

67.     𝐹𝑃 = {𝑥|𝑥 ∈ 𝐷𝑆 𝑎𝑛𝑑 𝑑𝑠(𝑥, 𝐻) = 𝑚𝑑𝑠} 

68.     For each point  𝑓𝑝 in  𝐹𝑃  do 

69.       If (𝑓𝑝  is  not  in  𝑉) do 

70.         𝑛𝑒𝑤𝑉 = 𝑛𝑒𝑤𝑉 ∪ {𝑓𝑝} 

71.       End If 

72.     End For 

73.   End For 

74.   If (𝑛𝑒𝑤𝑉 = {}) then 

75.     𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝑇𝑟𝑢𝑒 

76.   End If 

77.   If (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑) then 

78.     𝐷 = ∅ 

79.     For (𝑖 = 1; 𝑖 ≤ |𝑛𝑒𝑤𝑉|; 𝑖 + +) do 

80.       𝑁𝑖 = ∅, 𝑇 = 𝑉 

81.       For (𝑘 = 1; 𝑘 ≤ 2 ∗ 𝑑; 𝑘 + +) do 

82.                
𝑛𝑛 = arg𝑚𝑖𝑛 ‖𝑧𝑖 − 𝑣𝑗‖2
𝑣𝑗 ∈ 𝑇, 𝑗 = 1,⋯ , |𝑇|

 

                 where 𝑧𝑖 ∈ 𝑛𝑒𝑤𝑉 

83.         𝑁𝑖 = 𝑁𝑖 ∪ {𝑛𝑛} 

84.         𝑇 = 𝑇\{𝑛𝑛} 

85.       End For 

86.       𝐷 = 𝐷 ∪ {𝑑𝑐(𝑧𝑖, 𝑁𝑖)}   

87.     End For 

88.     𝑑𝑐 = max𝐷 

89.     𝐷𝐶 = 𝐷𝐶 ∪ {𝑑𝑐} 

90.     If (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑤) then 

91.       Let  𝑑𝑐𝑚𝑖𝑛 be the minimum of  𝑑𝑐  in 𝐷𝐶  

               over  𝑤  last iterations. 

92.       Let  𝑑𝑐𝑚𝑎𝑥 be maximum of  𝑑𝑐  in  𝐷𝐶  

               over  𝑤  last iterations. 

93.       If ((𝑑𝑐𝑚𝑎𝑥 − 𝑑𝑐𝑚𝑖𝑛) < β) then   

94.         𝐷𝑖𝑓𝑓 = 𝑇𝑟𝑢𝑒 

95.       Else 

96.         𝑉 = 𝑉 ∪ {𝑛𝑒𝑤𝑉} 

97.       End If 

98.     End If 
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99.   End If 

100. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 

 

101.End While 

Output: V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  83  
 

 

Fig. 4.2. Flow chart of ApproxHull. 

 

Start 

Scale each dimension of the input data set to the range [-1, 1]. 

Identify the minimum and maximum points with respect to each dimension. 

Set 𝑽 to the minimum and maximum points as the initial vertices of the convex hull. 

Set two flags 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 and 𝑫𝒊𝒇𝒇 to 𝐹𝑎𝑙𝑠𝑒 value. These two flags 

correspond to the first and second criteria, respectively. 

Generate a fixed-size population of valid facets based on the vertices of 

the current convex hull using the stochastic or the GA based policy. 

not 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 and not 𝑫𝒊𝒇𝒇 

True 

Set 𝒏𝒆𝒘𝑽 to the furthest points to the facets of the current population 

that do not belong to the vertices of the current convex hull. 

𝒏𝒆𝒘𝑽 == ∅ 

True 

𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 = 𝑇𝑟𝑢𝑒 

False 

Set 𝒅𝒄 to the maximum approximated convex hull distance among the 

points in 𝒏𝒆𝒘𝑽. 

not 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 

True 

False 

Set 𝒅𝒄𝒎𝒊𝒏 and 𝒅𝒄𝒎𝒂𝒙 to the maximum and minimum of 𝒅𝒄 over  𝒘 last 

iterations, respectively. 

(𝒅𝒄𝒎𝒂𝒙 − 𝒅𝒄𝒎𝒊𝒏) < threshold  

𝑽 = 𝑽 ∪ 𝒏𝒆𝒘𝑽 𝑫𝒊𝒇𝒇 = 𝑇𝑟𝑢𝑒

= 𝑉 ∪ 𝑛𝑒𝑤𝑉 

False True 

End 

False 
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4.4. Simulation results 

Three experiments were executed to evaluate ApproxHull performance and its effect on the 

accuracy in classification and approximation tasks. The algorithm has been implemented in 

Python and C languages, and was executed in a computer with Ubuntu Linux OS, Intel Core 

i5 processor and 4 Gigabytes of RAM.  

 

4.4.1. Experiment 1 

ApproxHull was applied on four artificial datasets named UDS1, UDS2, UDS3 and UDS4. 

All datasets are composed of uniformly distributed random samples which were generated by 

the built-in MATLAB function rand. The description of the datasets is given in Table 4.1. 

 

TABLE 4.1. DESCRIPTION OF ARTIFICIAL DATASETS CONSISTING OF 

UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE 

NUMBER OF DIMENSIONS AND SAMPLES, RESPECTIVELY. 

Dataset Name dim #S 

UDS1 3 4000 

UDS2 4 4000 

UDS3 5 4000 

UDS4 6 4000 

 

Since Quickhull  is a deterministic algorithm, in this experiment it is considered as a baseline 

to which ApproxHull and Wang’s algorithm [68], both being approximation convex hull 

algorithms, are compared. We use two criteria for comparison: 𝑃 and 𝑅 defined in Eq. (4.14) 

and Eq. (4.15). 

𝑃 =
#(𝑉𝑅 ∩ 𝑉𝑃)

#𝑉𝑃
∗ 100 

(4.14) 

𝑅 =
#(𝑉𝑅 ∩ 𝑉𝑃)

#𝑉𝑅
∗ 100 

(4.15) 

 

𝑉𝑅 is the set of vertices obtained by employing the Quickhull algorithm and 𝑉𝑃  is the set of 

vertices obtained by applying one of the other algorithms. Basically, criterion 𝑃 shows the 

precision of an algorithm in approximating the Quickhull results, while criterion 𝑅 denotes 

how much the results obtained by an algorithm are similar to those obtained by Quickhull. 
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In this experiment, ApproxHull considering the two facet generation policies and Wang’s 

algorithm were executed for ten runs. For the latter, L was set to 0.01n for all datasets, and M 

was set as M>=0.02n, M>=0.07n, M>=0.1n and M>=0.14n, for UDS1, UDS2, UDS3 and 

UDS4, respectively, 𝑛 being the number of samples. 

For ApproxHull with Stochastic Policy the sliding window size, 𝑤, was set to 10 for all 

datasets and 𝑝 (population size) was set to 4000, 5000, 6000, and 7000 for datasets UDS1, 

UDS2, UDS3 and UDS4, respectively. For ApproxHull with GA-based Policy, 𝑤 was also set 

to 10 for all datasets and the number of generations, 𝑛𝑔, was set to 50. 𝑝 (population size) was 

set to 80, 100, 120 and 140 for datasets UDS1, UDS2, UDS3 and UDS4, respectively. 

Figs. 4.3 and 4.4 show the average values of 𝑃 and 𝑅 for the results obtained on datasets 

UDS1 to UDS4 by ApproxHull (with both policies) and by Wang’s algorithm. By analyzing 

Fig. 4.3 it may be concluded that ApproxHull identifies only vertices that belong to the real 

convex hull, while Wang’s algorithm selects some vertices which are not in the real convex 

hull. Moreover, according to Fig. 4.4, ApproxHull, using either the Stochastic Policy or GA-

based Policy, detects more vertices of the real convex hull than Wang’s algorithm. Fig. 4.4 

also shows that ApproxHull with Stochastic Policy could identify more vertices of the real 

convex hull in comparison to ApproxHull employing the GA-based policy. 

 

 

Fig. 4.3. Average value of criterion P for ApproxHull with both policies and Wang’s 

algorithm on UDS1 to UDS4. 
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Fig. 4.4. Average value of criterion R for ApproxHull with both policies and the Wang’s 

algorithm on UDS1 to UDS4. 

 

Another experiment was conducted using normally distributed random samples which were 

generated by built-in MATLAB function normrnd, where the mean and the standard deviation 

were set to 0 and 1, respectively. In this experiment, ApproxHull with both policies was 

applied on four normally distributed artificial datasets for ten runs. The experiments were 

executed in the same conditions as described before.  

Fig. 4.5 shows the average value of  𝑅 for the results obtained by ApproxHull using both 

policies on datasets NDS1 to NDS4. The results in terms of criterion P were 100%, as in the 

previous case. Tables 4.2 and 4.3 also show the run time of ApproxHull using both policies 

on datasets in both cases. 

 

 

Fig. 4.5. Average value of criterion R for ApproxHull using both policies on NDS1 to NDS4. 
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TABLE 4.2.  RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC 

POLICY AND GA-BASED POLICY ON DATASETS UDS1-4. 

 UDS1 UDS2 UDS3 UDS4 

Stochastic Policy 11.50 25.86 55.44 115.59 

GA-based Policy 17.11 58.66 208.03 323.68 

 

TABLE 4.3. RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC 

POLICY AND GA-BASED POLICY ON DATASETS NDS1-4. 

 NDS1 NDS2 NDS3 NDS4 

Stochastic Policy 6.30 11.86 30.33 50.20 

GA-based Policy 10.06 19.24 90.06 156.78 

 

Analyzing Fig. 4.4 and Fig. 4.5, ApproxHull with Stochastic Policy on both groups of 

artificial datasets has a better performance than the version employing the GA-based policy. 

In addition, according to Tables 4.2 and 4.3, the former is faster than the latter for all cases 

considered. For this reason, the Stochastic Policy will be used subsequently. 

 

4.4.2. Experiment 2 

In this experiment, ApproxHull was applied as a method for data selection in classification 

tasks. In order to evaluate the accuracy of the classification model, two cases were considered. 

In the first, ten training datasets were generated by random selection of samples from the 

whole dataset. In the second case, ten training datasets were generated, each one of them 

incorporating vertices of the approximated convex hull (which were obtained by ApproxHull) 

as well as random samples from the remaining dataset. The algorithm was applied separately 

for positive and negative classes. The datasets employed for classification were taken from 

[115]. The MATLAB SVM tool with Gaussian RBF (Radial Basis Function) kernel was used 

to design classifiers in both scenarios. The description of each dataset along with their 

corresponding hyper-parameters’ values for the SVM classifiers is given in Table 4.4. In this 

experiment, the CR criterion stated in Section 2.5 was used. Table 4.5 shows the results 

obtained in the two cases for the datasets described in Table 4.4. 
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TABLE 4.4.  DESCRIPTION OF THE DATASETS USED IN CLASSIFICATION. #F, #DS, 

#TR, #TE ARE THE NUMBER OF FEATURES, TOTAL NUMBER OF SAMPLES, 

NUMBER OF TRAINING SAMPLES AND TEST SAMPLES, RESPECTIVELY. C AND 𝛄 

ARE THE SVM HYPER-PARAMETERS. 

Dataset Class1 / Class2 #F #DS #TR #TE C γ 

Breast Cancer 
“Malignant” / 

”Benign” 
30 569 376 193 1 0.05 

Parkinson “Yes” / ”No” 26 1040 686 354 200 0.1 

Satellite 
“Red Soil” / ”Grey 

Soil” 
36 2033 1342 691 500 0.1142 

Letter “A” / ”B” 16 1555 1026 529 1 0.6576 

Cover Type 
“Douglasfir” / 

”Krummholz” 
54 37877 24999 12878 1 0.5 

 

TABLE 4.5.  AVERAGE CLASSIFICATION RATE FOR TEST DATASET IN TWO 

CASES FOR ALL DATASETS IN TABLE IV. 𝑪𝑹𝑻𝒆(𝟏) AND 𝑪𝑹𝑻𝒆(𝟐) DENOTE THE 

CLASSIFICATION RATES FOR THE TEST DATASET USING RANDOM SELECTION 

AND USING APPROXHULL, RESPECTIVELY. 

Dataset 𝐶𝑅𝑇𝑒(1) 𝐶𝑅𝑇𝑒(2) 𝐶𝑅𝑇𝑒(2) − 𝐶𝑅𝑇𝑒(1) 

Breast Cancer 0.963 0.981 0.018 

Parkinson 0.656 0.667 0.011 

Satellite 0.990 1.000 0.010 

Letter 0.993 1.000 0.007 

Cover Type 1.000 1.000 0.000 

 

According to the fourth column of Table 4.5, for all datasets the data selection mechanism 

employing ApproxHull has improved the accuracy of the corresponding classifiers, in 

comparison with the random data selection method. For the Breast Cancer and the Letter 

datasets, the highest and lowest improvements were achieved, respectively. For the Cover 

Type, both algorithms achieved perfect classification. The average classification rate for 

datasets Satellite, Letter and Cover Type, in the second case is equal to 1 which means that 

perfect classification is obtained for these datasets. 

Additionally, as the previous datasets were balanced data sets, the same procedure, using the 

same SVM tool, was employed to a problem of automatic diagnosis of CVAs, from CT 

images. The application is described in, for instance,  [116, 117] and, for the point of view of 

this paper, is a binary classification problem, using 51 features, with the aim of classifying 

each pixel in the intracranial area of each CT slice as normal, or abnormal (corresponding to a 

lesion). Using 150 CT slices corresponding to 7 exams, we had 1,867,602 pixels, from which 
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64,786 (around 3.5%) were abnormal. This is clearly a very bad-balanced problem. 

Approxhull has been applied for this large data set, and training and test datasets with the 

sizes of 20,000 and 14,000 were constructed. The average values of the classification rate 

obtained for the test sets, over 10 experiments, for random selection and using Approxhull 

were 0.972 and 0.983, respectively. This example demonstrates that, for a completely 

unbalanced problem, the use of ApproxHull again achieved better results than random 

selection, and that  ApproxHull is applicable to large datasets. 

In order to assess the statistical significance of the last results, as well as the ones presented in 

Table 4.5, we used the Wilcoxon signed-ranks test discussed in Section 2.9.2. Since in this 

case, 𝐿, the number of data sets, is equal to 60, the corresponding value of statistic 𝑧 is equal 

to -5.35 which clearly indicates that the improvements obtained with ApproxHull are 

statistically significant. 

 

4.4.3. Experiment 3 

Experiment 3 was conducted to find out how much improvement can be obtained for 

regression models by employing ApproxHull for data selection. 

As in Experiment 2, two approaches were analyzed for comparison: 1) generating ten training 

datasets by random selection; 2) generating ten training datasets by applying ApproxHull, 

together with random selection. The datasets which are used for regression were taken from 

[115, 118]. The description of each dataset is given in Table 4.6.  

 

TABLE 4.6.  DESCRIPTION OF THE DATASETS USED IN REGRESSION. #F, #DS, 

#TR,  #TE AND #VAL ARE THE NUMBER OF FEATURES, TOTAL SAMPLES, 

TRAINING SAMPLES, TEST SAMPLES AND VALIDATION SAMPLES, 

RESPECTIVELY. 

Dataset #F #DS #TR #TE #VAL 

Puma 32 8192 4915 1638 1639 

Bank 32 8192 4915 1638 1639 

CompAct 21 8192 4915 1638 1639 

Concrete 8 1030 618 206 206 

Skillcraft 18 3338 2003 667 668 

 

The MLP implemented in MATLAB was employed with two hidden layers and the output 

layer with one linear neuron. For all datasets except the Concrete dataset, both hidden layers 

had ten sigmoidal neurons. For the Concrete dataset, both hidden layers employed five 
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sigmoidal neurons. The Levenberg-Marquardt method (Please see Section 2.4.1.5) is 

employed to train the model, terminating if one of the following conditions is met: early-

stopping, the number of training iterations exceeds 100 iterations, or the three criteria 

described in Section 2.4.1.7, where 𝜏𝑓 = 10−3. 

The RMSE criterion is employed to evaluate the accuracy of the models. Tables 4.7 and 4.8 

show the results obtained in the test and validation for the datasets described in Table 4.6. 

Table 4.7 shows the average RMSE for the test datasets (i.e., data used for early stopping) in 

the two mentioned cases. As it may be seen in the sixth column, the regression models which 

resulted from the data selected by ApproxHull have a lower approximation error. Table 4.8 

shows the average RMSE for the validation sets (i.e., data not used in the model design). 

Again, it may be concluded that the use of ApproxHull in the data selection phase, decreases 

the error for all datasets except for Skillcraft, which has an identical value. 

 

TABLE 4.7. AVERAGE RMSE FOR THE TEST DATASETS IN TWO CASES FOR ALL 

DATASETS IN TABLE VI. 𝑬𝑻𝒆(𝟏) AND 𝑬𝑻𝒆(𝟐) DENOTE RMSE FOR TEST DATASET 

IN FIRST CASE (RANDOM SELECTION) AND SECOND CASE (DATA SELECTION 

USING APPROXHULL) RESPECTIVELY. 

Dataset 
Initial 

𝐸𝑇𝑒(1) 
𝐸𝑇𝑒(1) 

Initial 

𝐸𝑇𝑒(2) 
𝐸𝑇𝑒(2) 

𝐸𝑇𝑒(1) − 𝐸𝑇𝑒(2) 

Puma 0.336 0.076 0.326 0.073 0.003 

Bank 0.293 0.209 0.260 0.195 0.014 

CompAct 0.193 0.082 0.166 0.049 0.033 

Concrete 0.374 0.161 0.329 0.143 0.018 

Skillcraft 0.428 0.404 0.382 0.337 0.067 

 

TABLE 4.8. AVERAGE RMSE FOR THE VALIDATION DATASETS IN TWO CASES 

FOR ALL DATASETS IN TABLE VI. 𝑬𝑽𝒂𝒍(𝟏) AND 𝑬𝑽𝒂𝒍(𝟐) DENOTE RMSE FOR 

VALIDATION DATASET IN FIRST CASE (RANDOM SELECTION) AND SECOND 

CASE (DATA SELECTION USING APPROXHULL) RESPECTIVELY. 

Dataset 
Initial 

𝐸𝑉𝑎𝑙(1) 
𝐸𝑉𝑎𝑙(1) 

Initial 

𝐸𝑉𝑎𝑙(2) 
𝐸𝑉𝑎𝑙(2) 

𝐸𝑉𝑎𝑙(1) − 𝐸𝑉𝑎𝑙(2) 

Puma 0.339 0.076 0.324 0.073 0.003 

Bank 0.296 0.209 0.259 0.194 0.015 

CompAct 0.194 0.061 0.169 0.048 0.013 

Concrete 0.359 0.162 0.329 0.147 0.015 

Skillcraft 0.406 0.334 0.382 0.334 0.000 
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For completeness, the second and the fourth columns in the last two tables illustrate the 

average initial values (before training was performed) of the RMSEs, for both approaches, for 

the test and validation datasets. 

Performing the Wilcoxon signed-ranks test on the RMSEs of the test and validation data sets, 

with 𝐿 = 50, the 𝑧 values obtained are -4.73 and -4.18, respectively. In the same way as in the 

classification problems, the improvements obtained with Approxhull were considered to be 

statistically significant.  

To summarize the results, among the 15 performance values presented in Tables 4.5, 4.7 and 

4.8, as well as for the CVA problem, the use of ApproxHull for data selection achieves better 

results than those obtained by using random data selection in 14 cases, and achieves equal 

performance in 2 cases. 

 

4.5. Run time analysis 

The ApproxHull run time with Stochastic Policy depends on five factors including the size of 

the involved dataset (i.e., the number of samples and features), population size (input 

parameter 𝑝), number of iterations, number of vertices of convex hull found, and on the 

distribution of samples in the dataset. In order to analyze the dependency of the run time with 

these factors, two experiments were conducted. First, the algorithm was applied to all the 

datasets described in Tables 4.4 and 4.6 for ten times. For all datasets, 𝑝 (population size) and  

𝑤 (width of sliding window) were set to 1000 and 5, respectively. Fig. 4.6 shows the average 

percentage of total samples identified as vertices of convex hull for each dataset described in 

Tables 4.4 and 4.6. 

 

Fig. 4.6. Average percentage of total samples identified as vertices of convex hull for each 

dataset described in Tables 4.4 and 4.6. 
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Fig. 4.7 illustrates the average number of iterations that were used to terminate the algorithm 

for each dataset. The corresponding average run time for each dataset is given in Table 4.9. 

As it can be seen in this table, the highest and lowest average run times are related to datasets 

Cover Type and Concrete, respectively. Cover Type is the largest dataset in terms of number 

of samples and features while Concrete has the smallest number of features and is the second 

smallest dataset with respect to the number of samples. Although datasets Bank and Puma 

have the same size, the average run time for Bank is larger than that for Puma, because the 

average number of iterations for Bank is larger than that for Puma. This specific result related 

to datasets Puma and Bank reveals the fact that the distribution of samples can influence the 

run time. 

 

 

Fig. 4.7. Average number of iterations in ApproxHull for each dataset described in Tables 

4.4 and 4.6. 

 

TABLE 4.9. AVERAGE RUN TIME OF APPROXHULL ON DATASETS DESCRIBED IN 

TABLES 4.4 AND 4.6. 

Dataset Average Run Time (in seconds) 

Concrete 11.78 

Letter 19.13 

Skillcraft 37.70 

ComAct 37.39 

Breast Cancer 8.10 

Bank 257.34 

Puma 174.24 

Satellite 62.80 

Cover Type 1280.16 
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Another experiment based on two groups of artificial datasets was conducted to clarify further 

the relationship between the run time of ApproxHull and the above mentioned factors. 

The first group included thirty datasets which were composed of uniformly distributed 

random samples. The number of samples and the dimensions are in ranges [1000, 5000] and 

[4, 30] respectively. The second group employed the same number of datasets, in the same 

conditions, but using normally distributed random samples. 

Figs. 4.8 and 4.9 show the effect of dataset size (i.e., number of samples and dimensions) on 

the run time of ApproxHull on five datasets with different number of samples and 

dimensions. For all datasets of both groups, population size (i.e., input parameter 𝑝) is set to 

2000. It can be seen that in both groups of datasets, for a constant number of samples, by 

increasing the dimension, the run time of ApproxHull rises; for a constant dimension, by 

raising the number of samples, the run time also increases. It can also be observed that an 

increase in dimension is translated into a larger increase of the run time than an increase of the 

number of samples. 

 

 

Fig. 4.8. Relationship between the size of five datasets containing uniformly distributed 

random samples and the run time of ApproxHull. 
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Fig. 4.9. Relationship between the size of five datasets containing normally distributed 

random samples and the run time of ApproxHull. 

 

Figs. 4.10 and 4.11 illustrate the influence of population size (i.e., input parameter 𝑝) on the 

run time of ApproxHull for both groups of datasets. For each group, six datasets with 5000 

samples are considered, with varying dimension. As it can be seen, on the one hand the 

population size has less influence on the run time in comparison with the effect of dataset 

size; on the other hand, if we enlarge the population size, this is not always translated into a 

run time increase (although this usually happens). 

 

 

Fig. 4.10. Relationship between the population size (input parameter 𝒑)  and the run time of 

ApproxHull on six datasets containing uniformly distributed random samples. 
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Fig. 4.11. Relationship between the population size (input parameter 𝒑)  and the run time of 

ApproxHull on six datasets containing normally distributed random samples. 

As an example, in Fig 4.10 for the 25-dimensional dataset, by increasing population size from 

1500 to 2000, the run time decreases.  This happened because the number of iterations is 

equal to 44 in the case where the population size is set to 1500, whereas it is equal to 19 in the 

case where the population size is set to 2000. The corresponding number of iterations for 

different population sizes shown in Figs. 4.10 and 4.11 are given in Fig. 4.12 and 4.13. 

 

Fig. 4.12. Number of iterations in ApproxHull with six values for population sizes on six 

datasets containing 5000 uniformly distributed random samples. 

 

 

Fig. 4.13. Number of iterations in ApproxHull with six values for population sizes on six 

datasets containing 5000 normally distributed random samples. 
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Similarly, for the second group of datasets, increasing the population size does not always 

lead to a longer run time. For example, in Fig. 4.11, for the 20-dimensional dataset, by 

increasing population size from 1000 to 1500, the run time decreases because the 

corresponding number of iterations for population size 1000 is equal to 13, while it is equal to 

9 for population size 1500.  

From Fig. 4.14 and 4.15, it may be seen that in both group of datasets, an increase in 

population size does not always lead to an increase in percentage of samples identified as 

vertices of the convex hull. 

 

Fig. 4.14. Percentage of samples identified as vertices of convex hull by employing 

ApproxHull with six values for population sizes on six datasets containing 5000 uniformly 

distributed random samples. 

 

 

Fig. 4.15. Percentage of samples identified as vertices of convex hull by employing 

ApproxHull with six values for population sizes on six datasets containing 5000 normally 

distributed random samples. 

 

From a data distribution point of view, Table 4.10 shows that the minimum and maximum run 

times of ApproxHull on datasets containing normally distributed random samples (i.e., the 

first group of datasets) are smaller than those on datasets containing uniformly distributed 

random samples (i.e., the second group of datasets). Correspondingly, Table 4.11 illustrates 
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that the minimum and the maximum percentages of samples identified as vertices of convex 

hull from datasets involving normally distributed random samples are less than those from 

datasets involving uniformly distributed random samples. 

 

TABLE 4.10. CORRESPONDING MINIMUM AND MAXIMUM RUN TIME OF 

APPROXHULL ON DATASETS USED IN FIG. 4.8 AND 4.9. RTMIN_1 AND RTMIN_2  

DENOTE THE MINIMUM RUN TIME IN THE FIRST AND THE SECOND GROUP OF 

DATASETS RESPECTIVELY. RTMAX_1 AND RTMAX_2 DENOTE THE MAXIMUM 

RUN TIME IN THE FIRST AND THE SECOND GROUP OF DATASETS, 

RESPECTIVELY. 

Cases RTMIN_1 RTMIN_2 RTMAX_1 RTMAX_2 

Datasets with 1000 samples 7.81 6.31 70.16 46.83 

Datasets with 2000 samples 15.82 8.96 128.98 84.73 

Datasets with 3000 samples 20.42 9.26 178.17 99.28 

Datasets with 4000 samples 13.92 7.64 213.69 117.64 

Datasets with 5000 samples 24.87 9.09 295.9 134.82 

 

TABLE 4.11. CORRESPONDING MINIMUM AND MAXIMUM PERCENTAGE OF 

SAMPLES IDENTIFIED AS VERTICES OF CONVEX HULL FROM DATASETS USED 

IN FIG. 4.14 AND 4.15 PMIN_1 AND PMIN_2 DENOTE THE MINIMUM PERCENTAGE 

IN FIRST AND SECOND GROUP OF DATASETS. PMAX_1 AND PMAX_2 DENOTE 

THE MAXIMUM PERCENTAGE IN FIRST AND SECOND GROUP OF DATASETS. 

Dataset PMIN_1 PMIN_2 PMAX_1 PMAX_2 

5-dimensional dataset 7 4 9 4 

10-dimensional dataset 26 13 36 19 

15-dimensional dataset 47 22 60 34 

20-dimensional dataset 45 28 73 43 

25-dimensional dataset 65 34 86 55 

30-dimensional dataset 51 40 88 63 

 

In order to extract an approximate mathematical model specifying the relationship between 

the run time of ApproxHull as a function of the dataset size, population size, number of 

iteration and number of convex hull vertices, we employed the ASMOD algorithm [25] on the 

data obtained in the last experiment described above. The ASMOD algorithm is, as discussed 

in Section 2.2.3, a design technique for B-spline neural networks. 

For each group of datasets, we collected 360 records of data by running ApproxHull on the 

corresponding datasets. According to the mathematical model which was obtained for each 

group of datasets, the time complexity of ApproxHull for both group of datasets can be 

approximated as 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) where 𝑛, 𝑑, 𝑣, 𝑖 and 𝑝 denote the number of samples, 
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dimension, number of convex hull vertices found, number of iterations and population size, 

respectively. In order to assess the accuracy of the model obtained for the run time of 

ApproxHull, Fig. 4.16 presents the run time of ApproxHull (data scaled in a range [-1, 1[) and 

the error obtained by the model in two groups of datasets. As it can be seen, for both groups 

of datasets, a good accuracy for the model has been obtained. 

 

 

(a) 

 

(b) 

Fig. 4.16. Run time of ApproxHull and the error obtained by the model on two groups of 

datasets. (a) First group: uniformly distributed random samples; (b) Second group: normally 

distributed random samples. 
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4.6. Memory requirements analysis 

As mentioned in Section 3.3.3, Quickhull as a standard convex hull algorithm suffers from 

insufficient memory in high dimensions. In this section, to compare empirically ApproxHull 

with Quickhull in terms of memory requirements, both algorithms were applied to four 

artificial datasets described in Table 4.12. All datasets are composed of uniformly distributed 

random samples. 

 

TABLE 4.12. DESCRIPTION OF THE ARTIFICIAL DATASETS CONSISTING OF 

UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE 

NUMBER OF DIMENSIONS AND SAMPLES RESPECTIVELY. 

Dataset Name dim #S 

DS1 5 4000 

DS2 6 4000 

DS3 7 4000 

DS4 8 3500 

 

Since facets in both ApproxHull and Quickhull are the principal objects to which a 

considerable amount of memory is allocated, this section addresses memory requirements for 

the generated facets in each iteration for both algorithms. For datasets DS1 to DS3, the sliding 

window size, 𝑤, was set to 10 and for DS4 it was set to 15. The population size, 𝑝, was set to 

6000, 7000, 8000 and 9000 for datasets DS1, DS2, DS3 and DS4, respectively.   

Figs. 4.17 to 4.20 show the trend of memory consumption over all iterations in both 

algorithms on datasets DS1 to DS4. An analysis of these figures shows that memory 

allocation in Quickhull for all generated facets in each iteration is much larger than that in 

ApproxHull. As it can be seen in the figures, the trend of memory consumption for all 

generated facets in ApproxHull is approximately constant in the last iterations. By increasing 

the dimension, the trend of memory consumption in Quickhull is linearly increasing, 

translating into a large amount of memory. In Quickhull, in each iteration, only the furthest 

point to current convex hull is added to the list of vertices and new necessary facets are 

generated to keep convexity in each iteration. Unlike Quickhull, in each iteration of 

ApproxHull, a large number of vertices are added into list of vertices of the current convex 

hull, and that is why the number of iterations of ApproxHull is lower than that of Quickhull. 

Moreover, in Quickhull, the current convex hull is described in terms of facets and the 

corresponding vertices so that, in high dimensions, the number of facets which reflect the 

whole current convex hull is huge. In contrast, the facets in the fixed size population in 
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ApproxHull are only used to detect the furthest point as vertices of real convex hull and they 

do not describe the whole current convex hull. 

According to the explanation above, the amount of memory allocated to the facets for 

Quickhull is much larger, comparing to ApproxHull. The number of facets and the 

corresponding amount of memory allocated in both algorithms for the last iteration on 

datasets DS1 to DS4 are given in Table 4.13. 

 

 

 

(a) 

 

(b) 

Fig. 4.17. Trend of memory consumption over iterations on DS1. (a) Quickhull; (b) 

ApproxHull 
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(a) 

 

(b) 

Fig. 4.18. Trend of memory consumption over iterations on DS2. (a) Quickhull; (b) 

ApproxHull 
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(a) 

 

(b) 

Fig. 4.19. Trend of memory consumption over iterations on DS3. (a) Quickhull; (b) 

ApproxHull 
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(a) 

 

(b) 

Fig. 4.20. Trend of memory consumption over iterations on DS4. (a) Quickhull; (b) 

ApproxHull 

 

TABLE 4.13. NUMBER OF FACETS, TOTAL AND AVERAGE MEMORY SIZE FOR 

BOTH ALGORITHMS ON DS1 TO DS4 IN THE LAST ITERATION. 

 Quikhull ApproxHull 

No. of 

facets  

Total 

memory 

size 

(MB) 

Average 

memory 

size (B)  

 

No. of 

facets 

Total 

memory 

size 

(MB) 

Average 

memory 

size (B) 

Dataset 

DS1 12062 2.222557 193 6000 0.556335 97 

DS2 98801 19.62438 208 7000 0.760101 113 

DS3 712234 152.1882 224 8000 0.993637 130 

DS4 4396390 1006.301 240 9000 1.257355 146 
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4.7. Conclusions 

This chapter describes a novel randomized approximation convex hull algorithm for high-

dimensional data, to overcome the limiting memory requirements and time complexity 

problems found in conventional algorithms. ApproxHull is presented with two policies: 

stochastic policy and GA-based policy. Simulation results indicate that ApproxHull with 

Stochastic Policy is faster and its performance is better in comparison to the case where GA-

based Policy is applied. 

According to the simulation results, ApproxHull can find significantly more vertices of the 

real convex hull in comparison to Wang’s algorithm [68]. Moreover, the obtained results in 

classification and regression problems show that the use of ApproxHull as a data selection 

method improves the accuracy of the designed models. 

Based on the results obtained from employing ApproxHull with stochastic policy on two 

groups of datasets, it is revealed that dataset size, population size, number of iterations, 

number of vertices found as vertices of convex hull and the distribution of samples have 

influence on the run time. Based on a mathematical model obtained by using b-spline 

networks, the approximated time complexity of ApproxHull is 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) where 𝑛, 

𝑑, 𝑣, 𝑖 and 𝑝 denote number of samples, dimension, number of convex hull vertices found, 

number of iterations and population size, respectively. 

From a memory requirements point of view, simulation results reveal that the memory 

consumption in ApproxHull is much lower than the Quickhull algorithm, allowing the 

proposed algorithm to be applied in high-dimensional problems. 
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5. Applying ApproxHull in MOGA 

5.1. Introduction 

This chapter addresses the application of ApproxHull, introduced in Section 4.3 as a data 

selection method, in the model design process carried out by MOGA. In this chapter, the 

application of ApproxHull in MOGA is analyzed from two points of view. Firstly, the 

performance of ApproxHull is compared with random data selection method for MOGA.  

Secondly, the usage of ApproxHull in MOGA is addressed in the two following situations: In 

the first situation (i.e., hereinafter called common convex hull based data selection method), a 

common training, testing and validation sets (i.e., which are constructed using ApproxHull) 

are used to fit the parameters of all models that are generated by MOGA; whereas, in the 

second situation (i.e., hereinafter called distinct convex hull based data selection method), 

ApproxHull is used to construct a customized training, testing and validation sets for each 

generated model. The rest of the chapter is organized as follows: In Section 5.2, two 

experiments applying ApproxHull and random based data selection methods in MOGA are 

explained and analyzed. Two alternatives of applying ApproxHull in MOGA are discussed in 

Section 5.3 and finally some conclusions are given in Section 5.4. 

  

5.2. Comparison of using random and convex hull based data selection 

methods for MOGA 

In order to evaluate the performance of ApproxHull as a data selection method for MOGA, 

the problem of designing predictive time series models for Inside Air Temperature (IAT) was 

considered. To address this problem, a non-dominated set of Nonlinear AutoRegressive with 

eXogenous (NARX) models was designed by MOGA to predict the evolution  of IAT over a 

Prediction Horizon (PH), for rooms in a building at University of Algarve. The data 

considered to design these models were the subsets of those that used to build the similar 

models proposed in [3, 119]. The input variables were IAT, Inside Air Humidity (IAH), 

Outside Air Temperature (OAT), Outside Solar Radiation (OSR), Reference Temperature 

(RT) and Movement signal (MOV). The corresponding data was collected with a sample rate 

of 5 minutes. For each variable 12 lags (i.e., one hour before) were considered to design the 

models. As a result, a data set containing 5062 samples with 73 features was provided. 
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Two MOGA experiments were carried out to design the models. For both experiments, a 

common training, testing and validation sets were applied to all models generated by MOGA 

and throughout MOGA generations, each model is trained and evaluated using a reduced 

version of the common data sets whose features corresponds to the model’s inputs. In the first 

experiment, the common training, testing and validation sets were generated using common 

random based data selection method. In this method, the common sets were created by 

applying random data selection method on the whole data set (i.e., 5062 samples) and then 

presented to the MOGA. In the second experiment, the common sets were generated using 

common convex hull based data selection method in such a way that the common sets were 

produced by employing ApproxHull on the whole data set and presented to the MOGA. In 

this experiment, 1441 convex hull points were identified from the whole data set and included 

in the training set. 1596 randomly selected samples from the whole data set were also added 

to the training set. The size of the data sets is given in Table 5.1. Regarding MOGA 

parameters, for both experiments, the early stopping method with maximum 100 iterations 

was applied. The number of generations and the population size were both set to 100. The 

ranges of number of neurons and features were set to [2, 30] and [0, 30], respectively. For 

both experiments, the design objectives were typically the RMSE obtained in the training and 

test data sets, and the model complexity. In both experiments, no restriction on objectives was 

considered. The number of models in the non-dominated set of first and second experiments 

was equal to 101 and 173, respectively. The results obtained by the evaluation of models in 

the non-dominated set of both MOGA experiments are given in Table 5.2. The results are in 

terms of RMSE (𝜌) on the training (𝑡𝑟), testing (𝑡𝑒), validation (𝑣𝑎) and whole data set (𝐷). 

𝑟𝑛𝑑 and ℎ𝑢𝑙𝑙 in Table 5.2 denote the first and second MOGA experiment, respectively. 

  

TABLE 5.1. THE SIZE OF TRAINING, TESTING AND VALIDATION SETS. 

 Training set Testing set Validation set 

Size 3037 × 73 1012 × 73 1013 × 73 

 

 

TABLE 5.2. RESULTS OBTAINED FROM THE MOGA EXPERIMENTS. 

 𝜌𝑡𝑟
𝑟𝑛𝑑 𝜌𝑡𝑟

ℎ𝑢𝑙𝑙 𝜌𝑡𝑒
𝑟𝑛𝑑 𝜌𝑡𝑒

ℎ𝑢𝑙𝑙 𝜌𝑣𝑎
𝑟𝑛𝑑 𝜌𝑣𝑎

ℎ𝑢𝑙𝑙 𝜌𝐷
𝑟𝑛𝑑 𝜌𝐷

ℎ𝑢𝑙𝑙 

Min 0.0065 0.0066 0.0085 0.0081 0.0090 0.0085 0.0081 0.0079 

Avg 0.0082 0.0085 0.0091 0.0088 0.0231 0.0106 0.0144 0.0092 

Max 0.0108 0.0112 0.0107 0.0109 0.5392 0.0669 0.2413 0.0308 
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As it can be seen in Table 5.2, the performance in the training set using the random approach 

is slightly better than the convex hull approach. This is expected as the latter includes the 

convex hull points, using therefore a larger range than the former. This situation changes for 

the testing set and regarding the validation set, as unseen data, and also the whole data set, the 

performance of models obtained by applying ApproxHull (the second MOGA experiment) is 

significantly better than those achieved by using the random selection method (the first 

MOGA experiment). 

 

5.3. Comparison of the use of the common and distinct convex hull based 

data selection methods for MOGA 

Simulation results obtained in Section 5.2 showed that the performance of the obtained 

models by convex hull based data selection method is better than that of those achieved by 

random data selection method.  

Another question which remains to be answered is whether or not using the common convex 

hull based data selection method (i.e., which was applied in the second experiment stated in 

Section 5.2) brings us a better performance comparing to the situation where distinct convex 

hull based data selection methods are used in MOGA (i.e., in which ApproxHull is used to 

construct a customized training, testing and validation sets for each model generated by 

MOGA). In the case of using distinct convex hull based data selection method, for each 

model generated by MOGA, ApproxHull is applied on a reduced version of the whole data set 

whose features corresponds to the model’s inputs. Afterwards, the corresponding training, 

testing and validation sets are generated to train and evaluate the model.   

In order to compare these two strategies, we focused on the first generation of MOGA, where 

a number of models are randomly generated satisfying the restrictions imposed on the number 

neurons and features (i.e., unlike other generations in which models are generated based on 

the previous generation by using the  crossover and mutation genetic operators). 

Like Section 5.2, we considered the IAT models to compare the above two methods. The 

evaluation results obtained from the two methods are given in Table 5.3. 𝑐𝑜𝑚 and 𝑑𝑖𝑠 in 

Table 5.3 denote the common and distinct convex hull based data selection methods, 

respectively. 𝜌𝐷 denotes the RMSE on the whole data set. 𝑛𝑐ℎ𝑣 and  𝑡𝑐ℎ𝑣 indicate the number 

of convex hull points and ApproxHull run time, respectively. 

Table 5.4 shows the total time spent to design all models in the first generation. In Table 5.4,   

𝑇𝑐ℎ𝑣 denotes the summation of ApproxHull run time over all models. Since in common 
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convex hull based data selection method, ApproxHull is applied only once on the whole data 

set,  𝑇𝑐ℎ𝑣 is equal to 𝑡𝑐ℎ𝑣
𝑐𝑜𝑚 in Table 5.3. 𝑇𝑡𝑟  denotes the summation of training times over all 

models in the common and distinct convex hull based data selection methods, respectively. In 

Table 5.4, 𝑇 denotes the total time including ApproxHull run time and training time over all 

models in common and distinct convex hull based data selection methods. 

 

TABLE 5.3. EVALUATION RESULTS OBTAINED FROM TWO METHODS. 

 𝜌𝐷
𝑐𝑜𝑚 𝜌𝐷

𝑑𝑖𝑠 𝑛𝑐ℎ𝑣
𝑐𝑜𝑚 𝑛𝑐ℎ𝑣

𝑑𝑖𝑠  𝑡𝑐ℎ𝑣
𝑐𝑜𝑚 (sec) 𝑡𝑐ℎ𝑣

𝑑𝑖𝑠  (sec) 

Min 0.0152 0.0152 1434 108 283.25 1.70 

Avg 0.0294 0.0294 1434 889 283.25 19.21 

Max 0.0652 0.0647 1434 1829 283.25 72.16 

 

 

TABLE 5.4. TOTAL TIME TO DESIGN ALL MODELS IN THE TWO METHODS. 

 𝑇𝑐ℎ𝑣 (sec) 𝑇𝑡𝑟 (sec) 𝑇 (sec) 

Common data sets 

based strategy 

283.25 1550.00 1833.25 

Distinct data sets 

based strategy 

1421.32 1544.96 2966.28 

 

According to the first two columns of Table 5.3, there is no significant difference between the 

performance of models in two cases. Based on the third and fourth columns of Table 5.3, the 

number of convex hull points obtained using the common convex hull based data selection 

method is much larger than that of those achieved from the distinct convex hull based data 

selection method. This result stems from the fact that, in the former, ApproxHull is applied on 

the whole data set containing 5062 samples with 73 features while in the latter, ApproxHull is 

employed on reduced data sets containing the same number of samples with at most 30 

features (due to forcing  MOGA to generate models with at most 30 input features). As it can 

be seen in Table 5.4, the total time spent to design all models in the common convex hull 

based data selection method is much less than that in the other method. It comes from the fact 

that in the former, ApproxHull is applied only once whereas in the latter, it is independently 

employed for each model.  
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5.4. Conclusions 

This chapter was aimed to evaluate the ApproxHull performance in MOGA. Two groups of 

MOGA experiments were carried out to design time series models based on RBFNN to 

predict one-step-ahead IAT for a building at the University of Algarve. The results obtained 

from the first group of experiments showed that applying ApproxHull as a data selection 

method can improve the performance of models in comparison with random selection 

method. Moreover, we were motivated to study applying ApproxHull in MOGA based on two 

methods; 1- common convex hull based data selection method 2- distinct convex hull based 

data selection method. The results achieved from the second group of experiments showed 

that not only the latter is not superior to the former, but also it takes more time in model 

design, in comparison with the former. 
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6. Case Studies 

6.1. Introduction 

To show the feasibility of applying ApproxHull in real applications, this chapter addresses 

three case studies in which ApproxHull has been employed as a data selection method to 

create training, testing and validation sets.  

The first case study is linked to design a group of predictive RBFNN models, as well as a 

basic MLP model, which were aimed to forecast the energy consumption of a building at 

University of Almeria, Spain [120].  

The second case study was intended to present an intelligent weather station which not only 

measures climate variables but also provides a prediction over a predefined prediction horizon 

[14, 15]. The intelligent weather station was applied to implement a predictive control of 

HVAC systems [3, 121]. In this case study, a series of predictive RBFNN models were 

designed to forecast climate variables.  

In the third case study, ApproxHull was applied to build a classification model based on 

RBFNN, as an intelligent support system for automatic diagnosis for CVA, where the model 

was designed based on the data extracted from CT images of several patients [117].  

The rest of this chapter is organized as follows: Section 6.2 details the first case study since it 

was carried out as a part of this PhD. Section 6.3 and 6.4 present a brief explanation of the 

second and third case studies, respectively as ApproxHull was used by different researchers 

involved in other projects. Finally some conclusions are given in Section 6.5.   

  

6.2. Case Study 1: Energy consumption 

Due to fast economic development affected by industrialization and globalization, energy 

consumption has been steadily increasing over the last years [122, 123]. Industry, 

transportation and buildings are the three main economic sectors which consume a significant 

amount of energy, with buildings having the biggest proportion. For example in European 

Union countries, energy consumption in buildings represents about 40% of the total energy 

consumption [124]. In USA, more than 44% of domestic energy consumption belongs to 

HVAC systems in buildings [125]. Studies have shown that by following the current energy 

consumption pattern, the world energy consumption may increase more than 50% before 

2030 [126], while most of the energy resources are not renewable in nature. Moreover, the 

usage of energy causes environmental degradation [123]. Therefore, energy consumption 
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management is a very significant problem not only to tackle the loss resulting from increasing 

consumption patterns but also to improve the performance of building energy systems. With 

respect to energy management, a variety of policies have been considered. In recent years, 

bioclimatic architectures for buildings have been focused to reduce the indoor consumption of 

energy. In this kind of architecture, buildings are designed based on the local climate 

conditions. These include wind speed and direction, daily exterior temperature and relative 

humidity, as well as diverse passive solar technologies where heating and cooling techniques 

passively absorb solar radiation or protect from it without containing mobile elements [127-

129]. Besides environmental variables, physical properties of buildings are considered in 

bioclimatic architectures, such as shape, buildings' orientation related to the sun and wind, 

wall thickness and roof construction [127, 130]. 

Utilizing renewable energy sources such as biomass, hydropower, geothermal, solar, wind 

and marine energies have been considered as alternatives for conventional energy resources in 

most developed and developing countries [131, 132]. In the European Union, the use of 

renewable energies share is 20% of the total energy consumption and 10% of renewable 

energies will be used in transportation by 2020 [133].  Using renewable energies not only 

helps keeping the security of non-renewable energy supply in future, but also minimizes 

environmental degradation [132]. 

Prediction of energy use in buildings has received a remarkable amount of attention from 

researchers [122, 124, 134, 135], as an approach to reduce energy consumption, which is 

intended to conserve energy and reduce environmental impacts [124]. The prediction of 

energy usage in buildings and modeling the behavior of the corresponding energy system, are 

complicated tasks due to influential factors such as weather variables, building construction, 

thermal properties of the physical materials and occupants’ activities [124]. Furthermore, 

there are several nonlinear inter-relationships among the involved variables, often in a noisy 

environment, which amplify the difficulty in identifying the precise interaction among them 

[136]. 

The methods aiming to predict building energy consumption can be categorized mainly into 

statistical, engineering and artificial intelligence ones. A review on prediction methods can be 

found in [124, 137]. 

Engineering methods, which are detailed comprehensive methods, use the structural 

properties of buildings in the form of physical principles and thermal dynamics equations, as 

well as environmental information such as climate conditions, occupants, their activities and 

HVAC equipment parameters. On the one hand, these methods need a high level of details 
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about the structural and thermal parameters of buildings that are not always available and, on 

the other hand, since engineering methods depend on complex physical principles, a high 

level of expertise is needed to elaborately develop the corresponding models [54, 124]. To 

reduce the complexity of the detailed comprehensive engineering methods, simplified 

methods have been proposed, which can be seen in [138, 139]. 

Statistical methods use historical data to correlate energy consumption as target with most 

influential variables as inputs. Hence, the quality and quantity of historical data has a crucial 

role in developing statistical models [54, 140]. Unlike engineering methods, statistical 

methods provide models with a smaller number of variables and much less physical 

understanding. Regression models, CDA (Conditional Demand Analysis), ARMA (Auto 

Regressive Moving Average), ARIMA (Auto Regressive Integrated Moving Average) and 

GMM (Gaussian Mixture Models) are some instances of statistical models [140-143]. 

In recent years, artificial intelligence methods such as neural networks, support vector 

machines and fuzzy logic have been widely considered in applications of energy 

consumption. Like statistical methods, artificial intelligence methods use historical data 

reflecting the behavior of the process to be modeled.  Neural networks have shown a high 

capability to capture complex nonlinear relationships between inputs and outputs. Since the 

energy consumption process has a nonlinear behavior, neural networks are mostly applied in 

this domain. In addition, they are quicker and easier to develop than engineering and 

statistical methods, while being accurate estimators. Some instances of neural network based 

models may be found in [54, 136, 144-148]. 

Recently, support vector machines have received much attention as quick methods to build 

predictive models in applications of energy consumption. They can provide models with a 

high level of generalization based on number of data. Their application on the prediction of 

energy utilization can be viewed, for instance, in [149-151]. 

Besides neural network and support vector machine based models, another kind of models 

have been considered, which benefit from fuzzy logic.  Fuzzy logic deals with imprecise 

reality and handles the concept of truth value ranging between completely true and completely 

false (1–0) [152]. Some models of this type can be seen in [153, 154]. 

As mentioned earlier, both statistical and artificial intelligence methods need sufficient 

historical data to provide accurate models. In cases where limited amounts of data are 

available and the information about the process to be modeled is partially known, grey models 

are suitable alternatives to the prediction of time series associated with processes [155-157]. 
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The objective of this case study is to compare an MLP model obtained in [54] with the 

RBFNN models obtained by MOGA, to predict the electric power demand of the CIESOL  

building located at University of Almeria, Spain. Authors in [54] determined the structure and 

the order of the model by statistical and analytical methods while in this article a non-

dominated set of models is generated by a MOGA considering a set of objectives to be 

optimized. For the sake of completion, the performance of MOGA models is also compared 

with the results obtained by a Naive Autoregressive Baseline (NAB) approach, introduced  in 

[158].  

The following briefly describes the structural properties and power demand profile of 

CIESOL building. Afterwards the model proposed in [54] and the models generated by 

MOGA are widely described and finally, experimental results are shown. 

 

6.2.1. Experimental setup: The CIESOL building 

The CIESOL building, see Fig. 6.1(a), is a mixed solar energy research center between 

CIEMAT (Centre for Energy, Environment and Technology – Centro de Investigaciones 

Energéticas, MedioAmbientales y Tecnológicas (in Spanish)) and the University of Almería, 

situated in the south-east of Spain. This geographical location is characterized by having a 

typical semi-desert Mediterranean climate [159]. This building is divided into two floors with 

a total surface approximately equal to 1100 m2. More specifically, the upper floor is 

composed by four laboratories, the director's office and a meeting–room. In the lower floor, 

five offices, four laboratories, two bathrooms and a kitchen are located. Besides these, the 

machinery of the solar cooling installation is placed into an environment which occupies two 

floors. 

This building has been designed and built within a research project named PSE-ARFRISOL 

[160], following bioclimatic architecture criteria. Therefore, it makes a beneficial use of 

natural ventilation and solar energy in order to reduce energy consumption and CO2 

emissions. To do that, it employs a HVAC system based on solar cooling installation, which 

can be observed in Fig. 6.1(b), composed by a solar collector field, a hot water storage 

system, a boiler and an absorption machine with its refrigeration tower [160], and a 

photovoltaic power plant with a peak power of 9 kW which provides electricity to the 

building (see Fig. 6.1(c) and (d)). Furthermore, a wide network of sensors has been installed 

in order to monitor the most representative enclosures of the building. Concretely, this 

network of sensors includes, among others, air temperature, relative humidity, CO2 
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concentration, solar radiation, wind velocity and power consumption sensors. Moreover, these 

sensors are connected to different Compact FieldPoint modules from National Instruments 

that are distributed by means of an Industrial Ethernet network all around the building  [160]. 

Data provided by the network of sensors are being stored through a SCADA (Supervisory 

Control And Data Acquisition) system developed with LabVIEW
®
 [160]. Finally, it is 

necessary to take into account that this building is a research center which includes chemical, 

environmental analysis and modeling and control research groups. Hence, the machinery, 

other electrical devices and experiments performed by these research groups alter the energy 

use profile of the building in comparison with more common ones, such as residential 

buildings. 

 

 

Fig. 6.1. The CIESOL building: (a) Exterior of the CIESOL building; (b) Solar cooling 

installation; (c) Photovoltaic power plant: PV panels; (d) Photovoltaic power plant: PV 

inverters. 
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6.2.1.1. Power demand profiles of the CIESOL building  

From a power demand point of view, the CIESOL building has some special characteristics 

mainly derived from the research tasks which are being developed inside it. Therefore, it is 

necessary to perform an exhaustive analysis of the different energy demand profiles which 

can be found at the CIESOL building. Specifically, a statistical characterization involving 

certain parameters like arithmetic mean (�̅�), standard deviation (𝜎), and minimum and 

maximum values of the power demand (min and max respectively) under several conditions 

(different seasons and types of days), has been performed (see Table 6.1). 

 

TABLE 6.1. STATISTICAL ANALYSIS OF THE POWER DEMAND PROFILES (IN 

KW). 

 x    min max 

Working day 24.36 6.39 17.39 44.17 

Non-working day 19.45 1.83 12.72 23.86 

Winter 26.45 4.55 18.93 39.48 

Spring 23.91 6.76 12.56 42.79 

Autumn 24.23 4.58 15.85 48.14 

Summer 28.74 8.67 16.28 63.48 

 

To predict the power demand within a building, it is necessary to consider numerous energy 

consuming elements, such as illumination, electrical devices, HVAC systems, etc. At the 

CIESOL building, the element which has the greatest energy consumption is the solar cooling 

installation. Furthermore, to calculate the total energy demand of the CIESOL building it is 

necessary to consider both the energy supplied by the electricity company and the energy 

produced by the photovoltaic power plant which is directly consumed by the building, that is, 

at this moment it is not possible to store the energy from the photovoltaic power plant. 

Firstly, the main differences according to typical power demand profiles between working 

and non-working days have been studied, as presented in Fig. 6.2. To do that, a typical day for 

each demand profile, considering working and non-working days, and each season, has been 

selected as a function of several environmental variables: mean, maximum and minimum 

temperature, temperature ranges and solar radiation. The methodology consists of selecting 

the day with the minimum value obtained from the sum of the weighted absolute difference 

between each parameter (daily) and the mean value of this parameter along the analyzed 

period. A detailed description of the procedure which has been followed can be found in 

[161]. It can be observed that power demand in a working day begins to increase around 
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08:00 am and starts to decrease at 05:00 pm, reaching a stationary value around 8 pm, 

whereas, in a non-working day it has a stationary value approximately equal to 20 kW, mainly 

due to the machinery and experimental tests performed inside this building. From the 

perspective of the statistical analysis shown in Table 6.1, it can be inferred that the mean 

power demand for a working day is equal to 24.36 kW with a standard deviation of 6.39 kW. 

On the contrary, for a non-working day, a mean power demand of 19.45 kW and a standard 

deviation equal to 1.83 kW have been obtained. In addition, working days also present a 

higher peak power demand, in comparison with non-working days. 

 

Fig. 6.2. Energy demand profiles for working and non-working days. 

 

Secondly, a detailed examination of the power demand of the CIESOL building through a 

typical week (from Monday to Sunday), along different environmental conditions has been 

performed, as shown in Fig. 6.3. The main objectives of this analysis were to determine if 

there were representative differences among the different seasons of the year and also to 

identify if there was any characteristic element of the building able to considerably influence 

its power demand. More specifically, as it can be deduced from Fig. 6.3, the different seasons 

of the year follow an analogous pattern among working and non-working days. In addition, it 

can also be inferred that spring and summer seasons present a higher power demand in 

comparison with winter and autumn. Besides, along the summer season there are several 

power demand peaks that do not follow any specific pattern associated with the type of day. 

Therefore, in order to clarify this issue, a detailed analysis of this fact has been performed, 

and the main conclusions derived from it were that these peaks were associated with the use 

of a heating pump (for research purposes) and the solar cooling installation. Hence, as the use 

of both elements is directly associated with the users of the building, it has been decided to 

take into account the state variables representing these elements within the preliminary list of 
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variables (see Table 6.2). Finally, according to the statistical analysis, it can be concluded that 

the highest peak power demand and variance is associated with the summer season mainly 

due to the use the HVAC system for cooling purposes [160]. 

 

Fig. 6.3. Weekly energy demand profiles for each season. 

 

TABLE 6.2. PRELIMINARY LIST OF VARIABLES [54]. 

Variable Unit Measurement range 

Type of the day (Working day/Non-working day) –   {0, 1} 

Hour of the day h [0, 23] 

Outdoor temperature [ºC] [-5, 50] 

Outdoor humidity [%] [0, ..., 100] 

Outdoor solar radiation [W/m
2
] [0, 1440] 

Outdoor wind speed m/s [0, 22] 

Outdoor wind direction º [0, 360] 

State of the pump B1.1 (Off/On) – {0, 1} 

State of the pump B1.2 (Off/On) – {0, 1} 

State of the pump B2.1 (Off/On) – {0, 1} 

State of the pump B2.2 (Off/On) – {0, 1} 

State of the pump B3.1 (Off/On) – {0, 1} 

State of the pump B3.2 (Off/On) – {0, 1} 

State of the pump B7 (Off/On) – {0, 1} 

State of the boiler (Off/On) – {0, 1} 

State of the absorption machine (Off/On) – {0, 1} 

State of the refrigeration tower (Off/On) – {0, 1} 

State of the heat pump (Off/On) – {0, 1} 

Electric power demand [kW] [0, 85] 

Electric power injected by the PV plant [kW] [0, 9] 

 

Finally, the principal conclusions which have been reached after this precise analysis can be 

summarized in: a) there is a clear power demand profile within a week and also, the 

differences among working and non-working days power demand profiles can be undoubtedly 

established; b) the power demand for summer is higher mainly due to the typical semi-desert 
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Mediterranean climate of Almería; and c) the use of the solar cooling installation has a 

considerable influence on the final energy consumption. 

 

6.2.1.2. Data acquisition 

As mentioned previously, in this case study, several energy consumption prediction models 

based on RBFNNs were designed and compared with the corresponding MLP model 

proposed in [54]. These models were obtained by means of different methodologies. More 

specifically, groups of non-dominated sets of RBFNN models were designed by MOGA. 

Afterwards, these groups of  models were compared with a basic MLP model presented in 

[54]. To do that, a historic data set acquired at the CIESOL building was used. Concretely, 

this data set comprises data from 01/09/2010 to 29/02/2012 with a sample time of 1 minute 

and it includes a preliminary list of variables which can be observed in Table 6.2. These 

variables are related with the environmental conditions and the state of the main energy 

consuming elements of the solar cooling installation. 

Subsequently a whole data set containing 514762 samples was obtained. To design the basic 

MLP model proposed in [54], the whole data set was split into three sub-data sets training, 

testing and validation involving 318340, 107264 and 89158 samples, respectively. This 

division has been performed by hand since there were some discontinuities in time series. 

More information about the methodology followed to obtain these data subsets can be found 

in [54]. On the other hand, to design a group of non-dominated sets of RBFNN models by 

MOGA, the original whole data set was resampled from 1 minute to 15 minutes to reduce the 

size of the whole data set due to the presence of limitations in MOGA against large size data 

sets. Afterwards, along each week period, the corresponding data of three random days were 

selected. Consequently, a reduced data set consisting of 8640 samples was achieved. To 

generate the corresponding training, testing and validation sets, ApproxHull algorithm 

proposed in Section 4.3 was applied as a data selection method. As a result, for all MOGA 

experiments, the training, testing and validation set including 2592, 864 and 864 samples 

were generated, respectively. The detailed explanation of the data preparation process for 

MOGA is given in Section 6.2.3.1. 
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6.2.2. A Non-linear AutoRegressive with eXogenous inputs Multi-Layer Perceptron 

Neural Network model 

In [54] a prediction model based on MLP for the energy consumption of the CIESOL building 

was proposed. To do that, the Neural Network Toolbox
TM

 provided by MATLAB
®
 was used. 

Concretely, the proposed model had a Non-linear AutoRegressive with eXogenous inputs 

(NARX) architecture, see Eq. (6.1), typified by having a tapped delay line for the input 

signals set and another one for the output signal, that is, the power demand prediction of the 

CIESOL building. Moreover, this model was trained using a gradient-descent based 

algorithm, more specifically the Levenberg-Marquardt algorithm [33]. 

 

            1 , 1 , , 1 ; , 1 , , 1u yy k f u k u k u k d y k y k y k d           (6.1) 

 

In Eq. (6.1),  u k and  y k represent the input and output signals at time instant k , 1ud , 

1yd  (subjected to uy dd  ) are the memory orders for the input and output tapped delay 

lines, respectively, and f represents a non-linear mapping function which, in this case, was 

approximated by an MLP network. 

The structure of an MLP network is completely defined by indicating: a) the number of 

hidden layers and the number of neurons in each layer; b) the number of neurons in the output 

layer; and c) the activation function used in each neuron of the hidden and output layers. 

More specifically, in the model presented in [54], an MLP with only one hidden layer 

composed by 10 neurons with tangent hyperbolic activation functions and one neuron with 

linear activation function at the output layer was considered, since it is a universal 

approximator [162]. 

Afterwards, the selection of input variables from the preliminary variables list, see Table 6.2, 

was performed through analytical methods, since they allow to establish the existing linear 

and non-linear dependencies. Besides, the scatter-plots and the model tests were used in order 

to complete the information provided by analytical methods. A detailed description of these 

methods can be found in [54]. Therefore, after the application of the methods mentioned 

above, the preliminary variables list was reduced to the following ones: type of the day; hour 

of the day; outdoor temperature and solar radiation; state variables related to the solar cooling 

installation; and the total power demand of the CIESOL building. 
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Finally, it was necessary to select the order of the signal inputs, that is, the embedding delay 

  and the embedding dimension d  [54]. The former was determined by means of the average 

mutual information [163], whereas for the latter, optimal values were calculated by the False 

Neighbors Method [164]. The list of final input variables and their order can be observed in 

Table 6.3. 

 

TABLE 6.3. FINAL LIST OF VARIABLES WITH THEIR ORDER (EMBEDDING 

DELAY AND DIMENSION). 

Variable Unit 
Measurement 

range 
  d  

Type of the day (Working day/Non-working day) –   {0, 1} 1 1 

Hour of the day – [0, 23] 1 1 

Outdoor temperature [ºC] [-5, 50] 1 4 

Outdoor solar radiation [W/m
2
] [0, 1440] 1 4 

State of the pump B1.1 (Off/On) – {0, 1} 1 5 

State of the pump B1.2 (Off/On) – {0, 1} 1 5 

State of the pump B2.1 (Off/On) – {0, 1} 1 5 

State of the pump B2.2 (Off/On) – {0, 1} 1 5 

State of the pump B3.1 (Off/On) – {0, 1} 1 5 

State of the pump B3.2 (Off/On) – {0, 1} 1 5 

State of the pump B7 (Off/On) – {0, 1} 1 5 

State of the boiler (Off/On) – {0, 1} 1 5 

State of the absorption machine (Off/On) – {0, 1} 1 5 

State of the refrigeration tower (Off/On) – {0, 1} 1 5 

State of the heat pump (Off/On) – {0, 1} 1 5 

Electric power demand [kW] [0, 100] 1 3 

 

 

6.2.3. Radial Basis Function Neural Network based models generated by MOGA 

MOGA is a design framework which can be applied to determine both the structure and the 

parameters of ANN based models (i.e., please see Sections 2.6 and 2.7). The models used in 

this case have a NARX structure as shown in (6.1), with the difference that f(.) is now a 

RBFNN, instead of a MLP.  In this approach, instead of one model, a non-dominated set of 

models are generated. From this set, one solution must be selected. In this section, data 

preparation for MOGA and related experiments are described. 
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6.2.3.1. Data preparation 

After an analysis of the original data, a new code was considered for the feature “day type”. 

The new code refers to “special days”. By comparing the amount of energy consumption for 

working and non-working days, it has been revealed that for some days over the years 2010 

and 2011, the amount of energy consumption has an average value between working and non-

working days. By comparing these special days with the Spanish calendar for both years, it 

was found that those days occurred in the early days of the year, or in working days which 

were located between national/regional holidays and weekends. Based on that, these special 

days received the code 0.5. Fig. 6.4 shows the distribution of whole data samples in terms of 

“day type”. Since the original data was obtained with a sampling interval of 1 minute, its size 

was too large (514762 samples) to be handled by the MOGA framework, and was reduced in 

several stages. Due to presence of gaps in the data, there were 51 consecutive periods over the 

whole data. In the first stage, each period was divided into one week length segments. Based 

on these divisions, those durations whose length was less than two weeks were ignored in this 

work. This stage resulted into 13 periods containing at least two weeks of data. Table 6.4 

shows the periods selected in the first stage. 

In the second stage, the data for all periods was reduced by a factor of 15 by averaging every 

15 consecutive samples inside each segment. The sampling interval was then increased to 15 

minutes. 

In the third stage, by starting from the second week within each period, 3 random days along 

with the last 7 consecutive days were selected as lags for each variable. This way, a data set 𝑫 

with 8640 samples was obtained. Fig. 6.5 shows the distribution of samples of data set 𝑫 in 

terms of “day type”. 
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Fig. 6.4. Distribution of original data samples in terms of day type from 01/09/2010 to 

29/02/2012. 

 

TABLE 6.4. THE PERIODS SELECTED IN THE FIRST STAGE. 

Period number Start End 

1 02-Sep-2010 00:00:00 15-Sep-2010 23:59:00 

2 24-Sep-2010 00:00:00 14-Oct-2010 23:59:00 

3 09-Nov-2010 00:00:00 22-Nov-2010 23:59:00 

4 27-Dec-2010 00:00:00 09-Jan-2011 23:59:00 

5 11-Jan-2011 00:00:00 31-Jan-2011 23:59:00 

6 09-Feb-2011 00:00:00 01-Mar-2011 23:59:00 

7 11-Mar-2011 00:00:00 31-Mar-2011 23:59:00 

8 02-Jun-2011 00:00:00 22-Jun-2011 23:59:00 

9 08-Jul-2011 00:00:00 01-Sep-2011 23:59:00 

10 14-Oct-2011 00:00:00 27-Oct-2011 23:59:00 

11 05-Nov-2011 00:00:00 23-Dec-2011 23:59:00 

12 29-Dec-2011 00:00:00 11-Jan-2012 23:59:00 

13 19-Jan-2012 00:00:00 08-Feb-2012 23:59:00 
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Fig. 6.5. Distribution of samples in data set 𝑫 in terms of day type. 

 

6.2.3.2. Design Experiments 

Based on the model design cycle described in Section 2.7.4, several designs were conducted 

in such a way that their results led to the definition of a new design, by redefining variables 

and their corresponding lag terms, as well as imposing restrictions on objectives.  

In a first step, we conducted designs with features requiring lag terms spread over at most 7 

days.  

After analyzing and comparing the results with those obtained in [54], the spread of lags was 

reduced to cover at most 2 days, and finally to cover at most one day. Based on that, 4 new 

designs were carried out. 

For all designs, data set 𝑫, stated in section 6.2.3.1, containing 8640 samples was used. Since 

a sampling interval of 15 minutes was used, and the objective was to obtain forecasts of 

electric power 1 hour-ahead, a prediction horizon of 4 steps was employed. In this work, as in 

[17], two groups of RBFNN models were considered. The first group contains simple models 

where only weather variables are used as exogenous variables. The second group considers 

complete models involving both weather and solar cooling operation variables. The list of 

candidate variables used and the range of lags for the design experiments are given in Table 

6.5 and 6.6, respectively. 
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TABLE 6.5. LIST OF VARIABLES USED. 

Variable Notation Unit Range in D 

Electric power demand added up with the 

electric power supplied by the PV plant 

 

𝑥1 𝑘𝑊 [11.73,74.65] 

Day type (working day/non-working 

day/semi-holidays)  
𝑥2 - {0, 0.5, 1} 

Outdoor temperature 𝑥3 ℃ [ 2.73,43.79] 
Outdoor solar radiation 𝑥4 𝑊/𝑚2 [0, 1127.81] 

State of pump B1.1 (Off/On) 𝑥5 - {0,1} 
State of Pump B1.2 (Off/On) 𝑥6 - {0,1} 
State of Pump B2.1 (Off/On) 𝑥7 - {0,1} 
State of Pump B2.2 (Off/On) 𝑥8 - {0,1} 
State of Pump B7 (Off/On) 𝑥9 - {0,1} 
State of the boiler (Off/On) 𝑥10 - {0,1} 

State of the absorption machine (Off/On) 𝑥11 - {0,1} 
State of the cooling tower (Off/On) 𝑥12 - {0,1} 

State of the heat pump (Off/On) 𝑥13 - {0,1} 
 

 

 

TABLE 6.6. DESCRIPTION OF THE LAGS USED. 

Variable Experiment I Experiment II Experiment III Experiment IV 

𝑥1 20 lags over 1 day 

 

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day 

𝑥2 0 lags 

 

0 lags 0 lags 0 lags 

𝑥3 20 lags over 1 day 

 

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day 

𝑥4 20 lags over 1 day 

 

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day 

𝑥5 - - 1 lag 1 lag 

𝑥6 - - 1 lag 1 lag 

𝑥7 - - 1 lag 1 lag 

𝑥8 - - 1 lag 1 lag 

𝑥9 - - 1 lag 1 lag 

𝑥10 - - 1 lag 1 lag 

𝑥11 - - 1 lag 1 lag 

𝑥12 - - 1 lag 1 lag 

𝑥13 - - 1 lag 1 lag 

 

As it can be seen in Table 6.6, Experiments I and II correspond to simple models in which 

only weather variables have been used; Experiments III and IV consider complete models. In 

Table 6.6, “lag 0” for variable “day type” (𝑥2) is translated into the day type of instant 𝑘 + 1 
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for which the electric power demand is predicted. In fact, weather and electric power demand 

variables are strongly related to their most recent values and also, to a certain extent, to their 

values 24 h before. As a result, for 𝑥1, 𝑥3 and 𝑥4 a heuristic, proposed in [24], was used to 

select  20 lags over one full day, in such a way that more recent values predominate in the set 

of searchable lags for these variables. Hence, based on this heuristic, the 20 lags used are 

[1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 29, 36, 43, 53, 65, 79, 96]. In this list, and as an 

example, lags 1 and 2 denote delays of 15 and 30 minutes, respectively. The objectives and 

the corresponding goals are given in Table 6.7. 𝑫𝑡, 𝑫𝑔 and 𝑫𝑠 denote the training, testing and 

simulation sets, respectively. 휀(𝑫𝑡) and 휀(𝑫𝑔) refer to the RMSE of 𝑫𝑡 and 𝑫𝑔, respectively. 

휀(𝑫𝑠, 16) is a vector of RMSEs of 𝑫𝑠 over a prediction horizon with 16 steps (i.e., one hour) 

so that the first element of the vector corresponds to the RMSE of 1-step-ahead prediction and 

the last one corresponds to the RMSE of 16-steps-ahead prediction. 𝑂(𝜇) denotes the model 

complexity, which is equal to the number of input features + 1, multiplied by the number of 

hidden neurons (i.e., for further information about the objectives, please refer to Section 

2.7.2.1). 

 

TABLE 6.7. OBJECTIVES AND THEIR CORRESPONDING RESTRICTION OF 

EXPERIMENTS. 

 Experiment I Experiment II Experiment III Experiment IV 

휀(𝑫𝑡) Minimize < 0.059 Minimize < 0.054 

휀(𝑫𝑔) Minimize < 0.061 Minimize < 0.052 

휀(𝑫𝑠, 16) Minimize Minimize Minimize Minimize 

𝑂(𝜇) Minimize < 317 Minimize < 444 

 

Regarding MOGA’s parameters specification, for experiments I and III, the range [𝑑𝑚, 𝑑𝑀], 

where 𝑑𝑚 and 𝑑𝑀 are the minimum and maximum number of features, was set to [1, 30] 

while for experiments II and IV they were set to [1, 15] and [1, 21], respectively. Similarly, 

for experiments I and III, the range [𝑛𝑚, 𝑛𝑀], where 𝑛𝑚 and 𝑛𝑀 are the minimum and 

maximum number of neurons, was set to [2, 30] while for experiments II and IV, these ranges 

were set to [1, 18] and [1, 21], repectively. For all designs, the population size and the 

number of generations were set to 100. 

For each experiment, a proper sub dataset 𝑫𝑊 was derived from data set 𝑫 whose features are 

those columns of 𝑫 which correspond to the lags defined in the corresponding experiment. 

In order to generate training, testing and validation sets for each experiment, firstly the 

ApproxHull algorithm proposed in Section 4.3 was applied on corresponding 𝑫𝑊 to obtain 
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convex points reflecting the whole input-output range in which the model is supposed to be 

used. Secondly, 50% of whole samples in 𝑫𝑊 were used to generate training (𝑫𝑡), testing 

(𝑫𝑔) and validation (𝑫𝑣) sets with proportions of 60%, 20% and 20%, respectively. In this 

step all convex points were incorporated in the training set. Afterwards, the remaining 

samples were shared randomly into the rest of the training set, and the testing and validation 

sets. Regarding the simulation dataset 𝑫𝑠, 1344 consecutive samples from 01-Oct-2010 

00:00:00 to 14-Oct-2010 23:59:00 were considered. In this set, the rows correspond to the 

variables used, whose samples are in each column while, for the other sets, the number of 

rows correspond to the patterns, and the number of columns to the features. The size of 

training, testing and validation datasets as well as the simulation dataset of each experiment is 

given in Table 6.8. 

 

TABLE 6.8. SIZE OF TRAINING, TESTING AND VALIDATION SETS. 

 Experiment I Experiment II Experiment III Experiment IV 

𝑫𝑡 2592 x 62 2592 x 62 2592 x 71 2592 x 71 

𝑫𝑔 864 x 62 864 x 62 864 x 71 864 x 71 

𝑫𝑣 864 x 62 864 x 62 864 x 71 864 x 71 

𝑫𝑠 4 x 1344 4 x 1344 13 x 1344 13 x 1344 

 

After one run of the MOGA for each experiment, the non-dominated and preferred sets of 

models were generated. In the case that no restriction is considered on objectives, the non-

dominated set is the same as preferred set; otherwise, the preferred set is a subset of the non-

dominated set whose solutions satisfy the goals. Please refer to [47] for further information 

about how the preferred set can be obtained from the non-dominated set by applying the 

preferably criterion. The number of models in non-dominated and preferred sets for each 

experiment is given in Table 6.9. 

 

TABLE 6.9. SIZE OF NON-DOMINATED AND PREFERRED SETS. 

 Non-dominated set Preferred set 

Experiment I 346 346 

Experiment II 238 88 

Experiment III 289 289 

Experiment IV 366 182 
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6.2.4. Results and discussion 

The models presented in this case study were tested and compared by means of real data 

acquired at the CIESOL building. To do that, a battery of tests was selected according to 

certain representative characteristics, such as, the type of day (working and non-working 

days), the season of the year and the quantity of solar radiation (sunny and cloudy days). A 

complete description of the battery of tests is shown in Table 6.10. Furthermore, a prediction 

horizon over 1 hour was set mainly due to the energy price changes and the dynamic 

behaviour of indoor temperature [54]. 

Since in MOGA related experiments, the data was used with a sampling interval of 15 

minutes, each test in Table 6.10 contains 96 samples. Moreover, the corresponding prediction 

horizon over 1 hour is equal to 4 steps. For the model proposed in [54], each test includes 

1440 samples due to the 1 minute sampling rate. Hence, the corresponding prediction horizon 

over 1 hour is equal to 60 steps. For convenience, the complete model proposed in [54] and 

the models obtained by MOGA will be denoted as PREVIOUS and MOGA models, 

respectively. In order to compare the MOGA models obtained from each experiment with the 

PREVIOUS model, one model was selected from the non-dominated/preferred set, with a 

good compromise between performance and complexity. 

 

TABLE 6.10. BATTERY OF TESTS PERFORMED. 

Test Day Temperature Radiation 
Date 

(mm/dd/yyyy) 

(A) Working day Summer Sunny 06/29/2011 

(B) Non-working day Summer Sunny 09/19/2010 

(C) Working day Winter Cloudy 02/15/2011 

(D) Non-working day Winter Sunny 02/20/2011 

(E) Non-working day Winter Cloudy 02/28/2011 

(F) Non-working day Summer Cloudy 07/02/2011 

 

In our work, models I, II, III and IV were the selected MOGA models from experiments I, II, 

III and IV, respectively. Information about the selected MOGA models as well as the 

PREVIOUS is given in Table 6.11. Using the notation of Table 6.6, the formal description of 

models I to IV is given by Eqs. (6.2) to (6.5), respectively. 
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TABLE 6.11. SELECTED MOGA MODELS AND PREVIOUS MODEL. 

 Number of features Number of neurons Complexity 

Model I 18 13 247 

Model II 14 18 270 

Model III 29 11 330 

Model IV 18 20 380 

NARX-MLP 67 10 680 

 

 

�̂�(𝑘 + 1) = 𝑓1(𝑥1(𝑘), … , 𝑥1(𝑘 − 6), 𝑥1(𝑘 − 8), 𝑥1(𝑘 − 11), 𝑥1(𝑘 − 12), 𝑥1(𝑘 − 19) , 

                            𝑥2(𝑘 + 1), 

                            𝑥3(𝑘 − 2),  𝑥3(𝑘 − 7), 𝑥3(𝑘 − 10), 

                            𝑥4(𝑘 − 4), 𝑥4(𝑘 − 10), 𝑥4(𝑘 − 17)) 

 

 

 

(6.2) 

�̂�(𝑘 + 1) = 𝑓2(𝑥1(𝑘),… , 𝑥1(𝑘 − 4), 𝑥1(𝑘 − 6), 𝑥1(𝑘 − 9), 𝑥1(𝑘 − 10), 𝑥1(𝑘 − 15) , 𝑥1(𝑘
− 18), 

                             𝑥3(𝑘 − 9), 

                             𝑥4(𝑘), 𝑥4(𝑘 − 8), 𝑥4(𝑘 − 18)) 

 

 

 

(6.3) 

�̂�(𝑘 + 1) = 𝑓3(𝑥1(𝑘 − 1), 𝑥1(𝑘 − 3), 𝑥1(𝑘 − 4), 𝑥1(𝑘 − 5), 𝑥1(𝑘 − 7), 𝑥1(𝑘 − 10), 

                            𝑥1(𝑘 − 11), 𝑥1(𝑘 − 12), 𝑥1(𝑘 − 14), 𝑥1(𝑘 − 15), 𝑥1(𝑘 − 16), 

                            𝑥2(𝑘 + 1), 

                            𝑥3(𝑘), 𝑥3(𝑘 − 2), 𝑥3(𝑘 − 3), 𝑥3(𝑘 − 4), 𝑥3(𝑘 − 8), 𝑥3(𝑘 − 12), 𝑥3(𝑘 − 13), 

                            𝑥3(𝑘 − 15), 𝑥3(𝑘 − 16), 

                            𝑥4(𝑘 − 2), 𝑥4(𝑘 − 3), 𝑥4(𝑘 − 5), 𝑥4(𝑘 − 7), 𝑥4(𝑘 − 12), 

                            𝑥7(𝑘), 𝑥11(𝑘), 𝑥13(𝑘)) 

 

 

 

 

(6.4) 

�̂�(𝑘 + 1) = 𝑓4(𝑥1(𝑘), 𝑥1(𝑘 − 1), 𝑥1(𝑘 − 2), 𝑥1(𝑘 − 3), 𝑥1(𝑘 − 5), 𝑥1(𝑘 − 17), 

                            𝑥2(𝑘 + 1), 

                            𝑥3(𝑘 − 18), 

                            𝑥4(𝑘 − 3), 𝑥4(𝑘 − 5), 𝑥4(𝑘 − 10), 𝑥4(𝑘 − 14), 𝑥4(𝑘 − 15), 𝑥4(𝑘 − 18), 

                            𝑥9(𝑘), 𝑥10(𝑘), 𝑥11(𝑘), 𝑥13(𝑘)) 

 

 

(6.5) 
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�̂�(𝑘 + 1) in Eqs. (6.2) to (6.5) is the output of the corresponding RBFNN model. Each 

function 𝑓𝑗  , {𝑗 = 1,2,3,4} has its own set of input terms. These input terms, all together, 

constitute the input data sample at instant 𝑘. 

To compare MOGA models with the PREVIOUS model over the battery of tests stated in 

Table 6.10, five statistical criteria were considered: MAE, MRE, MAPE, MaxAE and 𝜎 

(introduced in Section 2.5). The evaluations of MOGA and PREVIOUS models over the 

battery of tests for a prediction horizon of 1 hour are given in Tables 6.12 to 6.17. The best 

values for each criterion are identified in bold. 

 

TABLE 6.12. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER 

TEST A, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 1.92 2.14 2.28 3.55 1.96 

MRE(kW) 0.06 0.08 0.07 0.12 0.06 

MAPE(%) 6.29 8.11 7.66 12.39 6.38 

MaxAE(kW) 12.36 14.22 10.21 13.82 10.99 

𝜎 (kW) 8.92 7.86 8.91 6.99 7.17 

 

 

TABLE 6.13. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER 

TEST B, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 0.95 1.22 1.29 0.93 0.84 

MRE(kW) 0.05 0.07 0.07 0.05 0.05 

MAPE(%) 5.60 7.21 7.86 5.80 5.13 

MaxAE(kW) 3.60 3.15 4.83 3.38 3.59 

𝜎 (kW) 2.01 2.48 1.78 1.75 1.52 

 

 

TABLE 6.14. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER 

TEST C, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 1.99 3.46 1.75 1.95 1.86 

MRE(kW) 0.06 0.1 0.06 0.06 0.06 

MAPE(%) 6.62 10.55 6.25 6.40 6.26 

MaxAE(kW) 8.82 16.56 5.69 7.04 8.15 

𝜎 (kW) 6.04 6.94 6.78 7.75 6.70 
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TABLE 6.15 RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER TEST 

D, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 0.94 1.12 0.82 0.88 1.08 

MRE(kW) 0.04 0.05 0.03 0.04 0.05 

MAPE(%) 4.21 5.34 3.81 4.17 4.86 

MaxAE(kW) 4.65 6.35 5.20 5.45 6.28 

𝜎 (kW) 1.95 1.64 1.08 1.72 1.52 

 

 

TABLE 6.16. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER 

TEST E, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 1.38 1.45 1.16 1.30 1.49 

MRE(kW) 0.06 0.06 0.05 0.05 0.06 

MAPE(%) 6.00 6.30 5.06 5.77 6.38 

MaxAE(kW) 4.44 5.59 4.81 4.49 6.89 

𝜎 (kW) 1.80 1.39 1.28 1.65 1.43 

 

 

TABLE 6.17. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER 

TEST F, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS 

MAE(kW) 1.02 0.80 1.35 0.89 0.95 

MRE(kW) 0.04 0.03 0.06 0.04 0.04 

MAPE(%) 4.87 3.70 6.53 4.28 4.31 

MaxAE(kW) 3.43 2.63 5.68 3.73 3.75 

𝜎 (kW) 1.95 1.99 1.44 1.97 1.88 

 

Regarding test A, a working sunny day in summer, Model I, as a simple model, not only has 

minimum values in terms of MAE, MRE and MAPE among other MOGA models but also 

has a better performance than PREVIOUS in terms of these criteria. In this test, in overall, 

simple models I and II have better performance in comparison with complete models III and 

IV.  

With respect to test B, a non-working sunny day in summer, Model IV, as a complete model, 

has minimum values of MAE, MRE and 𝜎 in comparison with other MOGA models; with 

respect to MaxAE, it has a compromise performance between Model II and PREVIOUS. 

In test C, a working cloudy day in winter, and in test D, a non-working sunny day in winter, 

the complete model III has minimum values in terms of MAE, MAPE and MaxAE among all 
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models. Model I, a simple model, has also a good performance; actually better in four criteria 

than the complete PREVIOUS model, in test D. 

In test E, a non-working cloudy day in winter, both simple and complete MOGA models have 

lower values in terms of MAE, MAPE and MaxAE than the PREVIOUS model. Model III 

has better performance in all criteria.  

Regarding test F, a non-working cloudy day in summer, simple model II and complete model 

IV have better performance in terms of MAE, MAPE and MaxAE than PREVIOUS model. In 

this comparison, model II has minimum values in all criteria, except 𝜎. 

According to Tables 6.12 to 6.17, in the group of simple models, model I, in most cases, has 

better performance than model II. In the group of complete models, model III, in most cases, 

is better than model IV.  Figs. 6.6 to 6.8 show the comparison between measured and 

predicted value of electric power demand in CIESOL building, over tests A-F for a prediction 

horizon of 1 hour, for the PREVIOUS model, model I and III, respectively. 

Comparing the performance of all MOGA models over the battery of tests, in general 

complete models III and IV have a better performance in winter than in summer, while simple 

model I has a compromise performance between summer and winter. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

Fig. 6.6. Prediction results for tests A-F using the PREVIOUS model. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

Fig. 6.7. Prediction results for tests A-F using model I. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

Fig. 6.8. Prediction results for tests A-F using model III. 

 

6.2.4.1. Comparison of MOGA models with NAB approach 

The performance of MOGA models was also compared with a Naive Autoregressive Baseline 

model, introduced in [158]. The NAB approach considers, as estimate of the electric power 

demand at instant k, the measured value of consumption at the correspond instant of time, in 

the same day of the previous week. It is therefore a simple model which does not need any 

computation to predict electric power demand at each time instant 𝑘. To apply the NAB 

approach to tests A-F, consecutive data corresponding to the previous week would be needed. 

Since there were several gaps in the whole dataset among tests A-F, only for tests D and E, 

corresponding to special days in winter, consecutive data exist to implement this method. In 

order to evaluate the NAB model in summer, we considered another special day in summer, 

corresponding to 06-Aug-2011, hereinafter called test G. For convenience, the description of 

the tests D, E and G is given in Table 6.18. 
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TABLE 6.18. BATTERY OF TESTS PERFORMED TO COMPARE THE NAB MODEL 

WITH THE NEURAL NETWORKS MODELS. 

Test Day Temperature Radiation Date (mm/dd/yyyy) 

(D) Non-working day Winter Sunny 02/20/2011 

(E) Non-working day Winter Cloudy 02/28/2011 

(G) Non-working day Summer Sunny 08/06/2011 

 

In order to compare the performance of NAB model with MOGA models and PREVIOUS 

model, the three models were evaluated over the battery of tests stated in Table 6.18. The 

results obtained over tests D, E and G are given in Tables 6.19 to 6.21. Please note that the 

results of MOGA models and PREVIOUS model, for tests D and E, are obtained from Tables 

6.15 and 6.16, respectively, and are reproduced here for easy of comparison with the NAB 

approach. 

 

TABLE 6.19. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS 

OVER TEST D, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS NAB 

MAE (kW) 0.94 1.12 0.82 0.88 1.08 1.9439 

MRE (kW) 0.04 0.05 0.03 0.04 0.05 0.0856 

MAPE (%) 4.21 5.34 3.81 4.17 4.86 8.5575 

MaxAE (kW) 4.65 6.35 5.20 5.45 6.28 6.8341 

𝜎 (kW) 1.95 1.64 1.08 1.72 1.52 1.8933 

 

TABLE 6.20. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS 

OVER TEST E, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS NAB 

MAE (kW) 1.38 1.45 1.16 1.30 1.49 4.8314 

MRE (kW) 0.06 0.06 0.05 0.05 0.06 0.2086 

MAPE (%) 6.00 6.30 5.06 5.77 6.38 20.8610 

MaxAE (kW) 4.44 5.59 4.81 4.49 6.89 13.0946 

𝜎 (kW) 1.80 1.39 1.28 1.65 1.43 5.6539 

 

TABLE 6.21. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS 

OVER TEST G, FOR A PH OF 1 HOUR. 

 Model I Model II Model III Model IV PREVIOUS NAB 

MAE (kW) 0.8297 1.2684 0.8089 0.7598 0.7787 3.2966 

MRE (kW) 0.0472 0.0745 0.0465 0.0434 0.0432 0.1909 

MAPE (%) 4.7154 7.4521 4.648 4.3363 4.3154 19.0867 

MaxAE (kW) 3.7347 7.4701 4.7188 3.8647 2.9473 13.6549 

𝜎 (kW) 2.08 2.216 1.5135 1.2575 1.822 3.8805 
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Regarding these tests, the NAB model has the worst performance (by a large difference) in 

comparison to MOGA and PREVIOUS models, in terms of all criteria. 

Regarding test G, a new test corresponding to a non-working sunny day in summer, Model 

IV, a complete model, has minimum values in terms of MAE and 𝜎. In terms of MRE and 

MAPE, Model IV has approximately the same performance as PREVIOUS model. In the 

same way as in tests D and E, the NAB model has the worst performance. 

To sum up, comparing the performance of MOGA models and the PREVIOUS, despite the 

fact that MOGA models were trained with a small training set of 2592 samples compared to 

the 318340 samples used to train the PREVIOUS model, they have obtained better results, 

except in Test B. Moreover, as it can be seen in Table 6.11, the complexity of models 

obtained from MOGA is lower than the PREVIOUS model. 

According to tests D, E and G reflecting special days in winter and summer, both MOGA and 

PREVIOUS models have much better performance than the NAB model in terms of all 

criteria. 

 

6.3. Case Study 2: An Intelligent Weather Station 

Since accurate measurements of global solar radiation, atmospheric temperature and relative 

humidity as well as the ability of evaluating their predictions over time, are important for 

different areas of applications, an intelligent weather station was developed by the University 

of Algarve. For implementing the predictions, two groups of models were proposed. The first 

group involved predictive models based on nearest-neighbors (NEN) algorithm whereas the 

second group included NAR RBFNN models designed by MOGA.  

The NEN models use pattern matching to compute the predictions. They need two parameters 

𝑑 and 𝑘 where 𝑑 denotes the number of full days used to search the best matching patterns 

and 𝑛 corresponds to the number of closest neighbors that are be averaged to compute one-

step-ahead prediction. To design the models, data was collected by sampling 5 minutes 

between 22-Feb-2015 and 7-Apr-2015. Totally, 12,800 samples were obtained. The first 35 

days were used to compute predictions by NEN models over prediction horizon with 48 steps 

(4 hours). For each climate variable, the first 10,000 samples were considered to design the 

corresponding RBFNN models by MOGA. In this case, firstly, ApproxHull was applied on 

the whole data set and then training set containing convex hull points and random samples as 

well as testing and validation sets were generated. The size of training, testing and validation 

set for each climate variable is given in Table 6.22. 
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The last 1350 samples were considered to evaluate both groups of models over prediction 

horizon with 48 steps. The evaluation results of predictive models of each climate variable are 

given in Tables 6.23 to 6.25. 

 

TABLE 6.22. SIZE OF TRAINING, TESTING AND VALIDATION SETS FOR THE 

ATMOSPHERIC CLIMATE MODELS. 

 Training Testing Validation Convex hull 

points 

Atmospheric Air temperature 2888 x 74 962 x 74 964 x 74 696 x 74 

Atmospheric Relative Humidity 2888 x 74 962 x 74 964 x 74 696 x 74 

Global Solar Radiation 2895 x 74 965 x 74 966 x 74 659 x 74 

 

TABLE 6.23. ATMOSPHERIC TEMPERATURE. 

 𝑅𝑀𝑆𝐸1 
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

 

NEN(2,2) 2.17 111.06 

NEN(7,4) 1.93 101.52 

NEN(35,4) 1.39 84.79 

RBFNN 0.30 65.46 

 

TABLE 6.24. ATMOSPHERIC RELATIVE HUMIDITY. 

 𝑅𝑀𝑆𝐸1 
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

 

NEN(2,2) 14.34 742.17 

NEN(7,4) 11.32 632.72 

NEN(21,4) 8.52 497.36 

RBFNN 0.99 409.43 

 

TABLE 6.25. GLOBAL SOLAR RADIATION. 

 𝑅𝑀𝑆𝐸1 
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

 

NEN(2,2) 132.22 12109 

NEN(7,4) 122.26 12173 

NEN(14,4) 154.67 11951 

RBFNN 29.49 7850 
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As it can be seen in Tables 6.23 to 6.25, for all climate variables, RBFNN model is superior to 

its corresponding NEN models in terms of one-step-ahead RMSE and of the summation of 

RMSE over the prediction horizon (48 steps). 

Correspondingly, Figs. 6.9-6.11 show the one-step-ahead predictions of climate variables 

obtained by the NEN algorithm and the RBFNN for the last 1350 samples, as well as the 

evolution of the RMSE along the prediction horizon with 48 steps. As it can be seen in Figs 

6.9-6.11, it is clear that the best performance is obtained by the RBFNN model. 

 

 
Fig. 6.9. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last 

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 

steps for atmospheric temperature. 
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Fig. 6.10. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last 

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 

steps for atmospheric relative humidity. 
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Fig. 6.11. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last 

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 

steps for global solar radiation. 
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6.4. Case Study 3: An Intelligent Support System for Automatic Diagnosis 

of Cerebral Vascular Accidents from Brain CT Images 

In this case study, a RBFNN based diagnosis system for automatic identification of CVA 

through analysis of CT images was considered. Totally 1,867,602 samples with 52 features 

were extracted from 150 CT images, for which a collaborating Neuroradialogist registered his 

opinions. To design RBFNN models, MOGA was applied. Two experiments, Exp.1 and 

Exp.2, were carried out. In Exp.1 no restriction was imposed on MOGA objectives  , while in 

Exp.2, restrictions on two objectives, FP (False Positive) and FN (False Negative) labels on 

the training set were imposed based on the results obtained from Exp.1. To design both 

experiments, ApproxHull was employed on the whole set (i.e., 1,867,602 samples) and 

resulted in 13,023 convex hull points. Afterwards a training set with 20,000 samples was 

created so that it included the convex hull points and 6,977 random samples. For testing and 

validation sets, each of them involved 6,666 random samples.   

Exp.1 resulted in a non-dominated set of 406 RBFNN models whereas from Exp.2 a non-

dominated set of 281 RBFNN models was obtained, from where 69 models were in the 

preferred set. To compare Exp.1 and Exp.2, the best model from each of them was selected, 

using a threshold on FP and FN in the whole set (i.e., 1,867,602 samples). Exp.1 and Exp.2 

were additionally compared with an ensemble of Exp.2 preferable models, where the 

classification output was obtained based on the majority of models outputs in the preferred set 

of Exp.2.  

Table 6.26 shows the evaluation results of Exp.1 and Exp2 as well as the ensemble of Exp.2 

in terms of specificity and sensitivity (Please refer to Section 2.5) on the whole set. As it can 

be observed in Table 6.26, Exp.2 has better performance in comparison with Exp.1. The 

ensemble of Exp.2 resulted in the best performance in comparison with Exp.1 and Exp.2. 

 

TABLE 6.26. EVALUATION RESULTS 

 Specificity Sensitivity 

Best model in EXP.1 97.04 97.12 

Best model in EXP.2 97.60 97.66 

Ensemble of EXP.2 98.01 98.22 
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6.5. Conclusions 

The experimental results obtained from these case studies demonstrated the applicability of 

ApproxHull, as a data selection method, on real data in high dimensions where for the first, 

second and third case studies, Approxhull was applied on the corresponding whole data sets 

with the maximum of 71, 145 and 52 features, respectively. In all cases, MOGA was used for 

model design, employing the data partitions given by ApproxHull. According to the results 

obtained from the first case study, MOGA models achieved better performance than MLP 

models, designed using a much larger training set. The results achieved from the second case 

study showed that MOGA achieved an excellent predictive performance, much better, for the 

weather models, than the NEN approach. The third case study proved that the ApproxHull can 

be applied successfully on very large size data sets (nearly 2 million samples). 
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7. Comparing four data selection methods for off-line model 

design 

7.1. Introduction 

This chapter aims to compare four data selection methods including the Random Data 

Selection (RDS) method, the Convex hull Based Data Selection (CBDS) method, the Entropy 

Based Data Selection (EBDS) method and the Hybrid Data Selection (HDA) method. In this 

study, the ApproxHull method introduced in Section 4.3 was considered as the CBDS 

method. Regarding the EBDS method, the method proposed in [13] was applied which is one 

of the latest efforts of using information theory in data selection. The methods were applied 

on eight benchmarks: four binary class classification problems and, the other four related to 

regression problems. The experiments were organized in three groups. 

In the first group, for one classification problem (named Breast Cancer) and one regression 

problem (named Bank), five runs of the MOGA were executed for each of the data selection 

methods. Each MOGA execution resulted in a non-dominated set of RBFNN models. In this 

case the MOGA selects the number of neurons and the inputs of the models in order to 

minimize the objectives described in (please see Sections 2.7.1 and 2.7.2) 

In the second and third groups of experiments MLPs were considered for all regression 

problems and SVMs for all classification problems, respectively. In these cases, for each 

benchmark problem the four data selection methods were applied, repeating the execution 10 

times in each case. In this case the structure of the models was fixed beforehand and was the 

same for the 10 executions. 

The rest of this chapter is organized as follows: In Section 7.2, the entropy based data 

selection method is briefly introduced. The procedure for constructing the training, testing and 

validation sets for experiments is described in Section 7.3. Regarding the MOGA 

experiments, the performance of the methods was analyzed based on two scenarios; the best 

model scenario and the ensemble scenario. The experiments are detailed in Section 7.4. The 

simulation results obtained from the evaluation of the methods in all experiments are 

discussed in Section 7.5. Finally, some conclusions are given in Section 7.6. 
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7.2. An entropy based unsupervised data selection method  

The main idea behind the EBDS method proposed in [13] is selecting 𝑘 samples of a given 

data set 𝑫 for training set so that the information content and the diversity of data in the 

training set used to adjust the model parameters is maximized. This method benefits from the 

information entropy of any random variable 𝑿 given in Eq. (7.1).  

 

𝐻(𝑿) =∑𝑝(𝑥𝑖)𝐼(𝑥𝑖)

𝑁

𝑖=1

 

(7.1) 

 

 

where 𝑁 is the number of all possible observations of 𝑿. 𝑝(𝑥𝑖) denotes the probability that 𝑿 

takes value 𝑥𝑖 and 𝐼(𝑥𝑖) denotes the information content (also called self-information or 

surprisal) that 𝑿 represents when it takes value 𝑥𝑖. 𝐼(𝑥) is defined as: 

 

𝐼(𝑥) = −𝑙𝑜𝑔2 𝑝(𝑥) (7.2) 

 

Suppose data set 𝑫 = [𝑿|𝒚] consists of an input pattern matrix 𝑿 of size 𝑁 × 𝑑 and a target 

vector 𝒚 of size 𝑁 × 1. Each row of 𝑫 is a point of dimension (1 × (𝑑 + 1)), and assume 

that 𝒛𝑖 refers to the i
th

 point in 𝑫. Since data set 𝑫 represents a set of values of a 

multidimensional random variable 𝒁, 𝑃(𝒛𝑖) is translated into the probability that 𝒁 takes 𝒛𝑖. In 

this method, 𝑃(𝒛𝑖) is estimated by Eq. (7.3) [165]. 

 

�̂�(𝒛𝑖) =
1

𝑁
∑[∏𝑘ℎ𝑙(𝒛𝑖[𝑙] − 𝒛𝑗[𝑙])

𝑑+1

𝑙=1

]

𝑁

𝑗=1

 

 

(7.3) 

 

where 𝑘ℎ𝑙(. ) is a Gaussian kernel function whose bandwidth is ℎ𝑙 which is obtained by [165]:  

ℎ𝑙 = 𝜎�̂�𝑁
−1

(𝑑+1+4) 
(7.4) 

 

where 𝜎�̂� is the sample standard deviation along dimension 𝑙 of the data. 

By using Eq. (7.3) for each point in 𝑫, vector �̂� is obtained as (7.5). 

 

�̂� = [�̂�(𝒛1), �̂�(𝒛2),⋯ �̂�(𝒛𝑁)] (7.5) 

 

Using Eq. (7.2) for each point in 𝑫, vector �̂� is obtained as, 
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�̂� = [𝐼(𝒛1), 𝐼(𝒛2),⋯ 𝐼(𝒛𝑁)] (7.6) 

 

where 𝐼(𝒛𝑖) denotes the self-information estimate which is presented by point 𝒛𝑖. 

Having �̂� and �̂� at hand, vector �̂� is obtained as (7.7) by taking the Hadamard product of �̂� by 

�̂�. 

 

�̂� = [�̂�(𝒛1)𝐼(𝒛1), �̂�(𝒛2)𝐼(𝒛2),⋯ �̂�(𝒛𝑁)𝐼(𝒛𝑁)] (7.7) 

 

where �̂�(𝒛𝑖)𝐼(𝒛𝑖) is considered as the information based fitness of point 𝒛𝑖 reflecting the 

contribution of point 𝒛𝑖 to the entropy obtained by Eq. (7.1). 

Once vector �̂� is obtained, 𝑘 points are selected from 𝑫 proportionally to their information 

fitness, by means of the Stochastic Universal Sampling (SUS) method. For the additional 

details please consult [13]. 

 

7.3. Construction of data sets for the experiments 

To fairly compare the data selection methods, the existence of a common validation data set, 

𝑽, which does not have any contribution in model design, is needed. Notice, however, that in 

a practical case, each data selection method should be applied to the whole data set, 𝑫. This is 

particularly relevant for the methods relying in convex hull (CBDS and HDS methods), as 

their rational is incorporating in the training set the convex hull points obtained from the 

whole data set.  

In this chapter, as we aim to compare the performance of the data selection models in a 

common validation set, the procedure for constructing the data sets for all groups of 

experiments of each model type is as follows. First, for each group of experiments, a common 

validation set 𝑽 containing 𝑁𝑣 samples is randomly extracted from the whole data set 𝑫; the 

remaining samples will constitute the set 𝑫𝑺𝑮, from where in a second step training set 𝑻 and 

testing set 𝑮 containing 𝑁𝑡 and 𝑁𝑔samples, respectively, will be extracted. 

In RDS method, firstly, Nt samples are extracted randomly from 𝑫𝑺𝑮 (i.e., resulting in a 

reduced set 𝑫′) to construct 𝑻. Subsequently, 𝑁𝑔 samples are randomly extracted from 𝑫′ to 

form 𝑮. 

Regarding the CBDS method, first ApproxHull is applied on the data set 𝑫𝑺𝑮 to obtain the 

convex hull points. Afterwards, the convex hull points as well as some random samples are 
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extracted from 𝑫𝑺𝑮 (i.e., resulting in a reduced set 𝑫′) to form 𝑻 so that 𝑁𝑡 = 𝑁𝑐ℎ𝑣 + 𝑁𝑟𝑛𝑑 

where 𝑁𝑐ℎ𝑣 and 𝑁𝑟𝑛𝑑 denote the number of convex hull points and random samples, 

respectively.  Subsequently, as in the RDS method, 𝑁𝑔 samples are randomly extracted from 

𝑫′ to form 𝑮. 

In the EBDS method, 𝑁𝑡 samples are selected from 𝑫𝑺𝑮 using the entropy based method 

mentioned in Section 4.2 to form 𝑻. Then 𝑻 is extracted from 𝑫𝑺𝑮 resulting in a reduced set 

𝑫′ and set 𝑮 is constructed in the same way as in the RDS method. 

Finally, the idea behind the HDS method is combining the two previous data selection 

methods, CBDS and EBDS. In the first step of the HDS method, ApproxHull is applied on 

𝑫𝑺𝑮 to obtain the convex hull points which are extracted from 𝑫𝑺𝑮 (i.e, resulting in a 

reduced set 𝑫′) and included in 𝑻. In the next step, 𝑁𝑡 − 𝑁𝑐ℎ𝑣 samples are extracted from 𝑫′ 

using the EBDS method and included in 𝑻. 𝑮 is obtained from the rest of the samples in the 

same way as in the RDS method.  

 

7.4. Experiments 

In the first group of experiments, for the RBFNN models designed by the MOGA, two 

scenarios are considered: the best model and ensemble scenarios. As in the end of each 

MOGA run we have access to a set of non-dominated models, typically one model is selected 

out of this set. This scenario will be called best model. 

The criterion for selecting the best model out of the non-dominated set for the regression 

problem is the minimum RMSE on the common validation set 𝑽. In the case of classification 

problems the best model is selected on the basis of the Classification Rate (please see Section 

2.5) in a procedure composed of the following three steps:  first, the model which has the 

maximum 𝐶𝑅(𝑽) is selected. In case of tie, the one with the maximum 𝐶𝑅(𝑮) is chosen. 

Similarly, in case of tie, the one with the maximum 𝐶𝑅(𝑻) is selected. Finally if more than 

one model is remained, one of them is randomly selected as the best model.  

The second scenario, called ensemble, involves using all non-dominated solutions. In this 

scenario, for the regression problem, the output of the ensemble scheme is the average of all 

non-dominated models' outputs, whereas for the classification, the output of the ensemble 

scheme is determined based on the majority of all models' outputs in the non-dominated set. 

In this case, the class of an input pattern is the one in which the majority of the models in the 

non-dominated set are unanimous.  
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The second and third groups of experiments do not involve the MOGA and employ different 

kinds of models, MLPs for the four regression problems and SVMs for the four classification 

problems, respectively. From the second group, the MLP models obtained in the regression 

problem named Bank, trained with the modified LM algorithm introduced in [34, 166], are 

compared to the RBFNN MOGA generated models from the first group of experiments. 

Similarly, from the third group of experiments, the SVM models in the classification problem 

named Breast Cancer, trained using the Matlab implementation, are compared to the RBFNN 

MOGA generated models from the first group of experiments. For all models and 

experiments, the four data selection methods were used. The datasets were taken from the 

UCI repository [115]. Their names, number of samples (N) and inputs (d) are given in Table 

7.1. 

TABLE 7.1. DETAILS OF THE DATA SETS. 

 Problem N d 

Bank Regression 8192 32 

Puma Regression 8192 32 

Concrete Regression 1030 8 

Wine Quality Regression 4898 11 

Breast Cancer Classification 569 30 

Parkinson Classification 1040 26 

Satellite Classification 2033 36 

Letter Classification 1555 16 

 

The number of samples of 𝑻, 𝑮, and 𝑽 sets, and the average number of convex hull points 

(�̅�chv) obtained over all executions in the experiments of each problem, are given in Table 7.2. 

 

TABLE 7.2. NUMBER OF SAMPLES OF T, G AND V AND THE AVERAGE NUMBER 

OF CONVEX HULL POINTS. 

  Nt Ng Nv �̅�chv  

Regression 

problems 

Bank 4195 1638 1639 3437 

Concrete 618 206 206 307 

Puma 4915 1638 1639 3686 

Wine Quality 3134 784 980 599 

Classification 

problems 

Breast Cancer 300 76 193 183 

Parkinson 550 136 354 280 

Satellite 1074 268 691 711 

Letter 822 204 529 564 

 

Regarding the MOGA experiments parameterization, the same parameters were used in all 

experiments. The number of generations and the population size were both set to 100 and no 
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restriction on objectives was considered. The range of the number of neurons was set to [2, 

30] and the range of the number of features for Bank and Breast Cancer was set to [1, 32] and 

[1, 30], respectively. The early-stopping termination criteria within a maximum of 100 

iterations were considered.  

In terms of model structure, the MLP models in the second group of experiments had 2 

hidden layers and used all features in the data sets as inputs. The number of neurons for each 

hidden layer for Bank and Puma problems was 10, while for the other problems was 5. For all 

MLP models, a maximum of 100 training iterations with early stopping method was 

considered. Regarding the SVM models for the binary class classification problems, all input 

features were used. The SVM hyper-parameters 𝛾 and C were set as stated in [68]. These are 

shown in Table 7.3.  

 

TABLE 7.3. HYPER PARAMETERS OF SVM MODELS FOR THE CLASSIFICATION 

PROBLEMS. 

 𝛾 C 

Breast Cancer 0.05 1 

Parkinson 0.1 200 

Satellite 0.1142 500 

Letter 0.6576 1 

 

 

7.5. Experimental results 

Considering the regression problem Bank in the first and second groups of experiments, the 

average of the RMSEs obtained on the common dataset 𝑽 over the experiments, for the two 

MOGA result scenarios and for the MLP model, are given in Table 7.4. 

 

TABLE 7.4. AVERAGE RMSES OBTAINED FOR DATASET BANK. 

 RDS CBDS EBDS HDS 

Best model  0.1908 0.1901 0.1907 0.1903 

Ensemble  0.1870 0.1872 0.1869 0.1878 

MLP 0.1969 0.1963 0.1979 0.1963 

  

As shown in Table 7.4, independently of the data selection method, MOGA optimized models 

are always better than MLP models, despite the latter being much more complex. In fact, 

MLPs have a model complexity (number of nonlinear parameters) of 440 while the MOGA 

generated RBFNNs have on average 100 (using the average number of input features and 
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neurons shown in Table 7.5). Another conclusion that can be taken from Table 7.4 is that the 

ensemble scenario provides better performance than the best model. 

 

TABLE 7.5. AVERAGE NUMBER OF FEATURES AND NEURONS OF THE BEST 

MOGA MODELS FOR DATASET BANK. 

Method Number of features Number of neurons 

RDS 24 4 

CBDS 20 5 

EBDS 25 4 

HDS 25 4 

 

Regarding all regression problems in the second group of experiments, where MLP models 

were considered, Table 7.6 shows the average RMSE obtained over the 10 executions. 

 

TABLE 7.6. AVERAGE RMSE FOR THE REGRESSION PROBLEMS. 

 RDS CBDS EBDS HDS 

Bank 0.1969 0.1963 0.1979 0.1963 

Concrete 0.1408 0.1417 0.1458 0.1408 

Puma 0.0687 0.0671 0.0676 0.0687 

Wine Quality 0.2361 0.2349 0.2370 0.2370 

 

Regarding the best data selection method, the bold values in Tables 7.4 and 7.6 denote the 

best performance, for each model type/problem. Although it seems to indicate that CBDS and 

HDS should be chosen as best, with a slightly advantage of the former, the average RMSEs 

might not be the only criterion for that selection. 

To analyze the statistical validity of the results, two tests are used: a sign test, and a Wilcoxon 

signed-ranks test [59] (as presented in Sections 2.9.1 and 2.9.2). For the former, we counted, 

for each problem or group of problems, the number of times (𝐶) that a data selection method 

(say 𝑗) had a better performance than another method (𝑖), for each model type. For the latter 

test, the test value 𝑇 is obtained using a rank based approach and then it is compared with its 

corresponding critical value (please see Section 2.9.2). 

Tables 7.7 shows the 𝐶(𝑖, 𝑗) and 𝑇 values, considering the Best and the Ensemble RBFNN 

models, for dataset Bank. 
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TABLE 7.7. C(I,J) /T FOR BANK – BEST AND ENSEMBLE MODELS. 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  8/19 4/26.5 6/27 

CBDS 2/19  4/21 4/20 

EBDS 5/26.5 6/21  4/23 

HDS 4/27 6/20 6/23  

 

Analyzing the results of Tables 7.4 and 7.7 shows the CBDS method is the best one.  

Statistically, however, according to the Wilcoxon test, no method can be considered better 

than the others, while according to the sign test (weaker than the Wilcoxon test), we can only 

say CBDS outperforms RDS method, with a level of significance of 10%. 

Table 7.8 shows the 𝐶(𝑖, 𝑗) and 𝑇 values for the 40 MLP regression experiments in the second 

group. 

 

TABLE 7.8. C(I,J) /T FOR ALL MLP MODELS 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  25/307 17/308.5 22/386.5 

CBDS 13/307  12/238.5 16/306 

EBDS 23/308.5 27/238.5  24/305.5 

HDS 18/386.5 23/306 15/305.5  

 

Analyzing this table, CBDS should also be the chosen data selection method, which has, 

according to both tests, statistical validity, with a level of significance of 5%. 

Considering now the classification problems, the average CR values for dataset Breast Cancer 

are shown in Table 7.9. 

 

TABLE 7.9. AVERAGE CRS FOR BREAST CANCER. 

 RDS CBDS EBDS HDS 

Best model  0.9762 0.9803 0.9762 0.9783 

Ensemble  0.9689 0.9689 0.9700 0.9679 

SVM models 0.9601 0.9668 0.9611 0.9653 

 

As it can be seen, MOGA models achieve better performance than SVM models, despite the 

huge difference in complexity. The average number of features (#F) and neurons for the 

MOGA models (#N) as well as the average number of support vectors for SVMs (#S) are 
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given in Table 7.10. We can say that the largest complexity of RBFNN MOGA models is 42, 

while the smallest complexity of SVMs is 4691.  

 

TABLE 7.10. AVERAGE NUMBER OF FEATURES, NEURONS OF THE BEST MOGA 

MODELS, AND SUPPORT VECTORS, FOR BREAST CANCER. 

Method #F #N #S 

RDS 8 3 159 

CBDS 10 3 160 

EBDS 13 3 156 

HDS 6 3 159 

 

In contrast with the results found for Bank, here the performance of the ensemble is inferior to 

the best model.  

Analyzing the performance of the four data selection models in Table 7.9, CBDS seems again 

to be the method to apply. Regarding all classification problems with SVM models, Table 

7.11 shows the averages CRs. 

 

TABLE 7.11. AVERAGE CRS FOR THE CLASSIFICATION PROBLEMS. 

 RDS CBDS EBDS HDS 

Breast Cancer 0.9600 0.9668 0.9611 0.9653 

Parkinson 0.6588 0.6692 0.6732 0.6689 

Satellite 0.9900 0.9903 0.9881 0.9903 

Letter 0.9968 0.9985 0.9964 0.9985 

 

The bold values denote the best performance for each data selection/problem combination. As 

it can be seen, for all classification problems except Parkinson, CBDS is superior to the 

others. For Satellite and Letter problems, HDS has the same performance as CBDS. 

In the same way as in the regression cases, Table 7.12 illustrates the 𝐶(𝑖, 𝑗) and 𝑇 values for 

the MOGA models, and Table 7.13 for all the 40 SVM models. 

 

TABLE 7.12. C(I,J) /T FOR BREAST CANCER – BEST AND ENSEMBLE. 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  4/14.5 3/25 3/19.5 

CBDS 2/14.5  3/22.5 3/23 

EBDS 4/25 4/22.5  5/25 

HDS 3/19.5 5/23 4/25  
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TABLE 7.13. C(I,J) /T FOR ALL SVM MODELS. 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  20/222.5 16/399.5 20/215 

CBDS 8/222.5  9/251.5 9/391 

EBDS 16/339.5 23/251.5  21/292 

HDS 9/215 10/391.5 9/292  

 

In the case of MOGA models, the indication found in Table 7.9 seems to be confirmed, 

although without statistical validity. For the SVM models, we can say that, with a level of 

significance of 5%, CBDS is better than RDS and EBDS, and HDS is better than EBDS, 

according to the sign test.; based on the Wilcoxon test, HDS and CBDS are better than RDS, 

and HDS is better than EBDS. 

 

7.6. Conclusions 

In this chapter we have compared the performance obtained by RBFNN models designed by a 

MOGA to that obtained by MLPs (for regression) and by SVMs (for classification). It was 

shown that the former obtain much better performance, despite the much smaller complexity 

of MOGA models. Another conclusion that can be taken is that the naïve versions of the 

ensemble of non-dominated MOGA models proposed here, in some cases perform better, 

while in other cases worse than the selected best model. In relation with the best data 

selection methods, we can say that the CBDS and HDS should be used for SVM and MLP 

models. For the RBFNN MOGA models, the same conclusion can be taken although without 

any statistical validity. This can be explained by the small number of experiments conducted, 

which was due to the high computational time, and also to the much better performance 

obtained by these models, compared with MLPs and SVMs, which reduces the range of 

differences between the data selection methods. 
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8. A Convex hull, sliding-window based online adaptation method 

8.1. Introduction 

Principally, the online adaptation process is considered in two situations in the domain of 

data-driven models. The first case is when only a small number of training samples is 

available offline and it is impossible to collect additional informative data samples reflecting 

the whole operating region(s) of the process to be modeled. The second case is when the 

behavior of the process is time-varying (i.e., its dynamics and operating regions change over 

time). In both cases, data-driven models need to be updated to cover new dynamics and 

operating regions of the underlying process. 

Specifically, for Feedforward Neural Networks such as RBFNN models, online adaptation 

process can be considered from the structure, parameter and data points of view. In the 

structure aspect, the number of hidden nodes may be changed or kept constant over the online 

adaptation process. As pointed out earlier, the RBFNNs have two groups of parameters; 1- 

linear parameters 2- nonlinear parameters. In online adaptation either only the former group 

or both are updated online. Regarding the data, a specific RBFNN model can be adapted in 

several ways. Based on how much data is available/used and how to manage those data, a 

variety of online learning methods have been proposed. 

This chapter is organized as follows: Section 8.2 gives an overview of related works in online 

adaptation. A new online adaptation method based on convex hull and sliding-window is 

introduced in Section 8.3. Experimental results are given in Section 8.4. In this section, two 

case studies are considered to evaluate the proposed method. The comparison between the 

performances of both case studies is given in Section 8.5.  The proposed method is compared 

with others in Section 8.6. Finally, conclusions are given in Section 8.7. 

 

8.2. A brief overview of online adaptation methods 

In order to update models online, sequential learning methods, also called online learning 

methods, are applied. Regarding the model structure, the online learning methods are 

categorized into two main classes. In the first class, the structure of the model, translated into 

the number of hidden neurons is constant over the adaptation process and only the parameters 

are adjusted; In the second class, the hidden neurons are inserted or removed from the model 

structure using specific growing and pruning criteria, respectively. 
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From a parameter point of view, online learning methods can be categorized into two groups. 

The first group only updates the linear parameters while the nonlinear parameters are kept 

unchanged, while in the second group both linear and nonlinear parameters are updated.  

Online learning methods can also be categorized according to the amount of data that they use 

[167, 168]. The first class uses the information of the new observation at each time instant. 

Regarding only linear parameters, in case that nonlinear parameters have been determined 

offline and are kept unchanged throughout online adaptation process, first order methods such 

as Least Means Square (LMS) [169] and Normalized Least Means Square  (NLMS), and 

second order methods such as Recursive Least Squares (RLS) [170] and Kalman Filter and its 

variants [171] can be used to update only linear parameters. Regarding all parameters, 

recursive version of offline algorithms such as Stochastic Gradient Descent Back Propagation 

(SGBP) [172] as the first order method, and Recursive Least Squares (RLS) [170] and 

recursive Levenberg-Marquardt  [173, 174] as the second order methods can be applied to 

update both linear and nonlinear parameters.  

 The second class of online learning method from data point of data uses a sliding-window of 

past observations to update the parameters. Moving average of LMS/NLMS search directions 

[175], maximum error method and Gram-Schmidt orthogonalization [176] are methods used 

to updated only linear parameters while any gradient descent based methods mentioned in 

Section 2.4.1 with a window management policy can be employed to update both linear and 

nonlinear parameters. 

Fig 8.1 briefly illustrate the classification of online methods from the three different points of 

view. 

In the following sections, we summarize important contributions on RBFNN online model 

adaptation, regarding models with a fixed structure and models with an adaptive structure, 

whose structure varies through time. 
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(a) 

 

(b) 

 

(c) 

Fig. 8.1. Classification of online learning methods. (a) From the model structure point of 

view; (b) From the model’s parameters point of view; (c) From the data point of view. 

 

 

8.2.1. Online learning methods for RBFNNs with fixed structure 

As mentioned earlier, from the model structure point of view, there is a group of methods 

which keep the structure fixed throughout the online adaptation process and only updates the 

model parameters. Authors in [1] presented an online adaptation method to update a fixed-

structure RBFNN model, designed offline by MOGA [44, 45, 47]. Subsequently, both linear 

and nonlinear parameter are updated using the Levenberg-Marquardt method [32, 33], 

working on a sliding-window of the past observations, employing a FIFO management policy. 
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The same authors  in [168] improved their method, using the Akaike information criterion 

[177] for off-line model design.  In this method, a new sliding-window management policy, 

based on a dissimilarity measure, was proposed to overcome the problem of gradually 

forgetting previous mappings over the online adaption process, typically found using a FIFO 

policy.  

Authors in [178] presented a new method to tune a fixed-structure RBFNN model.In this 

method, the contribution of each hidden neuron to the overall network performance is 

measured based on the increment of the error variance. The neuron with the smallest 

increment of is considered as an insignificant neuron and is replaced with the information of 

the new arriving sample. The linear weights are updated using the Multi-Innovative Recursive 

Least Square (MRLS) method over a sliding-window of 𝑝 past observations, while the 

nonlinear parameters (centers and spreads) of the new node are adjusted using Quantum 

Particle Swarm Optimization method (QPSO).  

An efficient sequential algorithm was proposed in [179] as well as an online version of the 

Extreme Learning Machine (ELM) method. In this method, the centers and spreads are 

arbitrarily chosen and only the weights, as linear parameters, are updated. The update is done 

using the proposed online version of ELM based on the new observation or a chunk of new 

observations over the online adaptation process. 

 

8.2.2. Online learning methods for RBFNNs with adaptive structure 

Regarding RBFNNs with adaptive structure,  the first approach known as Resource 

Allocation Network (RAN) was proposed by Platt [180]. This method starts with a RBFNN 

with no hidden neurons. For each new observation at time instant 𝑘, if a new arriving sample 

has enough novelty, a new hidden neuron containing the information of the sample is added to 

the existing network, so that the updated network not only preserves the accuracy of the 

mapping for the previous samples which have been received so far, but also reflects a new 

mapping for the new sample. The novelty of the new sample is computed based on a 

prediction error and a distance criteria which are compared with user-defined thresholds. In 

the case that the new observation does not reflect a desired level of novelty, the model 

structure is kept unchanged and only the model parameters are updated. Both weights as 

linear parameters and, centers and spreads as nonlinear parameters of the existing network are 

updated by LMS method. This update is only done based on the new observation. An 

enhanced version of RAN known as RAN-EKF was subsequently proposed by 
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Kadirkamanathan and Niranjan [171], where the Extended Kalman Filter (EKF) as a 

sequential method was applied in place of the LMS method to improve the convergence rate 

of RAN. 

For both RAN and RAN-EKF, no pruning strategy is considered. Thus, a large size network is 

obtained which is not suitable to be applied in real time applications, due to the high 

computational run time. To deal with this drawback of both RAN methods, a considerable 

improvement  to RAN-EKF was made by Lu Yingwei et al. [181]. This version of RAN, 

which is known as M-RAN, presents a pruning strategy to remove insignificant hidden 

neurons with the aim of making the underlying network parsimonious and compact. In other 

words, the hidden neurons for which the relative contribution to the overall network output is 

less than a user-defined threshold are removed. 

In the method proposed in [182], a new hidden neuron is added using a growing criterion 

based on the normalized error reduction. Beside the proposed growing strategy, a pruning 

strategy was also proposed to remove those hidden neurons which have had small 

contribution to the model output over 𝑙 consecutive observations. Both linear and nonlinear 

parameters are updated using pseudo-inverse method based on a fixed-size sliding-window 

with FIFO management policy.  

In [183], a criterion called “Active Firing Rate” is used to present new neurons to the hidden 

layers. In this method, the hidden neurons whose Active Firing is larger than the user-defined 

threshold 𝐴𝐹𝑜 (i.e., 0.05 < 𝐴𝐹𝑜 < 0.3) are divided into 𝑁𝑛𝑒𝑤 (i.e., 𝑁𝑛𝑒𝑤 < 10) new neurons 

where 𝑁𝑛𝑒𝑤 is determined based on the Active Firing Rate of the neuron. This criterion 

reflects the contribution of the neuron to the overall model output. Moreover, a pruning 

criterion based on the mutual information between hidden neurons and the output neuron is 

used to remove those hidden neurons which have a low connectivity strength with the output 

neuron. Both linear and nonlinear parameters are updated using a gradient based method 

based on the new observation.  

The method proposed in [184] applies three criteria to add a new hidden neuron centered with 

the new sample. Those criteria are: the distance of the new sample to the nearest center, the 

output error of the new sample and the neuron’s significance. Only the parameters (i.e., linear 

and nonlinear) of the new neuron are determined using the EKF method based on the new 

sample. If after update, the new hidden neuron is identified as an insignificant one, it will be 

removed from the model structure.  

The authors in [185] proposed a method called EOS-ELM. The proposed method applies the 

growing and pruning criteria introduced in MRAN to adapt the structure. The weights, as 
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linear parameters, are updated using an online version of ELM) method proposed in [179] 

where the linear parameters can be updated based on either the new observation or a chunk of 

new observations. On the other hand, the centers and spreads, as nonlinear parameters, are 

updated using EKF based on the new observation. Other efforts in online adaptation of 

RBFNNs with a flexible structure can be seen in [186-190]. 

 

8.3. A convex hull, sliding-window-based online adaptation method 

In this section, we introduce a new online adaptation method based on convex hull and a 

sliding-window technique to update RBFNN models. This method starts with a RBFNN 

model which has been offline designed by MOGA based on a limited number of training, 

testing and validation datasets corresponding to an earlier period of time. In this method, the 

structure of the underlying model (i.e., hidden neurons) kept unchanged through the online 

adaptation process and only the parameters (both linear and nonlinear) are updated. As it can 

be realized from the title, the proposed method relies on two concepts; convex hull and 

sliding-window. The basic idea behind the proposed method is updating the model if a new 

arriving sample reflects a new range of input-output spaces. As we mentioned in Section 

4.2.2.4, it is very important that the model is trained based on a set of data covering the whole 

range of input-output space in which the process is intended to be modeled. Moreover, convex 

hull algorithms can help us to select data samples reflecting the whole range of all existing 

data samples. Since at the beginning of online adaptation process there exists a model which 

is trained offline based on a limited number of samples and the corresponding convex hull 

vertices may only reflect a local range of the existing data, the initial convex hull might need 

to be updated with new samples changing the samples ranges. After updating the current 

convex hull at each time instant, the model should be trained based on the updated convex 

hull vertices as well as some inner points so that it can cover the whole range of the input-

output space over time. 

In this method, the model is updated by the LM training method operating on a fixed-size 

sliding-window. As mentioned in Section 8.2.2, applying sliding-window with FIFO policy 

leads to parameter interference phenomenon reflecting the situation in which the model 

forgets the mappings which have been constructed by the previous samples over time. Hence, 

in this method, two management policies are applied. One is a management policy proposed 

in [168] and the other is a convex hull based policy. 
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Mainly, the proposed method consists of three phases; evaluation of the arriving sample, 

sliding-window update and parameters update. In the following we will describe these phases. 

 

8.3.1. Evaluation of the arriving sample  

At each time instant, a new arriving sample is evaluated to see whether it leads to a new range 

of input-output space, or not. The new sample is compared with the current convex hull. The 

new sample is considered as an informative sample when it is located outside the current 

convex hull, meaning that a new range of input-output space must be determined, including 

the new point. To determine whether the new sample is located outside the current convex 

hull or not, a convex hull algorithm is applied on a set containing the vertices of current 

convex hull and the new sample. If the new sample is marked as a new vertex of the convex 

hull, it is definitely located outside the current convex hull; otherwise, it is considered as an 

inner point. Since, in practice, the input space of the underlying model can have high 

dimensions and standard real convex hull algorithms in high dimensions suffer from high 

time complexity and memory requirements (i.e., please see Section 3.4), it is not feasible to 

apply standard real convex hull algorithms in the online adaptation process. 

To deal with this challenge, a heuristic is used to identify the location of a new sample with 

respect to the current convex hull. The idea behind the heuristic stems from the basic property 

of convex hull vertices. A point of a given set is a vertex of the corresponding convex hull if 

and only if there is a hyperplane passing through the point and all remaining points are 

located in the same side of the hyperplane. Figs. 8.2 and 8.3 illustrate a difference between a 

vertex of convex hull and an inner point in terms of the hyperplanes passing through them. 

If a point is a vertex of the convex hull, there is an infinite number of hyperplanes passing 

through the point, so that all remaining points are located in the same side of each hyperplane. 

Hence examining all possible hyperplanes passing through the point is not possible. In our 

work, only the hyperplane whose direction of its normal vector is the same as that of the 

vector from the center of the current convex hull to the new point is formed. After forming the 

hyperplane, all vertices of the current convex hull are examined. If all vertices are located 

below the hyperplane, the new arriving point is definitely an outer point; otherwise, if the 

maximum distance to the hyperplane among those vertices which are located above the 

hyperplane is very small, it can be interpreted as follows: 
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 Either the new point is located outside the convex hull but very close to the convex 

hull  

 Or the new point is an inner point which is very close to the convex hull.  

If the maximum distance is large, it is very likely that the new point is located inside the 

convex hull. Figs.  8.4 and 8.5 illustrate how intuitively the heuristic works. 

 

 

 

Fig. 8.2. A vertex of the convex hull. Black and blue circles are convex hull vertices and inner 

points, respectively. 

 

 

 

Fig. 8.3. A point is located inside the convex hull. Black and blue circles are convex hull 

vertices and inner points, respectively. 
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Fig. 8.4. A new point is located outside the convex hull. Black and red circles denote the 

convex hull vertices and the new point, respectively. 

 

 

 

Fig. 8.5. A new point is located outside the convex hull but very close to the convex hull. 

Black and red circles denote the convex hull vertices and the new point, respectively. 

 

Since there is uncertainty in classifying the new point in the case that some vertices are 

located above the hyperplane (i.e., the new point can be an outer or an inner point), we use a 

threshold for the maximum distance to the hyperplane for those vertices. If the maximum 

distance exceeds the threshold, the new point is marked as an inner point and rejected for 

inserting into the sliding-window; otherwise, the new point is examined in the next step by 

applying ApproxHull (i.e., please see Section 4.3) on all vertices of the current convex hull, 

including the new point. If the new point is identified as a vertex of the convex hull, it is 

accepted to be inserted into the sliding-window. In the following, we will explain how to 

compute a hyperplane and the distance of a point to the hyperplane.  
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8.3.1.1. Hyperplane computation 

Let 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑑) be the center of the current convex hull and 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑑)  a new 

arriving sample in a 𝑑-dimensional Euclidean space. The vector from 𝒄 to 𝒑 is defined as Eq. 

(8.1). 

 

𝒄𝒑⃗⃗ ⃗⃗  =< 𝑝1 − 𝑐1, 𝑝2 − 𝑐2, … , 𝑝𝑑 − 𝑐𝑑 > (8.1) 

 

 

The normal vector whose direction is the same as that of 𝒄𝒑⃗⃗ ⃗⃗   can be obtained as Eq. (8.2). 

 

�⃗⃗� =
𝒄𝒑⃗⃗ ⃗⃗  

|𝒄𝒑⃗⃗ ⃗⃗  |
 

(8.2) 

 

where �⃗⃗� =< 𝑎1, 𝑎2, … , 𝑎𝑑 > is the normal vector and |𝒄𝒑⃗⃗ ⃗⃗  | denotes the length of vector 𝒄𝒑⃗⃗ ⃗⃗  . 

The general form of hyperplane equation in 𝑑-dimensional Euclidean space is given as Eq. 

(8.3). 

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑𝑥𝑑 = 𝑏 (8.3) 

 

where 𝑏 is the offset of hyperplane denoting the distance of hyperplane from the origin. 

Since based on the heuristic, we are interested to have a hyperplane with a normal vector �⃗⃗�  

passing through point 𝒑, the offset 𝑏 is computed as Eq. (8.4). 

 

𝑏 = 𝑎1𝑝1 + 𝑎2𝑝2 +⋯+ 𝑎𝑑𝑝𝑑 (8.4) 

 

Having the equation of hyperplane 𝐻 in hand, the distance of any point 𝒒 to 𝐻 is computed as 

Eq. (8.5). 

𝑑𝑖𝑠𝑡(𝐻, 𝒒) =  𝑎1𝑞1 + 𝑎2𝑞2 +⋯+ 𝑎𝑑𝑞𝑑 − 𝑏 (8.5) 

 

�⃗⃗�  and 𝑏, as the normal vector and the offset, are computed with time complexity 𝑂(𝑑). The 

distance of a point to the hyperplane is also computed with time complexity 𝑂(𝑑).  

Assuming that the current convex hull contains 𝑣 vertices at time instant 𝑘, the time 

complexity of the heuristic is 𝑂(𝑣𝑑). 
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8.3.2. Sliding-windows update 

In the proposed online adaptation method, two sliding-windows are considered; training 

sliding-window and an additional sliding-window (described later  in Section 8.3.2.2) which 

can be updated using two proposed management policies, rather than FIFO policy: one is the 

policy proposed in [168], hereinafter called 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 and the other is a convex hull based 

policy. The following describes each of these two policies.  

 

8.3.2.1. 𝑭 − 𝑹 𝒑𝒐𝒍𝒊𝒄𝒚 

The 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 was introduced in [168] and for the sake of completion, is summarized 

hereThe idea behind 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is updating the sliding-window with the new point; 

hopefully it can bring new information to the sliding-window and keep the sliding-window in 

a desirable level of diversity. To achieve this goal, a dissimilarity measure based on Euclidean 

distance is used in such a way that, in each iteration, a similarity vector rather than a 

similarity matrix is updated in an efficient way. In the case of the similarity matrix, in each 

iteration,  (𝑁(𝑁 − 2))/2 similarities should be computed while in the case of similarity 

vectors only 𝑁 − 1 elements are removed from the vector and 𝑁 − 1 new elements are 

appended into it, where 𝑁 is the size of the involving sliding-window. 

Suppose 𝑿 = [𝒙(1), 𝒙(2),⋯ , 𝒙(𝑁)]𝑇 is the input matrix and 𝒚 is the corresponding output 

vector for a NARX model as �̂� = 𝑓(𝑿) where the regressor vector 𝒙(𝑘) is given as Eq. (8.6). 

 

𝒙(𝑘) = [𝒖(𝑘), 𝒗1(𝑘),⋯ , 𝒗𝑚(𝑘)  ]
𝑇 (8.6) 

 

Vector 𝒖(𝑘) consists of 𝑛𝑢 lags of 𝒚 and each vector 𝒗𝑖 denoting the 𝑖th exogenous variable 

includes 𝑛𝑣𝑖 lags for 𝑖 = 1,2,⋯𝑚. Examples of  𝒖 and 𝒗𝑖 in the time instant 𝑘 are shown in 

Eqs. (8.7) and (8.8). 

 

𝒖(𝑘) = [𝑦(𝑘 − 𝑙1
𝑢), 𝑦(𝑘 − 𝑙2

𝑢),⋯ , 𝑦(𝑘 − 𝑙𝑛𝑢
𝑢 )] (8.7) 

 

𝒗𝑖(𝑘) = [𝑣𝑖(𝑘 − 𝑙1
𝑣𝑖), 𝑣𝑖(𝑘 − 𝑙2

𝑣𝑖),⋯ , 𝑣𝑖(𝑘 − 𝑙𝑛𝑣𝑖
𝑣𝑖 )] (8.8) 

 

where vectors 𝒍𝑢 and 𝒍𝑣𝑖 denote the order of lags for output variable 𝒚 and the input variable 

𝒗𝑖, respectively. The number of elements in 𝒙(𝑘) is 𝑑 where 𝑑 = 𝑛𝑢 + ∑ 𝑛𝑣𝑖
𝑚
𝑖=1 . In the case 

of Nonlinear AutoRegressive (NAR) model where only the lags of output variable 𝒚 are 

considered, 𝑑 = 𝑛𝑢. Hence 𝑿  is a matrix 𝑁 × 𝑑. Since in our problem, we suppose that a 
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NAR or NARX model will compute a one-step-ahead prediction, the output vector 𝒚 

corresponding to the input matrix 𝑿 is: 

 

𝒚 = [𝑦(2), 𝑦(3),⋯ , 𝑦(𝑁 + 1)]𝑇 (8.9) 

 

The underlying sliding-window 𝑻 is defined as Eq. (8.10). 

 

𝑻 = {𝑿, 𝒚} (8.10) 

 

where 𝑻(𝑖) = {𝑿(𝑖), 𝒚(𝑖)} denotes the 𝑖th input-output pattern of 𝑻. When a new point 

𝒑 = {𝑿(𝑘 − 1), 𝒚(𝑘)} is presented to the model, two steps should be performed to update the 

sliding-window. The first one is whether  𝒑 can be inserted into the sliding window. If so, the 

second one is which sample of 𝑻 should be replaced with 𝒑 ,since the size of sliding-window 

is assumed to be constant throughout the online adaptation process. For the first and second 

point, two criteria called Include and Exclude are considered, respectively. The following 

describes the criteria. 

 

 Include criterion 

This criterion checks whether 𝒑 has enough dissimilarity to all points of 𝑻. To do this, the 

Euclidean distances between 𝒑 and all points in 𝑻 are considered. If all distances are greater 

than a user-defined threshold, point 𝒑 is inserted into 𝑻. Let 𝛿(𝑛,𝑚) be the Euclidean 

distance between the 𝑛th
 and 𝑚th

 points of 𝑿 ( the 𝑛th 
and 𝑚th

 points will be called origin and 

destination points, respectively). For any two points 𝑿(𝑚1) and 𝑿(𝑚2), we say point 𝑿(𝑛) is 

more similar to 𝑿(𝑚1) than 𝑿(𝑚2) if   𝛿(𝑛,𝑚1) < 𝛿(𝑛,𝑚2). For any point 𝑿(𝑛) in 𝑻, a 

vector of distances between 𝑿(𝑛) and its predecessors denoted by 𝚫(𝑛) is defined as Eq. 

(8.11). 

𝚫(𝑛) = [𝛿(1, 𝑛), 𝛿(2, 𝑛),⋯ , 𝛿(𝑛 − 1, 𝑛)] (8.11) 

 

The vector of distances between each pair of points in 𝑿 is defined as Eq. (8.12). 

 

𝐃 = [𝚫(2), 𝚫(3),⋯ , 𝚫(𝑁) ]𝑇 (8.12) 

 

Suppose that new point 𝒑 is the 𝑛th
 arriving point. Based on the definitions above, 𝒑 is 

inserted into 𝑻 if all distances in 𝚫(𝑛) is greater than a user-defined threshold 𝜂. Each pattern 

in 𝑿 is organized into several components so that each component corresponds to the number 
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of lags of a particular variable. Since the scales and dynamics may be different from variable 

to variable, it motivates us to consider a separate analysis of the distance between 𝒑 and all 

points in 𝑿. Based on this idea, 𝚫(𝑛)can be divided into several vectors as Eqs. (8.13) and 

(8.14). 

𝚫𝑢(𝑛) = [𝛿𝑢(1, 𝑛), 𝛿𝑢(2, 𝑛),⋯ , 𝛿𝑢(𝑛 − 1, 𝑛)] (8.13) 

 

{𝚫𝑣𝑖(𝑛) = [𝛿𝑣𝑖(1, 𝑛), 𝛿𝑣𝑖(2, 𝑛),⋯ , 𝛿𝑣𝑖(𝑛 − 1, 𝑛)]}𝑖=1
𝑚  (8.14) 

 

According to this idea, instead of considering one user-defined threshold 𝜂, a set of thresholds 

should be considered as Eq. (8.15). 

𝜼 = {𝜂𝑢, {𝜂𝑣𝑖}𝑖=1
𝑚 } (8.15) 

 

Therefore, point 𝒑 is inserted into 𝑻 if there is at least a distance vector in 𝚫(𝑛) so that all 

distances in 𝚫(𝑛) are greater than the corresponding threshold. The  𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

denoted by 𝐼 is defined as Eq. (8.16). 

 

𝐼 ({𝜂, 𝜂𝑢, {𝜂𝑣𝑖}𝑖=1
𝑚
} , {𝚫(𝑛), 𝚫𝑢(𝑛), {𝚫𝑣𝑖(𝑛)}𝑖=1

𝑚
}) = (𝚫(𝑛) > 𝜂) 𝑜𝑟 (𝚫𝑢(𝑛) > 𝜂𝑢) 𝑜𝑟 (8.16) 

(∃ 𝑖 ∈ [1,2,⋯ ,𝑚]: 𝚫𝑣𝑖(𝑛) > 𝜂𝑣𝑖)  

 

 Exclude criterion 

If Include criterion is True for the new point 𝒑, to keep the size of 𝑻 fixed, first one point is 

removed from 𝑻  and then 𝒑 is inserted. The main idea behind the Exclude criterion is to 

randomly remove one of two points in 𝑻 which have the largest similarity (i.e., the minimum 

Euclidean distance) between each other. As in each iteration, there is a correspondence 

between 𝑻 and 𝑫, by updating 𝑻, D should be updated. For each point 𝑿(𝑛) in 𝑿, there are 

exactly 𝑁 − 1 occurrences in 𝑫 so that for  𝑛 − 1 consecutive occurrences, 𝑿(𝑛) is a 

destination point whereas for 𝑁 − 𝑛 nonconsecutive occurrences, it is an origin point, where 

𝑁 is the size of 𝑻. Suppose 𝑿(𝑛) is a point that should be removed from 𝑻. To do this, their 

corresponding occurrences in 𝑫 should be identified and then discarded from 𝑫. To 

efficiently find the index of the corresponding occurrences of 𝑿(𝑛) in 𝑫, a sequence of 

functions is needed. The following introduces such functions. 

Given 𝚫(𝑛) and 𝑫, function 𝑠𝑖(𝑛) defined in Eq. (8.17) computes the starting index of 𝚫(𝑛) 

in 𝑫. 
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𝑠𝑖(𝑛) = 1 +∑(𝑖 − 1)

𝑛−1

𝑖=2

=
𝑛2 − 3𝑛 + 4

2
,          𝑛 ≥ 1 

 

(8.17) 

Suppose 𝑖 is an arbitrary index on 𝑫. By the solutions obtained from 𝑠𝑖(𝑛) = 𝑖, function 

𝑝𝑛(𝑖) defined in Eq. (8.18) computes the index of the point in 𝑿 which is the destination point 

in the 𝑖th position of vector 𝑫. 

𝑝𝑛(𝑖) = ⌊
3 + √−7 + 8𝑖

2
⌋ ,          𝑖 ≥ 1 

 

(8.18) 

 

where ⌊𝑎⌋ is the largest integer smaller than 𝑎. Using Eqs. (8.17) and (8.18), the function 

𝑝𝑚(𝑖) is defined in Eq. (8.19) which computes the index of the point in 𝑿 that is the origin 

point in the 𝑖th position of vector 𝑫. 

𝑝𝑚(𝑖) = 𝑖 − 𝑠𝑖(𝑝𝑛(𝑖)) + 1,          𝑖 ≥ 1 (8.19) 

 

The indices in 𝑫 where 𝑿(𝒏) is a destination point are obtained by the function 𝑑𝑝(𝑛, 𝑗) 

defined in Eq. (8.20). 

𝑑𝑝(𝑛, 𝑗) = 𝑠𝑖(𝑛) + (𝑗 − 1) =
𝑛2 − 3𝑛 + 2(𝑗 + 1)

2
,          1 ≤ 𝑗 ≤ 𝑛 − 1 

 

(8.20) 

 

The indices in 𝑫 where 𝑿(𝒏) is an origin point are obtained by the function 𝑜𝑝(𝑛, 𝑗) defined 

in Eq. (8.21). 

𝑜𝑝(𝑛, 𝑗) = 𝑠𝑖(𝑛) + 2(𝑛 − 1) + 𝑛(𝑗 − 𝑛) + 𝑆(𝑗 − 𝑛)

=
−𝑛2 + 𝑛(2𝑗 + 1) + 2𝑆(𝑗 − 𝑛)

2
,          𝑛 − 1 < 𝑗 ≤ 𝑁 − 1 

 

 

(8.21) 

where  

𝑆(𝑣) = {

0,              𝑣 < 2

∑𝑖

𝑣−1

𝑖=1

,         𝑣 ≥ 2 
 

 

By means of Eqs. (8.20) and (8.21), the index of 𝑗th occurrence of a distance in 𝑫 involving 

point 𝑿(𝑛) is obtained by the function 𝑛𝑖(𝑛, 𝑗) defined in Eq. (8.22). 

𝑛𝑖(𝑛, 𝑗) = {
𝑑𝑝(𝑛, 𝑗),                  1 ≤ 𝑗 ≤ 𝑛 − 1

𝑜𝑝(𝑛, 𝑗),          𝑛 − 1 < 𝑗 ≤ 𝑁 − 1
 

 

(8.22) 

 

In terms of 𝑛𝑖(𝑛, 𝑗), the index vector of the occurrences of the distances in 𝑫 involving point 

𝑿(𝑛) is as: 
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𝑶𝒏𝑫 = [𝑛𝑖(𝑛, 1), 𝑛𝑖(𝑛, 2),⋯ , 𝑛𝑖(𝑛, 𝑁 − 1)]𝑇 (8.23) 

Assume the notation < 𝑎, 𝑺 > denotes the index of element 𝑎 in vector 𝑺 and suppose also 

that function 𝜚(… ) randomly returns one of its arguments. Hence by means of Eqs. (8.18) and 

(8.19), the Exclude criterion denoted by 𝑂 is defined as Eq. (8.24). 

 

𝑂(𝑫) = 𝜚(𝑝𝑚(< min(𝑫) ,𝑫 >), 𝑝𝑛(< min(𝑫) ,𝑫 >)) (8.24) 

 

After the index of the point that should be removed from 𝑻 is determined by the Exclude 

criterion, the point is removed from 𝑻 and then all its corresponding indices in 𝑫 given by 

(8.23) are discarded from 𝑫. Afterwards, the new point is inserted into 𝑻 and then its 

corresponding 𝚫(𝑛) is appended into 𝑫. 

 

8.3.2.2. A proposed convex hull based policy 

In the proposed online adaptation method, both the training and the additional sliding-window 

are updated based on 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 as well as a convex hull based policy. If the new arriving 

sample is accepted as an outer point with respect to the current convex hull, the current 

convex hull is updated considering the new sample as a new vertex of the convex hull. In this 

step, if some vertices of the current convex hull are marked as inner points by ApproxHull, 

they are replaced with points from the additional sliding-window. Since the training sliding-

window should contain the vertices of convex hull as well as some inner points, these points 

are selected from the additional set in such a way that those selected are located inside the 

convex hull and are dissimilar enough from the convex hull vertices. To do this, 𝑟 points 

which have the largest minimum distance to all convex hull vertices are selected from the 

additional sliding-window where 𝑟 denotes the number of inner points.  

To compute the largest minimum distances to the convex hull vertices, a distance matrix 

denoted by 𝑫𝑰𝑺 of size 𝑠 × 𝑣 is employed, where 𝑠 and 𝑣 refer to the size of the additional 

sliding-window and the number of convex hull vertices, respectively. Finally, the selected 

points and inner points are swapped between the training and the additional sliding-window. 

Throughout this process, 𝑫𝑰𝑺 is updated by removing 𝑟 rows corresponding to the 𝑟 selected 

points from the additional sliding-window and appending 𝑟 new rows into 𝑫𝑰𝑺 where each 

new row corresponds to a distance vector including the distances between an inner point to all 

convex hull vertices. Besides 𝑫𝑰𝑺, two other vectors are updated,  𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑 denoting the 

distance vector used in the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 for managing the training and the additional sliding-
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window, respectively. Afterwards, the new sample is inserted into the training-sliding window 

by 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 but with the difference that the 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 criterion of 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is not 

needed to be checked (i.e., the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is forced to insert the new point into the training 

sliding-window) since the new point has been accepted as an outer point with the current 

convex hull. If the new arriving sample is rejected from the convex-hull approach, it is tried to 

be inserted into the additional sliding-window using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.  

 

8.3.3. Parameters update 

The idea behind the procedure of parameters update in this work is the same as that 

mentioned in [168]. As explained before, we assume that the change of dynamics of most 

processes is gradual over a period of time. Hence, the underlying model does not need to be 

updated whenever a new sample arrives and is inserted into the training sliding-window. 

Additionally, frequently updating parameters over a period of time not only imposes an extra 

computational cost but also may cause overfitting. In order to avoid unnecessary parameter 

updates, two standard termination criteria (8.25) and (8.26) of the Levenberg-Marquardt 

method are evaluated at time instant 𝑘, when a new sample is accepted and inserted into the 

training sliding-window. 

Φ𝑘𝑢 −Φ𝑘 < 𝜃𝑘 (8.25) 

‖𝒈𝑘‖ ≤ √𝜏𝑓
3 (1 + |Φ𝑘|) (8.26) 

𝜃𝑘 = 𝜏𝑓(1 + Φ𝑘) (8.27) 

 

where Φ𝑘𝑢 and Φ𝑘 denote the value of the cost function obtained based on the current 

parameters update and the previous parameters in time instant 𝑘, respectively. 𝒈𝑘 is the 

gradient vector of the cost function and 𝜏𝑓 as the resolution parameter denoting a measure of 

the desired correct number of digits in the cost function. ‖. ‖ and |. | denote the 2-norm and 

absolute operators. 

When both criteria (8.25) and (8.26) are met, the model parameters are updated. The LM 

method starts with the parameters found in the last update. In order to prevent overfitting, the 

early-stopping method can be applied in the learning process using the additional sliding-

window as the test set. 
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8.3.4. Analysis of the proposed method 

In this section, we address the analysis of time complexity of the new sample evaluation and 

the sliding-window update. In this analysis, we consider the worst case scenario in terms of 

run time, which is where a new arriving sample is determined as an outer point, inserted into 

the training sliding-window, and additionally some inner points are identified due to the 

updating the current convex hull by the new sample. In the following, we detail the analysis 

of each phase. 

As mentioned in Section 8.3.1, a new sample is accepted to be inserted into the training-

sliding window, if it meets two conditions. Firstly, the maximum distance of those vertices 

located the positive half space to the corresponding hyperplane is less than or equal to a user-

defined threshold and secondly, ApproxHull marks the new sample as a new convex hull 

vertex. As stated in Section 8.3.1.1, the time complexity for computing the maximum distance 

is 𝑂(𝑣𝑑). According to Section 4.5, the time complexity of ApproxHull is 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) 

where 𝑛, 𝑑, 𝑣, 𝑖 and 𝑝 denote the number of total data samples, dimension, the number of 

convex hull vertices, the number of iterations and the population size, respectively. In this 

case, the number of samples on which the ApproxHull is applied, is equal to 𝑣 + 1. Therefore, 

the time complexity of ApproxHull in this situation takes 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3) where 𝑢 denotes 

the number of vertices of updated convex hull. 

The parameters update phase consists of 8 steps. As stated before, for both training and 

additional sliding-windows, the F_R policy is applied. Per the F_R policy, a vector of 

distances between each two points of the sliding-window is formed and it is updated 

whenever the sliding-window is updated. The time complexity of inserting a sample into the 

sliding-window is 𝑂(𝑁𝑑) due to computing the distances between the new sample and its 

predecessors where 𝑁 denotes the sliding-window size. Removing a sample from the sliding 

window takes 𝑂(𝑁) due to the computation of the indices of the distance vector, where the 

sample is a either destination or origin point. Here we suppose that 𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑 denote the 

distance vector of the training and the additional sliding-window, respectively. In the 

proposed method, matrix 𝑫𝑰𝑺 with size 𝑠 × 𝑣 of distances between each point of the 

additional sliding-window and the vertices of current convex hull is formed, where 𝑠 is the 

size of additional sliding-window. 

Step 1 involves computing the distances between the new arriving sample and all points of the 

additional sliding-window and appending the distances as a new column into 𝑫𝑰𝑺. The time 

complexity of Step 1 is 𝑂(𝑠𝑑).  
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In Step 2, the vertices marked as inner points during the convex hull update are removed from 

the training-sliding window. Step 2 takes 𝑂(𝑟𝑚) operations due to updating 𝑫𝑡𝑟 where 𝑟 and 

𝑚 denote the number of inner points and the training-sliding-window size, respectively. 

In Step 3, matrix 𝑫𝑰𝑺 is updated by removing the corresponding columns of inner points. 

Step 3 takes 𝑂(𝑟) operations. 

In Step 4,  𝑟 points which have the largest minimum distance to all vertices of the updated 

convex hull are selected from the additional sliding-window. Based on the matrix 𝑫𝑰𝑺, 

computing the minimum distance for each point of the additional sliding-window takes 𝑂(𝑠𝑢) 

operations. Selecting 𝑟 samples from the additional sliding-window which have the largest 

minimum distance needs sorting these distances in descending order, and choosing the first 𝑟 

corresponding points. Hence, sorting takes 𝑂(𝑠 log 𝑠) operations. In practice 𝑢 is larger than 

log 𝑠. Therefore, the maximum time complexity of Step 4 is 𝑂(𝑠𝑢). 

Step 5 involves removing the selected points from the additional sliding-window. This step 

leads to update both 𝑫𝑰𝑺 and 𝑫𝑎𝑑𝑑. The time complexity for updating 𝑫𝑎𝑑𝑑 is 𝑂(𝑟𝑠) while 

updating 𝑫𝑰𝑺 takes 𝑂(𝑟) operations. Hence the time complexity of Step 5 is 𝑂(𝑟𝑠). 

Step 6 corresponds to adding 𝑟 selected points from the additional sliding-window into the 

training sliding-window. This step leads to update 𝑫𝑡𝑟 which takes 𝑂(𝑟𝑚𝑑) operations. 

Step 7 corresponds to add the inner points into the additional sliding-window which leads to 

update 𝑫𝑰𝑺 and 𝑫𝑎𝑑𝑑. Updating 𝑫𝑰𝑺 due to adding rows takes 𝑂(𝑟𝑢𝑑) operations. The time 

complexity of updating 𝑫𝑎𝑑𝑑 is 𝑂(𝑟𝑠𝑑). Therefore, the time complexity of Step 7 is 𝑂(𝑟𝑢𝑑 +

𝑟𝑠𝑑).  

Finally, In Step 8, the new arriving sample is added into the training sliding-window and 𝑫𝑡𝑟 

is updated. In this step, if the point which has been replaced with the new sample using the F-

R policy is a vertex of the convex hull, it will be removed from the vertices of convex hull and 

𝑫𝑰𝑺 will also be updated. The time complexity of Step 8 is therefore 𝑂(𝑚 +𝑚𝑑) = 𝑂(𝑚𝑑). 

The total time complexity of the proposed method, in the worst case scenario at time 𝑘 is 

equal to 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑑 + 𝑟𝑚 + 𝑟 + 𝑠𝑢 + 𝑟𝑠 + 𝑟𝑚𝑑 + 𝑟𝑢𝑑 + 𝑟𝑠𝑑 + 𝑚𝑑) =

𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑢 + 𝑟𝑚𝑑 + 𝑟𝑢𝑑 + 𝑟𝑠𝑑) = 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑢 + 𝑟𝑚𝑑). 

Concisely, the sliding-window update algorithm is presented in Algorithm 8.1. 
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Algorithm 8.1: Sliding-windows update 

Inputs: 𝑻 as the training sliding-window, 𝑫𝑡𝑟 as the distance vector obtained from 𝑻 using the 

𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦,  𝑨 as the additional sliding-window, 𝑫𝑎𝑑𝑑 as the distance vector obtained from 𝑨 using 

the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑽 as the vertices of current convex hull where 𝑽 ⊂ 𝑻, 𝑫𝑰𝑺 as a matrix of distances 

between each point of 𝑨 to all points of 𝑽,  𝛽 as a user-defined threshold, 𝒑 = (𝒙𝑘 , 𝑦𝑘) as the new 

arriving sample at time instant 𝑘 where 𝑥𝑘 and 𝑦𝑘 denote the input and output pattern. 

1: Let 𝒄 be the center of the current convex hull. 

2:  Let 𝐻 be the hyperplane passing by the new arriving sample so that the direction of its normal 

vector is the same as that of the vector from 𝒄 to 𝒑. 

3: Let 𝑚𝑑 be the maximum positive distance of points in 𝑽 to 𝐻. 

4: Let 𝑓𝑙𝑎𝑔 = 𝑻𝒓𝒖𝒆 

5: If (𝑚𝑑 ≤ 𝛽 ) then 

6: Let 𝑺 = 𝑽 ∪ {𝒑} 

7: Let 𝑼 be the vertices of convex hull obtained by Apply ApproxHull on 𝑺. 

8: If (𝑚𝑑 = 0 and 𝒑 not in 𝑼) then 

9: Let 𝑼 = 𝑼 ∪ {𝒑}          

10: If (𝒑 in 𝑼) then 

11: Let 𝑰 = 𝑽 − 𝑼 be the set of inner points 

12: Let 𝑽 = 𝑼 

13: Add the corresponding column of 𝒑 into 𝑫𝑰𝑺. 

14: If (𝑰 ≠ ∅) then 

15: Remove the inner points from 𝑻 and update 𝑫𝑡𝑟 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

16: Remove the corresponding columns of inner points from 𝑫𝑰𝑺. 

17: Let 𝑟 = |𝑰| 

18: Let 𝑾 contains 𝑟 points of 𝑨 which have the largest minimum distance 

to all vertices of 𝑽. 

19: Let 𝑨 = 𝑨\𝑾 and removing the corresponding elements of the points in 

𝑾 from 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

20: Remove the corresponding rows of points in 𝑾 from 𝑫𝑰𝑺. 

21: Let 𝑻 = 𝑻 ∪𝑾 and update 𝑫𝑡𝑟 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

22: Let 𝑨 = 𝑨 ∪ 𝑰 and update 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 
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23: Add the corresponding row of each point in 𝑰 into 𝑫𝑰𝑺. 

24: Add 𝒑 into 𝑻 and update 𝑫𝑡𝑟 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

25: Let 𝒒 be the point which has been replaced with 𝒑 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

26: If (𝒒 in 𝑽) then 

27: Let 𝑽 = 𝑽\𝒒 

28: Remove the corresponding column of 𝒒 from 𝑫𝑰𝑺. 

29: else 

30: Let 𝑓𝑙𝑎𝑔 = 𝑭𝒂𝒍𝒔𝒆 

31: else 

32: Let 𝑓𝑙𝑎𝑔 = 𝑭𝒂𝒍𝒔𝒆 

33: If (not 𝑓𝑙𝑎𝑔) then 

34: Add 𝒑 into 𝑨 and update 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

35: Let 𝒛 be the point which has been replaced with 𝒑 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦. 

36: Remove the corresponding row of 𝒛 from 𝑫𝑰𝑺. 

37: Add the corresponding row of 𝒑 into 𝑫𝑰𝑺. 

Outputs:  𝑻, 𝑨, 𝑽, 𝑫𝑰𝑺, 𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑. 

 

8.4. Experimental results 

To evaluate the performance of the proposed online adaptation method, two case studies were 

considered. In both case studies, a time series NAR model was chosen to compute the one-

step ahead value of Outside Air Temperature. The first case study explained in Section 8.4.1 

uses the data collected at the University of Algarve, Portugal while the second one discussed 

in Section 8.4.2 is linked to the data collected at the University of Almeria, Spain. For both 

case studies, the corresponding models were designed offline using one run of MOGA. The 

design objectives were the RMSE obtained in the training and test data sets as well as the 

summation of RMSE over the prediction horizon with 48 steps obtained in the simulation data 

set, and the model complexity. On the objectives, no restriction was considered (please refer 

to Section 2.7.2.1). Regarding MOGA’s parameters, both the maximum number of generation 

and the population size were set to 100. The early-stopping method was applied with a 

maximum of 100 iterations. After one complete run of MOGA, one model was selected from 
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the non-dominated set for the case study. The following explains each case study along with 

the analysis of the corresponding evaluation results. 

 

8.4.1. Case Study 1: OAT model for the University of Algarve 

The data provided by the University of Algarve has been collected over the years 2015 and 

2016. In the design process, the data in the range 12-Nov2015 to 28-Nov-2015 (i.e., 

approximately 17 days) with a sample rate of 5 minutes was used to create the training, 

testing and validation sets with 2538, 846 and 846 points, respectively.  Data in the range 29-

Nov-2015 to 30-Nov-2015 (i.e, 2 days) was used as the simulation set, to evaluate the offline 

models over 48-steps-ahead prediction (i.e., a 4 hours ahead prediction). ApproxHull was 

applied on the whole data which resulted in 1356 convex hull points, that were included in the 

training set. In this process, the range of features considered by MOGA comprised the first 48 

lags (i.e., corresponding to the first 4 previous hours), together 25 lags centered on the sample 

corresponding to one day before (1 hour before and 1 hour after). Therefore, 73 features were 

considered by MOGA, and the formal description of the selected OAT model is given in Eq. 

(8.28). 

𝑇�̂�(𝑘 + 1) = 𝑓(𝑇𝑜(𝑘), 𝑇𝑜(𝑘 − 1), 𝑇𝑜(𝑘 − 2), 𝑇𝑜(𝑘 − 8), 𝑇𝑜(𝑘 − 10), 𝑇𝑜(𝑘 − 27), 𝑇𝑜(𝑘

− 32), 𝑇𝑜(𝑘 − 42), 𝑇𝑜(𝑘 − 44), 𝑇𝑜(𝑘 − 277), 𝑇𝑜(𝑘 − 280), 𝑇𝑜(𝑘

− 282), 𝑇𝑜(𝑘 − 284), 𝑇𝑜(𝑘 − 298) ) 

 

(8.28) 

 

According to Eq. (8.28), the selected model has 14 inputs which are all lags of OAT. The 

corresponding RBFNN model has 3 hidden neurons and one output neuron. To simulate the 

online adaptation process, 17 periods were considered. The periods are given in Table 8.1. 

The simulation samples of each period were normalized in the range [−1,1]. Since the model 

has only used 14 lags out of 73 lags in the design process, the initial convex hull of the model 

should be obtained from the reduced version of the whole data which was supplied to MOGA. 

ApproxHull was hence applied to the reduced dataset with 15 dimensions (inputs and target 

pattern), which resulted in 875 convex hull points that were included in the initial training-

sliding window. 

For all experiments, the online adaptation process starts with the parameters’ values obtained 

in the offline training in the design process. The model is subsequently updated over the 

periods based on the order stated in Table 8.1. In this procedure, at the beginning of each 

period, the online adaptation process continues with the last update of the model over the 
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previous period. After each model update within a period, the model is evaluated based on its 

48-steps-ahead prediction (i.e., 4 hours ahead prediction) over the period. 

TABLE 8.1. PERIODS OVER THE YEARS 2015 AND 2016 IN CASE 1. 

Period Name Range 

01-Dec-2015 01-Dec-2015 00:00:00 to 13-Dec-2015 06:20:00 

16-Dec-2015 16-Dec-2015 09:29:00 to 20-Dec-2015 09:39:00 

20-Dec-2015 20-Dec-2015 10:22:00 to 29-Dec-2015 05:42:00 

01-Jan-2016 01-Jan-2016 00:00:00 to 15-Jan-2016 09:45:00 

21-Jan-2016 21-Jan-2016 19:07:00 to 31-Jan-2016 23:57:00 

01-Feb-2016 01-Feb-2016 00:00:00 to 29-Feb-2016 23:55:00 

01-Mar-2016 01-Mar-2016 00:00:00 to 31-Mar-2016 23:55:00 

01-Apr-2016 01-Apr-2016 00:00:00 to 30-Apr-2016 23:55:00 

01-May-2016 01-May-2016 00:00:00 to 11-May-2016 08:20:00 

11-May-2016 11-May-2016 09:26:00 to 31-May 2016 23:56:00 

01-Jun-2016 01-Jun-2016 00:00:00 to 30-Jun-2016 23:55:00 

01-Jul-2016 01-Jul-2016 00:00:00 to 06-Jul-2016 02:45:00 

04-Aug-2016 04-Aug-2016 22:26:00 to 31-Aug-2016 23:56:00 

01-Sep-2016 01-Sep-2016 00:00:00 to 30-Sep-2016 23:55:00 

01-Oct-2016 01-Oct-2016 00:00:00 to 31-Oct-2016 23:55:00 

01-Nov-2016 01-Nov-2016 00:00:00 to 19-Nov-2016 17:05:00 

19-Nov-2016 19-Nov-2016 18:01:00 to 26-Nov-2016 19:26:00 

 

In this study, 6 different experiments were carried out. For all experiments, the training and 

the additional sliding-window size were set to 2538 and 846, respectively. The maximum 

number of iterations of the Levenberg-Marquardt method was set to 100 for all experiments. 

Moreover, two user-defined thresholds 𝛽 (the hyperplane distance threshold which is used in 

the sliding-window management policy) and 𝝉𝒇 (the desired resolution in the LM termination 

criteria) were considered as parameters. 𝜂 (the dissimilarity threshold which is used in the F-R 

policy) had a fixed value of 0.005.  

The experiments’ specification is given in Table 8.2. As we can see in Table 8.2, two groups 

of experiments were carried out. For the first group 𝝉𝒇 was set to 0.001 while for the second 

one it was set to 0.0001. The aim was to see if an increase of the number of iterations in each 

update process, could result in a better performance. For both groups, 𝛽 was set to the 

constant value 0.005 while 𝜂 varies from 0.0 to 0.5. 
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TABLE 8.2. EXPERIMENT’S SPECIFICATION IN CASE 1. 

 𝝉𝒇 𝜷 𝜼 

First group of experiments 

Exp.1 0.001 0.0 0.005 

Exp.2 0.001 0.1 0.005 

Exp.3 0.001 0.5 0.005 

Second group of experiments 

Exp.4 0.0001 0.0 0.005 

Exp.5 0.0001 0.1 0.005 

Exp.6 0.0001 0.5 0.005 

 

In order to compare the experiments, the criteria stated in Table 8.3 were considered. Please 

note that the number of samples in each period is obtained as 12*24=288*number of days. 

 

TABLE 8.3. LIST OF CRITERIA USED TO COMPARE THE EXPERIMENTS IN CASE 1. 

𝒏𝑻 Number of samples which have been inserted into the training sliding-window over 

all periods. 

𝒏𝑨 Number of samples which have been inserted into the additional sliding-window 

over all periods. 

𝒏𝑹 Number of samples which have been rejected from inserting into both training and 

additional sliding-window over all periods. 

𝒏𝑼 Number of parameter updates over all periods. 

𝒏𝑰 Average number of iterations of training process per each update over all periods. 

𝒏𝑪𝑯 Number of convex hull points at end of the last period. 

𝝆𝟏
𝒊  Scaled one-step-ahead 𝑅𝑀𝑆𝐸 associated with the initial model. 

𝝆𝟏
𝒖 Scaled one-step-ahead 𝑅𝑀𝑆𝐸  associated with the updated model at end of the 

period. 

𝝆𝟒𝟖
𝒊  Scaled 48-steps-ahead 𝑅𝑀𝑆𝐸 associated with the initial model. 

𝝆𝟒𝟖
𝒖  Scaled 48-steps-ahead 𝑅𝑀𝑆𝐸  associated with the updated model at the end of the 

period. 

𝑺𝒊 Summation of scaled 𝑅𝑀𝑆𝐸s over the 48 steps of prediction associated with the 

initial model. 

𝑺𝒖 Summation of scaled 𝑅𝑀𝑆𝐸s over the 48 steps of prediction associated with the 

updated model at end of the period. 
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The statistical results obtained from the three groups of experiments are given in Table 8.4.  

 

TABLE 8.4. STATISTICAL RESULTS OF THE EXPERIMENTS IN CASE 1. 

 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰 𝒏𝑪𝑯 

First group of experiments 

Exp.1 456 86422 73 63 2.16 253 

Exp.2 1232 85645 74 142 2.11 243 

Exp.3 3304 83574 73 289 2 162 

Second group of experiments 

Exp.4 464 86414 73 241 2.23 256 

Exp.5 1212 85666 73 606 2.14 225 

Exp.6 3282 83597 72 1516 2.04 158 

 

According to this Table for each group of experiments, increasing 𝛽 causes an increase in 𝑛𝑇 

due to the fact that the new arriving samples have more chance to be inserted into the training 

sliding-window. This, in turn, causes an increase in 𝑛𝑈 due to an increase of training sliding-

window updates. Moreover, we can see that in all experiments, 𝑛𝑈 is much smaller than 𝑛𝑇. 

This result reveals the fact that, the proposed method can prevent unnecessary parameter 

updates whenever the training sliding-window is updated due to the insertion of the new 

arriving sample. 

Fig. 8.6 shows the number of samples of each period in the last training sliding window at the 

end of the online adaptation process for both groups of experiments. As it can be seen in Fig. 

8.6, each pair of experiments for which the same 𝛽 has been used, (Exp.1, Exp.4), (Exp.2, 

Exp.5) and (Exp.3, Exp.6), the pattern of training sliding window update is the same resulting 

in somehow the same sliding window at the end of online adaptation process. The presence of 

small variations between two experiments in each pair stems from the stochastic behavior of 

ApproxHull. Furthermore, as it can be observed in Fig. 8.6, by increasing 𝛽, the update rate of 

the initial training sliding window containing samples of Nov-2015 is raising where 

gradually, the samples of Nov-2015 are being replaced with the new arriving samples of the 

other periods. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig.8.6. Number of samples of each period in the last training sliding window. (a), (c) and (e) 

correspond to the Exps.1-3 of the first group of experiments of the case study 1, respectively. 

(b), (d) and (f) denote Exps.4-6 of the second group of experiments of case study 1, 

respectively. 

 

For all experiments, the model has been evaluated in terms of the RMSE over each period in 

two different situations: In the former, the initial model which was trained offline has been 

evaluated over each period, while in the second one, in each period, after each update at time 

instant 𝑘, the updated model has been evaluated over the corresponding period. The 

evaluation results of three groups of experiments are given in Tables 8.5 to 8.7. In these 

tables, the bold values indicate the best results over each period. 
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TABLE 8.5. ONE-STEP-AHEAD PREDICTION IN CASE 1. 

  𝝆𝟏
𝒖 

  First group of experiments Second group of experiments 

 𝝆𝟏
𝒊  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 

01-Dec-2015 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

16-Dec-2015 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

20-Dec-2015 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

01-Jan-2016 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

21-Jan-2016 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

01-Feb-2016 0.010 0.009 0.008 0.009 0.008 0.008 0.008 

01-Mar-2016 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

01-Apr-2016 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

01-May-2016 0.011 0.011 0.011 0.011 0.010 0.010 0.010 

11-May-2016 0.014 0.012 0.012 0.012 0.011 0.011 0.011 

01-Jun-2016 0.050 0.019 0.015 0.015 0.013 0.012 0.013 

01-Jul-2016 0.041 0.020 0.015 0.014 0.013 0.012 0.013 

04-Aug-2016 0.073 0.022 0.015 0.014 0.012 0.012 0.012 

01-Sep-2016 0.069 0.019 0.013 0.013 0.012 0.011 0.011 

01-Oct-2016 0.011 0.009 0.009 0.008 0.008 0.008 0.008 

01-Nov-2016 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

19-Nov-2016 0.009 0.008 0.009 0.009 0.008 0.008 0.008 

 

As it can be inferred from Table 8.5, the performance of the updated models in terms of the 

one-step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the 

periods Dec-2015 to May-2016 and Oct-2016 to Nov-2016 is, to some extent, similar to the 

initial model (i.e., the offline model). In contrast, the updated models for all experiments 

outperform significantly the initial model in the periods Jun-216 to Sep-2016.  The updated 

models for the second group of experiments have a slightly better performance than their 

correspondents in the first group. 
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TABLE 8.6. 48-STEPS-AHEAD PREDICTION IN CASE 1. 

  𝝆𝟒𝟖
𝒖  

  First group of experiments Second group of experiments 

 𝝆𝟒𝟖
𝒊  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 

01-Dec-2015 0.082 0.082 0.086 0.079 0.082 0.081 0.080 

16-Dec-2015 0.102 0.102 0.104 0.099 0.102 0.099 0.101 

20-Dec-2015 0.087 0.087 0.090 0.085 0.087 0.085 0.087 

01-Jan-2016 0.129 0.123 0.124 0.131 0.120 0.120 0.127 

21-Jan-2016 0.076 0.081 0.080 0.071 0.078 0.076 0.076 

01-Feb-2016 0.104 0.131 0.130 0.108 0.091 0.087 0.096 

01-Mar-2016 0.080 0.100 0.099 0.085 0.087 0.077 0.092 

01-Apr-2016 0.094 0.123 0.099 0.103 0.092 0.088 0.096 

01-May-2016 0.104 0.144 0.123 0.121 0.111 0.114 0.119 

11-May-2016 0.108 0.139 0.128 0.129 0.111 0.110 0.116 

01-Jun-2016 0.160 0.238 0.169 0.191 0.137 0.137 0.178 

01-Jul-2016 0.157 0.228 0.175 0.198 0.155 0.162 0.214 

04-Aug-2016 0.184 0.195 0.149 0.154 0.112 0.125 0.127 

01-Sep-2016 0.159 0.206 0.138 0.156 0.121 0.132 0.129 

01-Oct-2016 0.098 0.149 0.133 0.109 0.091 0.090 0.095 

01-Nov-2016 0.088 0.209 0.320 0.115 0.079 0.086 0.093 

19-Nov-2016 0.123 0.281 0.410 0.142 0.105 0.112 0.127 

 

As it can be concluded from Table 8.6, in terms of the 48-steps-ahead prediction, the 

performance of the updated model for all experiments over the periods 01-Dec-2015, 16-Dec-

2015, 20-Dec-2015, 01-Jan-2016 and 21-Jan-2016 is somehow the same as that of the initial 

model.  

The updated model in Exps.4 and 5 is slightly superior to the initial model. Regarding the 

period 01-Feb-2016, the updated model in the second group of experiments is superior to the 

initial model while that in the first group has worse performance in comparison with the 

initial model. With respect to the period 01-Mar-2016, only the updated model in Exp.5 has 

better performance than the initial model whereas that in Exp.1 has the worst performance. 

Regarding the period 01-Apr-2016, the updated model in both Exp.4 and Exp.5 performs 

better than the initial model. With respect to the periods 01-Jun-2016 to 19-Nov-2016, for the 
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most cases, the updated model in both Exp.4 and Exp.5 is significantly superior to the initial 

model while the updated model in Exp.1 has the worst performance. 

Over the periods 01-May-2016 and 11-May-2016, the initial model has slightly better 

performance in comparison with the others. 

 

TABLE 8.7. SUMMATION  OVER PH IN CASE 1. 

  𝑺𝒖 

  First group of experiments Second group of experiments 

 𝑺𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 

01-Dec-2015 2.703 2.703 2.785 2.621 2.703 2.668 2.623 

16-Dec-2015 3.239 3.239 3.250 3.157 3.239 3.143 3.173 

20-Dec-2015 2.744 2.744 2.824 2.693 2.744 2.671 2.646 

01-Jan-2016 3.824 3.617 3.694 3.894 3.542 3.571 3.745 

21-Jan-2016 2.426 2.528 2.528 2.342 2.464 2.420 2.436 

01-Feb-2016 3.699 3.980 3.851 3.456 2.800 2.703 3.022 

01-Mar-2016 2.887 3.250 3.174 2.858 2.853 2.632 3.008 

01-Apr-2016 3.111 3.834 3.306 3.330 3.008 2.942 3.132 

01-May-2016 3.561 4.373 3.973 3.906 3.583 3.538 3.687 

11-May-2016 3.639 4.198 3.892 3.818 3.504 3.383 3.465 

01-Jun-2016 6.480 6.333 4.917 5.373 4.414 4.519 4.915 

01-Jul-2016 6.361 6.778 5.172 5.617 5.096 4.993 5.492 

04-Aug-2016 8.021 6.129 4.599 4.664 3.813 4.148 3.834 

01-Sep-2016 6.795 6.196 4.317 4.675 3.934 4.256 3.898 

01-Oct-2016 3.312 4.142 3.787 3.311 2.880 2.879 2.937 

01-Nov-2016 2.911 6.040 8.919 3.767 2.667 2.892 3.002 

19-Nov-2016 3.854 9.682 14.027 4.680 3.282 3.609 3.867 

 

As it can be seen in Table 8.7, in terms of the summation of RMSE over the prediction 

horizon of 48 steps, the updated models in the second group of experiments significantly 

outperform the initial model over the periods 01-Jun-2016 to 01-Oct-2016; over the other 

periods, no considerable difference can be seen between the performance of the updated 

model in the second group of experiments and that of the initial model. To conclude, we can 

say that the updated model in the second group of experiment has better performance than 
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that of the first one and is superior to the initial model. In relation with the parameter Beta, the 

value of 0.1 seems to be the best one. 

In order to graphically compare the performance of the updated model throughout every 

period, with the initial model, the corresponding updated model of Exp.5 was selected as an 

alternative for the initial model since according to the Tables 8.5 to 8.7, the updated model in 

Exp.5 is superior to the others. Figs. 8.7 to 8.23 illustrate the real values of OAT (blue line), 

the one-step-ahead predictions over each period for the initial (red) and the updated model 

(green) of Exp.5. 

 

 

Fig. 8.7. One-step-ahead prediction over the 01-Dec-2015 period in case 1. 
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Fig. 8.8. One-step-ahead prediction over the 16-Dec-2015 period in case 1. 

 

 

 

 

 

Fig. 8.9. One-step-ahead prediction over the 20-Dec-2015 period in case 1. 
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Fig. 8.10. One-step-ahead prediction over the 01-Jan-2016 period in case 1. 

 

 

 

 

 

Fig. 8.11. One-step-ahead prediction over the 21-Jan-2016 period in case 1. 

 

 

 



 

  184  
 

 

Fig. 8.12. One-step-ahead prediction over the 01-Feb-2016 period in case 1. 

 

 

 

 

 

Fig. 8.13. One-step-ahead prediction over the 01-Mar-2016 period in case 1. 
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Fig. 8.14. One-step-ahead prediction over the 01-Apr-2016 period in case 1. 

 

 

 

 

 

 

Fig. 8.15. One-step-ahead prediction over the 01-May-2016 period in case 1. 
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Fig. 8.16. One-step-ahead prediction over the 11-May-2016 period in case 1. 

 

 

 

 

 

 

Fig. 8.17. One-step-ahead prediction over the 01-Jun-2016 period in case 1. 
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Fig. 8.18. One-step-ahead prediction over the 01-Jul-2016 period in case 1. 

 

 

 

 

 

 

Fig. 8.19. One-step-ahead prediction over the 04-Aug-2016 period in case 1. 

 

 

 



 

  188  
 

 

Fig. 8.20. One-step-ahead prediction over the 01-Sep-2016 period in case 1. 

 

 

 

 

 

 

 

Fig. 8.21. One-step-ahead prediction over the 01-Oct-2016 period in case 1. 
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Fig. 8.22. One-step-ahead prediction over the 01-Nov-2016 period in case 1. 

 

 

 

 

 

 

Fig. 8.23. One-step-ahead prediction over the 19-Nov-2016 period in case 1. 
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8.4.2. Case Study 2: OAT model for the University of Almeria 

The data provided by the University of Almeria has been collected over the years 2010 to 

2012, including climate variables such as outside air temperature, outside air humidity, 

outside solar radiation, etc. In the design process, the data in range 02-Sep-2010 to 11-Sep-

2010 (i.e., 10 days) with a sample rate of 5 minutes was used to create the training, testing and 

validation sets with 1548, 516 and 516 points, respectively. ApproxHull was applied on the 

whole data which resulted in 880 convex hull points, that were included in the training set. 

Like the previous case study in Section 8.4.1, 73 lags out of the available 300 lags (i.e., 

corresponding to one day and one hour) were considered by MOGA..  The formal description 

of the selected OAT model is given in Eq. (8.29). 

 

𝑇�̂�(𝑘 + 1) = 𝑓(𝑇𝑜(𝑘), 𝑇𝑜(𝑘 − 1), 𝑇𝑜(𝑘 − 10), 𝑇𝑜(𝑘 − 25), 𝑇𝑜(𝑘 − 30), 𝑇𝑜(𝑘 − 38), 𝑇𝑜(𝑘

− 44), 𝑇𝑜(𝑘 − 276), 𝑇𝑜(𝑘 − 296)) 

 

(8.29) 

 

According to Eq. (8.29), the selected model has 9 inputs which are lags of OAT. The 

corresponding RBFNN model has 14 hidden neurons. To simulate the online adaptation 

process, 12 periods over the years 2010 and 2011 were considered, shown in Table 8.8. The 

samples of each period were normalized in the range [−1,1]. Since the model has only used 9 

lags out of the 73 lags in the design process, the initial convex hull of the model should be 

obtained from the reduced version of the whole data which was supplied to MOGA.  

ApproxHull was hence applied to the reduced dataset with 10 dimensions (i.e., 9 inputs and 

the target pattern) which resulted in 544 convex hull points that were included in the initial 

training-sliding window.  

For all experiments, the scenario of model update throughout the online adaptation process is 

the same as that for the previous case study. In this case study, 9 different experiments 

corresponding to 9 different combinations of 𝜏𝑓, 𝛽 and 𝜂 values were carried out. For all 

experiments, the sizes of the training and the additional sliding-window size were set to 1548 

and 500, respectively. The maximum number of iterations of the Levenberg-Marquardt 

method was set to 100 for all experiments.  

The experiments’ specification is given in Table 8.9. “ES” in Table 8.9 stands for Early-

Stopping method, using the additional sliding window as a test set. As we can see in Table 

8.9, three groups of experiments were carried out. For the first group of experiments, the 

model is updated without applying the early-stopping method. In this case, for each update, 
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the training process ends when the three standard termination criteria are met, without 

considering the early stopping method. For the second and third groups of experiments, the 

early-stopping method was applied. In this situation, for the first five iterations of the training 

process, only the three standard termination criteria are checked. After the initial five 

iterations, training stops when the three termination criteria (2.40 – 2.42), or early-stopping is 

met. Early stopping method uses the last 4 iterations. 

 

TABLE 8.8. PERIODS OVER THE YEARS 2010 AND 2011 IN CASE 2. 

Period name Range 

Oct 01-Oct-2010 to 19-Oct-2010 (19 days) 

Nov 09-Nov-2010 to 28-Nov-2010 (20 days) 

Dec 04-Dec-2010 to 15-Dec-2010 (12 days) 

Jan 11-Jan-2011 to 31-Jan-2011 (21 days) 

Feb 09-Feb-2011 to 28-Feb-2011 (21 days) 

Mar 11-Mar-2011 to 31-Mar-2011 (21 days) 

Apr 07-Apr-2011 to 12-Apr-2011 (6 days) 

May 20-May-2011 to 31-May-2011 (12 days) 

Jun 02-Jun-2011 to 23-Jun-2011(22 days) 

Jul 08-Jul-2011 to 31-Jul-2011 (24 days) 

Aug 01-Aug-2011 to 31-Aug-2011 (31 days) 

Sept 02-Sept-2010 to 11-Sept-2010 (10 days) 

 

  

TABLE 8.9. EXPERIMENT’S SPECIFICATION IN CASE 2. 

 𝝉𝒇 𝜷 𝜼 ES 

First group of experiments 

Exp.1 0.001 0.0 0.005 No 

Exp.2 0.001 0.1 0.005 No 

Exp.3 0.001 0.5 0.005 No 

Second group of experiments 

Exp.4 0.001 0.0 0.005 Yes 

Exp.5 0.001 0.1 0.005 Yes 

Exp.6 0.001 0.5 0.005 Yes 

Third group of experiments 

Exp.7 0.0001 0.0 0.005 Yes 

Exp.8 0.0001 0.1 0.005 Yes 

Exp.9 0.0001 0.5 0.005 Yes 
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Similarly, to compare the experiments, the criteria stated in Table 8.3 were used. Since in this 

case study, as in the previous one, a sample rate of 5 minutes were considered, the number of 

samples in each period is obtained as 12*24=288*number of days.  The statistical results 

obtained from the three groups of experiments are given in Table 8.10.  

 

TABLE 8.10. STATISTICAL RESULTS OF EXPERIMENTS IN CASE 2. 

 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰 𝒏𝑪𝑯 

First group of experiments 

Exp.1 414 58393 377 24 4.25 184 

Exp.2 2134 56684 366 38 3.68 128 

Exp.3 7376 51447 361 61 3.11 191 

Second group of experiments 

Exp.4 419 58390 375 23 4.35 176 

Exp.5 2103 56712 369 37 3.57 130 

Exp.6 7214 51611 359 72 3 180 

Third group of experiments 

Exp.7 420 58385 379 23 10.65 182 

Exp.8 2088 56727 369 46 6.52 127 

Exp.9 7404 51419 361 106 4.65 164 

 

According to this Table for each group of experiments, increasing 𝛽 causes an increase in 𝑛𝑇 , 

due to the fact that the new arriving sampls has more chance to be inserted into the training 

sliding-window. This, in turn, causes an increase in 𝑛𝑈 due to an increase of training sliding-

window updates. Moreover, we can see that in all experiments, 𝑛𝑈 is much smaller than 𝑛𝑇. 

This result reveals the fact that, the proposed method can prevent unnecessary parameter 

updates whenever the training sliding-window is updated due to the insertion of the new 

arriving sample. 

For all experiments, the initial and updated models have been evaluated over each period in 

the same way used in Section 8.4.1. The evaluation results of the three groups of experiments 

are given in Tables 8.11 to 8.13. 
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TABLE 8.11. ONE-STEP-AHEAD PREDICTION IN CASE 2. 

  𝝆𝟏
𝒖 

  First group of 

experiments 

Second group of 

experiments 

Third group of 

experiments 

 𝝆𝟏
𝒊  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9 

Oct 0.075 0.007 0.007 0.006 0.007 0.007 0.006 0.007 0.006 0.006 

Nov 0.387 0.008 0.008 0.007 0.009 0.009 0.007 0.008 0.008 0.007 

Dec 0.290 0.008 0.008 0.007 0.009 0.007 0.008 0.007 0.007 0.007 

Jan 0.480 0.009 0.005 0.005 0.009 0.006 0.005 0.006 0.005 0.005 

Feb 0.409 0.009 0.007 0.008 0.009 0.009 0.007 0.007 0.007 0.007 

Mar 0.293 0.008 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.006 

Apr 0.152 0.007 0.006 0.006 0.006 0.006 0.008 0.006 0.006 0.006 

May 0.046 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 

Jun 0.024 0.006 0.006 0.006 0.006 0.006 0.007 0.010 0.007 0.006 

Jul 0.007 0.006 0.006 0.006 0.006 0.006 0.007 0.417 0.039 0.008 

Aug 0.017 0.007 0.006 0.006 0.007 0.006 0.006 2.271 0.022 0.008 

Sept 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.006 

 

As it can be concluded from Table 8.11, the performance of the updated model for the one-

step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the periods 

Oct to Jun is much better than that of the initial model. Regarding the period Aug, the 

performance of the updated model for all experiments except Exps.7 and 8 is also better than 

that of the initial model. Moreover, for all experiments except Exps.7 and 8, the performance 

of the updated model over the period Jul is somehow the same as that of the initial model. 

Furthermore, over the period Sept, for all experiments, similar performances of the updated 

model and the initial model can be observed, which is due to the fact that the range of data, in 

those months, is similar to the range used in the offline design (12 days in September of the 

last year). 
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TABLE 8.12. 48-STEPS-AHEAD PREDICTION IN CASE 2. 

  𝝆𝟒𝟖
𝒖  

  First group of 

experiments 

Second group of 

experiments 

Third group of 

experiments 

 𝝆𝟒𝟖
𝒊  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9 

Oct 0.161 0.119 0.124 0.098 0.122 0.120 0.106 0.134 0.125 0.085 

Nov 0.387 0.126 0.158 0.107 0.159 0.159 0.137 0.307 0.112 0.134 

Dec 0.314 0.140 0.150 0.148 0.173 0.149 0.162 0.202 0.146 0.160 

Jan 0.469 0.117 0.113 0.181 0.168 0.180 0.147 0.212 0.151 0.146 

Feb 0.407 0.147 0.138 0.165 0.150 0.166 0.148 0.212 0.135 0.144 

Mar 0.307 0.149 0.159 0.127 0.156 0.126 0.150 0.193 0.127 0.158 

Apr 0.216 0.144 0.192 0.110 0.148 0.116 0.134 0.139 0.143 0.127 

May 0.115 0.135 0.136 0.115 0.135 0.099 0.119 0.112 0.141 0.165 

Jun 0.103 0.116 0.133 0.087 0.115 0.072 0.105 0.083 0.108 0.936 

Jul 0.079 0.084 0.120 0.135 0.084 0.090 0.117 0.099 0.095 0.127 

Aug 0.081 0.097 0.109 0.108 0.080 0.097 0.100 0.102 0.101 0.120 

Sept 0.051 0.068 0.087 0.098 0.063 0.083 0.083 0.070 0.107 0.102 

 

With respect to the 48-steps-ahead prediction (i.e., 4 hours ahead prediction), in all 

experiments, the updated model considerably outperforms the initial model over the periods 

Nov to Apr. Regarding the periods May and Jun, for Exp.5, the updated model has the best 

performance and is superior to the initial model.  For Exp.4, the updated model has the best 

performance over the period Aug in comparison with the others and has the same 

performance as the initial model. Moreover, the initial model over the periods Jul and Sept 

has the best performance, in comparison with the corresponding updated model of each 

experiment. 
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TABLE 8.13. SUMMATION OVER PH IN CASE 2. 

  𝑺𝒖 

  First group of 

experiments 

Second group of 

experiments 

Third group of 

experiments 

 𝑺𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9 

Oct 7.442 4.077 4.990 3.740 4.423 4.373 3.869 4.092 4.033 2.916 

Nov 19.98 5.640 6.124 4.283 5.528 6.475 4.736 8.756 4.532 4.543 

Dec 16.15 5.853 6.004 5.225 6.156 5.280 5.019 6.662 5.306 4.877 

Jan 23.79 5.245 4.117 5.456 5.346 5.457 4.343 6.294 4.396 4.672 

Feb 20.77 7.208 5.021 5.645 5.503 5.782 4.853 6.732 4.481 4.973 

Mar 16.17 7.880 5.745 4.252 6.130 5.017 4.598 6.453 4.218 5.292 

Apr 10.80 5.639 5.533 4.073 4.883 4.255 4.308 4.827 3.893 3.955 

May 5.119 4.267 4.298 4.299 4.291 3.349 3.963 3.709 4.222 4.739 

Jun 4.239 3.629 4.008 3.033 3.790 2.540 3.646 2.785 3.341 7.373 

Jul 2.716 2.733 3.855 3.939 2.699 3.009 4.139 6.107 3.831 4.147 

Aug 3.026 3.179 3.444 3.730 2.718 3.325 3.495 9.037 3.501 3.836 

Sept 1.684 2.210 2.765 3.300 2.082 2.889 3.130 2.482 3.202 3.297 

 

In order to analyze the performance of the initial and updated model over the whole prediction 

horizon within each period, we compared the initial model with the updated model in terms of 

the summation of RMSEs over the prediction horizon of 48 steps, within each period. 

Similarly, the bold values in Table 8.13 denote the best result over each period. In all 

experiments, the updated model performs much better than the initial model over the 

prediction horizon for the periods Oct to Apr. For the remaining periods, in all experiments 

except in Exp.7 for the periods Jul and Aug and in Exp.9 for the period Jun, the behavior of 

the updated model over the prediction horizon is, to some extent, similar with that of the 

initial model. 

To sum up, based on the evaluation results shown in Tables 8.11 to 8.13, we can say that in 

all experiments, the performance of the updated model within the periods of autumn and 

winter is much better than that of the initial model, which has been trained based on 

September data. On the other hand, in all experiments except Exp.7 and Exp.9, the updated 

model within the periods of spring and summer can keep the mappings which have been 

obtained for the previous periods. Hence, the behavior of the updated models, for all periods, 
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is better or similar to that of the initial model, the latter obtained when the range of the 

considered period is similar to the one used for off-line model design. 

In order to graphically compare the performance of the updated model with the initial model, 

the updated model of Exp.1 was selected. Figs. 8.24 to 8.35 illustrate the one-step-ahead 

prediction over each period for both initial and updated model of Exp.1. 

 

 

Fig. 8.24. One-step-ahead prediction over the Oct period in case 2. 

 

 

Fig. 8.25. One-step-ahead prediction over the Nov period in case 2. 
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Fig. 8.26. One-step-ahead prediction over the Dec period in case 2. 

 

 

 

 

 

Fig. 8.27. One-step-ahead prediction over the Jan period in case 2. 
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Fig. 8.28. One-step-ahead prediction over the Feb period in case 2. 

 

 

 

 

 

Fig. 8.29. One-step-ahead prediction over the Mar period in case 2. 
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Fig. 8.30. One-step-ahead prediction over the Apr period in case 2. 

 

 

 

 

 

Fig. 8.31. One-step-ahead prediction over the May period in case 2. 
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Fig. 8.32. One-step-ahead prediction over the Jun period in case 2. 

 

 

 

 

 

Fig. 8.33. One-step-ahead prediction over the Jul period in case 2. 
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Fig. 8.34. One-step-ahead prediction over the Aug period in case 2. 

 

 

 

 

 

Fig. 8.35. One-step-ahead prediction over the Sept period in case 2. 

 

As we can see in Figs. 8.24 to 8.35, there is a significant difference between the initial and the 

updated models at the end of Oct to May periods. For these periods, comparing the predicted 

value (the green curve) with the corresponding real value (the black curve), the updated model 

has a much higher level of accuracy at the end of each period. As it can be seen, in those 
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months, the output range of the initial model is similar to the one obtained in September, 

where the off-line design was done  Moving to summer months, we can see that the difference 

between the updated model and the initial model is decreasing, but with the former 

performing better. It reflects the fact that the updated model not only keeps the mappings 

which have been constructed over the periods of winter but also adapts itself with new 

samples arriving during the summer periods. 

 

8.5. Comparison between the two case studies 

In order to compare the first case study (i.e., OAT model of the University of Algarve) with 

the second one (i.e., OAT model of the University of Almeria), Exp.4 from the first case 

study and Exp.1 from the second one were selected (i.e., the corresponding graphs of Exp.4 

and Exp.1 over each period were shown in Section 8.4.1 and 8.4.2, respectively.). Fig 8.36 

shows the comparison of the updated models at the end of each period in Exp.4 and Exp.1 

with their corresponding initial model in terms of RMSE for the 48-steps-ahead prediction. 

As it can be seen in Fig. 8.36, the difference between the performance of the updated model in 

Exp.1 (i.e., Fig 8.36(b)) and that of its corresponding initial model is significantly larger than 

that in Exp.4 (i.e., 8.36(a)). Regarding the initial model of case study 1, we can say that the 

initial model could somehow cover the operating regions of all periods except 1-Aug-2016 

and 1-Sep-2016, where model update was necessary. This stems from the fact that the range 

of data used to design the initial model (i.e., November data) covers, to some extent, the range 

of most periods.  

In contrast, in case 2, the initial model has a considerably worse performance than the updated 

model, for the majority of the periods. As it can be seen in Fig. 8.36(b), the performance 

difference between over periods Nov to Apr is considerable. This is explained by the 

observation that in September the temperature ranges from 20º to 34º, roughly (please see Fig. 

8.35), and in several months the minimum temperature is much lower, while in Summer 

months the maximum is higher than 34º. 
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(a) 

 

(b) 

Fig. 8.36. Comparison of the updated model with its corresponding initial model. (a) Exp.4 in 

case study 1; (b) Exp.1 in case study 2. 

 

  

8.6. Comparison with other methods 

This section addresses the comparison of the proposed online adaptation method, herein after 

called CHSWNLM, with others.  

As it has been referred, in [168] two methods using a sliding window strategy, called 

SWNLM and SAWNLM were proposed, and served as the basis of the method introduced in 

this thesis. Recalling, in SWNLM, the sliding window is managed using FIFO policy, while 
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in the SAWNLM, the sliding-window management policy is based on a dissimilarity measure. 

In order to compare the CHSWNLM with the SWNLM and SAWNLM methods, data from 

case study 2 (i.e., the OAT model for the University of Almeria) was used with the same 

scenario mentioned in Section 8.4.2.  The statistical and evaluation results are shown in Table 

8.14 and 8.15, respectively. In Table 8.14, 𝒏 denotes the number of new arriving samples over 

all periods. The other statistics in this table are ones used in Table 8.3. In Table 8.15, 𝝆𝟏 and 

𝝆𝟒𝟖 denote the scaled one-step-ahead and the 48-steps-ahead 𝑅𝑀𝑆𝐸𝑠 associated with the 

updated model at the end of each period, respectively. The bold values in these tables refer to 

the best results. 

 

TABLE 8.14. COMPARISON OF STATISTICAL RESULTS OBTAINED BY EXP.1, 

SWNLM AND SAWNLM. 

 𝒏 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰 
CHSWNLM 59184 414 58393 377 24 4.25 

SWNLM 59184 59184 - 0 270 2.77 

SAWNLM 59184 58794 - 390 52 3.21 

 

 As it can be seen in Table 8.14, the total number of new arriving samples which have been 

inserted into the training sliding window (𝒏𝑻), the total number of updates (𝒏𝑼) and the total 

number of iterations (𝒏𝑼 × 𝒏𝑰) in CHSWNLM are much smaller than in the other methods. 

 

TABLE 8.15. COMPARISON OF CHSWNLM WITH SWNLM AND SAWNLM. 

 𝝆𝟏 𝝆𝟒𝟖 

CHSWNLM SWNLM SAWNLM CHSWNLM SWLNM SAWNLM 

Oct 0.030 0.015 0.022 0.115 0.115 0.114 

Nov 0.045 0.042 0.040 0.148 0.854 0.144 

Dec 0.008 6.977 0.008 0.140 2.855 0.162 

Jan 0.009 143.44 0.007 0.118 1.278 0.133 

Feb 0.010 8.353 0.007 0.149 1.006 0.158 

Mar 0.008 0.024 0.007 0.150 0.104 0.168 

Apr 0.007 0.150 0.007 0.145 0.160 0.142 

May 0.007 0.017 0.007 0.136 0.112 0.131 

Jun 0.006 0.554 0.006 0.116 0.149 0.112 

Jul 0.007 0.010 0.007 0.084 0.111 0.096 

Aug 0.008 0.013 0.008 0.094 0.089 0.127 

Sept 0.006 0.013 0.006 0.068 0.067 0.120 

 

According to Table 8.14, SWNLM is clearly the worst method. Regarding  CHSWNLM and 

SAWNLM the mean values of 𝝆𝟏 are 0.0126 and 0.0110, respectively, while the 
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corresponding values for 𝝆𝟒𝟖 are 0.1219 and 0.1339. Therefore, for this data, SAWNLM is 

better than CHSWNLM for small prediction horizons, but worse for large ones. 

As stated in Section 8.2.2, the method proposed in [179] is an efficient online version of 

offline method ELM [191, 192]. In this method, called OS-ELM, the centers and spreads are 

arbitrarily chosen and only the weights as linear parameters are updated. This method was 

evaluated in several benchmarks in classification, regression and time series problems. It was 

also evaluated using two types of feedforward networks: MLPs and RBFNNs. Moreover in 

[179], the proposed method was compared with other online methods including RAN [180], 

RAN-EKF [171], MRAN [181] and GGAP-RBF [193]. In this study, the CHSWNLM was 

applied on Mackey-Glass time series stated in [179] where a RBFNN model was considered. 

The time series problem is generated from the following delay differential equation as (8.30). 

 

𝑑𝑥(𝑡)

𝑑(𝑡)
=

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 𝑏𝑥(𝑡) 

(8.30) 

 

By integrating  Eq. (8.30) over the time interval [𝑡, 𝑡 + 1], the equation for one-step-ahead 

prediction is obtained as Eq. (8.31). 

  

𝑥(𝑡 + 1) =
2 − 𝑏

3
𝑥(𝑡) +

𝑎

2 + 𝑏
[

𝑥(𝑡 + 1 − 𝜏)

1 + 𝑥10(𝑡 + 1 − 𝜏)
+

𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
] 

(8.31) 

 

The time series used is generated under the condition 𝑥(𝑡 − 𝜏) = 0.3 for 0 ≤ 𝑡 ≤ 𝜏 , 𝑎 = 0.2, 

𝑏 = 0.1 and 𝜏 = 17 and predicted using the four past samples 𝑠𝑘−50, 𝑠𝑘−44, 𝑠𝑘−38 and 𝑠𝑘−32 

for each time instant 𝑘. Therefore, the time series predictive model can be described as Eq. 

(8.32). 

 

𝑦(𝑘) = 𝐹(𝑠𝑘−50, 𝑠𝑘−56, 𝑠𝑘−62, 𝑠𝑘−68) (8.32) 

       

In the phase of performance evaluation in [179], the weights as linear parameters of the 

corresponding RBFNN model are adjusted using the proposed online adaptation method 

based on the training set of size 4000 samples;  then the model is evaluated based on the one-

step-ahead prediction RMSE  in the training and in a testing set of size 500 samples. All 

samples were scaled in the range [0, 1]. In our work, in order to compare the CHSWNLM 

with the others in [179], a fixed-structure RBFNN model with 120 hidden neurons was used 
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as the one that was selected in the OS-ELM method. To keep further consistency, in our 

study, an initial sliding window of the first 1620 samples (i.e., number of hidden neurons + 

1500) was considered. Moreover, the next 650 samples were selected to initialize the 

additional sliding window and then the next 1730 samples were considered as new arriving 

samples throughout online adaptation process. Finally, the last 500 samples were constituted 

the testing set. In this study, 𝝉𝒇, 𝜼 and 𝜷 were set to 0.001, 0.005 and 0.5, respectively.  

The comparison of evaluation results obtained by CHSWNLM and those achieved by the 

others methods in [179] is given in Table 8.16. In this Table, 𝜌𝑡𝑟 and 𝜌𝑡𝑒 denote the average 

of RMSE on the training and testing sets over 50 trials, respectively. In addition, 𝑛𝑛 refers to 

the number of hidden neurons in the corresponding RBFNN model. 

As it can be observed in Table 8.16, CHSWNLM is much superior to the other methods. 

 

TABLE 8.16. COMPARISON BETWEEN THE CHSWNLM METHOD AND OTHER 

METHODS DESCRIBED IN [179].  

 𝜌𝑡𝑟 𝜌𝑡𝑒 𝑛𝑛 

OS-ELM 0.0184 0.0186 120 

GGAP-RBF 0.0700 0.0368 13 

MRAN 0.1101 0.0337 16 

RAN-EKF 0.0726 0.0240 23 

RAN 0.1006 0.0466 39 

CHSWNLM 0.0016 0.0016 120 

 

 

8.7. Conclusions 

In this chapter, a sliding-window based online adaptation method was proposed to update a 

RBFNN model, previously designed offline. The proposed method is an extension of the ones 

proposed in [168], where the convex hull concept is employed, incorporating the current 

sample in the training sliding window if it lies outside the current convex hull.  

Experimental results showed that the proposed method can considerably improve the 

performance of offline designed models for time-varying processes. In addition, it presents a 

performance similar to SAWNLM, and much better performance than other methods.  
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9. Conclusions and future work 

9.1. Conclusions 

This PhD was intended to address two important problems in the model design process which 

are very important for an HVAC MPC application: data selection and online model 

adaptation. 

In a first step, a sequence of predictive RBFNN models were designed offline with the aim of 

intelligently control HVAC systems to save energy and provide thermal comfort. Since 

RBFNN models are data-driven models, data has a critical role in the model’s performance. 

Inclusion of the input range boundary data samples in the training set is vital as they indicate 

the input-output range of system/process. To identify such samples, convex hull algorithms 

are applied. Due to the inefficiency of standard convex hull algorithms in terms of time and 

space in high dimensions (they take 𝑂(𝑛⌊
𝑑

2
⌋) time and space where 𝑛 and 𝑑 denote the number 

of samples and dimensions, respectively), as the first phase of this PhD thesis a new 

randomized approximation convex hull algorithm in high dimensions called ApproxHull was 

proposed, to cope with the limitations of standard convex hull algorithms in high dimensions. 

ApproxHull takes 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) time where 𝑣 denotes the number of convex hull 

vertices found, and 𝑖 and 𝑝 denote the number of iterations and population size, respectively.  

ApproxHull was evaluated (Chapter 4) by comparing it to Quickhull [8], a known efficient 

standard real convex hull algorithm, and also to Wang’s algorithm [68], a known 

approximation algorithm in high dimensions, where the Quickhull algorithm was considered a 

baseline for the comparisons. The simulation results obtained by applying them on a number 

of artificial data sets showed that all vertices identified by ApproxHull belong to the set of 

vertices of the real convex hull obtained by Quickhull, indicating a 100% precision, and also 

demonstrated that ApproxHull could identify a higher percentage of vertices of the real 

convex hull in comparison to the percentage identified by Wang’s algorithm, indicating a 

higher recall. The ApproxHull’s performance was also evaluated in classification and 

regression problems by applying it as a data selection method to create a proper training set 

for designing models. For classification problems, SVM models were used while for 

regression problems, MLP models were employed. In this evaluation, ApproxHull was 

compared to a common random data selection method. The simulation results showed that 

ApproxHull had better performance than random selection method for all classification and 
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regression problems except for one classification and one regression problem in which both 

selection methods presented the same results. 

As in this work the MOGA was used to design RBFNN models, the influence of applying 

ApproxHull in the MOGA model design framework was studied (Chapter 5) by comparing it 

to the random selection method. The results demonstrated that ApproxHull had better 

performance than random selection method in the context of the MOGA model design 

framework. Two strategies were followed to design the models by the MOGA. In the first, 

ApproxHull was employed on the whole data set to select fixed training, testing and 

validation data sets to fit the parameters of all models in all generations of the MOGA. In the 

second strategy, ApproxHull was independently applied for each single model to create 

distinct training, testing and validation sets. The results showed that not only, the fixed and 

distinct data sets strategies presented the same performance, but also that the run time of the 

first strategy was much smaller than that of the second one. 

To demonstrate the use of ApproxHull in real applications, three case studies were introduced 

(Chapter 6). The two first corresponded to the estimation of the electricity consumption of a 

building and to the application of MPC to the HVAC system in several rooms in order to save 

energy and maintain thermal comfort. They demonstrated that the models designed by 

benefiting from ApproxHull and the MOGA framework are comparable to those obtained by 

other methods, but with much less complexity. In the third case study, which was intended to 

develop an intelligent support system for automatic diagnosis of CVAs, a set of RBFNN 

classification models were designed using ApproxHull and MOGA. This case study proved 

the capability of ApproxHull to be applied on large size data sets in high dimensions. To 

provide a more in-depth analysis of ApproxHull’s performance, it was compared (Chapter 7) 

to other three methods, including random data selection, an entropy based unsupervised data 

selection method proposed in [13] and a hybrid method involving ApproxHull and the 

entropy based data selection method. Based on the experimental results, in most cases, the 

ApproxHull and the hybrid method were superior to the others. 

In the second phase of the work (Chapter 8), a convex-hull-based sliding window online 

adaptation method was proposed. The goal was to update the models training data by 

capturing newly arrived points that are out of the known input-output range, and hence being 

able to adapt the models over time. The basic idea behind the method consists in comparing 

newly arrived points to the known convex hull obtained by ApproxHull. If the new point is 

outside the known convex hull (and sufficiently far) it is considered to update the model. To 

evaluate the proposed method, two case studies were considered so that in both cases, a 
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RBFNN predictive model was considered to forecast the one-step-ahead outside air 

temperature, where the corresponding model was gradually updated over a number of periods 

in one year. The results showed that the proposed method could prevent unnecessary updates 

while keeping the model in an acceptable level of accuracy, and also comparable to, or better 

than to other online adaptation methods. 

      

9.2. Future works 

Experimental results showed that the hybrid data selection method involving ApproxHull and 

the entropy based data selection method proposed in [13], in most cases was comparable to 

ApproxHull and superior to the other methods. This means that the combination of 

ApproxHull to other filtering methods (e.g., unsupervised methods) should be studied. For 

example, a clustering based method could be a proper alternative for random data selection 

method. Based on such studies, a data selection tool could be provided allowing the user to 

create training, testing and validation sets using different methods to hybridize with 

ApproxHull. 

Regarding the ApproxHull method, one of the termination criteria is the maximum 

approximation distance of the furthest points to the current convex hull. The evaluation of this 

criterion needs finding 2 × 𝑑 nearest neighbors of each furthest point and then solving a 

quadratic optimization problem. Replacing this criterion with the heuristic applied in the new 

proposed online adaptation method could be studied in terms of the run time and the 

performance. In this work the proposed online adaptation method was evaluated based on 

only one time series problem (i.e., the outside air temperature model). Applying the method 

for a variety of case studies in different situations and comparing it with other online 

adaptation methods could be considered. 
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