HAMID REZA KHOSRAVANI

ARTIFICIAL NEURAL NETWORK MODELS:
DATA SELECTION AND ONLINE ADAPTATION

UNIVERSIDADE DO ALGARVE

Faculdade de Ciéncias e Tecnologia
2017

HAMID REZA KHOSRAVANI

ARTIFICIAL NEURAL NETWORK MODELS:
DATA SELECTION AND ONLINE ADAPTATION

Doutoramento em Engenheira Informatica
(Especialidade em Inteligéncia Artificial)

Trabalho efeuado sob a orientacao de:

Antonio Eduardo de Barros Ruano e Pedro Miguel Frazao F. Ferreira

UNIVERSIDADE DO ALGARVE

Faculdade de Ciéncias e Tecnologia
2017

ARTIFICIAL NEURAL NETWORK MODELS:

DATA SELECTION AND ONLINE ADAPTATION

Declaragao de autoria de trabalho

Declaro ser o autor deste trabalho, que ¢ original e inédito. Autores e trabalhos consultados

estao devidamente citados no texto e constam da listagem de referéncias incluida.

Hamid Reza Khosravani

Copyright: Hamid Reza Khosravani

A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no
Cdédigo do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra,
independentemente do meio utilizado, bem como de a divulgar através de repositorios
cientificos e de admitir a sua copia e distribuigdo para fins meramente educacionais ou de
investigacdo € ndo comerciais, conquanto seja dado o devido crédito ao autor e editor

respetivos.

To my love, Elmira
To my parents, Parvin and Mehdi
To my brother, Ehsan

Acknowledgements

Undoubtedly doing this PhD would have not been possible without the sincere support and
guidance that I received from many people throughout four years studying at the University of
Algarve. First of all, I would like to express my special thanks to my supervisors Prof.
Antonio Ruano and Prof. Pedro Ferreira for all their precious advices and encouragements
allowing me to grow as a research scientist. They were not only continuously supporting me

but also gave me a chance to find myself in academic atmosphere.

I greatly appreciate the Erasmus Mundus SALAM scholarship program for kindly funding me
towards this PhD. I also would like to particularly acknowledge Prof. Hamid Shahbazkia as
the coordinator of SALAM scholarship program for all his supports during these years.

Many thanks also to my friend, Sergio Silva, as the CSI laboratory’s administrator for his
non-stop help and support in providing all stuffs that I needed to proceed my PhD. I also
would like to appreciate Prof. Eslam Nazemi who was one the most influent people in my

academic life for his great guidance towards my PhD.

My deepest acknowledgement goes to my beloved, resilient and patient wife Elmira for
bearing and accompanying me shoulder to shoulder in ups and downs throughout last four

years.

Last but not least, I would like to express my special appreciate to my parents and my brother
Ehsan for their ever support and encouragement during my life that enabled me to achieve

this goal.

Abstract

Energy consumption has been increasing steadily due to globalization and industrialization.
Studies have shown that buildings have the biggest proportion in energy consumption; for
example in European Union countries, energy consumption in buildings represents around
40% of the total energy consumption. Hence this PhD was intended towards managing the
energy consumed by Heating, Ventilating and Air Conditioning (HVAC) systems in buildings
benefiting from Model Predictive Control (MPC) technique. To achieve this goal, artificial
intelligence models such as neural networks and Support Vector Machines (SVM) have been
proposed because of their high potential capabilities of performing accurate nonlinear
mappings between inputs and outputs in real environments which are not noise-free. In this
PhD, Radial Basis Function Neural Networks (RBFNN) as a promising class of Artificial
Neural Networks (ANN) were considered to model a sequence of time series processes where
the RBFNN models were built using Multi Objective Genetic Algorithm (MOGA) as a design
platform. Regarding the design of such models, two main challenges were tackled; data
selection and model adaptation.

Since RBFNNs are data driven models, the performance of such models relies, to a good
extent, on selecting proper data throughout the design phase, covering the whole input-output
range in which they will be employed. The convex hull algorithms can be applied as methods
for data selection; however the use of conventional implementations of these methods in high
dimensions, due to their high complexity, is not feasible. As the first phase of this PhD, a new
randomized approximation convex hull algorithm called ApproxHull was proposed for high
dimensions so that it can be used in an acceptable execution time, and with low memory
requirements. Simulation results showed that applying ApproxHull as a filter data selection
method (i.e., unsupervised data selection method) could improve the performance of the
classification and regression models, in comparison with random data selection method. In
addition, ApproxHull was employed in real applications in terms of three case studies. The
first two were in association with applying predictive models for energy saving. The last case
study was related to segmentation of lesion areas in brain Computed Tomography (CT)
images. The evaluation results showed that applying ApproxHull in MOGA could result in
models with an acceptable level of accuracy. Specifically, the results obtained from the third
case study demonstrated that ApproxHull is capable of being applied on large size data sets in
high dimensions. Besides the random selection method, it was also compared with an entropy

based unsupervised data selection method and a hybrid method involving ApproxHull and the

entropy based method. Based on the simulation results, for most cases, ApproxHull and the

hybrid method achieved a better performance than the others.

In the second phase of this PhD, a new convex-hull-based sliding window online adaptation
method was proposed. The goal was to update the offline predictive RBFNN models used in
HVAC MPC technique, where these models are applied to processes in which the data input-
output range changes over time. The idea behind the proposed method is capturing a new
arriving point at each time instant which reflects a new range of data by comparing the point
with current convex hull presented via ApproxHull. In this situation the underlying model’s
parameters are updated based on the new point and a sliding window of some past points. The
simulation results showed that not only the proposed method could efficiently update the

model while a good level of accuracy is kept but also it was comparable with other methods.

Keywords: Neural Networks; Multi-Objective Genetic Algorithm; Data Selection; Online

Adaptation.

Resumo

Devido aos processos de industrializagdo e globalizacdo o consumo de energia tem
aumentado de forma continua. A investigacdo sobre o consumo mostra que os edificios
consomem a maior fatia de energia. Por exemplo nos paises da Unido Europeia essa fatia
corresponde a cerca de 40% de toda a energia consumida. Assim, esta tese de Doutoramento
tem um objetivo pratico de contribuir para melhorar a gestdo da energia consumida por
sistemas Heating, Ventilating and Air Conditioning (HVAC) em edificios, no ambito de uma
estratégia de controlo preditivo baseado em modelos. Neste contexto foram ja propostos
modelos baseados em redes neuronais artificiais € maquinas de vetores de suporte, para
mencionar apenas alguns. Estas técnicas t€ém uma grande capacidade de modelar relagdes nao-
lineares entre entradas e saidas de sistemas, ¢ sdo aplicaveis em ambientes de operagdo, que,
como sabemos, estdo sujeitos a varias formas de ruido. Nesta tese foram consideradas redes
neuronais de funcdo de base radial, uma técnica consolidada no contexto da modelagdo de
séries temporais. Para desenhar essas redes foi utilizada uma ferramenta baseada num
algoritmo genético multi-objectivo. Relativamente ao processo de desenho destes modelos,
esta tese versa sobre dois aspetos menos estudados: a selegao de dados e a adaptagdo em linha
dos modelos.

Uma vez que as redes neuronais artificiais sdo modelos baseados em dados, a sua
performance depende em boa medida da existéncia de dados apropriados e representativos do
sistema/processo, que cubram toda a gama de valores que a representagdo entrada/saida do
processo/sistema gera. Os algoritmos que determinam a figura geométrica que envolve todos
os dados, denominados algoritmos convex hull, podem ser aplicados a tarefa de selecdo de
dados. Contudo a utilizagdo das implementacdes convencionais destes algoritmos em
problemas de grane dimensionalidade ndo ¢ viavel do ponto de vista pratico. Numa primeira
fase deste trabalho foi proposto um novo método randomizado de aproximacao ao convex
hull, cunhado com o nome ApproxHull, apropriado para conjuntos de dados de grande
dimensdo, de forma a ser vidvel do ponto de vista das aplicagdes praticas. Os resultados
experimentais mostraram que a aplicagdo do ApproxHull como método de selegao de dados
do tipo filtro, ou seja, ndo supervisionado, pode melhorar o desempenho de modelos em
problemas de classificagdo e regressdo, quando comparado com a sele¢do aleatoria de dados.
O ApproxHull foi também aplicado em trés casos de estudo relativos a aplicagdes reais. Nos
dois primeiros casos no contexto do desenvolvimento de modelos preditivos para sistemas na

area da eficiéncia energética. O terceiro caso de estudo consiste no desenvolvimento de

modelos de classificagdo para uma aplicacdo na area da segmentacao de lesdes em imagens de
tomografia computorizada. Os resultados revelaram que da aplicagdo do método proposto
resultaram modelos com uma precisao aceitavel. Do ponto de vista da aplicabilidade do
método, os resultados mostraram que o ApproxHull pode ser utilizado em conjuntos de dados
grandes e com dados de grande dimensionalidade. Para além da compara¢do com a selegdo
aleatoria de dados, o método foi também comparado com um método de sele¢do de dados
baseado no conceito de entropia e com um método hibrido que resulta da combinagdo do
ApproxHull com o método entropico. Com base nos resultados experimentais apurou-se que
na maioria dos casos estudados o método hibrido conseguiu melhor desempenho que os
restantes.

Numa segunda fase do trabalho foi proposto um novo método de adaptacdo em linha com
base no algoritmo ApproxHull e numa janela deslizante no tempo. Uma vez que os processos
e sistemas na envolvente do sistema HVAC s3o variantes no tempo e dinamicos, o objetivo
foi aplicar o método proposto para adaptar em linha os modelos que foram primeiramente
obtidos fora de linha. A ideia base do método proposto consiste em comparar cada novo par
entrada/saida com o convex hull conhecido, e determinar se o novo par tem dados situados
fora da gama conhecida. Nessa situagdo os parametros dos modelos sdo atualizados com base
nesse novo ponto € num conjunto de pontos numa determinada janela temporal deslizante. Os
resultados experimentais demonstraram nao s6 que o novo método ¢ eficiente na atualizagao
dos modelos e em manté-los num bom nivel de precisdo, mas também que era comparavel a

outros métodos existentes.

Palavras-chave: Redes Neuronais; Algoritmo Genético Multi-Objectivo; Selecdo de dados;

Adaptacdo on-line.

Contents

AADSTIACE ..ttt st b et h bt et sh e a et e h e bt et et e sbe et entenaeens I
RESUIMO ...ttt ettt ettt e s II
LSt OF TaDIES ...ttt et ettt e e et et e et e e e eaeeas XI
LISE OF FIGUIES ...veeeiiiieeeiece ettt et e et e et e et eeessaaesssaeessseeesnsaaesssaeensseeennseens XV
| A AN £) 511 1100 TSRS XXI
LSt Of ACTONYIMSuiiiiiiiieeiiie ettt ettt ettt e e et e et e e et e e e taeeessaeesssaeessseaesssaeessseeensseaenns XXIII
L. INEEOAUCTION ..ttt ettt et e st et e st e e bt e s st e et e e saeeenbeeeee 1
O B (05015 1o 4 B OO USU PR 1
1.2, Main CONTIIDULIONS....cuiiiiieiieetieeiie ettt ettt ettt e et e st et esate e bt e s st e eabeesaeeenseeenne 2
1.3, TRESIS SEIUCLUTE....ccutieiiieiieiie ettt ettt ettt et et e et e s e e bt e s et e e bt e s steenbeesaeeenseeenne 5
2. Theoretical baCKGIrOUNG.........c.cooiiiiiiiiiiie e e e 7
2 B 113 (016 1017 5[) RO P SRRSO SROPTUPSTRPON 7
2.2, Artificial Neural NetWOTKScc.ooiiiiiiiiiiieiiee e 7
2.2.1. Multi-Layer Perceptron Neural NetWorkcccccveviiiiiieiiieiiieiecieeeeeeesee e 8
2.2.2. Radial Basis Function Neural NetWorkcccocceeiiiniiiiiiiinieiieeieeeseeeeeene 10
2.2.3. B-SPlNe NEtWOTK ...c.eeiiiiiiiiiieiieeiteeieeit ettt ste et seaesbaesaaeenseensneensaas 11
2.3, Support VEctor MACKINESccveeiiiiiieiiieiiecie et eriee ettt sttt e e e seaesbeesnaesnseensneenseas 13
2.4, Learning MEthOAScooiuiiiiiiiiiiiiieeie et e e e e ee e et e e s e e e e enneeenes 15
2.4.1. Supervised learning MethodS...........coveuiiiiiiiiiiiiiicie e 17
2.4.1.1. Steepest decent MEthOdocciiiiiiiiiiiiiiiie et 18
2.4.1.1.1. Back propagation teChNIQUEccceeecuireiiieeriieeieeeriee et e ereeeeeeesaeeesbeeesaee e 19
2.4.1.2. Newton’s MEthOd.c.c.coiuiiiiiiiiiiieie e 20
2.4.1.3. Quasi-Newton method..........cccoviiiiiiiiiiii e e 21
2.4.1.4. Gauss-Newton MeEthodcoouiiiiiiiiiiiieieeee et 21
2.4.1.5. Levenberg-Marquardt method.........c..ccceiiiriiiiiiiiniiieeeeeceee e 23
2.4.1.6. Four strategies for training RBEFNNS.......ccccooiiiiiiniiiiiiceceeeeeeene 25
2.4.1.7. Termination criteria in traiNing PrOCESS.......cecvrerrrerrreerrerireerireereesressseesseeesseesseessses 26
2.5, Performance CrIteTia........coiiiuiriirieiiinienieeie ettt sttt ettt ettt sttt 27
2.6. Genetic ALZOTIERIMoocuiiiiiiiiiciiee ettt sttt e e e e eaeeas 29
261, SEIECLION ..ottt ettt ettt ettt st 29
2.6.2. RECOMDBINALION......eiuiiiiiiiiiiiitieieet ettt ettt ettt sttt e bt e nbeeatesaeens 31

2003, IMIULALION. .o e aeeeeeeeeae i aaaeaaaaaan 34

2.6.4. REPIACEIMENLooiiiiiiiiiieciiec ettt e e e et e e e teeeetaeesseeesnaeeeesseeennneeenns 34
2.6.5. Multi-Objective Genetic AIGOTItRIMcccuiiiiiiieiiieeeeeeeeee e 34
2.7. Neural network based model design by MOGAcccoeeiiieeiiieeieeeeeeee e 37
2.7.1. Specification of up in classification problems............cccceevieriieviieniiieiienie e 38
2.7.2. Specification of up in regression Problemscceeeeeieeeiiieeiiieeiie e 38
2.7.2.1. Specification of up in time series prediction problemsccceeevvveercieerciieencneennns 38
2.7.3. Model representation in MOGAcooeiiiiiiieiiieieeieese ettt 39
2.7.4. Model desi@n CYCLE.....cccuiiiuiieiieiieeiteeee et ettt et e e eneaas 40
2.8, INformation TREOTY......c.ccciiiiiieiieiie ettt ettt be e saeesbeensaeenseas 41
2.9. Overview of tWo StatiStICal tESESccueriiriieiieieiieie et 42
2.9, 1. SEGIEEST cuvieeiiietieeieecite ettt et et e et e et e e b e e st e et e e te e e b e entaeebe e teeenbeentaeenbaennaeenbeeseeenraas 42
2.9.2. Wilcoxon $igned-ranks teStceruieruiiiiiiiieeiieeie et 42
3. Convex hull algorithms and state of the art...........cccooeeiiiiiiiniiiic 45
3.1 INEFOAUCTION ..ttt ettt et e st e et e st e e bt e sateenbeesseesnbeenaeeens 45
3.2. An overview of convex hull algorithmsccccooiiiiiiiiiiiiii e, 45
3.3. Introduction of convex hull algorithms in two and three dimensions..............cccceeuneene 47
33,1, Graham’s SCAM ..c.eeeutieiiiieiie ettt ettt ettt et et e et e st e et e e st e e beesateenbeesseeebeesneeens 47
3.3.2. JArVIS™S TATCH ettt ettt ettt ettt ettt et ens 49
3330 QUICKNUIL ...ttt ettt et et ens 50
3.3.4. A divide and conquer based convex hull algorithmc..cccceoiniiiiniinnnininnn 52
3.3.5. Approximation Algorithms for Convex Hulls.........c..cocceriiniiiininiinniiieicee 53
3.3.6. Online convex hull algorithmsccccooiiiiiiiiiiiii e 55
3.3.7. Randomized algOrithmsc.ccooiiiiiiiiiiiieiiieeeee e 56
3.4. Introduction of convex hull algorithms in higher dimensions............cccceeeveeriveennnnenne. 57
3.5, CONCIUSIONS ..ottt ettt et e sttt e sbe e e bt e nbeesabeesaeeens 59
4. A convex hull-based data selection method for data driven models............cocceerveiniennennn. 61
4.1, INEEOAUCTION .ottt sttt et e bt e e e e 61
4.2. A review on instance selection Methods...........cooiiiriiiiiiiiiiiiiii e 62
4.2.1. Wrapper instance selection methodsc.ccoccuveeiiieiiiiecriieceece e 63
4.2.1.1. K — NN rule based Methodsccocueiiiiiiiiiiiiiie e 63
4.2.1.2. Instance selection methods based on search algorithms.............ccceevevievcieiniinennnn. 65
4.2.1.3. SVM based Methods..........coouiiiiiiiiiiiieieeeee e e 67

VI

4.2.2. Filter Instance SElection METNOAScoeeeeeeeeeeee e e rreaeeeeaeeeee 67

4.2.2.1. Clustering based MethodS..........ccceieiiiieiiiiciiceee e e 68
4.2.2.2. Weighting based methods..........cccuiiiiiieiiiieiiecee e 68
4.2.2.3. Information theory based methodsc..cooviieiiieiiiiiieieee e 69
4.2.2.4. Other MEthOdS.cc.eoiuiiiiiiiieiieee ettt 70
4.3. ApproxHull: A randomized approximation convex hull algorithm for high dimensions
71
T T B & % 0157 4 0] 1 T TSR 71
4.3.1.1. Hyperplane diStanceccceeeuieriierieeniieeieeiie et eniee et eieesereesseeebeeseeesseessaeenseenens 71
4.3.1.2. Hyperplane COMPULATION.ecvieriierieeiieeieeieeeieesieeeteesseesreesseeereesseesseessaessseensns 72
4.3.2. Convex hull diStanCecceeriiiieiieiieierieeee et 73
4.3.3. The Proposed AIZOTItRIMccccviiiiiiiiieiiieieeeee et s 73
4.4, STMUIATION TESULLSeitieiiiieiieieee ettt ettt ettt et e sae et saeens 84
4.4. 1. EXPEIIMENL L..iiiiiiiiiiiiiiiiiiieeieeeie ettt ettt e e be et sebeesseeesbeenseesnsaessneenseennns 84
4.4.2. EXPEIIMENLE 2..ecuiiieiiiiiiieiieiieeieeeteeteeeteeteeesteeseeseseesseeesseeseesnseenseeesseesssesssaessseasseensns 87
4.4.3. EXPEIIMENLE 3..iiiiiiiiiiiieiieiie ettt et ete et eteeteesebe e teeesbeesaesnsaessaeesseensaesnsaensseenseensns 89
4.5. RUN tIME ANALYSIS...ccutiiriiiiiiiiieeiieeie et cie et ete et e ete et e e beeaeesebeesseeesseensaesnsaessseesseensns 91
4.6. Memory requirements aNalYSIS.......c..coverieerieeiieeiiieeiierieeieesieesreesteeereesseesaeesseeesseenens 99
4.7, CONCIUSIONS .enetiiiiiieiiieiie ettt ettt et e et et e et e et e e teesaeeesbe e seeenbeesbeeenbeesseesnseanneeans 104
5. Applying ApproxHull in MOGAccoiiiiiiiiiiinetee e 105
510 INEFOAUCTION ittt ettt ettt et e et e bt e e b e e bt e sateenseeenseenees 105
5.2. Comparison of using random and convex hull based data selection methods for MOGA
105
5.3. Comparison of the use of the common and distinct convex hull based data selection
MEthods fOT MOGA ..ottt sttt e it eas 107
54, CONCIUSIONS ...eeiuiiiiiiieiie ettt ettt et e et e et e e bt e bt e enbeesseesaseesaeeenseenees 109
0. CASE STUAIES ..ottt ettt et ettt et e bt et e e et e e beesabe e abeenbeesseesabeenneeenneenees 111
0.1, INETOAUCTION ...eiiiiieiiieie ettt et ettt e st e b e et e e bt e sateesaeeenseeees 111
6.2. Case Study 1: Energy CONSUMPLION.......c.eeviriiriinierieniienieeienie ettt 111
6.2.1. Experimental setup: The CIESOL building............ccccevvuieniiiiiiniieiieieeieeieeene 114
6.2.1.1. Power demand profiles of the CIESOL building..........c.ccoceveeviiniinienenienennenne. 116
6.2.1.2. Data aCqUISTEIONeieuiieiiiieiieeiieette et ei ettt e ete et e st e eteeeabeesteenbeesseesnseesseeenseenens 119

6.2.2. A Non-linear AutoRegressive with eXogenous inputs Multi-Layer Perceptron Neural
NEtWOTK MO ..o sttt ettt 120

VI

6.2.3. Radial Basis Function Neural Network based models generated by MOGA............ 121

6.2.3.1. Data PreParationccccueeeeieeeiiieeiiieeieeeeiteeesiteeesreeessaeeassseesssseeasreesseeesseeessseeenn 122
6.2.3.2. Desig@n EXPEIIMENTS........ceeiiieiiiieiiiiieeciieeeieeeeieeesreeesteeesaeeeaaeeesaeessaeessseeessneeenes 124
6.2.4. Results and diSCUSSIONc..eietiiiiiiiiieiieeiie ettt st 128
6.2.4.1. Comparison of MOGA models with NAB approachcccceceevvieviriiienieenenne, 134
6.3. Case Study 2: An Intelligent Weather Station............ccceecieerieeiiienieecieenie e 136
6.4. Case Study 3: An Intelligent Support System for Automatic Diagnosis of Cerebral

Vascular Accidents from Brain CT IMagescccoveeeiiiieeiiieeiieeeieeeee e 141
0.5, CONCIUSIONS ..ottt ettt sttt ettt sb et st e saeebeenees 142
7. Comparing four data selection methods for off-line model design..........c.ccccoevevverrrennennne. 143
7.1 INEOAUCLION .ttt t ettt b et et esbe et eetesaeenaeeneas 143
7.2. An entropy based unsupervised data selection method............cccoovveeciieniiiiiinieenenne. 144
7.3. Construction of data sets for the eXperimentsccceecveerieeriienieeiiienie e 145
TA. EXPETIMENLSeeuviieiieeieeieeiieeteesteesteeeteesseessseesseeesseesseessseenseessseesssessseenssesseessseesseensns 146
7.5, EXPerimental TESUILSc.ccociiiiiiiiiieiiecie ettt ettt et ee 148
7.6, CONCIUSIONS ...ttt ettt ettt et sbe et st e saeenaeeneas 152
8. A Convex hull, sliding-window based online adaptation methodccceovvveiiennennen. 153
8.1, INEIOAUCTION ..ttt ettt ettt et e bt et ene e be e e saeens 153
8.2. A brief overview of online adaptation methodscccovveeiiiieiiiiciiiece e, 153
8.2.1. Online learning methods for RBFNNs with fixed structure.........c..ccocevevvenenncnnns 155
8.2.2. Online learning methods for RBFNNs with adaptive structureccccceceeveriiennene 156
8.3. A convex hull, sliding-window-based online adaptation methodc..ceceverenncine 158
8.3.1. Evaluation of the arriving Sample.........c.ccecerieriiiiiniiniiiiieeeeeeeeeee e 159
8.3.1.1. Hyperplane COMPULAtION.c.cevviriiriiriieiinierieeieretenee ettt sttt 162
8.3.2. Sliding-windOWs UPAALecceeriiriiiriiriiiiirieeeerteeeee ettt 163
8.3.2.1. F = RPOLICY ..ottt 163
8.3.2.2. A proposed convex hull based pOliCY.......ccceviriiriiniiiiiiiiiicececeeee 167
8.3.3. Parameters UPAAte.......c.ceeveriiriiriiiiiriieteeeee et 168
8.3.4. Analysis of the proposed Methodc.cooviiiiieiiiiiiiii e 169
8.4. EXperimental TESUILScociiiiiiiiiiiiieie ettt ettt e 172
8.4.1. Case Study 1: OAT model for the University of Algarvecccccvvevenieeiiennennen. 173
8.4.2. Case Study 2: OAT model for the University of Almeria.........cccoccvevevvenieeieennennen. 190
8.5. Comparison between the two €ase StUAIESc.eeviieiiirieiiiieieeieee e 202
8.6. Comparison with other methods............oocuiiiiiiiiiniii e 203

8.7, CONCIUSIONS ettt e e e e e e e e e e e eae e e e e e e e e aaeeeeeeereeanann 206

9. Conclusions and fUtUre WOTK...........cooiiiiiiiiiiiieie e e 207
0.1, CONCIUSIONS ...eniieiiteiie ettt ettt ettt e eb e et et e et e e bt e eabe e bt e sabeenbeeenneeees 207
0.2, FULUIE WOTKS ...ttt ettt st 209
RETETEICES ...ttt sttt et b et st sbe et es e b enee 211

List of Tables

Table 4.1. Description of artificial datasets consisting of uniformly distributed random
samples. Dim and #s denote the number of dimensions and samples, respectively. 84

TABLE 4.2. Run time (in seconds) of approxhull with stochastic policy and ga-based policy
ON datasets UDS T4eoiiiiecieee ettt ettt e et e et e e e taeesstaeeessaeessseeessseeensseaanns 87

TABLE 4.3. Run time (in seconds) of approxhull with stochastic policy and ga-based policy
0N datasets NDIST-4.ot sttt ettt e bt e st e e sbeeeaeeas 87

Table 4.4. Description of the datasets used in classification. #F, #DS, #TR, #TE are the
number of features, total number of samples, number of training samples and test samples,
respectively. C and y are the SVM hyper-parameters.cccceecueerieriiienieniieenie e 88

Table 4.5. Average classification rate for test dataset in two cases for all datasets in Table IV.
CRTe(1) and CRTe(2) denote the classification rates for the test dataset USING random
selection and using ApproXHull, 1€SPECtiVELY.......eevuiiiiiiriiieiieiieeie et 88

Table 4.6. Description of the datasets used in regression. #F, #DS, #TR, #TE and #VAL are
the number of features, total samples, training samples, test samples and validation samples,
TESPECTIVELY ..ttt ettt e et e st e et e e tbeenbeesnbeebaeenb e e seeenbe e naeenseennes 89

Table 4.7. Average RMSE for THE test datasets in two cases for all datasets in Table vI.
ETe(1) and ETe(2) denote RMSE for test dataset in first case (random selection) and second
case (data selection using ApproxHull) respectively.coovvevieriiiciiinieeiiecieeeeee e 90

Table 4.8. Average RMSE for THE validation datasetS in two cases for all datasets in Table
VI. EVal(1) and EVal(2) denote RMSE for validation dataset in first case (random
selection) and second case (data selection using ApproxHull) respectively..........cccccceeueenene 90

Table 4.9. Average run time of ApproxHull on datasets described in Tables 4.4 and 4.6....... 92

Table 4.10. Corresponding minimum and maximum run time of ApproxHull on datasets used
in Fig. 4.8 and 4.9. RTMIN 1 and RTMIN 2 denote the minimum run time in the first and
the second group of datasets respectively. RTMAX 1 and RTMAX 2 DENOTE the
maximum run time in the first and the second group of datasets, respectively. 97

Table 4.11. Corresponding minimum and maximum percentage of samples identified as
vertices of convex hull from datasets used in Fig. 4.14 and 4.15 PMIN_1 and PMIN_2 denote
the minimum percentage in first and second group of datasets. PMAX 1 and PMAX 2 denote
the maximum percentage in first and second group of datasets.coceeververeeienienennennne 97

TABLE 4.12. Description of the artificial datasets consisting of uniformly distributed random
samples. Dim and #s denote the number of dimensionS and samples respectively................. 99

Xl

TABLE 4.13. Number of facets, Total and average memory size for both algorithms on DS1

t0 DS4 in the 1ast TEeTatioN.c..eccuiiiiiiiiiiiee ettt 103
Table 5.1. The size of training, testing and validation Sets.cceeveeciieriercieeiienieeene, 106
Table 5.2. Results obtained from the MOGA eXperiments.ccceeeeeeeeeveeereeesineeesireeenneens 106
Table 5.3. Evaluation results obtained from two METHODS.ccoooiiiinii 108
Table 5.4. Total Time to design all models in the two METHODS.ccoovveviiienieeenne. 108
Table 6.1. Statistical analysis of the power demand profiles (in kW).ccccveveiiinninnnnen. 116
Table 6.2. Preliminary list of variables [54].......cccivriiriieiieciieiieceeeee e 118
Table 6.3. Final list of variables with their order (embedding delay and dimension). 121
Table 6.4. The periods selected in the first StAZe.cccueevvieriiiiiieiiieieee e 123
Table 6.5. List 0f variables USEd.cceiieiiiiiiieiieieeieeeeeee e e 125
Table 6.6. Description of the 1ags USed.c.cocvveeiiiriiiiiieiiece e 125
Table 6.7. Objectives and their corresponding restriction of experiments............ccccceceeueenee. 126
Table 6.8. Size of training, testing and validation Sets.............ccceevervirieniniinienenieneceenen 127
Table 6.9. Size of non-dominated and preferred Sets.oooveieeriiiriiiniieiieeeeee e 127
Table 6.10. Battery of tests performed.coooviiriiiiiniiniiieeee e 128
Table 6.11. Selected MOGA models and PREVIOUS model.ccccoeoiiiiiiniiniiiniiienn 129

Table 6.12. Results obtained by MOGA and PREVIOUS models over Test A, for a PH of 1

Xl

Table 6.17. Results obtained by MOGA and PREVIOUS models over Test F, for a PH of 1

Table 6.18. Battery of tests performed to compare the NAB model with the neural networks
100016 (] PSR 135

Table 6.19. Results obtained by neural network and NAB models over Test D, for a PH of 1

.. 137
Table 6.23. AtmMOSPheric TeMPETATUIE.ccccveieeiieeeiieeeiieecteeeieeeeeeeeaeeeereeesreeeseseeenaseeas 137
Table 6.24. Atmospheric Relative HUmidity.cccoooiiiiiiiiiiiiiiceeeeeeee 137
Table 6.25. Global Solar Radiation.cccueeiiiiiiiiieiieeeee e e 137
Table 6.26. Evaluation TeSUILScccouiiiiiiiiiiieieeee e 141
Table 7.1. Details 0f THE data SetS.........cccuerieiiirieniieiieriiesieeieeeeee et s 147

Table 7.2. Number of samples of 7, G and V and the average number of convex hull points.

.. 147
Table 7.3. Hyper parameters of SVM models for the classification problems. 148
Table 7.4. Average RMSEs obtained for dataset Bank............cccccocoeviniininiiniinniineeee. 148

Table 7.5. Average number of features and neurons of the best MOGA models for dataset

BaANK. .ottt ettt e e bt e ateeteeeaeeebeenees 149
Table 7.6. Average RMSE for the regression problems.c..ccoceeverieniniiniencnieneenenne. 149
Table 7.7. C(i,j) /T for Bank — best and ensemble models.cccoeevvieeiieiniieeniieeeieeen 150
Table 7.8. C(1,) /T for all MLP mMOdEISccccviieriiieiieeieeeeee et 150
Table 7.9. Average CRs for Breast Cancer.ccceecuieeiiieeiiieeiiee e 150

Table 7.10. Average number of features, neurons of the best MOGA models, and support
VECTOTS, TOI BIEaSt CANCEL. ...uvvvvviiiiiiiiiieiiieeeee ettt e e et e e e e e s s ssaaaaaeees 151

Xi

Table 7.11. Average CRs for the classification problems.cccceevevieniniiniencnienieene. 151

Table 7.12. C(i,j) /T for Breast Cancer — best and ensemble.cccevvvievieniiiiienireienne, 151
Table 7.13. C(i,j) /T for all SVM mMOdEIS.cceeviiiiiiiiieiiecieeteee e 152
Table 8.1. Periods over the years 2015 and 2016 in case 1........ccccveeviieecieeecieecieeeee e 174
Table 8.2. Experiment’s specification i CaS€ 1........ccciieiiieeiiieeiiie e 175
Table 8.3. List of criteria used to compare the experiments in case 1.ccccceeeevveencreeennenn. 175
Table 8.4. Statistical results of the experiments in €ase 1.........cccccveeviieeiieeeiieecieeeee e 176
Table 8.5. one-step-ahead prediction in CaSE 1.oocveeviieiieiiieiiecieeeee e 178
Table 8.6. 48-steps-ahead prediction N CaSE L........cceeeiieiiieeiieiieriieieee et 179
Table 8.7. Summation over PH in case 1.ccccociiiiiiiniiniiiieeeeeeeeeee e 180
Table 8.8. Periods over the years 2010 and 2011 in case 2.......ccceeecveevieerieeniienieeiieeeieeneene 191
Table 8.9. Experiment’s Specification in CaS€ 2.cccueeruierieenieenieeriienreenieesreeseeseeeeseenens 191
Table 8.10. Statistical results of experiments In case 2.ccocceeviieiieniiienieneeeeeeee 192
Table 8.11. One-step-ahead prediction in CASE 2.eeveeeiiieiieeiiienieeieeee e 193
Table 8.12. 48-steps-ahead prediction 1N CASE 2........cccuevierieriirieniieieniierie ettt 194
Table 8.13. Summation over PH in €ase 2.cccocviiiiiiiiiiiieniieieeeeee e 195

Table 8.14. Comparison of statistical results obtained by Exp.1, SWNLM and SAWNLM. 204
Table 8.15. Comparison of CHSWNLM with SWNLM and SAWNLM.ccccociiiiiniennn 204

Table 8.16. Comparison Between the CHSWNLM method AND other methods described in
L7 ettt ettt h et en e a e e bt e at e bt e bt et e ae e bt eneenaeenee 206

XV

List of Figures

Fig. 2.1. A classification of ANNS [18]. ...eeieriiiiiiiieeie ettt 8
Fig. 2.2. An MLP network with two hidden layers.ccccovveriiniiiiniiniiececeee 10
Fig. 2.3. A RBFNN SHIUCLUTE. ...cueiitiiniiiiiiitieieeitesiceie ettt ettt sttt 11

Fig. 2.4. B-Spline quadratic (k = 3) functions for (a) one and (b) two dimensional feature

SPACES [24]. ceeeeeeeiieee ettt ettt e ettt e e et e e et e e e ettt e e e tta e e e e naaeae e e nbaaeeeatteeeeannraaeeeanbeaeeennnnes 13
Fig. 2.5. An example of SVM [28]. .oioiiiiieiieeieeeee ettt s e 14
Fig. 2.6. Classification of learning methods [18].......cccccviiviiieiiiriiiiieiieecee e 17
Fig. 2.7. An Example of parameters update by steepest decent method.cceevveenernnenne. 18
Fig. 2.8. Early stopping method.c.ccoovieiiiiiiiiiiciecece et 27
Fig. 2.9. SINEle-POINt CTOSSOVET ...c.uvieuiiiieiiriieniieiieitestt ettt ettt ettt ae et et sae e saeens 32
Fig. 2.10. TWO-POINt CIOSSOVET ...eeuviieutieiieeiieitieeteenieesteestteeateeseeesseesteesaseesseesnseesseeenseesseesnsens 32
Fig. 2.11. Cut and SPlICE CIOSSOVETccueeuiriiiriieiieiienieeie ettt ettt ettt sttt et sane e 33
Fig. 2.12. UNIfOIM CTOSSOVET «...cutiuiiiiiiiiieiiniieriteteeiteste et sttt ettt et sttt et e sbeesae s saeens 33

Fig. 2.13. Bi-objective minimization problem. The shaded region presents dominated
solutions and the solid curve illustrates non-dominated solutions [47].ccccevevireeeciieeeennen. 35

Fig. 2.14. An example of Pareto ranking [48, 49]........cooiiriiiiiiiiiieeeeeeeee 35

Fig. 2.15. An example of Pareto-based ranking for two objectives with the same priorities. For
each objective, a predefined goal is considered [43, 47]. covveriieeriiieeiieeeeee e 36

Fig. 2.16. An example of Pareto-based ranking for two objectives in the case that objective 2
has higher priority than objective 1. For each objective, a predefined goal is considered [43,

T ettt bttt bt et h e eb et e h e bt et sh e bt et e bt e ae et e saeen 36
Fig. 2.17. Chromosome representation in MOGAL.c.ccocueriiiiriinienienieneeieceeeeese e 40
Fig. 3.1. (a): convex set, (D): CONCAVE SEL......coiuiiiiiiiiiiiieiieiieee ettt 46
Fig. 3.2. Convex hull of @ set 0f POINTS.cocuieiiiiiiiiiiiiiee e 47
Fig. 3.3. Categories of convex hull algorithms.cccoiiiiiiiiiiiiiee, 47
Fig. 3.4. Graham’s SCan On teN POINTS.eeruieiuiiiiieiiienieeitie ettt ettt eseee e 49

XV

Fig. 3.5. Jarvis’s march on ten POINLS.cceeruerieriierieiienteieniestc ettt 50

Fig. 3.6. The steps of Quickhull applied on 20 poiInts.cccccceeeviierieecrienieeiienie e 51
Fig. 3.7. The steps of the divide and conquer based algorithm applied on 20 points. 53
Fig. 3.8. The steps of the approximation convex hull algorithm applied on 22 points............ 54
Fig. 3.9. The update process of the online convex hull algorithm based on support lines. 55
Fig. 3.10. Constructing a 1arge 2-SIMPIEXcccueeeiiiiiiiiieeiiieeiee et ee e 58
Fig. 3.11. PartitionNing SEEPcccuveeeiuieeririieeitieeeieeeeieeesteeestteeesteesssseeessseesseeesseeessseeesssesessseeenns 59
Fig. 4.1. Classification of instance selection methodsccccoecieriiiiiienieeiienieceeee e 63
Fig. 4.2. Flow chart of ApproxXHUlL........cc.oooiiiiiiiiiiieiccecece et 83

Fig. 4.3. Average value of criterion P for ApproxHull with both policies and Wang’s
algorithm on UDST t0 UDS4. ...ttt e aee e s e e bee e seaee e 85

Fig. 4.4. Average value of criterion R for ApproxHull with both policies and the Wang’s
algorithm on UDST t0 UDS4. ..ottt 86

Fig. 4.5. Average value of criterion R for ApproxHull using both policies on NDS1 to NDS4.

Fig. 4.6. Average percentage of total samples identified as vertices of convex hull for each
dataset described in Tables 4.4 and 4.06.coooviiiiiiiiiiiiiniicceeeeee e 91

Fig. 4.7. Average number of iterations in ApproxHull for each dataset described in Tables 4.4
AN 4.0, et ettt et a et be et 92

Fig. 4.8. Relationship between the size of five datasets containing uniformly distributed
random samples and the run time of ApproxHull.cccoocoiiiiiiiiiiee 93

Fig. 4.9. Relationship between the size of five datasets containing normally distributed
random samples and the run time of ApproxHull.ccccoociiiiiiiiiiine 94

Fig. 4.10. Relationship between the population size (input parameter p) and the run time of
ApproxHull on six datasets containing uniformly distributed random samples. 94

Fig. 4.11. Relationship between the population size (input parameter p) and the run time of
ApproxHull on six datasets containing normally distributed random samples.............c...c...... 95

Fig. 4.12. Number of iterations in ApproxHull with six values for population sizes on six
datasets containing 5000 uniformly distributed random samples.ccccceeevieencieenciieenineenns 95

XVI

Fig. 4.13. Number of iterations in ApproxHull with six values for population sizes on six
datasets containing 5000 normally distributed random samples............ccceerveeviienieecieenneenen. 95

Fig. 4.14. Percentage of samples identified as vertices of convex hull by employing
ApproxHull with six values for population sizes on six datasets containing 5000 uniformly
distributed random SAMPIES.........ccciiiiiiieiiieecee e enee e 96

Fig. 4.15. Percentage of samples identified as vertices of convex hull by employing
ApproxHull with six values for population sizes on six datasets containing 5000 normally
distributed random SAMPIES.c.ccoiieiieiiiiiieiieeie ettt et et eneeas 96

Fig. 4.16. Run time of ApproxHull and the error obtained by the model on two groups of
datasets. (a) First group: uniformly distributed random samples; (b) Second group: normally
distributed random SAMPIES.ceoiieiieiiiiiieieeieee ettt e st eneees 98

Fig. 4.17. Trend of memory consumption over iterations on DS1. (a) Quickhull; (b)
FaN 0] 1024 5 1111 BRSPS 100

Fig. 4.18. Trend of memory consumption over iterations on DS2. (a) Quickhull; (b)
FaN 0] 1024 5 1111 DO PRSP 101

Fig. 4.19. Trend of memory consumption over iterations on DS3. (a) Quickhull; (b)
FaN 0] 03 (024 5 111 1 B PP RPPR 102

Fig. 4.20. Trend of memory consumption over iterations on DS4. (a) Quickhull; (b)
APPIOXHULL ...ttt st s 103

Fig. 6.1. The CIESOL building: (a) Exterior of the CIESOL building; (b) Solar cooling
installation; (c) Photovoltaic power plant: PV panels; (d) Photovoltaic power plant: PV

TIIVETERTS. 1.eutetteteeute ettt et ett ettt eb bttt sh e bt e et e bt et e et e s bt et e eat e e bt et e eatesb e et e ebtesbeeteeatenaeenseennes 115
Fig. 6.2. Energy demand profiles for working and non-working days.cccceeervvenennenee. 117
Fig. 6.3. Weekly energy demand profiles for each season..........ccoceecervenerciiniencnicneenennne. 118
Fig. 6.4. Distribution of original data samples in terms of day type from 01/09/2010 to
2070272002 ettt b ettt ettt 123
Fig. 6.5. Distribution of samples in data set D in terms of day type.......cccceceveerericneeneennne. 124
Fig. 6.6. Prediction results for tests A-F using the PREVIOUS model.c.cccoceevenienne 132
Fig. 6.7. Prediction results for tests A-F using model L.ccccoceviiiiiiniininiiiicee 133
Fig. 6.8. Prediction results for tests A-F using model IIL............cccocoeiiniiniinininiiiniee 134

XVl

Fig. 6.9. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last 1350
samples as well as the evolution of the RMSE along the prediction horizon with 48 steps for
AtMOSPNETIC tEMPETALULE. ...eeuveiiiiieiieeiiieiie et eteeete et e et e eteeseteebeessaeeseessseesseessseenseenssesnseensns 138

Fig. 6.10. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last
1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 steps
for atmospheric relative humidity.c..coooviiiiiiiiiii e 139

Fig. 6.11. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last
1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 steps
for global SOlar TAdIAtION.cccuiiiiieeiieiie ettt ettt eebeeseaeenseeeens 140

Fig. 8.1. Classification of online learning methods. (a) From the model structure point of
view; (b) From the model’s parameters point of view; (¢) From the data point of view....... 155

Fig. 8.2. A vertex of the convex hull. Black and blue circles are convex hull vertices and inner
POINES, TESPECIIVELY. 1..eieitieiiietie ettt ettt sttt e et e et e et e e sbeeenbeesseeenseenaeeens 160

Fig. 8.3. A point is located inside the convex hull. Black and blue circles are convex hull
vertices and inNer POINtS, TESPECLIVELY. ..ocuiiiiiiiiiiiieiie ettt 160

Fig. 8.4. A new point is located outside the convex hull. Black and red circles denote the
convex hull vertices and the new point, respectively.cceevcvvevieriiieiieniieiece e 161

Fig. 8.5. A new point is located outside the convex hull but very close to the convex hull.
Black and red circles denote the convex hull vertices and the new point, respectively......... 161

Fig.8.6. Number of samples of each period in the last training sliding window. (a), (c) and (e)
correspond to the Exps.1-3 of the first group of experiments of the case study 1, respectively.
(b), (d) and (f) denote Exps.4-6 of the second group of experiments of case study I,

TESPECTIVELY ...ttt ettt et s bt e bt e et e bt e et e e bt e enbeenteeenteenateen 177
Fig. 8.7. One-step-ahead prediction over the 01-Dec-2015 period in case 1.cccceeeueeeeee. 181
Fig. 8.8. One-step-ahead prediction over the 16-Dec-2015 period in case 1.......cc.cccecueeneenne 182
Fig. 8.9. One-step-ahead prediction over the 20-Dec-2015 period in case 1.......ccccccecueeneenne 182
Fig. 8.10. One-step-ahead prediction over the 01-Jan-2016 period in case 1..........ccoceeuneeee 183
Fig. 8.11. One-step-ahead prediction over the 21-Jan-2016 period in case 1.........ccccccueee.e. 183
Fig. 8.12. One-step-ahead prediction over the 01-Feb-2016 period in case 1.cccoeuee.e. 184
Fig. 8.13. One-step-ahead prediction over the 01-Mar-2016 period in case 1...........ccc....... 184
Fig. 8.14. One-step-ahead prediction over the 01-Apr-2016 period in case 1.cccoeuee.e. 185

Xvil

Fig. 8.15. One-step-ahead prediction over the 01-May-2016 period in case 1.c...c....... 185
Fig. 8.16. One-step-ahead prediction over the 11-May-2016 period in case 1.c...c....... 186
Fig. 8.17. One-step-ahead prediction over the 01-Jun-2016 period in case 1........c...cccueuee.e. 186
Fig. 8.18. One-step-ahead prediction over the 01-Jul-2016 period in case 1..........cccueenneee. 187
Fig. 8.19. One-step-ahead prediction over the 04-Aug-2016 period in case 1. 187
Fig. 8.20. One-step-ahead prediction over the 01-Sep-2016 period in case 1. 188
Fig. 8.21. One-step-ahead prediction over the 01-Oct-2016 period in case I..........cccueenneee. 188
Fig. 8.22. One-step-ahead prediction over the 01-Nov-2016 period in case 1.cc....... 189
Fig. 8.23. One-step-ahead prediction over the 19-Nov-2016 period in case 1. 189
Fig. 8.24. One-step-ahead prediction over the Oct period in case 2.cccceveevveveereeneennennn 196
Fig. 8.25. One-step-ahead prediction over the Nov period in case 2.c.ceccevvereerieneennennn 196
Fig. 8.26. One-step-ahead prediction over the Dec period in €ase 2........ccceevevverieeeeenennenne 197
Fig. 8.27. One-step-ahead prediction over the Jan period in case 2.........ccceeeevveriieeneeeeeenne. 197
Fig. 8.28. One-step-ahead prediction over the Feb period in case 2.ccccevceeriiieniienennne. 198
Fig. 8.29. One-step-ahead prediction over the Mar period in case 2.cccceeveevereeneeneenne. 198
Fig. 8.30. One-step-ahead prediction over the Apr period in case 2.......cccoceeveeverieneennenne. 199
Fig. 8.31. One-step-ahead prediction over the May period in case 2.......c.ccceevevveercreeenreeennne. 199
Fig. 8.32. One-step-ahead prediction over the Jun period in case 2.c..cccoeeeeeenienieennene 200
Fig. 8.33. One-step-ahead prediction over the Jul period in case 2.ccccceeeeeieiniinieennene 200
Fig. 8.34. One-step-ahead prediction over the Aug period in case 2.cccoeeeeeeenienieennene 201
Fig. 8.35. One-step-ahead prediction over the Sept period in case 2.cccceeveeverveeneeneenne. 201
Fig. 8.36. Comparison of the updated model with its corresponding initial model. (a) Exp.4 in
case study 1; (b) Exp.1 10 €ase StUAY 2. ..oooiieiiiiiieiieeieeieeee ettt 203

XIX

XX

List of Algorithms

Algorithm 4.1: Obtaining the corresponding hyperplane of a facet...........ccceeevvveecveercreeennnnn. 75
Algorithm 4.2: ApproxHull with Stochastic POIICYcc.cccceviiriiiiniiiiienecceeeeee 78
Algorithm 4.3: ApproxHull with GA-based POIICYcccccveriiiiiiiniiiiiecieceee e 80
Algorithm 8.1: SIding-windows UPAAtecceeeiiieeiiieeiieeeieeeee e e 171

XXI

XXl

List of Acronyms

ANN
ARIMA
ARMA
ASMOD
BP

BSE
CDA
CIEMAT

CIESOL

CNN
CR

CT
CVA
DROP
EKF
ELM
ENN
FIFO
FN
FNN
FP

GA
GCNN
GGA
GMCA
GMM
HVAC
HVDM
IAH
IAT

Artificial Neural Network

Auto Regressive Integrated Moving Average
Auto Regressive Moving Average

Adaptive Spline Modeling of Observation Data
Back Propagation

Backward Sequential Edition

Conditional Demand Analysis

Centre for Energy, Environment and Technology - Centro de Investigaciones
Energéticas, MedioAmbientales y Tecnologicas (in Spanish)
Solar Energy Research Center - Centro de Investigacion en Energia SOLar (in
Spanish)

Condensed Nearest Neighbor rule

Classification Rate

Computed Tomographic

Cerebral Vascular Accident

Decremental Reduction Optimization Procedure
Extended Kalman Filter

Extreme Learning Machine

Edited Nearest Neighbor rule

First In First Out

False Negative

Feedforward Neural Network

False Positive

Genetic Algorithm

Generalized Condensed Nearest Neighbor rule
Generalized Genetic Algorithm

Generalized Modified Change Algorithm
Gaussian Mixture Models

Heating, Ventilating and Air Conditioning
Heterogeneous Value Difference Metric

Inside Air Humidity

Inside Air Temperature

XXIII

ICF Iterative Case Filtering

IGA Intelligent Genetic Algorithm

IMBPC Intelligent Model Based Predictive Control
k-NN K nearest neighbors

LMS Least Mean Square
LS Least Square
MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MaxAE Maximum Absolute Error

MI Mutual Information
MLP Multi-Layer Perceptron
MNV Mutual Nearest Neighborhood

MOGA Multi Objective Genetic Algorithm
MOV Movement Signal

MPC Model Predictive Control

MRE Mean Relative Error

MRLS Multi-innovative Recursive Least Square
NAB Naive Autoregressive Baseline

NAR Non-linear AutoRegressive

NARX Non-linear AutoRegressive with eXogenous inputs
NEN Nearest-Neighbor algorithm

NSB Nearest Subclass Classifier

OAT Outside Air Temperature

OAKM Optimal Adaptive K-Means

OLS Orthogonal Least Square

OSC Object Selection by Clustering

OSR Outside Solar Radiation

PBLT Population-Based Incremental Learning
PCA Principal Components Analysis

PDF Probability Density Function

PMV Predicted Mean Vote

POP Pattern by Ordered Projections

PSR Prototype Selection by Relevance

XXIV

QPSO
RAN
RBFNN
RFOS
RMSE
SCADA
SGBP
SNN
SSGA
STP
SUS

TN

TP
WLS

Quantum Particle Swarm Optimization
Resource Allocation Network

Radial Basis Function Neural Network
Restricted Floating Object Selection

Root Mean Square Error

Supervisory Control And Data Acquisition
Stochastic Gradient Descent Back Propagation
Selective Nearest Neighbor rule
Steady-State Genetic Algorithm

Set Temperature Point

Stochastic Universal Sampling

True Negative

True Positive

Weighted Least Square

XXV

XXVI

1. Introduction

1.1. Motivation

In European Union countries, primary energy consumption in buildings represents about 40%
of the total energy consumption, and, with variations from country to country, half of this
energy is spent for indoor climate conditioning. Advanced techniques for the control of
HVAC systems, and in particular, Model Predictive Control (MPC), offer enormous potential
for huge savings in building energy consumption. Regarding the application of MPC
technique in energy sectors, authors in [1] have shown in simulations that savings of energy in
the order of 30% could be obtained, while maintaining a convenient temperature regulation.
In a more recent work [2, 3], authors were able to control, in real-time, the air conditioning
systems of several rooms in a building. Average savings of 50% were obtained, in summer
and winter conditions, while maintaining thermal comfort. The MPC technique uses several
ANN models. There are already some available state-of-the-art tools for designing neural
network models [4], in terms of input selection, model structure determination and parameter
estimation. On the other hand, as ANNs are data driven models, the data used to design the
models has a direct influence on the models’ performance and, ultimately, on the performance
of the HVAC MPC technique. It is very important that the data which is selected to design
ANN models involve the boundary samples; those samples that reflect the whole input-output
range in which the underlying process is modeled. To catch such samples out of the whole
data set, convex hull algorithms [5-12] as one of the fundamental concepts in computational
geometry, can be applied (i.e., please refer to Chapter 3).

The standard convex hull algorithms suffer from both time and space in high dimensions (i.e.,

more than three dimensions). They take O(nEJ) time and space in the worst case where n and
d denote the number of samples and the dimension, respectively. Hence this problem prevents
us from employing convex hull algorithms in real applications where we are interested in
applying them to data sets containing larger numbers of samples and higher dimensions. The
first phase of this PhD proposes a state-of-the-art approach to tackle the challenges of
standard convex hull algorithms in high dimensions.

Regarding the HVAC MPC technique, the processes involved are time-varying and dynamic.
For instance, models designed with winter data will have their performance degraded on
summer data. Furthermore, the temperature in a room depends on the occupancy and on

equipment being used in the room. Whether the variation has seasonal and/or dynamic

1

origins, it causes changes in the input-output range of the data applied to the models. To deal
with these problems, an online adaptation method is required to update the model parameters.
The adaptation method should be capable of capturing the new input-output ranges presented
by the newly arrived samples throughout time. Based on that newly selected data, the models
should become efficiently updated and appropriate for a real time application. The second

phase of this PhD is one step towards proposing a state-of-the-art online adaptation method.

1.2. Main contributions

As the first phase of this PhD, a new randomized approximation convex hull algorithm in
high dimensions coined ApproxHull was proposed. The performance of ApproxHull as a filter
type data selection method was evaluated for a number of classification and regression
problems. This was done by comparing ApproxHull with other data selection methods
including random selection, an entropy based unsupervised method [13] and a hybrid method
involving ApproxHull and the entropy based method. Since the main goal of this PhD was
employing ApproxHull to construct proper data sets for designing ANN models for the
HVAC MPC technique, it was exploited in two related case studies.

In the first case study [14, 15], ApproxHull was used to provide data sets for designing
several time series predictive RBFNN models to forecast the one-step-ahead measures of
outside climate variables, including outside air temperature, outside relative humidity and
outside solar radiation, so that all models were integrated in an intelligent weather station.
Additionally, another series of RBFNN models were also designed to predict the one-step-
ahead of inside climate variables which have a significant role in the HVAC MPC technique.
In order to design these models, the Multi-Objective Genetic Algorithm was applied to select
model structures optimized for the specific task.

The second case study resulted from a collaboration between the University of Algarve in
Portugal and the University of Almeria in Spain. It was aimed at the development of time
series predictive RBFNN models to forecast the one-step-ahead value of the electricity power
demand for a building inside the campus of the University of Almeria. As for the previous
case study, ApproxHull was applied to supply data sets for the MOGA model design
framework. In this case study, a selected MOGA generated model was compared to a RBFNN
model designed by means of statistical and analytical tools.

ApproxHull was also exploited by other researchers in the field of biomedical image

processing where the goal was presenting an RBFNN based diagnosis system for automatic

identification of Cerebral Vascular Accident (CVA) through analysis of Computed
Tomographic images. In this case study, ApproxHull was applied on a large size data set in
high dimensions (i.e., 1,867,602 samples with 52 features). The simulation results obtained
from the case studies showed that not only the proposed method is capable of being applied in
real applications but also its performance is comparable with other data selection methods.

In the second phase of this PhD a new convex-hull-based sliding window online adaptation
method was proposed. Since at a given time instant the current convex hull reflects the whole
input-output range of all observed data, this method enables the comparison of newly arrived
samples to the current convex hull to find out whether it presents data outside the known
range. In case it does, the current convex hull is updated and consequently the training sliding
window is also updated. Afterwards, the model is adjusted based on the modified sliding
window. To verify the proposed online adaptation method, a time series predictive RBFNN
model for outside air temperature was considered. The simulation results demonstrated that
not only the model could be efficiently updated, but it could also preserve relevant input-
output pairs that had been presented over time.

As a result of the efforts carried out in this PhD, the following articles were published.

1. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M.
G. & FERREIRA, P. M. 2014. Seismic detection using support vector machines.
Neurocomputing, 135, 273-283.

2. MESTRE, G., RUANO, A., DUARTE, H., SILVA, S., KHOSRAVANI, H., PESTEH, S.,
FERREIRA, P. M. & HORTA, R. 2015. An Intelligent Weather Station. Sensors, 15, 31005—
31022.

3. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M.,
KHOSRAVANI, H. & HORTA, R. 2015. The IMBPC HVAC system: a complete MBPC
solution for existing HVAC systems. Energy and Buildings,120, pp- 145-158

4. KHOSRAVANI, H., CASTILLA, M., BERENGUEL, M., RUANO, A. & FERREIRA, P.
M. 2016. A Comparison of Energy Consumption Prediction Models Based on Neural
Networks of a Bioclimatic Building. Energies, 9, 57.

5. KHOSRAVANI, H., RUANO, A. & FERREIRA, P. M. 2016. A Convex Hull-based Data
Selection Method for Data Driven Models. Applied Soft Computing, 47, pp. 515-533

6. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M.
G. & FERREIRA, P. M. A Support Vector Machine Seismic Detector for Early-Warning
Applications. /n: FERREIRA, P. M., ed. Intelligent Control and Automation Science (ICONS
2013), 2-4 Sept 2013 Chengdu, China. IFAC, 400-405.

7. KHOSRAVANI, H. R., RUANO, A. E. & FERREIRA, P. M. A Simple Algorithm for
Convex Hull Determination in High Dimensions. 8th IEEE International Symposium on
Intelligent Signal Processing (WISP 2013), Sep, 16-18, 2013 Funchal, Madeira, Portugal. 109
- 114.

8. RUANO, A., KHOSRAVANI, H. R. & FERREIRA, P. M. 2015. A Randomized
Approximation Convex Hull Algorithm for High Dimensions. /FAC-PapersOnlLine, 48, 123-
128.

9. RUANO, A. E., MESTRE, G., DUARTE, H., SILVA, S., PESTEH, S., KHOSRAVANI,
H. R., FERREIRA, P. M. & HORTA, R. A Neural-Network based Intelligent Weather
Station. 9th IEEE International Symposium on Intelligent Signal Processing (WISP 2015),
15-17 May 2015 Siena, Italy. 96-101.

10. RUANO, A. E., SILVA, S., PESTEH, S., FERREIRA, P. M., DUARTE, H., MESTRE,
G., KHOSRAVANI, H. R. & HORTA, R. Improving a neural networks based HVAC
predictive control approach. 9th IEEE International Symposium on Intelligent Signal
Processing (WISP 2015), 15-17 May 2015 Siena, Italy. 90-95.

11. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M.,
KHOSRAVANI, H. & HORTA, R. PVM-based intelligent predictive control of HVAC
systems. 4th IFAC International Conference on Intelligent Control and Automation Sciences

(ICONS 2016) 1-3 Jun 2016 Reims, France. IFAC.

1.3. Thesis structure

This dissertation is organized in 9 chapters. Chapter 2 addresses the introduction of the
theoretical concepts which were relevant for this PhD. In this chapter, two well-known data-
driven models; ANNs and SVMs as well as a number of renowned standard learning
algorithms for ANNs are explained. Moreover, the GA, the MOGA, information theory
concepts and two statistical tests are presented in this chapter. Chapter 3 introduces a number
of standard convex hull algorithms in low and high dimensions. This chapter also discusses an
effort done in recent years to deal with the very high time and space complexity of standard
convex hull algorithms in high dimensions. Chapter 4 addresses a review of instance selection
methods and introduces ApproxHull as the-state-of-the-art in the convex-hull-based data
selection domain. In addition, a number of experiments to verify and evaluate the
performance of the ApproxHull regarding time and memory requirements are presented and
analyzed in Chapter 4. Since, in this PhD, most of the models were designed by the MOGA,
Chapter 5 addresses the evaluation of ApproxHull’s performance within the MOGA model
design framework. To verify and evaluate ApproxHull’s performance in real applications,
Chapter 6 introduces three case studies in which ApproxHull has been applied to design
RBFNN models. To further analyze the ApproxHull’s performance, Chapter 7 compares it
with three data selection methods, including random selection method, an entropy based
unsupervised method and a hybrid method involving ApproxHull and the entropy based
method. All methods were applied for classification and regression. In the second phase of the
PhD, Chapter 8 addresses a brief overview on online adaptation method and then introduces a
new convex-hull-based, sliding-window online adaptation method. Furthermore, to verify and
evaluate the performance of the proposed method, several online adaptation experiments
associated with two case studies along with the corresponding results and comparisons with
other methods are explained in this chapter. Finally, a brief conclusion of all efforts done in

this PhD as well as some future work directions are discussed in Chapter 9.

2. Theoretical background

2.1. Introduction

Since this PhD thesis aims to propose new data selection and online model adaptation
methods for data driven models, in this chapter two well-known classes of data driven
models, ANNs and SVMs, are introduced. Additionally, some basic concepts related to the
design of data driven models are explained. This chapter is organized as follows. Section 2.2
addresses the introduction of several types of ANNs. Section 2.3 introduces the SVM as
another class of data driven models applied to classification problems. Well-known ANNs
supervised learning methods are discussed in Section 2.4. The most common criteria used to
evaluate the performance of regression and classification problems are introduced in Section
2.5. As in this study a Genetic Algorithm (GA) was used in the proposed data selection
method, and most ANN models were designed by means of the MOGA, Section 2.6 explains
the basic concepts of GA and MOGA. Section 2.7 discusses the application of MOGA to the
design of ANN models.

As the proposed data selection method was compared with an entropy based unsupervised
method proposed in [13], two key concepts of information theory, entropy and mutual
information, are explained in Section 2.8. Additionally, in this PhD thesis, two statistical tests
were employed to compare the performance of the proposed data selection method with other

methods. Section 2.9 describes these two statistical tests.

2.2. Artificial Neural Networks

The fundamental concepts of ANNs were introduced in the 1940s by McCulloch and Pitts
[16] with the aim of simulating brain behavior in information processing and computations,
where each part of the brain, responsible to perform a particular task, consists of a network
with a huge number of neurons as processing units. Since then, ANNs have been used in a
wide variety of applications such as image processing, pattern recognition, signal processing,
modeling and time series, to mention a few [17]. ANNs are mainly divided into two groups
[18]: 1- feed-forward networks 2- recurrent/feedback networks. Each of these two groups, in

turn, is divided into several subgroups. Fig. 2.1 shows a brief classification of ANNs.

-| Single-layer perceptron
-| Multi-Layer Perceptron
-| Feed-forward networks I- -| Radial Basis Function
-| B-Spline

Cerebellar Model Articulation
Controller

Boltzmann

|
(T
Brain-State-in-a-Box
(R
(T
oo |

Neural Networks
| |

Bidirectional Associative Memories

Recurrent/feedback networks

Hopfield

ART models

Fig. 2.1. A classification of ANNs [18].

Since in this PhD, specifically, the Multi-Layer Perceptron, Radial Basis Function and B-
Spline networks were employed, the following subsections address only these types of

networks.

2.2.1. Multi-Layer Perceptron Neural Network

The Multi-Layer Perceptron (MLP), as one of the renowned feed-forward networks, has been
extensively applied to classification and regression problems over years. The fully connected
structure of the MLP is organized in three types of layers including input, hidden and output
layers. Each layer has a number of neurons and each neuron in a layer is connected to all
neurons of its predecessor layer via weighted links. Fig. 2.2 illustrates an MLP network with
two hidden layers. As it can be seen, each input signal which can be translated into an input
variable or a feature is linked to a particular neuron in the input layer while each neuron in the
output layer corresponds to a specific output signal/variable. When an input signal is fed into
the input layer, several mappings are done through hidden neurons with smooth, nonlinear

activation functions to produce the corresponding output signal. Generally speaking, the MLP

is a black box function approximator that reflects a nonlinear relationship between input and
output signals.
Bounded functions such as sigmoid or hyperbolic tangent are mostly used as the activation

functions of the hidden neurons. Eq. (2.1) shows a sigmoid function.

1
_(bl-l+2?=lzl Wl,l‘j(p}-l(wl—1’x)) (2.1)

pi(w'x) =

1+e

where ¢! is the output of the i™ neuron at hidden layer / . n;_; and b} denote the number of

neurons in hidden layer [— 1 and the bias of hidden layer [, respectively. wl-l’ ; refers to the
weight connecting the j™ neuron in hidden layer [— 1 to the i™ neuron in hidden layer /.

The outputs of the MLP network are obtained by Eq. (2.2) which is a linear combination of

the activation functions of the last hidden layer.

nL
Yo = b+) whiok 22)
k=1

where y, and L denote the o output neuron and the number of hidden layers, respectively. In
the design process, the structure of the MLP network, which is specified by the number of
layers and the number of neurons in each layer, should be determined. This structure
determination should be done in such a way that the overfitting phenomenon is avoided.
Overfitting refers to a situation where the number of neurons, and consequently the number of

parameters, is larger than needed [19].

Input signals
Output signals

Hidden layer 1 Hidden layer2 Output layer

Fig. 2.2. An MLP network with two hidden layers.

2.2.2. Radial Basis Function Neural Network

The Radial Basis Function (RBF) Neural Network (NN) was firstly proposed by Broomhead
and Lowe [20] . It is another type of feed-forward neural network that has received much
attention due to its universal approximation and robustness to outlier points. From the
structural point of view, RBFNNs, like MLPs, have three types of layers including input,
hidden and output layers. Fig. 2.3 illustrates a RBFNN with three layers. As it can be seen in
Fig. 2.3, each feature of the input pattern is connected to a node of input layer via a link
without weight. The input neurons are only simple sensory nodes passing the input pattern
without any changes toward the hidden layer. To each hidden node, a radial basis function is
assigned implementing a nonlinear relation between the input and the output spaces. For the
most cases, Gaussian radial basis function, thin-plate spline, multiquadrics and inverse

multiquadrics are used as the activation function for the hidden neurons as Eq. (2.3).

lx—cyll?

p(x,c,0) =e 29 (2.3)

10

where ¢; denotes the activation function of the i™ hidden neuron. ¢; and o; refer to the
corresponding nonlinear parameters, the center and spread of ¢;, respectively. The ¢; are
localized functions around each c¢;, whose localization degree is defined by g; [21]. X is the
input pattern.

The output of the RBFNN is obtained by Eq. (2.4) which is a linear combination of the
outputs of the hidden layer.

YO0 = wo + D Wi (9 4
i=1

where n is the number of hidden neurons and w; denotes the corresponding weight of i™

hidden neuron. w,, refers to the bias.

Input signals
Output signal

n*® node

Input layer Hidden layer Output layer

Fig. 2.3. A RBFNN structure.

2.2.3. B-Spline Network

B-spline neural networks belong to the class of networks denoted as lattice-based associative
memory networks [22, 23]. In this type of networks, the basis functions are polynomial
functions with a predefined order k. The range of each input variable is divided into n;
intervals and throughout the intervals, there are exactly k active functions. The n; intervals

are formed by defining r; internal knots over the input range as well as by defining the

11

nonlinear parameters of the network [24]. The jth interval of the i input variable is defined as

Eq. (2.5).

[Aij-1,4i,5) forj=1,n
Ij = { ! ! (2.5)

[Ai,j—ll/li,j] lf] =T +1

where 4; ; denotes the jth knot of the i input variable. According to Eq. (2.5), ;0 and 4;,, 41
denote the minimum and the maximum value of the input range, respectively. By dividing the
range of each input variable into several intervals, the input space is organized into a lattice
where for each cell, there exist exactly Z‘{Ll k; active functions where d denotes the input
dimension. In case d = 1, the jth univariate basis function of order k, denoted by) , 1S

defined in a recursive manner as Eq. (2.6).

; X —Ai_k i Ai—x ;
w(x =(—]>‘~P}_1 x) +]—LP]_ X
k() /1]._1 _ Aj_k k 1() (/1] _Aj_k+1) k 1() (2.6)
Wj(x)—{l if x €l
1 0 otherwise

In the case of multidimensional input space, the multidimensional basis functions ‘P,g are

obtained by applying a tensorial product of univariate basis functions defined over input

variables as Eq. (2.7).

d
W@ =] [wleo 2.7)
i=1

Fig. 2.4 shows an example of two B-Spline quadratic (k = 3) functions for one and two
dimensional input spaces.

Regarding B-Spline networks, the complexity increases exponentially with respect to the
dimension (i.e., the number of variables). In one hand, in order to overcome the complexity,
and on the other hand to make a model with a high level of generalization, the ASMOD
(Adaptive Spline Modeling of Observation data) algorithm [25, 26] is an efficient design
technique to generate parsimonious models using observed data. In this way, a set of low
dimensional B-Spline sub-models are generated instead of one high dimensional B-Spline
model. Each sub-model depends on a subset of all the input variables. The final model output

is a linear combination of sub-models’ output, as given by Eq. (2.8),

12

M

o) =) eibi(x) 2.8)

i=1

where M is the number of sub-models. b; and c¢; denote the it B-Spline sub-model and its
corresponding coefficient, respectively.

The ASMOD algorithm consists of two main steps including refining and pruning. It starts
with a simple model with a small number of input variables. In the refining step, it tries to
make the simple model complicated by adding and coupling more input variables, by
changing the internal structure and by increasing the degree of the basis functions. In the
pruning step, the variables are decoupled which results in a number of subsets of input
variables. The internal structure is also simplified and the degree of the basis functions is

decreased. These two steps are repeated until some termination criteria are met.

0.8

0.7

0.6 0.8 _

05 0.6] -

= 04 ool T

0.3

0 S e S S 3
e S

¥ w00 n
(2) (b)

Fig. 2.4. B-Spline quadratic (k = 3) functions for (a) one and (b) two dimensional feature
spaces [24].

2.3. Support Vector Machines

The Support Vector Machine was proposed by Vapnik and et al [27, 28] as an efficient
powerful machine learning method for two class classification problems where data are
nonlinearly separable with respect to the target feature. The main idea behind SVMs is
transferring the original input feature space to a higher dimensional feature space in which
data are linearly separable and then finding the optimal hyperplane separating the two classes.
The optimal hyperplane has the largest distance to the closest training samples of each class.
This distance is so called the maximal margin and the samples located on the margin are
marked as support vectors. Fig. 2.5 shows an example of an optimal hyperplane and

associated support vectors. As it can be seen, the two classes of samples are separated from

13

each other (i.e., the samples of the first class are shown by unfilled circles and the samples of
the second class are shown by black filled circles) by the optimal hyperplane. The samples of

both classes surrounded by a red circle are the support vectors.

V

Fig. 2.5. An example of SVM [28].

The determination of the optimal hyperplane is translated into solving a constrained quadratic
optimization problem where the Lagrangian stated in Eq. (2.9) should be maximized with

respect to a; subject to the constraints given in Eq. (2.10),

N N
L= Z a; — Z aiajyiyjl((xi,xj) (29)
i=1 i,j=1
N
Z a;iyi=0 and 0<qa; <C (2.10)

i=1
where N and a; denote the number of samples of the training set and the corresponding
Lagrange multiplier of the i™ sample, respectively. x; and y; € {—1, +1} refer to the i™ input
pattern and the corresponding target, respectively. The target value indicates the class of the
input pattern. K(X;,X;) is the inner-product kernel stated in Eq. (2.11) and C a user specified
parameter that establishes a trade-off between the SVM complexity and the number of non-

separable patterns, often called the regularization parameter.

14

K(x;x;) = Z b, (x)¢.(x;) (2.11)
z=1

In Eq. (2.11), m is the dimension of the destination feature space (i.e., the higher dimensional
feature space) and ¢,(x;) is equal to the z™ dimension of the transformed sample X; in the

destination feature space. Common kernels used in SVMs are given in Egs. (2.12) to (2.14).

e Homogeneous polynomial K(Xi, x]-) = (Xi- X].)d (2.12)
e Inhomogeneous polynomial K(x,-,xj) _ (Xi-xj n 1)d (2.13)
2
. . : : _ i — x|
e (aussian radial basis function K (X,-, X]-) = exp(— T) (2.14)

The output of a SVM model can be obtained by Eq. (2.15).

f(x) = sign <z yiaiK(x,x;) — 9) (2.15)

IESV

where ;s are the solution of the constrained optimization problem stated in Eq. (2.9). SV are

the indices of the support vectors in the training set and 6 is a user-defined threshold [29].

2.4. Learning methods

In order to fit the parameters of any data driven classification or regression model, learning
methods are applied to adjust the model parameters by means of a data set of training
samples. Learning methods can be considered from three points of view [18].

In the first aspect, they are categorized into four classes including supervised, unsupervised,
combination of supervised and unsupervised, and reinforcement methods. In supervised
learning methods, data samples are labeled so that each input pattern corresponds to a target
value. In this case the parameters of the model are adjusted based on the comparison between
the model outputs and corresponding target values. On the other hand, in unsupervised
learning methods, unlabeled data samples are employed. In this case the methods try to group
data samples into a number of clusters so that those samples which are more similar to each
other are located in the same cluster. In some cases, in order to improve the performance of

15

models, a combination of supervised and unsupervised learning methods is applied to fit the
parameters. Finally, reinforcement learning methods are another class of learning methods
that try to learn from their consecutive actions and from the interaction with the operational
environment.

From a second point of view, learning methods can be categorized into offline or online. In
the offline case a set of samples are first collected from the process or system and then
processed at the same time by the learning method. In the online case the model is inserted (or
simulated) in the operational environment and every time a new pattern is generated, the
model parameters are possibly readjusted.

In the third aspect, learning methods can be classified into deterministic or stochastic. If the
method follows a specific path to update the parameters, it is considered deterministic.
Otherwise it is stochastic in the sense that it follows a randomized behavior to fit the
parameters.

Fig. 2.6 briefly illustrates a taxonomy of learning methods. In the following subsections

supervised and unsupervised learning methods are described.

16

Gradient descent learning

-| Supervised learning I-
Forced Hebbian/Correlative learning

Hebbian learning

Unsupervised learning

A combination of supervised / unsupervised
learning
Reinforcement learning

Competitive learning

Learning Algorithms

Online learning

Offline learning

Learning Algorithm

Deterministic learning

Stochastic learning

l Learning Algorithm l

Fig. 2.6. Classification of learning methods [18].

2.4.1. Supervised learning methods

Supervised learning methods adjust the model parameters based on the labeled samples,
where each input pattern along with its corresponding target value is presented to the learning
method. Then the model parameters are adjusted on the basis of the comparison between the
model outputs and corresponding target values. Actually, the goal of supervised learning
methods is fitting the parameters so that the error obtained from the comparisons is globally
minimized. The following discussion introduces a number of well-known supervised learning

methods.

17

24.1.1. Steepest decent method

One of the simplest and the most common gradient based methods is the steepest descent.
This method is applied to solve unconstrained optimization problems. Given a cost function
Q(wg, Wy, ..., w,) where the w;s are linear or nonlinear parameters, the steepest decent
method tries to obtain optimal values for w; that minimize (), based on its gradient with
respect to each w;. At the first step the parameters are initialized and then updated in a
recursive way over a number of iterations. Eq. (2.16) shows the update of parameters by the

steepest decent method,

d
t+n _ (@© ® @ ® —
Wy, =w, —a .Q(WO J Wiy e, Wy), k=012, ..,n (2.16)

®
ow,

where W,Et) denotes the value of k™ parameter in the t™ iteration. a denotes the learning rate,
indicating the step size that the steepest decent method takes in the direction of a local minima
of the cost function Q. The disadvantage of this method is its likelihood of being trapped into
a local minimum instead of obtaining the global minimum. Fig. 2.7, shows an example of
minimizing a cost function with two parameters w, and w;. As it can be seen in Fig. 2.7, the
minimum value of the cost function that is found by the method depends on the initial point in
parameter space. By starting from point a, after a number of iterations the local minimum is

achieved at b, while by starting from point c, another local minimum is reached at d.

Fig. 2.7. An Example of parameters update by steepest decent method.

18

24.1.1.1. Back propagation technique

In order to apply the steepest descent method in MLP neural networks, the Back Propagation
(BP) algorithm is employed. The cost function used in BP is given in Eq. (2.17),

N
1
QW) = 55X) (y(xi W) = £)? @17)
i=1

where N is the number of samples in the training set. w denotes the weights as the linear
parameters of the MLP. x; and t; refer to the i input pattern and its corresponding target
value, respectively. y(x;, w) denotes the MLP output for x; with respect to w. Each weight of

the MLP in any layer is updated based on the update rule stated in Eq. (2.18),

LQg) — t0-1 _
Wap' ' = Wep, a PG AUw) (2.18)
where Wcllb(j Y is the weight of the link connecting neuron a in layer [to neuron b in layer

. , . . . 5}
| — 1 in the (j — 1)™ iteration. @ denotes the learning rate and oTGD Q(w) refers to the
Wab

gradient of the cost function (A(w) with respect to wélgj -,

The learning process has two passes: the forward pass and the backward propagation. In the
forward pass, the MLP outputs are calculated for each input pattern while in the backward
propagation pass, for each node in layer [, the contribution of the neuron to the outputs error
of the MLP is computed for each input pattern in (j — 1)th iteration. Suppose the MLP has L
hidden layers so the layer 1 is assigned to the input layer and layer (L + 1) corresponds to the
output layer. The contribution of neuron a in layer [to the output error of the MLP is defined

in terms of the partial gradient (i.e., denoted by 62 U-1)) of Q(w) with respect to the input of

neuron a in layer [in the (j — 1)™ iteration. If neuron a is an output neuron, 6(11(j)

s
directly computed from the output error of the MLP. In the case that neuron a is a hidden

neuron, it is computed in a recursive way as stated in Eq. (2.19),

Nita

sLUD - g’(ZflU_l)) Z FED U=D 11 G- 2<i<lL (2.19)
k=1

LG-D)

where g’ is the first derivative of the activation function defined in Eq. (2.20) and z, s

the input of neuron a in layer [in iteration (j — 1)th defined in Eq. (2.21). N;,4 denotes the

19

number of neurons in layer [+ 1. W,izl G-1)

refers to the weight of the link connecting
neuron k in layer [+ 1 to neuron a in layer [in iteration (j — 1)™. In Eq. (2.21), X; denotes

the i™ input pattern.

/ 1
g9'(z) = g(2)(1 — g(z)) where g(z) = — (2.20)
w!U-Dy,; o 1=2
LU0 [_ ' (2.21)
‘ Z w® U0, 00D -3 <<,
k=1

Backward propagation is done for all samples and then the gradient of the cost function

Q(w) with respect to Wcllb(j Y is obtained by Eq. (2.22),

m
0 1 1-1) (i— D (j—
— o W) = —x > o IV xs? UV (xy) (222)
ow m 4
ab i=1
-1 -1 . . . P th
where ¢, is the output of neuron b in layer [— 1 for input pattern X; in (j — 1)
iteration.
2.4.1.2. Newton’s method

Since the convergence speed of the steepest descent method is slow, Newton’s method was
proposed to speed up the learning process. In Newton’s method an approximation of the cost
function ((w) is considered by using the second order Taylor expansion of Q(w) around

point w® = (Wét),wl(t), ...,W,(lt)). This approximation gives rise to the quadratic

optimization problem stated in Eq. (2.23).
(2.23)

1
Qw) = AW®) + V0 x (W= wO)T +2x (w—wO)THO (W - w®)
Where V¢ and H® denote the first and second derivatives of Q(w) with respect to w,

respectively. H® is also called the Hessian matrix. The minimum value for the estimated cost
function Q(w) is obtained by solving Eq. (2.24).
v, +H® (w — w(t)) =0 (2.24)

20

The solution of Eq. (2.24) is obtained by Eq. (2.25) which is the Newton’s update method.
w=w® — HO®)1y_q (2.25)

In order to update the parameters w in each iteration by Eq. (2.25), H® must be positive
definite which is not always guaranteed by Newton’s method [17]. In addition, computing the
inverse of H® takes 0(n®) time for each iteration t where n is the number of parameters. In
order to deal with this limitation of Newton’s method, several efficient methods were

proposed. In the following, we will introduce some of them.

2.4.1.3. Quasi-Newton method

The Quasi-Newton method updates H®) based on the changes between the gradient of the
current iteration and that of the previous one, instead of completely computing H® in each
iteration. Several methods have been proposed to gradually update H® including the
Davidon—Fletcher—Powell formula (DFP), SR1 formula (Symmetric Rank one), the BHHH
method, the BFGS method and the low memory extension of BFGS called L-BFGS [30].
Among these, the BFGS stated in Eq. (2.26) is considered the most effective method for a

general unconstrained optimization problem [18].

(t+1) _
Hppgs = HO +

(@O)THOGO\ sOOY (5O @qOTH®O + HOGO O\ (2.26)
1 —
(" (s)Tq®)(S“))Tq“) ((s®O)Tq®)

where s®© = w(t*D —w® and q© =V 41y — V0.

2.4.14. Gauss-Newton method

As another alternative to Newton’s method, the Gauss-Newton method applies an
approximation of H® with the assumption that the underlying problem is a nonlinear least

square one with the cost function defined in Eq. (2.27),

Q(w) = %Z e2(W) ,w = (Wo, Wy, ., Wy) 2.27)
i=1

21

where m is the number of training samples and e;(w) denotes the model output for i input
pattern. w refers to the parameters vector. The first-order partial derivative of Q(w) with

respect to each parameter w; for j = 0,1,---,n is obtained by Eq. (2.28),

= de;
Z —Z edi; j=01,..,n (2.28)
i=1

l=

where J;; is the element in i"™ row and jth column of the m X n matrix J, which is the so called

Jacobean matrix. The relation between the gradient vector V,, and Jacobean matrix J in t™

iteration is expressed by Eq. (2.29) which is the matrix notation of Eq. (2.28).

In practice, the Hessian matrix H is a squared matrix of size n X n whose elements are

computed by Eq. (2.30),

H —i oe, Oe; | 0% k=01 2.30
T Lo\ ow; owy, eiawjawk P L= T (2.30)

=1

where Hjy is the element in jth row and k™ column of H. The Gauss-Newton method presents

an approximation to H by eliminating the second term in Eq. (2.30). Hence the approximation

of H can be stated as Eq. (2.31),

m m
H Z(ae" aei) Z]] ik =0,1 2.31)
jk = __ = ijlik » JI =4yl..,n .
= oW, 0wy i
whose matrix notation is given by Eq. (2.32),

H® = (O)Tj® (2.32)

where H® and J® denote the Hessian and the Jacobean matrix in t™ iteration. By replacing
Egs. (2.29) and (2.32) in Eq. (2.25), the Gauss-Newton update rule in t™ iteration can be
obtained as Eq. (2.33).

22

w=w® — (T~ Te® (2.33)

2.4.1.5. Levenberg-Marquardt method

Although the approximation of the Hessian matrix H in the Gauss-Newton method rprovides
increased speed of the method, the invertibility of ((J®)TJ®) is still not guaranteed [31]. To
deal with this problem the Levenberg-Marquardt method [32, 33] was proposed. In each
iteration the term &1 (a diagonal matrix) is added to ((J®)TJ®) to guarantee that it becomes

a nonsingular matrix that is invertible. § is a variable scalar value that changes in every

iteration by a given factor and I is the identity matrix so that ((](t))T](t) + 6I) is invertible.

The Levenberg-Marquardt update rule is stated in Eq. (2.34).

w=w® — (JO)JO 4 s1)~1(O)Te® (2.34)

The value of § has a critical role to change the behavior of Levenberg-Marquardt. For small
values of &, (J®)TJ®) has significant influence in parameters update. In this case, the
behavior of the Levenberg-Marquardt method is the same as the Gauss-Newton method. In
the case of assigning large values to &8, (J®)TJ®) does not have significant contribution in
parameters update. In this situation, the Levenberg-Marquardt behaves like the steepest decent
method where only (J®)Te®, as the gradient of cost function, (according to Eq. (2.29)) has
an important effect on the update. The method starts with a small value of &, therefore
behaving close to the Gauss-Newton method and continues decreasing 6 as long as the error
decreases Whenever the error increases in an iteration, the parameters are reset to the values
obtained in the previous iteration and § is made larger with the aim of changing the behavior
of the Levenberg-Marquardt method in the direction of the steepest decent method.

By considering the cost function as a least squares problem, the performance of learning
algorithms can be improved by separating parameters into linear and nonlinear in the learning
process [24]. Suppose u and v denote linear and nonlinear parameters, respectively. The

model output can be stated as Eq. (2.35).
y=¢M®u (2.35)

23

where ¢ denotes the output matrix of the last hidden layer possibly including a column of
ones corresponding to the model output bias. By replacing Eq. (2.35) in Eq. (2.27), the

following nonlinear least squares problem is obtained,

m

Qu,v) = %Z e?(u,v)

=1

_lit— o@ul3

> (2.36)

where t is the target vector. Considering any constant value of v, the optimum value of u

minimizing Q(u, v) can be obtained using the pseudo-inverse method:

i(v) =)'t (2.37)

By replacing Eq. (2.37) in Eq. (2.36), a new training criterion is obtained where the cost

function only depends on the nonlinear parameters v:

It — d)) *tll3 (2.38)
2

Y) =

To minimize the criterion in Eq. (2.38), the corresponding gradient must be computed. It has

been proven in [34] that the gradient of ¥ (v) can be determined in such a way that, firstly,

the optimal value of wu is obtained by Eq. (2.37) and then it is replaced in Eq. (2.36).

Afterwards, the gradient of (V) can be obtained by performing the usual calculation. The

new criterion has several advantages when compared to the classic one in Eq. (2.36):

e [t decreases the dimension of the optimization problem since only nonlinear parameters
are considered.

e It makes the Levenberg-Marquardt method faster since each iteration of the learning
process becomes computationally cheaper.

e A small number of iterations is needed to converge to the local minimum of the cost
function since the initial values obtained by using Eq. (2.38) are much lower than those
obtained by using Eq. (2.36). Moreover, the new criterion results in a faster rate of

convergence.

24

2.4.1.6. Four strategies for training RBFNNs

The strategies considered for training RBFNNs differ on how the centers and spreads of the
hidden neurons are computed [17, 35, 36]. Regarding the basic strategy used in the standard
RBFNN proposed by Broomhead and Lowe [20], each sample of the training set corresponds
to a particular center of the RBFNN producing an interpolating surface which exactly passes
throughout all samples of the training set. In case of the presence of a large size training set, a
large size RBFNN is produced. Moreover, in application, the exact curve fitting is neither
useful nor desirable since it may lead to anomalous interpolation properties [20]. To relax the
strict interpolation, three main strategies can be employed.

In the first strategy [37], the center of each hidden neuron corresponds to a random input
pattern in the training set and for all hidden neurons, the same spread is considered as given

by Eq. (2.39),

Amax (2.39)

where n is the number of centers and d,,4, is the maximum Euclidean distance between the
selected centers. Afterwards, the linear parameters u = [ug, Uy, -+, Uy, | can be obtained with
the application of pseudo-inverse method (see Eq. (2.37)).

The second strategy [38] benefits from both supervised and unsupervised learning methods.
In this strategy, which is also called self-organized selection of centers, the centers of the
hidden neurons are determined by applying for instance a clustering method like k-means or
any extended version of that. First, the samples in the training set are grouped into a number
of clusters and then the center of each cluster is considered as a center of a hidden neuron.
Afterwards, the spread of each hidden neuron can be determined by Eq. (2.39) or other
heuristics that have been proposed [24].

Once the centers and the spreads, as nonlinear parameters, are determined, the output linear
weights of the RBFNN model can be found as the solution of a linear least square
optimization problem (see Eq. 2.37).

The strategies described above determine the non-linear parameters by using stochastic or
heuristic methods. Therefore there is no guarantee that the non-linear parameters are the
optimal ones in the minimization of the training error criterion. The third strategy has already
been mentioned in Section 2.4.1.5 where the linear parameters can be obtained optimally by

using the pseudo-inverse operation and then the nonlinear parameters are determined using a

25

nonlinear least squares optimization problem. This way all the parameters are involved in the
minimization of the training error criterion.

The fourth strategy which benefits from Orthogonal Least Squares (OLS) method is an
iterative task that starts with an empty hidden layer and continues with adding a center at a
time and updating the linear parameters (i.e., weights) until some criteria are met. Some

approaches based on OLS can be seen in [39-41].

2.4.1.7. Termination criteria in training process

The training process should be ended when a desired level of accuracy is obtained. In order to
achieve this goal, four approaches may be applied to terminate the training process.

The first approach focuses on a fixed number of iterations which is determined as a user-
defined threshold. The main disadvantage is that for a given problem it is not clear how many
iterations are necessary to guarantee that a desired level of accuracy is obtained.

In order to deal with the problem of the first approach, the second approach simultaneously
checks three termination criteria shown in Egs. (2.40) to (2.42), that reflect the accuracy and
parameter convergence of the model [24]. Whenever all criteria are met, the training process

ends.

Qlk — 1] — Q[Kk] < 8[K] (2.40)
Iwlk — 1] = wlk]ll < /z7. (1 + Iw[k]ID (2.41)
lglklll < 3/zr. (1 + |Q[K]]) (2.42)

o[k] = ;. (1 + Q[k]) (2.43)

In these criteria k denotes the k™ iteration. O, w and g refer to the cost function, the
parameters vector and the gradient vector, respectively. 7y is a user-defined threshold
denoting a measure of the desired number of correct digits in the cost function. 7 has a
critical role in the training process. For example, assigning a small value to 7, may lead to
have an over-trained model. An over-trained model has a high level of accuracy for the
training samples but not an acceptable level of generalization for unseen data [24].

To avoid the over-training phenomenon, the third approach, which is called early stopping
method, 1s considered. The model is evaluated not only on the training samples but also on

another set of samples called testing set. In each iteration, the model error is computed for

26

both training and testing sets. If both training and testing errors are decreasing in comparison
to the error in previous iterations, the training process is allowed to continue. In the case that
the training error is decreasing but the testing error is increasing, the training process
terminates since the model started losing its generalization capability. In this situation, the
values of the parameters may be set to the values obtained in an appropriate previous

iteration. Fig. 2.8 illustrates how the early stopping method works.

Error

Optimum
stopping point

Over training

\ Training Error

>
”~

Number of Iterations
Fig. 2.8. Early stopping method.

2.5. Performance Criteria

Once models are trained, there are various criteria to evaluate their performance. These
criteria must allow the comparison of different types of models in terms of their
performances. Regarding regression problems, the performance criteria express how much
the model’s outputs (i.e., predicted values) are close to their corresponding real values (i.e.,
measured values). Hence, they are specified in terms of the errors obtained between the real
and the predicted values. Some criteria used in regression problems are the Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error (MRE), Mean Absolute
Percentage Error (MAPE), Maximum Absolute Error (MaxAE) and standard deviation of
predicted values (o). These can be calculated by Egs. (2.44) to (2.49).

27

N
1
RMSE = |- (v = 9))? (2.44)
i=1

N
1
MAE == 1y = il (2.45)
i=1
1y = 9l
MRE = —z Yi— i (2.46)
N 2 Vi
=1
100% - [y; — il
MAPE = OZ Yi — i (2.47)
N Lyl
i=1
MaxAE = max(AE(y,y)) (2.48)
1 N
o= |5 0= R (2.49)
i=1

In Egs. (2.44) to (2.49), N, y; and ¥, denote the number of samples, and the real and predicted
values of the output variable for the i*" sample, respectively.

Regarding classification problems, the most common criteria are the Classification Rate (CR),
the specificity and the sensitivity. These criteria can be calculated by using Egs. (2.50) to
(2.52).

TP+ TN 2.50

Classification Rate = —N (2.50)

e TP (2.51)
Spectficity = mp T FN

Sensitivity = TN (2.52)
ensiti ly_—TN+FP

TP, TN, FP and FN denote True Positive, True Negative, False Positive and False Negative,
respectively. The corresponding definitions are as follows:

TP: The number of positive samples which have been correctly classified by the model.
TN: The number of negative samples which have been correctly classified by the model.

FP: The number of negative samples which have been wrongly classified as positive ones

28

by the model.
FN: The number of positive samples which have been wrongly classified as negative ones

by the model.

2.6. Genetic Algorithm

The Genetic Algorithm was inspired by the natural process of evolution and was considered
as an optimization method where it, as a guided search method, tries to find an acceptable or
satisfactory solution in a search space. The problem being solved by a GA is viewed as a
black box system with a number of input parameters and one output parameter. In a more
formal way, the input parameters that describe a possible solution are encoded in a
representation called the chromosome, whereas the output parameter is usually the result of a
function that captures the fitness of the candidate solution to the problem being addressed.
The goal is finding a combination of input parameters’ values resulting in a satisfactory value
for the output parameter [42]. To find an optimal solution, GA starts with an initial population
of the potential solutions for the underlying problem. Each solution in the population, termed
an individual, is evaluated by the problem specific fitness function reflecting the problem
goal. Afterwards, the initial population is evolved by applying genetic operators that mimic
the natural process of evolution. The canonical GA considers, mating selection, parent
recombination, mutation and replacement operators. This way the initial population is
replaced by a new generation by mating the elitists of the initial population so that the
individuals in the new generation are expected to be more fit to the problem. The evolution
process continues by producing a number of generations, expecting that, eventually after an
appropriate number of generations, suitable individuals in terms of their fitness are available.

The following subsections describe the GA operators.

2.6.1. Selection

Once an initial population is generated and a fitness value is assigned to each individual in the
population, some of them should be selected to produce a new generation. There are several
well-known selection methods including roulette wheel (or Fitness Proportionate Selection),
Stochastic Universal Sampling (SUS), Tournament selection and Truncation selection. The

following briefly introduces these methods.

29

Roulette wheel
In this method, firstly, the individuals are sorted in an ascending order based on their
fitness values. Suppose that fitness value f; is assgind to the i™ individual. In the second

step, for each individual, the corresponding normalized fitness value is computed as:

fi

Pi=sT— (2.53)

where I is the number of individuals. Accually, the normalized fitness value p; denotes
the probability of i" individual to be selected. In the third step, for each individual, a

probability interval based on the accumulated normalized fitness values is computed as:

i-1

-1
[li,li +p;) = z p;j + pi) (2.54)

j=1

where [; denotes the lower bound of the interval corresponding to i™ individual. It is
notable that for the first individual, [, is equal to zero. In the fourth step, a random number
r from the range [0,1] is selected and then the individual whose interval includes r is
selected for mating. This step is repeated for a number of iterations to produce a pool of
parents for mating. Based on this method, the individuals with large fitness values have
more chance to be selected than the others. They are also likely to be selected more than
once throughout the selection process.
Stochastic Universal Sampling
The Stochastic Universal Sampling method is the extended version of roulette wheel
method where multiple evenly spaced pointers are considered at a time instead of using a
single pointer to select an individual. Hence, in SUS, multiple individuals are selected at a
time. The advantage of SUS is giving a chance to weaker individuals to be selected as
well. This method reduces the unfair behavior of the roulette wheel method which mostly
ignores the weaker individuals. In SUS method, firstly, a random value r is selected from
the range [0, k] where k is obtained as:
F

k=7 (2.55)
where F and [are the summation of fitness values and the number of individuals that are
supposed to be selected by the method, respectively. In the second step, I pointers are

generated as:

30

pointers = [py,Da...Pn), pi=r+({—-1)«k fori=1tol (2.56)

Like roulette wheel method, for each pointer p;, the individual whose interval includes p;
is selected for mating.

e Tournament
Tournament selection method tries to randomly select a subset of size k (i.e., tournament
size) of the current population for several times. In each tournament, the best individual is
selected as a parent to reproduce the next generation. If k is a large value, the weaker
individuals have a lower chance to be selected. On the other hand, when k =1,
tournament method acts as the random selection method.

e Truncation

Truncation method is one the simplest selection methods where firstly, the individuals are

sorted based on their fitness value and then some proportion, p, of the best individuals are

selected.

2.6.2. Recombination

The children are generated through the combination of their parents’ genes in form of new
chromosomes. Combining the genes is performed by the genetic operator called crossover.
The crossover operator is done with a probability called crossover rate which usually takes a
large value of probability (e.g., 0.7). A number of crossover methods have been proposed.
Among them, single-point, two-point, Cut and Splice and Uniform are well-known crossover
methods. Suppose that a chromosome is a binary string so that each gene takes a value from
{0,1}. The follwoing explaines the crossover methods mentioned above.
e Single-point crossover
In single-point method, a common crossover point is selected for both parents and then all
genes beyond the point are swapped between the two parents which results in having two
children whose lengths are the same as that of their parents. Fig. 2.9 shows an example of

single-point crossover method.

e Two-point crossover
In two-point method, two common crossover points are selected rather than one point. In

this method, all genes between two points are swapped between the two parents which

31

results in having two children whose lengths are the same as that of their parents. Fig.

2.10 shows an example of two-point crossover method.

Parent 1
Lofufrfofrfofofufafrfof1]o]1]
Parent 2
Lofolofufrfrfofifofofufr]1]o]
Child 1
|0]1|1|0‘1 llﬂlllolﬁllllllm
Child 2
Lofofofafr]ofofrfrfr]ofifo]r]

Fig. 2.9. Single-point crossover

Parent 1 !
ol oo ladol ol ladelaf o]

Parent 2
lojofojt|tft|oft|ofofi|[1]1]o]

Child 1
ol tfifofi]t]of1folofol1]o]1]

Child 2
loJofoft|1|ofofs][a][a]a][1]1]o0]

Fig. 2.10. Two-point crossover

Cut and Splice crossover

Cut and Splice method is similar to single-point method but with the difference that each
parent has its own crossover point. All genes beyond each point are swapped between the
two parents which results in having two children with different lengths. Fig. 2.11

illustrates an example of Cut and Splice method.

32

Parent 1
Dol o] ol 1 e]o]t]o]1]

Parent 2
‘0J0011101001110

Child 1
‘0‘1101001110

Child 2
‘0‘0011101001110101

Fig. 2.11. Cut and Splice crossover

Uniform crossover

Unlike previous methods, in Uniform method, the parents have contribution in producing
the children in gene level instead of segment level. In other words, each gene is decided
whether to be exchanged with its corresponding gene in the other parent or to be kept
unchanged. In this method, each gene is swapped with a fixed probability, typically 0.5
where for each child, approximately half of its genes belong to the first parent and the
other half is inherited from the second parent. Fig. 2.12 shows an example of Uniform

method.

Parent 1 01‘10100|1‘110|1|01

Parent2 | 0 0‘0 1411 0‘1‘0 0 1|1|1 0

chita1 {oft|1fifififof1]1folo[1]ofo

1
Child 2 oio|0 ofl1io0 0|1‘0 1 1‘1‘1 1
:I | I |

1

Fig. 2.12. Uniform crossover

33

2.6.3. Mutation

In order to bring diversity to the next generation, another genetic operator called mutation is
performed on a generated child where one or more genes of the corresponding chromosome

is/are modified. Unlike the crossover rate, the mutation rate takes a very small value. The
common mutation method modifies the value of a gene with a probability % where [is the

length of the chromosome.

2.6.4. Replacement

Once a population of children is generated and evaluated, the last decision is how to replace
the current generation with it. The common way is replacing the current population with all
generated children. In some advanced methods, the parents of the current population are
allowed to compete with the children where a percentage of the current population migrates to

the next generation. Some advanced methods can be found in [43].

2.6.5. Multi-Objective Genetic Algorithm

In the real world, the optimization of an engineering problem is a complicated task due to the
presence of multiple objectives which, most of the time, are conflicting with each other. This
means that improving one may deteriorate the other. In this case, there is a Pareto-optimal or
non-dominated set of solutions in which each solution is not better than the other with respect
to the multiple objectives. Fig. 2.13 shows an example of a minimization problem with two
objectives. The whole space of solutions is divided into two groups: the shaded region
presents the dominated solutions while the solid curve illustrates the non-dominated set of
solutions regarding objectives obj.1 and obj.2. As it can be seen in Fig. 2.13, A and B denote
two non-dominated solutions.

The goal of a multi-objective optimizer is improving the surface of non-dominated solutions
(i.e., the solid curve) in such a way that it approaches the origin (i.e., point ‘O’ in Fig. 2.13) as
much as possible.

GAs are well established tools to deal with multi-objective optimization problems [44-46]. In
the Multi Objective Genetic Algorithm [4, 24, 46, 47], each individual in the population is
evaluated in the space of multiple objectives rather than in one single objective. In addition,
at the end of one run of MOGA, a Pareto set of solutions is provided instead of achieving one

solution that is better than all others.

34

Oby. 2

.
>

Obj. 1

Fig. 2.13. Bi-objective minimization problem. The shaded region presents dominated
solutions and the solid curve illustrates non-dominated solutions [47].

An efficient Pareto-based ranking method has been proposed in [43, 47]. In this method, each
individual is ranked based on the number of individuals by which they are dominated. For
non-dominated individuals, rank 0 is considered; if an individual is dominated by m
individuals, rank m will be assigned to it. Fig. 2.14 shows an example of Pareto-based

ranking for two objectives that should be minimized.

‘Zir 0
zZ [0
g 2
S — Q
S
B Q1 3 i
R e Lol
oo | :
T ’ i
RIS S S A
T
TR Qo i
R AL
’L """ R R '(?

Objective 1

Fig. 2.14. An example of Pareto ranking [48, 49].

In most applications, it is common to assign different priorities to the objectives or define
different goals for them which the MOGA tries to achieve. In the case that all objectives have
the same priorities, for those individuals which satisfy all goals, their corresponding rank is
similarly equal to the number of individuals by which they are dominated. Those individuals

which do not meet some goals are penalized by a higher rank. Fig. 2.15 illustrates an example

35

of Pareto-based ranking for two objectives which have the same priorities. For each objective

a predefined goal is considered that should be met.

Obiective 2

o
Y
1

Objective 1

Fig. 2.15. An example of Pareto-based ranking for two objectives with the same priorities. For
each objective, a predefined goal is considered [43, 47].

In the case that, objective 2 has higher priority than objective 1, individuals which meet goal
g» are ranked based on how well they optimize objective 1. Others that do not satisfy g, are
assigned the worst rank without considering their performance with respect to objective 1.

Fig. 2.16 shows an example of this case.

Obiective 2
__ Om

(=]
(8]
1
II
'
|
h
|
1
il
|
-
-l
1
1
1
1
=]
1

1
(I
--------------- b0 1
0 P R B
JE S I |
e oo
N O -
i o
R St it ek e © S BN
; A
: (R S S A | S
I S A S R S
AN NN O O S N B S
|g1 Objective 1

Fig. 2.16. An example of Pareto-based ranking for two objectives in the case that objective 2
has higher priority than objective 1. For each objective, a predefined goal is considered [43,
47].

36

2.7. Neural network based model design by MOGA

The problem of designing a neural network based model can be divided into two sub-

problems as follows [4]:

o Neural network structure: It denotes the network inputs, the number of hidden layers, and
the number of neurons in each layer.

e Neural network parameters: They depend on the model chosen and are usually

determined by a suitable learning algorithm.

Since the RBFNN models considered in this thesis were designed by a MOGA, the remaining
of this section details the MOGA application to the design of RBFNN models for

classification and regression problems.

The output of a RBFNN model is given by Eq. (2.57):

it -ccm)|I2 (2.57)

- 52
=Wy + z Wp.e 20m

In Eq. (2.57), o[k] and i;[k] denote the model output and the j™ input at time instant k,

respectively. w represents the vector of the linear weights, C(m) refers to the vector

(extracted from the C matrix) of the center associated with the m™ hidden neuron, o, is its
corresponding spread, and || ”2 represents the Euclidean distance. The network parameters

which will be denoted as the parameter vector p, are therefore C, 6 and w. In order to design
a RBFNN model that satisfies a set of defined goals, it is necessary to define a set of quality
measures in the form of objectives for each sub-problem mentioned above.

Assume that D = (X, y) is a data set composed of N input-output pairs, which is divided into
a training set, D®, a generalization or testing set D9 and a validation set D”. Assume also that
F is a set of all possible input features (delayed values of the modeled and exogenous
variables in time-series regression problems). The problem of designing RBFNN model by
MOGA can be expressed as follows:

The Dataset D, the allowed range d € [d,,,dy] of input features from F and the range
n € [n,,, ny] of hidden neurons are given as design parameters to the MOGA. After the

execution it generates a non-dominated set of RBFNN models that minimize [u,, 5], where

37

Up and us denote a set of objectives related to the RBFNN’s parameters p and its structure,

respectively. u; includes only one objective,

. =[0(n)] C39)

that denotes the model complexity which is a function of the number of input features and the
number of the hidden neurons.

Since the specification of w,, is different in the classes of problems considered, the following

subsections address the specification of p,, for each class.
2.7.1. Specification of u, in classification problems
In classification problems, we are mainly interested to minimize FP and FN criteria (see

Section 2.5). Hence the corresponding objectives for u,, are considered as:

Up = [FPDt,FNDt,FPDg,FNDg] (2.59)

where FP e and FNp: denote the FP and FN on the training set D¢, respectively. Similarly,
FPpg and FNpg refer to the FP and FN on the testing set D9, respectively.

2.7.2. Specification of p, in regression problems

The specification of u, in for the case of regression problems relies on the minimization of
the error between model outputs and desired values. Therefore, the corresponding objectives

for uy, are defined as:

Hp = [£(DY), £(D9)] (2.60)

where £(D') and &(D9) denote the Root Mean Square Errors (RMSE) of the model

considering training D¢ and the testing set D9Y.

2.7.2.1. Specification of w,, in time series prediction problems

Regarding time series prediction problems, the basic objectives specified for regression
problems are also taken into account. Besides these, an additional objective, €(D®, PH), is

also considered. Hence the corresponding objectives for y,, can be defined as:

38

1y = [e(DY), (DY), (D%, PH)] (2.61)

To understand (D%, PH), assume E(D®, PH) is an error matrix defined over the simulation
set D¥ as expressed in Eq. (2.62), where D’ is composed of a number of consecutive samples

with respect to the time instant.

e[1,1] e[1,2] e[1,PH]
E(DS, PH) = e[2,1] e[2:,2] e[2, PH] (2.62)
el[m—-PH,1] e[m—PH,2] - e[m— PH,PH]

where e[i, J] is the model prediction error taken from instant i of D* at step j within the

prediction horizon PH. Denoting ,D(.,i) as the RMS function operating over the i column

of its argument matrix, then e(D®, PH) is defined as:

P 2.63)
£(DS, PH) = z p(E(DS, PH),)
i=1

This value is proportional to the area below the curve defined by p(E(D?®, PH), i) for i within
the prediction horizon, reflecting the model accuracy over the complete prediction horizon for

the data set considered.

2.7.3. Model representation in MOGA

Each RBFNN model in the population has a chromosome representation consisting of two
components. The first corresponds to the number of hidden neurons and the second one to a
string of integers, each one representing the index of a particular feature in F. The

chromosome representation is shown in Fig. 2.17.

39

Number of Maximum number of input features that can be selected from F

neurons
(_‘_\ l
[|
n A Ay Adm Adm+1 AdM
\)

|

Minimum number of input features that can be selected from F

Fig. 2.17. Chromosome representation in MOGA.

Before being evaluated in the MOGA, each model has its parameters determined by a
Levenberg-Marquardt algorithm [32, 33] minimizing the error criterion in Eq. (2.38) that
exploits the linear-nonlinear relationship of the RBFNN model parameters [34, 50]. The
initial values of the nonlinear parameters (€ and @) are chosen randomly, or by the use of a
clustering algorithm, w is determined as a linear least-squares solution, and the procedure is

terminated using the early-stopping approach [17] within a maximum number of iterations.

2.7.4. Model design cycle

There are three main actions in the model design cycle: problem definition, solution(s)
generation and analysis of results. In the problem definition stage, the data sets, the ranges of
features and neurons are defined, as well as the objectives. After this stage, the MOGA
execution performs a search to obtain models that satisfy the predefined objectives and goals.
In the third stage, the set of models obtained by the MOGA that lie in the Pareto front are
analyzed. For this purpose, the performance of the models in the validation set (not involved
in the training) is also considered and is of paramount importance. If good solutions are
found, the process stops. Otherwise, based on the analysis of results, the search space can be
reduced, and/or the objectives and goals can be redefined, therefore restricting the trade-off
surface coverage. A more detailed description on the application of the MOGA to the design

of ANN models can be found, for instance, in [4, 24].

40

2.8. Information Theory

Information theory addresses the quantification, storage and communication of information.
Entropy, as one of the basic concepts in information theory, measures the expected value of
the information contained in any random variable. For a given discrete random variable X

with N possible observations, the Shannon entropy is defined as Eq. (2.64) [51].

N
H(X) =- Z P(x;)log P(x;) (2.64)

where P (x) denotes the Probability Density Function (PDF) of X. Mutual Information (MI) as
another key concept in information theory measures the dependency between variables.
Unlike the correlation coefficient that measures only the linear relationship between variables,
MI does not consider any assumption for the underlying relationship. In addition, MI can be
defined between groups of variables [52]. MI between two variables X and Y (they can be
univariate or multivariate variables) denoted by I(X;Y) can be interpreted in several ways.
Informally, I(X;Y) measures the amount of information that X and Y share. Formally,
[(X;Y) measures the amount of knowledge of X that reduces the uncertainty about ¥ and vice
versa [53]. It is also translated into the degree of predictability of the second variable knowing
the first one [54]. In the case that X (i.e., with N possible observations) and Y (i.e., with M

possible observations) are discrete variables, MI is computed by Eq. (2.65).

P(xl,y])
I(X;Y) = ZZP(xl,y])logP(PO (2.65)

i=1j=

where P(.,.) and P(.) denote the joint and marginal PDF, respectively. Since the
computation of entropy and MI depends on the PDF, the related problematic issue is the
estimation of the PDF. The most common methods for PDF estimation are histograms and
kernel estimators [55, 56]. Moreover, there is another approach allowing us to directly
estimate entropy and MI from data instead of PDF estimation. Some methods for estimating

entropy and MI can be seen in [57, 58].

41

2.9. Overview of two statistical tests

In order to compare the performance of machine learning methods on classification and
regression problems, from a statistical point of view, several statistical tests have been
proposed. In this way, at the first step, the two involved classification or regression methods
are independently applied on to the same data sets. At the second step, based on the
corresponding evaluation results (i.e., they can be in terms of RMSE and classification rate
for regression and classification problems, respectively) obtained by each method, the
comparison of the methods’ performances are statistically verified by rejecting or accepting a
null hypothesis (i.e., the null hypothesis is equivalent to the assumption that the two methods
perform equally well). In this section, the two statistical tests which have been applied in this

thesis are explained.

2.9.1. Sign test

Applying Sign test [59] is one of the simple ways to compare the performances of two
methods. In this test, two methods are compared with each other in terms of the number of
times that the first method has performed better than the second one. This number is also
known as the number of wins. In case of tie, the corresponding count is evenly split between
them; if there is an odd number of them, one is ignored. In case that multiple methods should
be compared, pairwise comparisons are organized in a matrix. Typically, for a large number L
of data sets, the critical number of wins with the significance level of @ = 0.05 is equal to
L/2 + (1.96VL)/2 or L/2 + VL. The first method performs better than the second one, if its

number of wins is greater than or equal to the critical value.

2.9.2. Wilcoxon signed-ranks test

According to the suggestion of [60], a Wilcoxon signed-ranks test [59] is a proper alternative
for t-test. Firstly, Wilcoxon signed-ranks test is safer than t-test since it does not assume the
normal distributions. Secondly, the outliers have less effect on the Wilcoxon’s performance
than they have on the t-test. This is a non-parametric test, which ranks the differences in
performances of two methods for each data set, ignoring the signs, and compares the ranks for
the positive and the negative differences. Assume that d; is the difference between the
performance scores of the two methods on the i out of L data sets. The differences are ranked

according to their absolute values; average ranks are assigned in case of ties. Let R be the

42

sum of ranks for the data sets on which the second method outperformed the first, and R~ the
sum of ranks for the opposite. Ranks of d; = 0 are split evenly among the sums; if there is an

odd number of them, one is ignored. Eqgs. (2.66) and (2.67) present R" and R, respectively.

R* = Rank(d,) +%ZRank(d[) (2.66)

d;>0
R = ZRank(d[)+%2Rank(di) (2.67)
;=0

d;<0

Assume that T is the minimum of the sums, T = min(R*,R™). For a small number of data
sets (i.e., L < 60), most books in general statistics contain a table of exact critical values of T
based on some different significance levels of a. For a large number of data sets (i.e., L >

T - lL(L +1)
60), the statistic z= 4

is distributed approximately normally. With

1
\/24L(L +DQL+1)

a = 0.05, the null hypothesis can be rejected if z is smaller than -1.96.

43

44

3. Convex hull algorithms and state of the art

3.1. Introduction

The convex hull of a dataset is a widely known concept in computational geometry. It has
been applied in many fields such as computer graphics, pattern recognition, image processing,
file searching, statistics, cartography, metallurgy, etc. For example, in some applications, the
size of an object can be computed through its image. In case that some pixels of the image
might be lost or not be visible, convex hull can provide us an approximated shape of the
underlying object. In machine vision applications, convex hull can be applied to detect
collisions while navigating over a field of obstacles, where the objects can be substituted with
their corresponding convex hull.

The convex hull of a set of data can be presented in terms of vertices and facets where the
vertices refer to the boundary points of the data set and the facets denote the connections
among the vertices. Since convex hull vertices are useful and informative points reflecting the
whole range of data, convex hull can also be considered in the data selection phase in machine
learning and data mining tasks.

This chapter is intended to address the explanation of the basic concept of convex hull as well
as introducing some standard convex hull algorithms applicable to low and high dimensions.
The rest of this chapter is organized as follows: the definition of convex hull along with an
overview of convex hull algorithms are explained in Section 3.2. In Section 3.3, some
standard convex hull algorithms for low dimensions are introduced. As a state-of-the-art, a
proposed convex hull algorithm in high dimensions is introduced in Section 3.4 and finally

some conclusions are drawn in Section 3.5.

3.2. An overview of convex hull algorithms

From a computational geometry’s point of view, an object in Euclidean space is convex if for
any pair of points within the object, the straight line segment that joins them is also within the
object. A set S is convex if, for any pair, x,y € S, and all t € [0,1], the point (1 — t)x + ty
is in S otherwise S is a concave set. Moreover, if S is a convex set, for any uy, u,, ...,u, € S,
and any nonnegative numbers {A;,4,,...,4,.}: 27_; 4; = 1, the vector }/_; A;u; is called a
convex combination of uq, Uy, ..., U,. Intuitively, Figs. 3.1(a) and 3.1(b) illustrate convex and

concave sets, respectively.

45

@ (o

Fig. 3.1. (a): convex set, (b): concave set

According to the definitions above, the convex hull or convex envelope of a set X of points in
the Euclidean space can be defined in terms of convex sets or convex combinations [61-63]:

e the minimal convex set containing X, or

e the intersection of all convex sets containing X, or

e the set of all convex combinations of points in X.
Based on the definition of convex hull, a k-simplex is a k-dimensional polytope which is the
convex hull of k + 1 affinely independent points. Intuitively, 0-simplex, 1-simplex, 2-simplex
and 3-simplex correspond to a point, a line segment, a triangle and a tetrahedron, respectively.
Generally, a k-simplex consists of the elements called i-faces where i < k — 1. O-faces, 1-
faces and (k — 1)-faces are called vertices, edges and facets of the k-simplex, respectively.
Fig. 3.2 shows the convex hull of a set of points.
Convex hull algorithms can be categorized from three points of view. An algorithm can be
deterministic or randomized depending on the order of vertices found. If the order is fixed
from execution to execution, the algorithm is deterministic [6]; otherwise, it is randomized
[12]. Furthermore, an algorithm can be considered as a real or approximation algorithm. If it
is capable of identifying all vertices of the real convex hull, the algorithm is classified as real
[8]; otherwise, it is an approximation [10, 64]. Finally, we can also classify convex hull
algorithms into offline and online algorithms. The former uses all the data to compute the
convex hull, while the latter employs newly arrived points to adapt an already existing convex
hull [5]. Fig 3.3 shows the main categories of convex hull algorithms from the three points of

view.

46

Vertex

7

__—> Facet

Fig. 3.2. Convex hull of a set of points.

- — Approximation
eterministic Convex Hull P

Algorithms
Randomized £ Real

Offline Online

Fig. 3.3. Categories of convex hull algorithms.

3.3. Introduction of convex hull algorithms in two and three dimensions

In one dimension, the convex hull vertices of a set of n points are the minimum and
maximum values (i.e., the corresponding convex hull involves two vertices). Hence the time
complexity of finding convex hull in one dimension is O(n). For 2 and 3-dimensional
Euclidean space, some standard algorithms have been proposed so that the time complexity of
most of them is O(nlogn). For 2-dimensional Euclidean space, some basic algorithms have
been proposed which are strongly similar to standard sort algorithms where they produce the
convex hull vertices in a counterclockwise order. The following introduces some standard real
algorithms as well as approximation, online and randomized algorithms in two and three

dimensions.

3.3.1. Graham’s scan

Graham’s scan [6] is one of earliest real deterministic offline algorithm in two dimensions.

This algorithm which outputs the vertices in counterclockwise order works based on three

47

elements including the angle between each point and the center of points, the distance of each

point to the center and the lef? furn concept.

Three points py = (P11,P12), P2 = (P21,P22) and p3 = (P31, P32) make a left turn when

P11 P12z 1
P21 P22 1] is positive where |.| denotes the determinant operation. The positive value
P31 P32 1

demonstrates that the three points are in counterclockwise order while the non-positive value
refers to clockwise order corresponding to the right turn.

In Graham’s scan, first, all points are lexicographically sorted with respect to the polar angle
and the distance from the center of points. In the second step, the lowest leftmost point, called
the start point, as well as the two consecutive points after that are inserted in the vertices list.
Then the algorithm starts traversing the points onwards in a circular way. At each traverse, the
new point is compared with the last two vertices found in the previous traverses. If the new
and the last two vertices make a left turn then the new point is inserted into the list and the
traverse progresses; otherwise, the last vertex is deleted from the list and again the left turn
examination is done. This backward elimination is repeated as long as the left turn
examination is not met. The algorithm stops when all points are traversed. Fig. 3.4 illustrates
an example of applying Graham’s scan on a set of 10 points. As it can be seen in Fig. 3.4, the
origin of coordinates is transferred to the center point and then all points are sorted with
respect to the polar angle and the distance from the center. Consequently, the sorted list is
obtained as {p,,P3, P41 Ps Pe P7. P8 Po, Start,p,}. In Fig. 3.4, Start is the lowest
rightmost point which is definitely a vertex of convex hull. Three points, Start, p; and p,
are selected as vertices of convex hull and then the next point which is p3 is examined. As it
can be seen in Fig. 3.4, triple (p1, P2, P3) makes a left turn so p5 is selected as a convex hull
vertex. In the next traverse, point p, is considered. As it can be observed in Fig. 3.4, triple
(P2, P3,P4) makes a right turn so p3 is removed from the vertices list and then triple
(P1, P2, P4) 1s examined. Since this triple makes a left turn, the algorithm traverses the next
point which is ps. Triple (p2, P4, P5) makes a left turn therefore ps is inserted to the vertices
list and it allows the algorithm to examine triple (P4, Ps,Pe). As this triple makes a right
turn, ps is removed from the vertices list and then triple (p,, P4, Pe) 1s examined that allows
the algorithm to traverse the next point p;. This procedure continues until all points are
traversed. Finally Graham’s scan outputs the vertices list as {Start,p., P2, P4, Pe, P7,Pg}-

The time complexity of Graham’s scan is O(nlogn).

48

p2

Start

Fig. 3.4. Graham’s scan on ten points.

3.3.2. Jarvis’s march

Jarvis’s march [7] is another instance of real deterministic offline methods . It works based on
the theorem stating that a segment line between two points is an edge of the convex hull in
planar space if and only if all the remaining points are located in the same side of the edge [5].
The algorithm starts with the lowest rightmost point as the new origin (i.e., the original
coordinates is transferred to the new origin) which is a vertex of convex hull. Then the point
with the smallest angle with respect to the positive x axis is selected as the second vertex of
the convex hull. In the next step, the second vertex is set as the new origin and then another
point with the smallest angle with respect to the positive x axis is selected as a new vertex.
This procedure continues until it gets to the highest rightmost point. From this point, the
algorithm continues to find a new point with the smallest angle with respect to the negative x
axis. The algorithm terminates when we get to the lowest rightmost point. Fig. 3.5 illustrates
an example of applying Jarvis’s march on a set of 10 points. As it can be seen in Fig. 3.5, the
algorithm starts with Start as the lowest rightmost point which is definitely a vertex of the
convex hull. In next step, the coordinates are transferred to Start as the origin and then p4 as
a point with the smallest angle with respect to the positive x axis is selected as a convex hull
vertex. In next step, the coordinates are transferred to p4 as the origin and then p, as a point
with the smallest angle with respect to the positive x axis is selected as a convex hull vertex.
In next step p4 is selected as another vertex. Since p4 is the highest rightmost point, for next
steps, the smallest angle is considered with respect to the negative x axis. Considering p, as
the origin, pg is selected as another vertex rather than ps. This procedure continues until we

get to the Start. Ultimately, Jarvis’s march results in a vertices list

{Start,p,, D2, P4, D6, P7, D3}

49

The time complexity of Jarvis’s march is O(nf) where n and f denote the number of points
and the number of convex hull vertices, respectively. Hence this algorithm is an example of
output-sensitive algorithms where the time complexity depends not only on the input size but
also on the output size. In the worst case, when all points are located on the hull (i.e., no point

is identified as an inner point), the time complexity is O (n?).

P4 (Highest Rightmost)

Start (Lowest Rightmost)

Fig. 3.5. Jarvis’s march on ten points.

3.3.3. Quickhull

Quickhull [8] as a promising real deterministic offline algorithm is faster than other proposed
algorithms in two dimensions and it can be extended to more than two dimensions. The idea
behind Quickhull is growing the current convex hull in each iteration by finding the furthest
point with respect to the facets of the current convex hull. In each iteration, the current convex
hull is presented in terms of both vertices and facets. The algorithm starts with an initial
convex hull which is the maximum 2-simplex being translated to a triangle with maximum
area (i.e., the initial convex hull has three vertices). In the next step, the points inside the
initial convex hull are marked as inner points and then removed from the set of points. In this
step, the initial convex hull with three facets divides the whole space into three subspaces.
Afterwards, inside each subspace, the point which has the maximum distance to its
corresponding facet is marked. Among the marked points, the point with maximum distance,
called the furthest point, is selected as a new vertex of the convex hull. In the next step, two
new facets are generated in such a way that each new facet involves the furthest point and one
of the two vertices of the corresponding facet. Consequently, a new triangle is generated.
Afterwards, the points inside the triangle are marked as the inner points and are removed from

the set. Then the corresponding facet of the furthest point is removed to update the current

50

convex hull. This procedure continues with the current convex hull and stops when no

furthest point is identified. Fig. 3.6 illustrates the steps of Quickhull applied on a set of 20

points.
. L]
L) .
[— — " - —"*
| ~ |
| . 7 \ ~
| L) —~ \ /./
//l . L] ‘I‘ ~ L] . L]
. b _//I o | /./.
~] ‘| _ L]
//i . “ /-4 L]
./. L] "'/. L
L] L]
L] L]

e
. ‘\\\ Y N .
— ™
| \Ei “.“";’ ‘I“ \\)
. 7 . o
. /] ..
e .
~e *
(2) (h)
J -‘\\\ N N
hd * \'\ L4 * \’(\
\> \\‘
4 1’/:’/ 4 / /
~ /
. P ,1/ .. ’J/
(1) 0)

Fig. 3.6. The steps of Quickhull applied on 20 points.

51

As it can be observed in Fig. 3.6, in each step, the furthest point with respect to the current
convex hull is identified and marked as a convex hull vertex. Afterwards, two new facets are
generated and based on those, the inner points are removed from the underlying set. Then the
corresponding facet of the furthest point is removed. This procedure continues until no new
vertex is found.

From the time complexity point of view, for dimensions d < 3, Quickhull runs in time
O(nlogr), where n and r are the number of all points and the number of processed points,
respectively. In the worst case, the time complexity is 0(n?). For d > 4, Quickhull runs in

time O(nf,./r), where f,. is the maximum number of facets for r vertices. Since f,. =

d
O(rlEJ / EJ N, for high dimensions, a massive number of facets would be generated for r

vertices. Consequently, Quickhull is not feasible for high dimensions, both in terms of

execution time and memory requirements.

3.3.4. A divide and conquer based convex hull algorithm

Preparata and Hong [9] proposed a convex hull algorithm based on the divide and conquer
technique. This algorithm starts with sorting set S of points with respect to the first dimension
denoted as x (i.e., the second dimension is denoted as y). Then S is divided into two equal
size subsets S; and S, so that the first half of points is assigned to S; and the second one to S,.
The algorithm is recursively performed on S; and S,. Sorting points produces a set of
nonintersecting sub-convex hulls throughout the execution of the algorithm. Any standard
convex hull algorithm in 2-dimensional space can be applied to obtain the sub-convex hull of
each subset. Another phase of the algorithm is merging any two sub-convex hulls. Fig. 3.7
shows the steps of the divide and conquer based algorithm applied on a set of 20 points. As it
can be seen in Fig. 3.7, the underlying set is divided into the subsets recursively. Generating
sub-convex hulls and merging them are also done in a recursive manner. Sorting the points
takes O(nlogn) operations. The time complexities of generating a set of sub-convex hulls
and merging them are O(nlogn) and O(n), respectively. To sum up, the time complexity of
the algorithm is O(nlogn). The extended version of the algorithm in 3-dimensional

Euclidean space also takes O(nlogn) time.

52

© @
© 0
(® (0

Fig. 3.7. The steps of the divide and conquer based algorithm applied on 20 points.

3.3.5. Approximation Algorithms for Convex Hulls

As mentioned earlier, there exists a subclass of convex hull algorithms called approximation
algorithms where a subset of vertices of real convex hull is obtained. The approximation
algorithms are proper for real time applications. Approximation algorithms are also suitable
for statistical applications in which data observations are not accurate. Since the obtained real
convex hull from inaccurate data is not the same as the one obtained from the accurate data,
one can rely on an approximation convex hull. Authors in [10] proposed approximation
algorithms for two and three dimensions. The basic idea behind these algorithms is selecting a

subset S of the whole set containing n points and then applying any convex hull algorithm on

53

S to obtain an approximation convex hull. The key point in these algorithms is proposing a
method based on data partitioning to select the subset S. In two dimensions, firstly the
minimum and maximum points with respect to x axis (i.e., the first dimension) are included in
S. In second step, the points are partitioned into k equally spaced strips with respect to x axis.
In third step, in each strip, the minimum and maximum points with respect to y (i.e., the
second dimension) are included in S and finally a convex hull algorithm is applied on S to
obtain an approximation convex hull. The steps of the algorithm applied on 22 points (i.e.,
n = 22) with 8 equally spaced strips (i.e., k = 8) are illustrated in Fig. 3.8. As it can be seen
in Fig. 3.8(c), one outer point which is a vertex of the real convex hull has not been identified
by the approximation algorithm. The time complexity of the approximation algorithm in two
dimensions is 8(n + k). In a 3-dimensional Euclidean space, firstly, the minimum and
maximum points with respect to both x and y axis are included in S. In the second step, the
points are partitioned into a k X k grid of squares obtained with respect to x and y axis. In the
third step, in each square, the minimum and maximum points with respect to z axis (i.e., the
third dimension) are also included in S and finally any convex hull algorithm for three
dimensions can be applied on S to result in an approximated convex hull. The time

complexity of the approximation algorithm in three dimensions is 8(n + k2 logk).

(a) (b)

(c)
Fig. 3.8. The steps of the approximation convex hull algorithm applied on 22 points.

54

3.3.6. Online convex hull algorithms

Unlike offline algorithms, online convex hull algorithms process points at a time in the sense
that the current convex hull is gradually updated whenever a new arriving point is received.
The online convex hull problem can be described as follows: firstly, the convex hull of a
given N points p4, -+, py 1s identified and then the convex hull is updated by the new arriving
point p;. Throughout the convex hull update process, three cases may happen. In the first
case, the new arriving point is an inner point meaning that the new point is located inside the
current convex hull. In this case, the new point is rejected and the current convex hull is kept
unchanged. In the second case, the new point is an outer point meaning that the point is
located outside the current convex hull. This situation causes elimination of some vertices of
the current convex hull which have been already converted to inner points. In the third case,
the new point is an outer point but does not affect the vertices of the current convex hull. In
this case, the new point is appended into the list of vertices.

One of the earliest online convex hull algorithms in 2-dimensional spaces was proposed by
Preparat and Shamos [11]. The main idea behind their algorithm is updating the current
convex hull benefiting from two support lines (i.e., left and right support lines). A support line
is a line which passes through the new arriving point and one of the vertices of the current
convex hull so that the remaining points lie in the same side of the line. If no support line is
founded, it means that the new point is an inner point. In case that the new point is an outer
point, all vertices between two support lines are marked as inner points and will be eliminated
in the update process. Fig. 3.9 shows the update process of the online convex hull algorithm

based on the support lines.

... P4 Left support line

L

P7

-~ Right support line

P

P10

Fig. 3.9. The update process of the online convex hull algorithm based on support lines.

55

The online algorithm takes 8(nlogn) time for obtaining the convex hull of n points with
6(lognn) update time. The extended version of this algorithm in 3-dimensional Euclidean

space also takes 6(nlogn n) time.

3.3.7. Randomized algorithms

Unlike deterministic convex hull algorithms, randomized algorithms construct the structure of
convex hull in a random manner. They are similar to online algorithms in the sense that the
convex hull is incrementally formed due to processing random points at a time. In online
algorithms, however, the initial convex hull is formed based on a limited number of points
while in random algorithms, all points are available to be processed. Therefore, some
information of the resulting convex hull can be obtained before it is constructed.

In randomized incremental algorithms, a convex hull is incrementally constructed in three
steps. In the first step, an unprocessed random point is selected. In the second step, the
boundary of visible facets with respect to the point is identified. This boundary is called
horizon ridges. Afterwards, new facets are generated using the point and the horizon ridges.
Finally, the visible facets as well as the inner points are eliminated. This procedure is repeated
until no unprocessed point remains [8]. In this method, the convex hull is presented as a set of
a finite number of extreme points which are the convex hull vertices. Hence, this
representation of the convex hull is known as vertex representation or V-representation [65].
The time complexity of such randomized algorithms is O(nlogn) for d < 3. Convex hull can
also be defined in terms of the intersection of a finite number of half-spaces in the form of a
system of linear inequalities as follows:

ai1Xq + A12Xo + -+ A1qXaq < bl

A1 X1 + QX + -+ ApgXg < by,

Each inequality denotes a half-space where m and d are the number of halfspaces defining the
convex polytope and the dimension, respectively. The concise form of the above system can
be represented in the form of matrix inequality as Ax < b where each row of A and b
together correspond to the definition of a supporting hyperplane of the convex polytope in
terms of normal and offset, respectively. This presentation of convex hull is known as half-
space representation or H-representation [65].

One of the earliest randomized convex hull algorithms which provides H-representation of the

convex hull was proposed by Clarkson and Shor [12]. In each iteration of the algorithm, an

56

unprocessed random half-space is added into the current convex polytope by intersecting it
with the previous half-spaces enveloping the convex polytope. The algorithm takes O(m +
nlogn) expected time and O(n) space in the worst case, where n and m denote the number

of points and the number of intersecting pairs reported.

3.4. Introduction of convex hull algorithms in higher dimensions

In higher dimensions d > 4, two main methods are considered to identify the convex hull: 1-
gift wrapping method [5, 66] 2- beneath-beyond method [63].

The idea behind the gift wrapping method is constructing the convex hull by starting a facet
and finding the adjacent facets. This procedure is iteratively conducted for each new
identified facet. Since each facet is linked to its corresponding adjacent facets, the way in
which the convex hull formed is like wrapping around a convex polytope in d-dimensional
space. Jarvis’s march algorithm introduced in Section 3.3.2 is a special case of the gift
wrapping method in a 2-dimensional space. Like Jarvis’s march, the gift wrapping method in
high dimensions is an output-sensitive method whose time complexity also depends on the
size of output f which can be the number of facets of the generated convex hull. Therefore,

the time complexity of the gift wrapping method in high dimensions is O(nf). Based on the

d
upper bound theory, the number of generated facets is O(UH) where v is the number of

convex hull vertices. In the worst case where n = v, the time complexity of the gift wrapping

d
method is O(n Hﬂ). An improved version of the original gift wrapping method was proposed

by Seidel [66] where the algorithm takes O(n? + f logn) time. Based on the upper bound

theory, in the worst case, the time complexity of the algorithms is O (nEJ logn).

The Beneath-beyond method is considered as an incremental approach constructing the
convex hull by adding one point into the current convex hull at a time. The update process of
the current convex hull includes adding new facets into the current convex hull and removing
the visible facets with respect to the new point. The Quickhull algorithm, as a deterministic
incremental algorithm stated in Section 3.3.3, and also the randomized incremental
algorithms, described in Section 3.3.7, where the convex hull is presented in terms of vertices
(i.e., V-representation) are special beneath-beyond methods in a 2-dimensionl Euclidean

space. The time complexity of the beneath-beyond method in high dimensions is O(nlogn +

(d+1) d
anJ) with O(nlﬂ) space [63]. The method was improved by [67] through derandomizing
the randomized incremental algorithm proposed by [12] . The time complexity of the

57

improved version is O(nlogn + nEJ). Since both time and memory requirement increase
exponentially with respect to dimension d > 4 with a fixed number of samples, applying the
traditional convex hull algorithms in very high dimensions with a huge number of samples is
not feasible.

As the state of the art, one of the recent work done to overcome these challenges in high
dimensions is the proposal of an approximation convex hull algorithm by Wangs and et al.
[68]. The proposed algorithm represents the convex hull in terms of vertices with the aim of
including extreme points in the training set for online adaptation process of SVM models. The
algorithm is based on samples partitioning where for each partition, the corresponding sub-
convex hull is obtained and then the union of vertices of all sub-convex hulls is considered as
the set of vertices of an approximation convex hull. The algorithm results an approximation
convex hull throughout three steps. In the first step, d + 1 samples are selected as the vertices
of the initial convex hull so that these samples can constitute a d-simplex as large as possible
where d is the dimension. Since the d-simplex has d + 1 facets, it divides the space into
d + 1 partitions. For example, Fig. 3.10 illustrates a 2-simplex which is translated into a
triangle. As it can be seen in Fig. 3.10, the vertices of the 2-simplex are {xy, x,, X3}. Assume o
is the center of the 2-simplex. As can be seen in Fig. 3.10, the rays ox;, 0x, and ox3 divide

the samples outside the 2-simplex into three partitions named P;, P, and Ps.

Fig. 3.10. Constructing a large 2-simplex

In the second step, each partition whose number of samples is greater than a user-defined
threshold L is divided into d new partitions based on the furthest sample to the corresponding

facet of the partition. Afterwards, the furthest sample is appended into the list of convex hull

58

vertices. This procedure continues until there exists no partition whose number of samples
exceeds L. For example, in Fig. 3.11, partition P; is divided into two new smaller partitions
named P;; and P3, based on the furthest sample named x, to the facet x,x5. As it can be seen

in Fig. 3.11, the facet x,x5 is removed and two new facets x,x, and x3x, are generated.

Fig. 3.11. Partitioning step

At the end of this step, each facet is considered as a sub-convex hull including d vertices. In
the third step, each sub-convex hull is tried to be expanded by identifying the furthest sample
to the whole sub-convex hull and appending it into the list of the sub-convex hull vertices.
This procedure continues until an approximation convex hull with at most M vertices is
obtained, where M is a user-defined threshold. The time complexity of the algorithm is at
most O(nd*) where n is the number of samples. Although the algorithm can cope with the
time complexity in high dimensions, as it will be shown in Section 4.4.1, it presents some
points as vertices of the approximation convex hull that do not belong to the vertices of the

corresponding real convex hull.

3.5. Conclusions

Convex hull, as one of the fundamental concepts in computational geometry, has been applied
in a wide variety of applications such as data selection, image processing, pattern recognition,
collision detection, file searching, cluster analysis, etc. Convex hull algorithms can be

considered from three points of view: deterministic or randomized, in terms of vertices order,

59

real or approximation, depending if all convex hull points are found, or not, and offline and
online, depending on the use of data.

To the best of our knowledge, the standard algorithms in two and three dimensions that have
been proposed by far, present the real convex hull in the time complexity O(nlogn).

Moreover, the proposed standard real algorithms in high dimensions (i.e., more than three

dimensions) take O(nEJ) time and space in the worst case; where n and d denote the number
of samples and the dimension, respectively. Since in practice, applying the standard real
algorithm on a huge number of samples in high dimensions is not feasible, approximation
algorithms have received much attention to cope with challenges in high dimensions. As one
of the state of the art, Wangs and et al. [68] proposed an approximation algorithm in high
dimensions with the time complexity O(nd*). Since this algorithm marks some points as the
convex hull vertices which do not belong to the vertices of the real convex hull, a randomized
approximation convex hull algorithm for high dimensions is proposed in Section 4.3. The
proposed algorithm not only overcomes the time and space complexity in high dimensions,

but also presents a subset of informative vertices of the corresponding real convex hull.

60

4. A convex hull-based data selection method for data driven

models

4.1. Introduction

As stated in Section 3.4, the standard convex hull algorithms suffer from high time and space

complexity in high dimensions (i.e., the latter being O(nEJ) where n and d are the number of
samples and dimensions, respectively.). Hence, in practice, they cannot be applied in high
dimensions. For example, if Quickhull [8], a real deterministic convex hull algorithm
described in Section 3.3.3, is applied to an artificial dataset including 1000 uniformly
distributed random samples in just 9 dimensions, in a computer with Ubuntu Linux OS, Intel
Core i5 processor and 4 Gigabytes of RAM, one can see that it suffers from insufficient
memory.

A small number of efforts have been done to overcome these problems in high dimensions.
The approximation algorithm proposed in [68] has significantly reduced the time complexity
to 0(nd*). The problem of the algorithm, as reported previously, is that some points which
are marked as convex hull vertices do not belong to the real convex hull.

This chapter introduces a randomized approximation convex hull algorithm called
ApproxHull , with the aim of being applied as a filter data selection method to design data
driven models. ApproxHull not only is capable of being applied on large size data sets in high
dimensions but also presents a set of informative vertices which all belong to the real convex
hull. The main application of ApproxHull in the data selection phase is constructing a training
set that reflects the whole input-output range of the design data. To do that, the training set
incorporates the convex hull points obtained from ApproxHull, as well as some random points
from the whole data.

This chapter is organized as follows. A review on instance selection methods is presented in
Section 4.2. ApproxHull is introduced in Section 4.3. To verify and evaluate the performance
of the algorithm, a number of experiments were carried out. Section 4.4 explains the
simulation results obtained. The run time and memory requirements of ApproxHull are
discussed in Section 4.5 and 4.6, respectively. Finally, some conclusions are given in Section

4.7.

61

4.2. A review on instance selection methods

In many machine learning and data mining problems two basic tasks have to be considered:
feature selection and instance selection. The former denotes choosing a subset from all
available features so that the selected subset has the strongest relation to the model output and
yields improved model performance. The latter refers to sample selection where we are
interested in selecting a subset of useful and informative data samples (denoted by S) among
all existing data samples (denoted by T). The goal is that the model obtained using S can
maintain or even exceed the performance level (for instance, accuracy) that would be attained
using T. The instance selection process not only helps decreasing the run time of the training
process but also has the benefit of reducing the memory requirements of learning algorithms.
This is important when classification or regression tasks rely on existing large-size training
sets.

Generally speaking, instance selection methods can be classified from the search direction and
selection criterion points of view. Regarding the search direction, the methods are categorized
as incremental or decremental. In the former, the selection process starts with S = @ and
progresses iteratively by inserting selected samples from T into S. In the latter, in contrast, the
selection process starts with S =T and superfluous samples are discarded from S in an
iterative manner. Finally, for both methods, we have S € T by the end of the selection process
[69, 70].

From the selection criterion point of view, instance selection methods are classified as
wrapper or filter methods. Wrapper methods use a model as a selection criterion, where the
performance of the model is evaluated based on a subset of samples iteration by iteration to
select those samples which have the most contribution on the model accuracy. Most works
found in literature on wrapper methods relate to classification tasks. Unlike wrapper methods,
filter methods employ a model independent selection function to choose informative samples
[69]. This means that the accuracy of the model does not have any contribution in the
selection criterion; instead, a selection rule is applied.

Fig. 4.1 shows the two main classes of instance selection methods along with their subgroups.

The following details wrapper and filter methods along with some related works.

62

[Instance selection methods]

Wrapper methods

k-NN rule Search based SVM based Clustering Weighting Information Other methods
based methods methods methods based methods based methods theory based
methods

Filter methods

Fig. 4.1. Classification of instance selection methods

4.2.1. Wrapper instance selection methods

Collectively, wrapper methods may be further subcategorized into three groups. The first
gathers methods which are based on k — NN (K Nearest Neighbors) classifiers [71], whereas
the second group involves a broad class of wrapper methods that can be based on any
classifier. The second group which is mostly based on search algorithms tries to find an
optimal set S from T to keep the classifier in a desirable level of accuracy. The third group
benefits from SVM [27] where they are applied to constitute set T, containing only support
vectors of T , which is used for K — NN classifiers. The following addresses the three groups

of wrapper instance selection methods.

4.2.1.1. K — NN rule based methods

One of the earliest incremental method called CNN (Condensed Nearest Neighbor rule) was
proposed by Hart [72]. It focuses on misclassified samples as critical samples that matter the
most to the k — NN classifier to ensure that unlabeled samples which are similar to the
misclassified ones are correctly classified [73]. This method constitutes set S from set T by
randomly selecting samples of each class. Afterwards, all samples in T are classified by the
1—=NN rule using S as the training set. Then all misclassified samples are included in S to
ensure that the unlabeled samples similar to the misclassified samples are correctly classified.
The main disadvantage of this method is to allow noisy samples to be included in S since they
are mostly misclassified based on their neighbors. As another version of the CNN, Ritter et
al.[74] proposed the SNN (Selective Nearest Neighbor rule). In this method, set S is
composed in such a way that, for each sample in set T, its nearest neighbor can be found in set

S. Hence, a sample of T is correctly classified based on the 1 — NN rule using S. In

63

classification tasks, the samples which are close to the decision boundary involve useful
information to discriminate classes from each other. Since in the CNN and some of its
variations samples are randomly selected from each class without considering their position
with respect to the decision boundary, the boundary samples may be selected occasionally. To
deal with this problem, some extended versions of the CNN were proposed.

Gowda and Krishna [75] proposed a method in which the set S is formed using the concept of
mutual nearest neighborhood for selecting the boundary samples. If for two samples x; and
Xj, x; being the m™ nearest neighbor of x; and correspondingly , x; being the n™ nearest
neighbor of x;, the mutual neighborhood value of sample x; with respect to sample x; is
defined as MNV(xi,xj) = m + n. The proposed method, firstly, measures MNV for each
sample of T with respect to its nearest sample in the opposite class. Samples that are close to
the decision boundary have a low MNV. Afterwards, the samples of T are sorted in ascending
order based on their MNV and the first sample of T is inserted in S; the remaining samples are
classified based on the 1 — NN rule using S. Then, misclassified samples are included in S.
This process is repeated iteration by iteration until no misclassified sample is detected. As
another extended version of the CNN, GCNN (Generalized Condensed Nearest Neighbor
rule) was introduced by Chou ef al/ [76]. In this method, sample x as a prototype of T is
included in S if it violates the absorption criterion ||x — q|| — |[|x — p|| > & where p is the
nearest neighbor of x in the class to which x belongs and g is the nearest neighbor of x in the
opposite class. § is a user defined threshold and ||. || denotes the 2-norm operation.

So far, all introduced methods were based on 1 — NN rule. The authors in this literature have
also proposed the methods based on k — NN where k > 1. One of the earliest decremental
method known as ENN (Edited Nearest Neighbor rule) using k — NN rule was proposed by
Wilson [77]. In this method, 3 — NN rule is applied to remove the noisy samples from T in
such a way that each sample of T is classified using three nearest neighbors where the
majority class is considered for labeling the sample. Then, the misclassified samples are
removed from T. Finally, the reduced set T is considred as set S to classify new samples using
1 — NN rule. An extended version of the ENN called all k — NN was introduced by Tomek
[78]. In this method, the ENN is repeated for different values of k on set T and those samples
which are incorrectly classified for at least one value of k are removed from T.

A family of five incremental methods coined DROP1 to DROPS5 (Decremental Reduction
Optimization Procedure, 1 to 5) can be seen in [70]. These methods, which are based on the

k — NN rule, remove noisy samples using the associates concept. The associates of sample x

64

are those samples for which x is one of their k nearset neighbors. These methods remove
sample x from T whenever its associates are correctly classified without considering x. This
is because, in most cases, the majority of associates of a noisy sample belong to the opposite
class. Brighton and Mellish [79] introduced a method known as ICF (Iterative Case Filtering)
which applies two concepts, reachability and coverage, corresponding to the neighborhood
and associate sets, respectively. The reachable set does not have a fixed size; instead, it is
bounded by the number of nearest samples from the opposite class. The ICF method focuses
on removing noisy and superfluous samples from T. At the first stage, it applies the method
ENN proposed by Wilson [77] to remove noisy samples. Afterwards, it tries to discard the
superfluous samples relying on reachable and coverage sets. In this method, each sample x
which meets the condition |reachable(x)| > |coverage(x)| is discarded from T. It is
translated to this fact that sample x is far from the decision border. Hence x, as a superfluous
sample, can be removed from T since their neighbors can correctly classify new arriving

similar samples to the x.

4.2.1.2. Instance selection methods based on search algorithms

So far, all the introduced methods were based on the k — NN classifier model. In this
literature, there is another group of wrapper instance selection methods which are mostly
based on search algorithms. In this group of wrapper methods, the instance selection process
is carried out by evaluating an arbitrary classifier model iteratively. Among search algorithms,
evolutionary algorithms, as general-purpose search algorithms, have received much attention
in the literature of instance selection process. Specifically, GA-based methods have been
considered in this domain (for further information about GA, please consult Section 2.6). In
this group of instance selection methods, each chromosome ¢ corresponds to a subset S of
T which is commonly presented by a binary string as ¢ =[0,1,1,0,1,1,0,0,---,0] so that
|c| = N where N is the size of T. Each element c; of ¢ for j = 1,2,---, N denotes the presence
or absence of jth sample of T in S [69, 80, 81].

When GA is customized for instance selection problem, the fitness value of a chromosome
representing a subset S of T is computed in terms of the model accuracy and the percentage of

instance reduction as Eq. (4.1) [80, 81].

Fitness(S) = A. Crate (S) + (1 - A) Preduction('s) (41)

65

where Crqte and Proguction denote the classification rate obtained by the evaluation of the
model using S and the percentage of instance reduction of S with respect to T, respectively. In
order to compromise between the model accuracy and the size of S, A is usually set to 0.5.

The percentage of instance selection is also computed by Eq. (4.2) [80, 81].

#(T) — #(S .
Preduction(s) = % .100 (4 2)

where #(.) denotes the size of underlying set.
In the literature of evolutionary instance selection, some variants of GA have been applied
from the most classic version to the most complex versions. Six evolutionary instance
selection methods including Generational Genetic Algorithm (GGA), Steady-State Genetic
Algorithm (SSGA), CHC Adaptive Search Algorithm, Intelligent Genetic Algorithm (IGA),
Steady-State Memetic Algorithm and Population-Based Incremental Learning (PBLI) have
been employed in [80, 81]. Moreover, some works that use GA in the application of instance
selection to improve the accuracy of k — NN classification can be seen in [82-84].
As other works related to search based instance selection methods, the authors in [85, 86]
introduced the instance selection methods based on Tabu search [87] to find the best subset S
from T for 1 — NN classification. Tabu search, so called adaptive memory programming, is
considered as a very efficient and straightforward optimization method to solve NP-hard
problems.
Tabu search benefits from short-term memory, called Tabu list, and neighborhood exploration
which make it distinctive from other search methods in terms of low computational cost and
better space exploration. Tabu search method starts with an initial solution S;. Afterwards, a
set of possible moves with respect to the current solution S, is considered, in a sense that each
move is a neighbor solution of the S, , with a little bit modification in S.. In the next step, all
neighbor solutions are evaluated and the best one is selected considering those Tabu moves
which have been previously inserted into the Tabu list (i.e., a short-term memory which is
usually managed by FIFO policy to keep track the recently examined solutions). Finally, the
Tabu list is checked to see if the best solution already exists within. If not, it will be inserted
in the Tabu list. This process continues until a termination criterion is met. The termination
criterion is:

1. exceeding a given number of iterations or

2. when there is no improvement with respect to the overall best solutions throughout a

given number of consecutive iterations.

66

As a further effort in applying search based methods, authors in [88] proposed Backward
Sequential Edition method (BSE) as a decremental selection method benefiting from
backward sequential search [89] to select an optimum set S from T. This method iteratively
discards a sample from the current set S which has the minimum contribution on the
classification accuracy. This procedure stops when the classification accuracy starts to
decrease. Since this method is based on backward sequential method, the eliminated samples
have no chance to be reconsidered in the selection process in a forward manner. In order to
deal with this disadvantage of BSE, authors in [90] introduced the Restricted Floating Object
Selection (RFOS) which relies on sequential floating search [91] in a restricted manner due to
its extreme run time that allows the eliminated samples to be reconsidered in a forward

direction.

4.2.1.3. SVM based methods

In this group of methods, SVMs are applied to reduce the size of T. Authors in [92] proposed
an SVM based instance selection method. This method uses the algorithm DROP2 proposed
in [70] to discard noisy samples from T. T contains the support vectors obtained by applying
SVM on T. Then, a new sample x is classified by 1 — NN rule using T.

The SVM based method proposed in [93], uses k — means clustering algorithm to cluster T

and then each support vector v of T is assigned a weight based on the proportion of its class

N(class(v)

label in the cluster to which v belongs. It is defined as where N(class(v)) and N,

c

denote the number of samples in the cluster which have the same class label as v and total
number of samples in the cluster of v. Afterwards, a new sample x is classified using k — NN
rule in such a way that firstly the weights of the nearest neighbors of the same class are
summed up and then the class label corresponding to the maximum summation is considered

as the class label of x.

4.2.2. Filter instance selection methods

As mentioned earlier, unlike wrapper methods, in filter methods, a classifier independent
criterion is applied to select instances. Mainly, filter methods can be organized into three
groups including clustering based methods, weighting based methods and information theory

based methods. Besides these groups, a few methods were proposed which do not belong to

67

any specific group. The following describes three main groups of filter methods as well as

some other methods.

4.2.2.1. Clustering based methods

Among all efforts done in filter methods, some clustering based methods have been proposed
with the aim of obtaining a set of prototypes so that each of them is a representative of a
group of original instances in T. The idea behind this group of filter methods is clustering the
original instances and then considering the centers of obtained clusters as a set of prototypes
representing all instances in T where finally unlabeled samples are classified based on the
obtained set of prototypes. Authors in [94] introduced Generalized Modified Change
Algorithm (GMCA) in which a merging strategy is exploited to merge two same-class nearest
clusters and then the new center is considered as a new prototype. The method proposed in
[95] called Nearest Subclass Classifier (NSB) clusters each class separately using Maximum
Variance Cluster Algorithm [96] where the number of clusters is different from class to class
as the distribution of samples may be different from class to class. In [97], a method known as
Object Selection by Clustering (OSC) was presented to select both border and interior
instances using clustering. In this method, the centers of homogeneous clusters are considered
as prototypes representing the interior instances while from heterogeneous clusters, the border

instance P is selected. Instance P in cluster ; is a border instance if it is the nearest neighbor

of another instance in cluster G with different class label.

4.2.2.2. Weighting based methods

Weighting based methods, as another group of filter methods, work as follows: In the first
step, a weight is assigned to each instance; then, a percentage of instances based on a user-
defined threshold on their weights is selected as a subset S of T. Authors in [98] proposed a
new approach based on instance weighting where weights o; (i.e., corresponding to the i
sample) are obtained by minimizing cost function /(o) using a gradient descent method. J (o)
is a function of Weighted Prototype dissimilarity between each instance and its
corresponding nearest neighbor, and also between the instance and its nearest enemy (i.e., the
nearest neighbor of the opposite class). Those instances whose weights are larger than a user-

defined threshold are removed from the whole training set T'.

68

As another weighting based method, Prototype Selection by Relevance (PSR) was introduced
in [99]. The idea behind the method is based on the fact that some instances in T which
belong to the same class are more relevant than the others and they should be selected. Hence,
this method assigns a weight to each instance reflecting its amount of relevance. The
relevance of each instance is computed based on the average similarity of the instance to the
others. Heterogeneous Value Difference Metric (HVDM) [100] is applied as the similarity
function. Afterwards, r most relevant instances of each class are selected and through them,
some border instances bringing useful information of class discrimination regions are also

chosen.

4.2.2.3. Information theory based methods

Recently another group of filter instance selection methods specifically for regression tasks
has received attentions. This group of methods benefits from information theory to select a
subset S from T so that S contains the most informative samples which have the most
contribution in model fitting. Authors in [101] proposed a Mutual Information based method
for instance selection aimed to be applied in time series prediction. In fact, MI between two
random variables measures how much information of one of two variables reduces
uncertainty of the other. In this work, MI was applied to compute how much information can
be obtained about the target variable using the information of input variables in the form of
input patterns. The basic idea behind the work is that if the amount of MI loss due to the
absence of an input pattern x; in the whole training set T is similar to that due to absence of
each of its k nearest neighbors, the input pattern x; should be selected for subset S. As
another effort in exploiting of information theory in instance selection for time series
prediction, a MI based methodology was presented in [53]. The idea behind this work is
selecting those instances which share a significant amount of MI with the current predicted
instance at each step of the prediction horizon. In this method, at each step of prediction
horizon, the current input patterns are ranked based on MI between them and the current
predicted instance. Then, those input patterns whose ranks are greater than a user-defined
threshold constitute a subset S of the current training set. Ferreira in [13] proposed an
unsupervised selection method based on Shannon’s information entropy [51, 102] which
measures the amount of information content of the data. In this method, firstly, the probability
of the presence of each instance in T is estimated using a kernel based density estimation

proposed in [56] known as Parzen window method. Afterwards, a fitness value based on

69

information entropy is assigned to each instance where this value reflects the amount of
informativeness of the instance. Finally the subset S with size k is selected from T using SUS

method [103].

4.2.2.4. Other methods

Besides the three groups of filter methods, some works have been done which do not belong
to any specific group. Authors in [104] presented POP (Pattern by Ordered Projections)
method to remove interior instances and select some border instances based on the Weakness
concept. An instance P; of class C; is a border instance if P; is the nearest neighbor for an
instance of another class Cj, otherwise it is an interior instance. The concept Weakness
indicates how many times an instance is not a border instance with respect to each of its
features’ values. This method removes the irrelevant instance P, which is the instance whose
Weakness is equal to m , where m denotes the number of features.

The method proposed in [105] applies kd-trees structure [106] which are binary trees to select
a subset S of T. Based on kd-trees structure, the root of the tree includes all instances in T.
Afterwards, T is partitioned into two groups so that one of them corresponds to the left child
and the other corresponds to the right one. The separation of T is performed using the
Maxdif f criterion. To calculate Maxdiff, first the feature with maximum distance along
with consecutive samples (i.e., samples are sorted in ascending order with respect to the
feature) is considered and then the value of the corresponding feature of the sample which has
the maximum distance with its successor is considered as a pivot to split T. Those samples
whose values of the corresponding feature is less than or equal to the pivot constitute the left
child and the remaining forms the right one. The Maxdiff criterion is satisfied if the pivot
value is greater than a user-defined threshold, otherwise the variance along features is
considered. If the maximum variance is greater than another user-defined threshold, the mean
value through the corresponding feature is considered as a pivot. This procedure is repeated
for each child. In the case that neither Maxdiff criterion nor the maximum variance is
satisfied, the algorithm is terminated and the samples which are located in the leaves of the
tree are considered as a subset S of T'.

Regarding the design of ANNs and SVMs as two examples of well-established data driven
machine learning approaches for classification and regression tasks, some filter instance
selection methods including Principal Components Analysis (PCA), convex hull and decision

tree have been proposed [68, 107-110]. In the design phase of such models, it is very

70

important that subset S covers the whole input-output range in which the underlying process
is modeled. To achieve this goal, convex hull algorithms can be employed to identify the

boundary points reflecting the whole range of data.

4.3. ApproxHull: A randomized approximation convex hull algorithm for

high dimensions

In this Section, ApproxHull as a randomized approximation convex hull algorithm for high
dimensions is introduced, providing a subset of all possible vertices of the corresponding real
convex hull in a stochastic manner. ApproxHull, which was inspired by Quickhull [8] (please
see Section 3.3.3) tries to identify some informative vertices of the real convex hull, relaying
on two fundamental concepts hyperplane [111, 112] and convex hull distance [68]. Hence

before addressing ApproxHull, these two concepts are explained in the following sections.

4.3.1. Hyperplane

Any hyperplane in a d-dimensional Euclidean space partitions it into two subspaces; positive
and negative subspaces. Any point in the positive subspace has a positive distance to the
hyperplane while the points located in the negative subspace have a negative distance to the
hyperplane. Computing the equation of a hyperplane based on some predetermined points,
which lie on the hyperplane, is intensively applied in computational geometry. Some convex
hull algorithms like Quickhull need to compute the corresponding hyperplane equations of the
current convex hull’s facets to find the next vertices. In the following we shall describe how
these equations can be obtained, starting by introducing the distance of a point to an

hyperplane.

4.3.1.1. Hyperplane distance

Suppose P = [Py, P2, -, Pa]” is a point, F is a d-vertex facet (each facet of d-dimensional
convex hull involves exactly d vertices), and H is the corresponding hyperplane of facet F in
a d-dimensional Euclidean space. The general equation of an hyperplane H is given as:

aixy +ax, ++agxg+b=0 (4.3)

where n = [ay, ay, ..., a4]" and b are the normal vector and the offset of H, respectively.

The normalized distance from point p to hyperplane H is computed by Eq. (4.4).

71

aip1 + azpa +-agpg + b (4.4)
Va2 + a2 + - ag?

d;(p,.H) =

4.3.1.2. Hyperplane computation

Suppose that facet F = [v,, 1, -, v4]7 consists of d vertices v; = [vjq, Vip, =+, Viq]? , for

i =1,2,--,d, and also that ¢ = [cq, ¢3,**+, c4]" is the center point of the current convex hull .
Since any vertex v; is located on the hyperplane H which includes facet F, Eq. (4.3) is
satisfied by v; as (4.5).

a1V + ayvpp + -+ agvig = —b 4.5)
By adding (—a c; — azc; — -+ — ay¢4) to the both side of Eq. (4.5), Eq. (4.6) is obtained.
a1 (vip —¢1) + a;(Viz —) + -+ ag(vig — ¢g) = —(a1¢1 + azc; + - +agcq +b) (4.6)

Suppose that point ¢ is located on the negative subspace with respect to H. Hence the

distance of ¢ to H is negative as stated in (4.7).

a6+ e+ ragcg +b 4.7)
ds(c,H) = <0
Jai2 + a2 + - ay?

According to (4.7), (a,cq + ayc, + - agcy + b) should have a negative value. Assume this
negative value is equal to -1. By replacing (a;c; + ac, + - agcq +b) with -1 in the right
side of Eq. (4.6), Eq. (4.8) is obtained.

ay(vip —c) +ay(vip —c) + ot ag(vig —cq) =1 (4.8)

Since facet F consists of d vertices, a system of equations can be obtained based on all

vertices:

72

[a1(1711 —c1) + a@p-c) + o+ ad(vld—cd)] 1 4.9)
[ai(v,; —c1) + ax(pp—c) + -+ + ad(UZd_Cd)lz 1

ai(vy, —c1) + a(wgz—c) + 0+ ag(aq — cq) 1

By solving (4.9), the normal vector n = [ay,ay,+,ay] of H is obtained. Afterwards, the

offset b of H is obtained using Eq. (4.10).

b= —1—-(ajc; +azc, ++agcy) (4.10)

4.3.2. Convex hull distance

Given a set P = {x;}1-, € R? and a point x € R%, the Euclidean distance between x and the

convex hull of P, denoted by conv(P), can be computed by solving the quadratic
optimization problem stated in (4.11).

min 1

a 2

s.t.eTa=1,a>0

4.11)

aTQa—cTa

where e = [1,1,---,1]7,Q0 = XTX and ¢ = XTx, with X = [x1, x5, ..., X].
Suppose that the optimal solution of (4.11) is a*; then the distance of point x to conv(P) is

given by Eq. (4.12).

4.12
dc(x, conv(P)) = \/xTx —2cTa* + a*"Qa* 4.12)

4.3.3. The Proposed Algorithm

The idea behind ApproxHull is inspired from Quickhull, where the vertices of the real convex
hull are identified, based on the hyperplane distance of samples to the facets of the current
convex hull. Like Quickhull, ApproxHull is an incremental algorithm; it starts with an initial
convex hull and then the current convex hull grows iteratively by adding the new vertices into
it. In order to overcome the challenges of time complexity and memory requirements in high
dimensions, ApproxHull has two main properties. Firstly, it is an approximation algorithm

which is translated into obtaining a subset of the most informative vertices of the real convex

73

hull using a user-defined threshold. On the contrary, Quickhull finds the total vertices of the
real convex hull which prevents it to be applicable in large, high dimensional datasets.
Secondly, the convex hull obtained by the ApproxHull is only given by vertices, whereas
Quickhull presents the convex hull in terms of both vertices and facets, which makes it
infeasible to be run for high dimensional datasets, due to the problem of high time complexity
and memory requirements.

A pre-processing phase is performed on the original data set before applying ApproxHull.
Duplicated rows (equal samples) and columns (equal features), rows with missing values, and
rows having non-numerical values are removed to decrease the risk of generating a singular
matrix corresponding to a random invalid facet in ApproxHull.

ApproxHull consists of five main steps:

Step 1: Scaling each dimension to the range [-1, 1].

Step 2: Identifying the maximum and minimum samples with respect to each dimension.
These samples are considered as vertices of the initial convex hull.

Step 3: Generating a population of k facets based on the current vertices of convex hull. In
this step, the validity of all generated facets is checked in each iteration. A facet F of d points
in d dimensions is valid if F is a full rank matrix. In ApproxHull, to guarantee that the
population contains valid facets, two actions are considered. First, when d vertices of the
current convex hull are selected to constitute a facet of the population, its validity is checked.
Invalid facets are ignored, being substituted by another combination of d vertices of the
current convex hull until a valid facet is found. Second, in the case that there is a potential of
generating invalid facets iteratively, in order to reduce the time being spent to ignore the
invalid facets and generate the valid substitutions for them, the joggling method used in
Quickhull [113] can be employed as an optional action in the data preprocessing phase.
Joggling the input is performed to solve precision error in computational geometry context.
Mainly, in joggling (also called random perturbation) the input of each cell of the data set is
modified by a small random quantity (positive or negative) to solve the problem of coplanar
points that have the potential of generating invalid facets.

Step 4: Identifying the furthest points to each facet in the current facets population as new
vertices of convex hull, if they have not been detected before. To detect the furthest points
(i.e., those samples whose hyperplane distances are maximum with respect to a particular
facet), firstly, the corresponding hyperplane equation of the facet is obtained by Algorithm 4.1
in terms of the normal vector and the offset. Secondly, the hyperplane distance of samples to

the corresponding hyperplane is computed by Eq. (4.4). In fact, Algorithm 4.1 computes the

74

hyperplane equation relying on the fact that the distance of the center point (a row vector
whose elements are obtained by averaging each dimension of the dataset) to the hyperplane is
a negative value. Algorithm 4.1 obtains the equation of the corresponding hyperplane
equation of the facet in form Ax = b where A and b are normal and offset of the hyperplane
equation respectively.
Step 5: Updating the current convex hull by adding the newly found vertices to the current set
of vertices.
Steps 3 to 5 are executed iteratively until one of the following two termination criteria is met:
e There are no newly found vertices in Step 4
e Let dc be the maximum of the approximated distances of the furthest points to the
current convex hull in each iteration. If there are new vertices as a consequence of
Step 4, and the difference between the maximum and the minimum of dc over the w
last iterations is less than a user-defined threshold B (default value of 0.1), the

algorithm ends.

Algorithm 4.1: Obtaining the corresponding hyperplane of a facet

Input: DS = {x;}; S R% as a set of samples and F = {v;}% as a particular facet so that v; is a row

vector which denotes a specific sample in DS.
1. Let c is a row vector which denotes the center point of all samples in DS.
2.U = {w|uy = v, — e},
3.A={}
4.b={}
5.A= U e wheree =[1,1,...,1]7

6.b=1+cA

7.t= / ¢ a? wherea; € A fori=12,..,d

8.nd = (| a; € A},

9.nb =2
t

QOutput: nA and nb.

The basic idea behind the second criterion is to avoid selecting new vertices that are very
close to the current convex hull, not contributing this way with new information. As the

convex hull generated by ApproxHull grows iteratively, the dc has a descending trend over

75

iterations. Hence when the difference between the maximum and minimum of dc over the w
last iterations is small, meaning the new found vertices are very close to the current convex
hull, they can be ignored and ApproxHull can be terminated.

In the ApproxHull algorithm the facets population size, the sliding window width, and the
user-defined threshold 8, can be tuned to manage the number of vertices of the approximated
convex hull. As an example, in the experimental part of this work we are interested in having
at most half of the training set points from the convex hull and the remaining points selected
randomly from the complete data set. The value f = 0.1, which was obtained by trial and
error, satisfies our expectation for a facet population size <1000 and a sliding window width
<10, in cases where the data was uniformly or normally sampled. In other applications where
the data size (number of samples and dimensions) is high and the data distribution is
unknown, the value of § can be tuned differently to meet the user-defined specification of the
maximum percentage of approximated convex hull vertices in the training set.

Since computing the distance from a point to the current convex hull by solving the quadratic
optimization problem defined in Eq. (4.11) is complex and time consuming in high
dimensions, in ApproxHull the approximated distance of a newly found vertex to the current
convex hull is computed based on 2 * d vertices, where d denotes dimension, which are the
nearest neighbors to the newly found vertex in the current convex hull.

In Step 3 of ApproxHull, in order to generate a population of facets based on the vertices of
the current convex hull, two policies were tested: 1- a stochastic policy; 2- a GA based policy.
In the first policy, k facets are generated in such a way that each vertex of a specific facet is
generated by random selection among the vertices of the current convex hull. The stochastic
policy algorithm is summarized in Algorithm 4.2.

In the GA-based policy, k facets are generated by a GA so that k = p * ng, where p and ng
denote the population size and the number of generations of the GA, respectively. In each
generation of the GA execution, a new population of ps facets is created after employing
crossover and mutation operators. In this policy, the population of each generation is
appended to the total population so that, in the end, there is a total population of facets with
size p * ng. The GA-based algorithm is summarized in Algorithm 4.3.

Since the idea behind ApproxHull is generating many different facets to help finding new
vertices of the real convex hull, the diversity of generated facets is an important issue in the
algorithm. In other words, more diversity in facets population provides a higher chance of

detecting new vertices. Hence, the fitness value of a facet can be defined in terms of the

76

inverse of occurrence ratio of its vertices over the current population. The fitness value of a
specific facet is high if, in average, the occurrence ratio of its vertices over the current
population is low. In ApproxHull with GA-based Policy, the fitness value of a facet in the
population is measured by (4.13):

p*d (4.13)
?=1Ni

where p,d and N; are the population size, dimension and number of facets in the current
population which share the i"™ vertex of the facet, respectively.

In each iteration of the GA, parents are selected for mating using the Roulette Wheel method.
Uniform crossover [114] is applied with a swapping probability of 0.5. The crossover
probability is set to 0.7. For mutation, a vertex of a facet is selected randomly and replaced
with another random vertex which has not been seen in the current population. The mutation
probability is set to 0.05. Fig. 4.2 illustrates a simplified flowchart of the operations involved
in ApproxHull.

77

Algorithm 4.2: ApproxHull with Stochastic Policy

Input: DS = {x;}"; € R% as a set of samples obtained 25. P =P U{F}
after the preprocessing of the original data, p denotes
the population size of facets in d-dimensional space , w
is an integer value as width of the sliding window and 8
as a user-defined threshold.

26. End For
27. newV = {}
28. For each facet F in P do

1. Scaling each dimension of DS to the range [—1, 1].

29.

2. Let V denotes the maximum and minimum Let H be the corresponding hyperplane

samples with respect to each dimension in equation of facet F which is obtained

DS. by Algorithm 4.1.

3. NotFound = False 30, mds = maxxieDSds(xiiH)

4. Diff = Fal
17 e 31. FP={x|x e DSandds;(x,H) =
S.iteration =1 mds}
6. DC={} 32. For each point fpin FP do
7. While (not NotFound and not Diff) do 33. If(fp is not in V) do
8. Let P be an empty population. 34. newV = newV U {fp}
9. For(i=1;i<p;i++)do 35. End If
10. isValid = False 36. End For
11. While (not isValid) do 37. End For
12. j=1 38. If (newV = {3}) then
13. Let F be an empty facet. 39. NotFound = True
14, While(j < d) do 40. End If
15. Select randomly a vertex v from V 41. If (not NotFound) then
16. If (v is not in F) then 42. D=0
17. F=Fu{v} 43. For (i=1;i < |newV|;i ++) do
18. j=j+1 4. N;=0,T=V
19. End If 45. For(k=Lk<2xd;k++)do
20. End While nn = argmin ||z; — v,

46.
€T, j=1,,|T
21, If(det(F) # 0) then v & I7l

22. isValid = True where z; € newV

23 End If 47. Ni = Ni U {nn}

24. End While 48. T =T\{nn}

78

49.
50.
51.
52.
53.
54.
55.

56.

End For
D =Du{d.(z;,N;)}
End For
dc = maxD
DC = DC U {dc}
If (iteration = w) then
Let dc,,;n, be the minimum of dc in
DC over w last iterations.
Let dcy,q, be the maximum of dc in

DC over w lastiterations.

79

57. I ((decpmax — demin) < B) then
58. Diff = True
59. Else

60. V=V U{newV}

61. EndIf
62. EndlIf
63. EndIf

64. iteration = iteration + 1
65. End While

Output: V

Algorithm 4.3: ApproxHull with GA-based Policy

Input: DS = {x;}’; € R% as a set of samples 22. If(det(F) # 0) then
obtained after the preprocessing of the original data,

p as population size, pc as crossover probability, pm ~ 23- isValid = True

as mutation probability, ng as number of generation 24 End If

for GA, w is an integer value as width of the sliding '

window and £ as a user-defined threshold. 25, End While

1. Scaling each dimension of DS to the range [-1,1]. 26, G = G U {F}
2. Let V denotes the maximum and minimum 27. End For

samples with respect to each dimensionin DS. 28 ga_Iteration = 1

3. NotFound = False 29. While (ga_Iteration < ng) do

4. Dif f = False 30 P=PUG

5. iteration =1 31. Offsprings = {}

6. DC={} 32. Foreach indv in G do

7. While (not NotFound and not Dif) do 33. Compute the corresponding fitness value of
indv.

8. Let P be an empty population with maximum

. 34. EndFor
size p * ng.

35. Let MPool denotes an empty mating pool.
9. Let G be an empty population with maximum Py SP

) 36. For(i=Li<pji++)do
size p.

10, For(i=1;i <p;i++)do 37. Select one random parent P1 from G

ing Roul heel hod.
1. isValid = False using Roulette Wheel method

38. MPool = MPool U {P1
12. While (not isValid) do 0o ool U {P1}

. 39. End For
13. j=1
40. j=0
14. Let F be an empty facet.

41. While (j <p)d
15. While(j < d) do ile (j <p) do

42. Select two random parents P1 and P2 from
16. Select randomly a vertex v from V MPool
17. If (v is not in F) then 43, Let rc is a random number from range [0, 1].
18. F=Fu{v} 44, If (rc < pc)
19. Jj=j+1 45. Do uniform crossover on P1 and P2 and
20. End If

consider children for the result of crossover.

21. End While 46. For each child in children do

80

47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.
63.
64.

65.

66.

67.

68.

69.

70.

71.
72.

Let rm is a random number from
range [0, 1]
If rm < pm)
Do mutation on child
End If
End For
For each child in children do
If (det(child) # 0) then
Of fsprings = Of fsprings U {child}
End If
End For
J = 0ffsprings|
End If
End While
Let G includes the first p individuals of
Of fsprings.
ga_lteration = ga_lteration + 1
End While
newV = {}
For each facet F in P do

Let H be the corresponding hyperplane
equation of facet F which is obtained
by Algorithm 4.1.
mds = maxy,epsds(x;, H)
FP = {x|x € DS and d4(x,H) = mds}
For each point fpin FP do

If (fp is not in V) do

newV = newlV U {fp}
End If

End For

73.
74.
75.
76.
77.
78.
79.
80.

81.

82.

83.
84.
85.
86.
87.
88.
89.
90.

91.

92.

93.
94.
95.
96.
97.
98.

81

End For
If (newV = {}) then
NotFound = True
End If
If (not NotFound) then
D=9
For (i = 1;i < |newV|;i + +) do
N;=0,T=V
For(k=1k<2xd;k++)do

nn = argmin ”Zi — vf”z
v, €T,j=1,-,|T|

where z; € newV
N; = N; U {nn}
T = T\{nn}
End For
D =D v {d(z;,N;)}
End For
dc = maxD
DC =DC U {dc}
If (iteration = w) then
Let dc,,n be the minimum of dc in DC
over w lastiterations.
Let dc;,q, be maximum of dc in DC
over w last iterations.
If ((dcmax — Acmin) < B) then
Diff = True
Else
V =V U{newV}
End If

End If

99. EndIf 101.End While

100. iteration = iteration + 1 Output: V

82

Scale each dimension of the input data set to the range [-1, 1].

\

Identify the minimum and maximum points with respect to each dimension.

Vi

Set V to the minimum and maximum points as the initial vertices of the convex hull.

Vi

Set two flags NotFound and Dif f to False value. These two flags
correspond to the first and second criteria, respectively.

\z

not NotFound and not Dif f

Generate a fixed-size population of valid facets based on the vertices of
the current convex hull using the stochastic or the GA based policy.

W

Set newV to the furthest points to the facets of the current population
that do not belong to the vertices of the current convex hull.

False

True

NotFound = True

False

not NotFound

End

Set dc to the maximum approximated convex hull distance among the
points in newV.

\V

Set dcpin and dc,q, to the maximum and minimum of dc over w last

iterations, respectively.

(dcmax — dCpmin) < threshold

V=VUnewV

Diff = True

Fig. 4.2. Flow chart of ApproxHull.

83

I

4.4. Simulation results

Three experiments were executed to evaluate ApproxHull performance and its effect on the
accuracy in classification and approximation tasks. The algorithm has been implemented in
Python and C languages, and was executed in a computer with Ubuntu Linux OS, Intel Core

15 processor and 4 Gigabytes of RAM.

4.4.1. Experiment 1

ApproxHull was applied on four artificial datasets named UDS1, UDS2, UDS3 and UDS4.
All datasets are composed of uniformly distributed random samples which were generated by

the built-in MATLAB function rand. The description of the datasets is given in Table 4.1.

TABLE 4.1. DESCRIPTION OF ARTIFICIAL DATASETS CONSISTING OF
UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE
NUMBER OF DIMENSIONS AND SAMPLES, RESPECTIVELY.

Dataset Name dim #S
UDSI1 3 4000
UDS2 4 4000
UDS3 5 4000
UDS4 6 4000

Since Quickhull is a deterministic algorithm, in this experiment it is considered as a baseline
to which ApproxHull and Wang’s algorithm [68], both being approximation convex hull
algorithms, are compared. We use two criteria for comparison: P and R defined in Eq. (4.14)

and Eq. (4.15).

#(Va NV, 4.14

_HROVE) 00 (4.14)
#Vp

#Vr NV, 4.15

g = FROVE) oo (4.15)
#V,

Vr is the set of vertices obtained by employing the Quickhull algorithm and V, is the set of
vertices obtained by applying one of the other algorithms. Basically, criterion P shows the
precision of an algorithm in approximating the Quickhull results, while criterion R denotes

how much the results obtained by an algorithm are similar to those obtained by Quickhull.

84

In this experiment, ApproxHull considering the two facet generation policies and Wang’s
algorithm were executed for ten runs. For the latter, L was set to 0.0/n for all datasets, and M
was set as M>=0.02n, M>=0.07n, M>=0.1n and M>=0.14n, for UDS1, UDS2, UDS3 and
UDSA4, respectively, n being the number of samples.

For ApproxHull with Stochastic Policy the sliding window size, w, was set to 10 for all
datasets and p (population size) was set to 4000, 5000, 6000, and 7000 for datasets UDSI,
UDS2, UDS3 and UDS4, respectively. For ApproxHull with GA-based Policy, w was also set
to 10 for all datasets and the number of generations, ng, was set to 50. p (population size) was
set to 80, 100, 120 and 140 for datasets UDS1, UDS2, UDS3 and UDS4, respectively.

Figs. 4.3 and 4.4 show the average values of P and R for the results obtained on datasets
UDSI to UDS4 by ApproxHull (with both policies) and by Wang’s algorithm. By analyzing
Fig. 4.3 it may be concluded that ApproxHull identifies only vertices that belong to the real
convex hull, while Wang’s algorithm selects some vertices which are not in the real convex
hull. Moreover, according to Fig. 4.4, ApproxHull, using either the Stochastic Policy or GA-
based Policy, detects more vertices of the real convex hull than Wang’s algorithm. Fig. 4.4
also shows that ApproxHull with Stochastic Policy could identify more vertices of the real

convex hull in comparison to ApproxHull employing the GA-based policy.

 ApproxHull with Stochastic Policy
m ApproxHull with GA-based Policy

W Wang's algorithm

uDs1 ubps2 uDs3 uDs4

Fig. 4.3. Average value of criterion P for ApproxHull with both policies and Wang’s
algorithm on UDS1 to UDSA4.

85

m ApproxHull with Stochastic Policy
W ApproxHull with GA-based Policy
= Wang's algorithm

uDs1 uDs2 uDs3 uDs4

Fig. 4.4. Average value of criterion R for ApproxHull with both policies and the Wang’s
algorithm on UDS1 to UDS4.

Another experiment was conducted using normally distributed random samples which were
generated by built-in MATLAB function normrnd, where the mean and the standard deviation
were set to 0 and 1, respectively. In this experiment, ApproxHull with both policies was
applied on four normally distributed artificial datasets for ten runs. The experiments were
executed in the same conditions as described before.

Fig. 4.5 shows the average value of R for the results obtained by ApproxHull using both
policies on datasets NDS1 to NDS4. The results in terms of criterion P were 100%, as in the
previous case. Tables 4.2 and 4.3 also show the run time of ApproxHull using both policies

on datasets in both cases.

m ApproxHull with Stochastic Policy
m ApproxHull with GA-based Policy

NDS1 NDS2 NDS3 NDS4

Fig. 4.5. Average value of criterion R for ApproxHull using both policies on NDS1 to NDS4.

86

TABLE 4.2. RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC

POLICY AND GA-BASED POLICY ON DATASETS UDS1-4.

UDSI UDS2 UDS3 UDS4
Stochastic Policy 11.50 25.86 55.44 115.59
GA-based Policy 17.11 58.66 208.03 323.68

TABLE 4.3. RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC

POLICY AND GA-BASED POLICY ON DATASETS NDS1-4.

NDS1 NDS2 NDS3 NDS4
Stochastic Policy 6.30 11.86 30.33 50.20
GA-based Policy 10.06 19.24 90.06 156.78

Analyzing Fig. 4.4 and Fig. 4.5, ApproxHull with Stochastic Policy on both groups of
artificial datasets has a better performance than the version employing the GA-based policy.
In addition, according to Tables 4.2 and 4.3, the former is faster than the latter for all cases

considered. For this reason, the Stochastic Policy will be used subsequently.

4.4.2. Experiment 2

In this experiment, ApproxHull was applied as a method for data selection in classification
tasks. In order to evaluate the accuracy of the classification model, two cases were considered.
In the first, ten training datasets were generated by random selection of samples from the
whole dataset. In the second case, ten training datasets were generated, each one of them
incorporating vertices of the approximated convex hull (which were obtained by ApproxHull)
as well as random samples from the remaining dataset. The algorithm was applied separately
for positive and negative classes. The datasets employed for classification were taken from
[115]. The MATLAB SVM tool with Gaussian RBF (Radial Basis Function) kernel was used
to design classifiers in both scenarios. The description of each dataset along with their
corresponding hyper-parameters’ values for the SVM classifiers is given in Table 4.4. In this
experiment, the CR criterion stated in Section 2.5 was used. Table 4.5 shows the results

obtained in the two cases for the datasets described in Table 4.4.

87

TABLE 4.4. DESCRIPTION OF THE DATASETS USED IN CLASSIFICATION. #F, #DS,
#TR, #TE ARE THE NUMBER OF FEATURES, TOTAL NUMBER OF SAMPLES,
NUMBER OF TRAINING SAMPLES AND TEST SAMPLES, RESPECTIVELY. C AND y
ARE THE SVM HYPER-PARAMETERS.

Dataset Class1 / Class2 #F | #DS | #TR | #TE | C Y
Breast Cancer Malignant”/ 30| 569 | 376 | 193 | 1 | 0.05
Benign
Parkinson “Yes”/ "No” 26 | 1040 | 686 | 354 |200| 0.1
Satellite Red S;’;lﬂ,f Grey | 36| 2033 | 1342 | 691 | 50001142
Letter “A” /| "B” 16 | 1555 | 1026 | 529 | 1 |0.6576
“Douglasfir” /
Cover Type e 54 | 37877 | 24999 | 12878 | 1 | 0.5

TABLE 4.5. AVERAGE CLASSIFICATION RATE FOR TEST DATASET IN TWO
CASES FOR ALL DATASETS IN TABLE IV. CRy.(1) AND CRy,(2) DENOTE THE
CLASSIFICATION RATES FOR THE TEST DATASET USING RANDOM SELECTION
AND USING APPROXHULL, RESPECTIVELY.

Dataset CR7¢(1) | CR7(2) | CRy¢(2) — CR1.(1)
Breast Cancer 0.963 0.981 0.018
Parkinson 0.656 0.667 0.011
Satellite 0.990 1.000 0.010
Letter 0.993 1.000 0.007
Cover Type 1.000 1.000 0.000

According to the fourth column of Table 4.5, for all datasets the data selection mechanism
employing ApproxHull has improved the accuracy of the corresponding classifiers, in
comparison with the random data selection method. For the Breast Cancer and the Letter
datasets, the highest and lowest improvements were achieved, respectively. For the Cover
Type, both algorithms achieved perfect classification. The average classification rate for
datasets Satellite, Letter and Cover Type, in the second case is equal to 1 which means that
perfect classification is obtained for these datasets.

Additionally, as the previous datasets were balanced data sets, the same procedure, using the
same SVM tool, was employed to a problem of automatic diagnosis of CVAs, from CT
images. The application is described in, for instance, [116, 117] and, for the point of view of
this paper, is a binary classification problem, using 51 features, with the aim of classifying
each pixel in the intracranial area of each CT slice as normal, or abnormal (corresponding to a

lesion). Using 150 CT slices corresponding to 7 exams, we had 1,867,602 pixels, from which

88

64,786 (around 3.5%) were abnormal. This is clearly a very bad-balanced problem.
Approxhull has been applied for this large data set, and training and test datasets with the
sizes of 20,000 and 14,000 were constructed. The average values of the classification rate
obtained for the test sets, over 10 experiments, for random selection and using Approxhull
were 0.972 and 0.983, respectively. This example demonstrates that, for a completely
unbalanced problem, the use of ApproxHull again achieved better results than random
selection, and that ApproxHull is applicable to large datasets.

In order to assess the statistical significance of the last results, as well as the ones presented in
Table 4.5, we used the Wilcoxon signed-ranks test discussed in Section 2.9.2. Since in this
case, L, the number of data sets, is equal to 60, the corresponding value of statistic z is equal
to -5.35 which clearly indicates that the improvements obtained with ApproxHull are

statistically significant.

4.4.3. Experiment 3

Experiment 3 was conducted to find out how much improvement can be obtained for
regression models by employing ApproxHull for data selection.

As in Experiment 2, two approaches were analyzed for comparison: 1) generating ten training
datasets by random selection; 2) generating ten training datasets by applying ApproxHull,
together with random selection. The datasets which are used for regression were taken from

[115, 118]. The description of each dataset is given in Table 4.6.

TABLE 4.6. DESCRIPTION OF THE DATASETS USED IN REGRESSION. #F, #DS,
#TR, #TE AND #VAL ARE THE NUMBER OF FEATURES, TOTAL SAMPLES,
TRAINING SAMPLES, TEST SAMPLES AND VALIDATION SAMPLES,
RESPECTIVELY.

Dataset #F #DS #TR | #TE | #VAL
Puma 32 8192 | 4915 | 1638 | 1639
Bank 32 8192 | 4915 | 1638 | 1639

CompAct 21 8192 | 4915 | 1638 | 1639

Concrete 8 1030 618 | 206 206

Skillcraft 18 3338 | 2003 | 667 668

The MLP implemented in MATLAB was employed with two hidden layers and the output
layer with one linear neuron. For all datasets except the Concrete dataset, both hidden layers

had ten sigmoidal neurons. For the Concrete dataset, both hidden layers employed five

89

sigmoidal neurons. The Levenberg-Marquardt method (Please see Section 2.4.1.5) is
employed to train the model, terminating if one of the following conditions is met: early-
stopping, the number of training iterations exceeds 100 iterations, or the three criteria
described in Section 2.4.1.7, where 77 = 1073,

The RMSE criterion is employed to evaluate the accuracy of the models. Tables 4.7 and 4.8
show the results obtained in the test and validation for the datasets described in Table 4.6.
Table 4.7 shows the average RMSE for the test datasets (i.e., data used for early stopping) in
the two mentioned cases. As it may be seen in the sixth column, the regression models which
resulted from the data selected by ApproxHull have a lower approximation error. Table 4.8
shows the average RMSE for the validation sets (i.e., data not used in the model design).
Again, it may be concluded that the use of ApproxHull in the data selection phase, decreases

the error for all datasets except for Skillcraft, which has an identical value.

TABLE 4.7. AVERAGE RMSE FOR THE TEST DATASETS IN TWO CASES FOR ALL
DATASETS IN TABLE VI. E7.(1) AND E7.(2) DENOTE RMSE FOR TEST DATASET
IN FIRST CASE (RANDOM SELECTION) AND SECOND CASE (DATA SELECTION
USING APPROXHULL) RESPECTIVELY.

Initial Initial Er.(1) — Er.(2)
Dataset Eno(1) Ere(1) Ero(2) Ere(2)
Puma 0.336 0.076 0.326 0.073 0.003
Bank 0.293 0.209 0.260 0.195 0.014
CompAct 0.193 0.082 0.166 0.049 0.033
Concrete 0.374 0.161 0.329 0.143 0.018
Skillcraft 0.428 0.404 0.382 0.337 0.067

TABLE 4.8. AVERAGE RMSE FOR THE VALIDATION DATASETS IN TWO CASES
FOR ALL DATASETS IN TABLE VL. Eyg;(1) AND Eyq(2) DENOTE RMSE FOR
VALIDATION DATASET IN FIRST CASE (RANDOM SELECTION) AND SECOND
CASE (DATA SELECTION USING APPROXHULL) RESPECTIVELY.

Initial Initial Eva (1) — Epa(2)
Dataset Eye(1) Eya (D) Eyat(2) Evai(2)
Puma 0.339 0.076 0.324 0.073 0.003
Bank 0.296 0.209 0.259 0.194 0.015
CompAct 0.194 0.061 0.169 0.048 0.013
Concrete 0.359 0.162 0.329 0.147 0.015
Skillcraft 0.406 0.334 0.382 0.334 0.000

90

For completeness, the second and the fourth columns in the last two tables illustrate the
average initial values (before training was performed) of the RMSEs, for both approaches, for
the test and validation datasets.

Performing the Wilcoxon signed-ranks test on the RMSEs of the test and validation data sets,
with L = 50, the z values obtained are -4.73 and -4.18, respectively. In the same way as in the
classification problems, the improvements obtained with Approxhull were considered to be
statistically significant.

To summarize the results, among the 15 performance values presented in Tables 4.5, 4.7 and
4.8, as well as for the CVA problem, the use of ApproxHull for data selection achieves better
results than those obtained by using random data selection in 14 cases, and achieves equal

performance in 2 cases.

4.5. Run time analysis

The ApproxHull run time with Stochastic Policy depends on five factors including the size of
the involved dataset (i.e., the number of samples and features), population size (input
parameter p), number of iterations, number of vertices of convex hull found, and on the
distribution of samples in the dataset. In order to analyze the dependency of the run time with
these factors, two experiments were conducted. First, the algorithm was applied to all the
datasets described in Tables 4.4 and 4.6 for ten times. For all datasets, p (population size) and
w (width of sliding window) were set to 1000 and 5, respectively. Fig. 4.6 shows the average
percentage of total samples identified as vertices of convex hull for each dataset described in

Tables 4.4 and 4.6.

60

50

40

30

20 | ® Average percentage of total samples
identified as vertices of convex hull

10

Fig. 4.6. Average percentage of total samples identified as vertices of convex hull for each
dataset described in Tables 4.4 and 4.6.

91

Fig. 4.7 illustrates the average number of iterations that were used to terminate the algorithm
for each dataset. The corresponding average run time for each dataset is given in Table 4.9.
As it can be seen in this table, the highest and lowest average run times are related to datasets
Cover Type and Concrete, respectively. Cover Type is the largest dataset in terms of number
of samples and features while Concrete has the smallest number of features and is the second
smallest dataset with respect to the number of samples. Although datasets Bank and Puma
have the same size, the average run time for Bank is larger than that for Puma, because the
average number of iterations for Bank is larger than that for Puma. This specific result related
to datasets Puma and Bank reveals the fact that the distribution of samples can influence the

run time.

50
45
40
35
30
25 +
20 +
15 ®m Average number of iterations

10

A @ &
> & N Q
o
£ & Q* & &8
& o
& C

Fig. 4.7. Average number of iterations in ApproxHull for each dataset described in Tables
4.4 and 4.6.

TABLE 4.9. AVERAGE RUN TIME OF APPROXHULL ON DATASETS DESCRIBED IN
TABLES 4.4 AND 4.6.

Dataset Average Run Time (in seconds)

Concrete 11.78
Letter 19.13
Skillcraft 37.70
ComAct 37.39
Breast Cancer 8.10

Bank 257.34

Puma 174.24
Satellite 62.80

Cover Type 1280.16

92

Another experiment based on two groups of artificial datasets was conducted to clarify further
the relationship between the run time of ApproxHull and the above mentioned factors.

The first group included thirty datasets which were composed of uniformly distributed
random samples. The number of samples and the dimensions are in ranges [1000, 5000] and
[4, 30] respectively. The second group employed the same number of datasets, in the same
conditions, but using normally distributed random samples.

Figs. 4.8 and 4.9 show the effect of dataset size (i.e., number of samples and dimensions) on
the run time of ApproxHull on five datasets with different number of samples and
dimensions. For all datasets of both groups, population size (i.e., input parameter p) is set to
2000. It can be seen that in both groups of datasets, for a constant number of samples, by
increasing the dimension, the run time of ApproxHull rises; for a constant dimension, by
raising the number of samples, the run time also increases. It can also be observed that an
increase in dimension is translated into a larger increase of the run time than an increase of the

number of samples.

350

300 /
—#— Datasets with 1000 samples
—l—Datasets with 2000 samples
Datasets with 3000 samples

== Datasets with 4000 samples

™~ N
o %
S]

Run Time (in secs)

—=Datasets with 5000 samples

[
o
=]

\
\
N\

50

T
5 10 15 20 25 30
Dimension

Fig. 4.8. Relationship between the size of five datasets containing uniformly distributed
random samples and the run time of ApproxHull.

93

350

300 /

—¢— Datasets with 1000 samples

Run Time (in secs)

—— Datasets with 2000 samples
Datasets with 3000 samples

== Datasets with 4000 samples

== Datasets with 5000 samples

[
o
S

\
\
AN

50

5 10 15 20 25 30
Dimension

Fig. 4.9. Relationship between the size of five datasets containing normally distributed
random samples and the run time of ApproxHull.

Figs. 4.10 and 4.11 illustrate the influence of population size (i.e., input parameter p) on the
run time of ApproxHull for both groups of datasets. For each group, six datasets with 5000
samples are considered, with varying dimension. As it can be seen, on the one hand the
population size has less influence on the run time in comparison with the effect of dataset
size; on the other hand, if we enlarge the population size, this is not always translated into a

run time increase (although this usually happens).

B
Q
o

w
ol
[=}

—4— 5-dimensional dataset

w
=1
3

q

|
I\

~— 10-dimensional dataset

\
i
\

== 15-dimensional dataset

== 20-dimensional dataset

== 25-dimensional dataset

/ i ' 3 == 30-dimensional dataset

500 1000 1500 2000 2500 3000

Population Size

[
(=]
o

t

Fig. 4.10. Relationship between the population size (input parameter p) and the run time of
ApproxHull on six datasets containing uniformly distributed random samples.

94

[
%
(=]

>

g
)
[

g 120 _/."—_——-—'7 —4—5-dimensional dataset
2
£ 100 77/ K e —y —#—10-dimensional dataset
o
'Ig 80 M —#—15-dimensional dataset
5 60 e —_ —=—20-dimensional dataset
——
/ A H 1
40 S— - " x == iy == 25-dimensional dataset
20 i — R !__ ﬂ =@ 30-dimensional dataset
= — 3 - + ¢
0 - T
500 1000 1500 2000 2500 3000

Population Size

Fig. 4.11. Relationship between the population size (input parameter p) and the run time of
ApproxHull on six datasets containing normally distributed random samples.
As an example, in Fig 4.10 for the 25-dimensional dataset, by increasing population size from
1500 to 2000, the run time decreases. This happened because the number of iterations is
equal to 44 in the case where the population size is set to 1500, whereas it is equal to 19 in the
case where the population size is set to 2000. The corresponding number of iterations for

different population sizes shown in Figs. 4.10 and 4.11 are given in Fig. 4.12 and 4.13.

50
45
40
a5
30
25
20
15
10

5

0

B 5-dimensional dataset

B 10-dimensional dataset

W 15-dimensional dataset

M 20-dimensional dataset

Number of Iterations

® 25-dimensional dataset

W 30-simensional dataset

500 1000 1500 2000 2500 3000

Population size

Fig. 4.12. Number of iterations in ApproxHull with six values for population sizes on six
datasets containing 5000 uniformly distributed random samples.

16

14

12

10 m 5-dimensional dataset

m 10-dimensional dataset

W 15-dimensional dataset

® 20-dimensional dataset

Number of Iterations
00
|

m 25-dimensional dataset

W 30-simensional dataset

500 1000 1500 2000 2500 3000

Population Size

Fig. 4.13. Number of iterations in ApproxHull with six values for population sizes on six
datasets containing 5000 normally distributed random samples.

95

Similarly, for the second group of datasets, increasing the population size does not always
lead to a longer run time. For example, in Fig. 4.11, for the 20-dimensional dataset, by
increasing population size from 1000 to 1500, the run time decreases because the
corresponding number of iterations for population size 1000 is equal to 13, while it is equal to
9 for population size 1500.

From Fig. 4.14 and 4.15, it may be seen that in both group of datasets, an increase in
population size does not always lead to an increase in percentage of samples identified as

vertices of the convex hull.

100

90

80
70

B 5-dimensional dataset
60

50

® 10-dimensional dataset

m 15-dimensional dataset

40
W 20-dimensional dataset

Percentage of Samples

30 +
H 25-dimensional dataset
20 +
10 m 30-dimensional dataset

0 4
500 1000 1500 2000 2500 3000

Population Size

Fig. 4.14. Percentage of samples identified as vertices of convex hull by employing
ApproxHull with six values for population sizes on six datasets containing 5000 uniformly
distributed random samples.

100

90

80
70

B 5-dimensional dataset

m 10-dimensional dataset

m 15-dimensional dataset

W 20-dimensional dataset

Percentage of Samples

H 25-dimensional dataset

m 30-dimensional dataset

500 1000 1500 2000 2500 3000

Population Size

Fig. 4.15. Percentage of samples identified as vertices of convex hull by employing
ApproxHull with six values for population sizes on six datasets containing 5000 normally
distributed random samples.

From a data distribution point of view, Table 4.10 shows that the minimum and maximum run
times of ApproxHull on datasets containing normally distributed random samples (i.e., the
first group of datasets) are smaller than those on datasets containing uniformly distributed

random samples (i.e., the second group of datasets). Correspondingly, Table 4.11 illustrates

96

that the minimum and the maximum percentages of samples identified as vertices of convex

hull from datasets involving normally distributed random samples are less than those from

datasets involving uniformly distributed random samples.

TABLE 4.10. CORRESPONDING MINIMUM AND MAXIMUM RUN TIME OF
APPROXHULL ON DATASETS USED IN FIG. 4.8 AND 4.9. RTMIN 1 AND RTMIN 2
DENOTE THE MINIMUM RUN TIME IN THE FIRST AND THE SECOND GROUP OF
DATASETS RESPECTIVELY. RTMAX 1 AND RTMAX 2 DENOTE THE MAXIMUM

RUN TIME IN THE FIRST AND THE SECOND GROUP OF DATASETS,

RESPECTIVELY.
Cases RTMIN 1 | RTMIN 2 | RTMAX 1 | RTMAX 2
Datasets with 1000 samples 7.81 6.31 70.16 46.83
Datasets with 2000 samples 15.82 8.96 128.98 84.73
Datasets with 3000 samples 20.42 9.26 178.17 99.28
Datasets with 4000 samples 13.92 7.64 213.69 117.64
Datasets with 5000 samples 24.87 9.09 295.9 134.82

TABLE 4.11. CORRESPONDING MINIMUM AND MAXIMUM PERCENTAGE OF
SAMPLES IDENTIFIED AS VERTICES OF CONVEX HULL FROM DATASETS USED
IN FIG. 4.14 AND 4.15 PMIN 1 AND PMIN 2 DENOTE THE MINIMUM PERCENTAGE
IN FIRST AND SECOND GROUP OF DATASETS. PMAX 1 AND PMAX 2 DENOTE
THE MAXIMUM PERCENTAGE IN FIRST AND SECOND GROUP OF DATASETS.

Dataset PMIN 1 | PMIN 2 | PMAX 1 | PMAX 2
5-dimensional dataset 7 4 9 4
10-dimensional dataset 26 13 36 19
15-dimensional dataset 47 22 60 34
20-dimensional dataset 45 28 73 43
25-dimensional dataset 65 34 86 55
30-dimensional dataset 51 40 88 63

In order to extract an approximate mathematical model specifying the relationship between
the run time of ApproxHull as a function of the dataset size, population size, number of
iteration and number of convex hull vertices, we employed the ASMOD algorithm [25] on the
data obtained in the last experiment described above. The ASMOD algorithm is, as discussed
in Section 2.2.3, a design technique for B-spline neural networks.

For each group of datasets, we collected 360 records of data by running ApproxHull on the
corresponding datasets. According to the mathematical model which was obtained for each
group of datasets, the time complexity of ApproxHull for both group of datasets can be

approximated as O(n%d3v3 + i3p®) where n, d, v, i and p denote the number of samples,

97

dimension, number of convex hull vertices found, number of iterations and population size,
respectively. In order to assess the accuracy of the model obtained for the run time of
ApproxHull, Fig. 4.16 presents the run time of ApproxHull (data scaled in a range [-1, 1[) and
the error obtained by the model in two groups of datasets. As it can be seen, for both groups

of datasets, a good accuracy for the model has been obtained.

Dar 1

06 1

04 4

0.2 1

Ml

04]

06 J 4
0.8 4
|

1 1 1 1 1
0 50 100 150 200 250 300 350 400
Execution number

Run time scaled in range [-1, 1]

(2)

06} B

04r b

02f B

D2t .

04F 4

Run time scaled in range [-1, 1]

061 J

0.8} _

1 1 1 1 1
0 50 100 150 200 250 300 350 400
Execution number

(b)

Fig. 4.16. Run time of ApproxHull and the error obtained by the model on two groups of
datasets. (a) First group: uniformly distributed random samples; (b) Second group: normally
distributed random samples.

98

4.6. Memory requirements analysis

As mentioned in Section 3.3.3, Quickhull as a standard convex hull algorithm suffers from
insufficient memory in high dimensions. In this section, to compare empirically ApproxHull
with Quickhull in terms of memory requirements, both algorithms were applied to four
artificial datasets described in Table 4.12. All datasets are composed of uniformly distributed

random samples.

TABLE 4.12. DESCRIPTION OF THE ARTIFICIAL DATASETS CONSISTING OF
UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE
NUMBER OF DIMENSIONS AND SAMPLES RESPECTIVELY.

Dataset Name dim #S
DS1 5 4000
DS2 6 4000
DS3 7 4000
DS4 8 3500

Since facets in both ApproxHull and Quickhull are the principal objects to which a
considerable amount of memory is allocated, this section addresses memory requirements for
the generated facets in each iteration for both algorithms. For datasets DS1 to DS3, the sliding
window size, w, was set to 10 and for DS4 it was set to 15. The population size, p, was set to
6000, 7000, 8000 and 9000 for datasets DS1, DS2, DS3 and DS4, respectively.

Figs. 4.17 to 4.20 show the trend of memory consumption over all iterations in both
algorithms on datasets DS1 to DS4. An analysis of these figures shows that memory
allocation in Quickhull for all generated facets in each iteration is much larger than that in
ApproxHull. As it can be seen in the figures, the trend of memory consumption for all
generated facets in ApproxHull is approximately constant in the last iterations. By increasing
the dimension, the trend of memory consumption in Quickhull is linearly increasing,
translating into a large amount of memory. In Quickhull, in each iteration, only the furthest
point to current convex hull is added to the list of vertices and new necessary facets are
generated to keep convexity in each iteration. Unlike Quickhull, in each iteration of
ApproxHull, a large number of vertices are added into list of vertices of the current convex
hull, and that is why the number of iterations of ApproxHull is lower than that of Quickhull.
Moreover, in Quickhull, the current convex hull is described in terms of facets and the
corresponding vertices so that, in high dimensions, the number of facets which reflect the

whole current convex hull is huge. In contrast, the facets in the fixed size population in

99

ApproxHull are only used to detect the furthest point as vertices of real convex hull and they
do not describe the whole current convex hull.

According to the explanation above, the amount of memory allocated to the facets for
Quickhull is much larger, comparing to ApproxHull. The number of facets and the
corresponding amount of memory allocated in both algorithms for the last iteration on

datasets DS1 to DS4 are given in Table 4.13.

25

15 /

0.5

Memory Consumption (MB)
=

0 ;
N g O~ 0000 AN N O~ 000 A
= 00 N W O = 0N~ W!m O MM~ —AWm O m 00 W
A NN NN SN 0O W W~ 000
Iteration
(a)
_.0.558
[=1]
£ 0.556
=
Sossa | 7
= /
E 0.552 /
v
§ 055
&)
£ 0.548
£
-] 0546 T 1
b= “ @ 1 M~ & H @ o’ N & o oM
— — — — — ~ ~l
Iteration
(b)
Fig. 4.17. Trend of memory consumption over iterations on DS1. (a) Quickhull; (b)
ApproxHull

100

25

)

-%20

c

S /

B 15

E /

2

2 10

=]

[w] /

& 5

(<]

E ;

2 0

E Hommhmmgmmdommhmmqmmdo

~ MmO~ - DN O N WMo~ o0 !

Iteration
(a)

__ 0765

)

2

- 076

K]

2 I

£ 0.755

=

v

: /

S o075

[

(<]

E0.745 T 1 1 111 1 1 1 1. 1.7 1T 1T 1. 177 T T T 1T T T T T T T T91

2 LT B B e R~
Iteration

(b)

Fig. 4.18. Trend of memory consumption over iterations on DS2. (a) Quickhull; (b)
ApproxHull

101

200
——
s
= 150 p—
c
el
2 100
£ /
2
c
°50
Q
g o
£ AU O MM~ AN M~ SN MmN AN O M~
b 9O Cdd N Nmm g & %00 Y YR~ 0
A NS N0~ 0O HA N MmO~ 0 DO
= i I I T B e e I B]
Iteration
(a)
0.995

™)

E /
= 099

S

g /
50.985/

g

> 098

[=]

&

50.975 T 1 1 1 11 1 1 17 17T 17T 17 nr 1 111 111 1117 17 17 17 1T T 1T T T

N m "~ O o~ G A MmN~ O m N
™ = e e =l NN NN NN Mmoo

Iteration

(b)

Fig. 4.19. Trend of memory consumption over iterations on DS3. (a) Quickhull; (b)
ApproxHull

102

Memory Consumption (MB)

1200

1000

800

600

400

/
/
/

200

\

o

118
235
352
469
586
703
820
937
1054
1171
1288
1405

Iteration

1522
1639

1756
1873
1990
2107
2224
2341

(2)

Memory Consumption {MB)

1.26

1.255

—

~

1.25 /
1.245

1.24

1.235

T 1T
-

<

T T T T T T T T 17T
~ QO m
—i -

rT T T T T 1T T TrTrTT
O Y ™~ o
= = o~ ™~

Iteration

T T T 11
0w
o~ [a8]

L e e
st M~ O o

w
<

(b)

Fig. 4.20. Trend of memory consumption over iterations on DS4. (a) Quickhull; (b)

TABLE 4.13. NUMBER OF FACETS, TOTAL AND AVERAGE MEMORY SIZE FOR

ApproxHull

BOTH ALGORITHMS ON DS1 TO DS4 IN THE LAST ITERATION.

Quikhull ApproxHull
No. of Total Average | No. of Total Average
facets memory | memory | facets | memory | memory
size size (B) size size (B)
(MB) (MB)
DSI 12062 | 2.222557 193 6000 | 0.556335 97
Dataset DS2 98801 19.62438 208 7000 | 0.760101 113
DS3 712234 | 152.1882 224 8000 | 0.993637 130
DS4 | 4396390 | 1006.301 240 9000 1.257355 146

103

4.7. Conclusions

This chapter describes a novel randomized approximation convex hull algorithm for high-
dimensional data, to overcome the limiting memory requirements and time complexity
problems found in conventional algorithms. ApproxHull is presented with two policies:
stochastic policy and GA-based policy. Simulation results indicate that ApproxHull with
Stochastic Policy is faster and its performance is better in comparison to the case where GA-
based Policy is applied.

According to the simulation results, ApproxHull can find significantly more vertices of the
real convex hull in comparison to Wang’s algorithm [68]. Moreover, the obtained results in
classification and regression problems show that the use of ApproxHull as a data selection
method improves the accuracy of the designed models.

Based on the results obtained from employing ApproxHull with stochastic policy on two
groups of datasets, it is revealed that dataset size, population size, number of iterations,
number of vertices found as vertices of convex hull and the distribution of samples have
influence on the run time. Based on a mathematical model obtained by using b-spline
networks, the approximated time complexity of ApproxHull is O(n?d3v3 + i3p3) where n,
d, v, i and p denote number of samples, dimension, number of convex hull vertices found,
number of iterations and population size, respectively.

From a memory requirements point of view, simulation results reveal that the memory
consumption in ApproxHull is much lower than the Quickhull algorithm, allowing the

proposed algorithm to be applied in high-dimensional problems.

104

5. Applying ApproxHull in MOGA

5.1. Introduction

This chapter addresses the application of ApproxHull, introduced in Section 4.3 as a data
selection method, in the model design process carried out by MOGA. In this chapter, the
application of ApproxHull in MOGA is analyzed from two points of view. Firstly, the
performance of ApproxHull is compared with random data selection method for MOGA.
Secondly, the usage of ApproxHull in MOGA is addressed in the two following situations: In
the first situation (i.e., hereinafter called common convex hull based data selection method), a
common training, testing and validation sets (i.e., which are constructed using ApproxHull)
are used to fit the parameters of all models that are generated by MOGA; whereas, in the
second situation (i.e., hereinafter called distinct convex hull based data selection method),
ApproxHull is used to construct a customized training, testing and validation sets for each
generated model. The rest of the chapter is organized as follows: In Section 5.2, two
experiments applying ApproxHull and random based data selection methods in MOGA are
explained and analyzed. Two alternatives of applying ApproxHull in MOGA are discussed in

Section 5.3 and finally some conclusions are given in Section 5.4.

5.2. Comparison of using random and convex hull based data selection

methods for MOGA

In order to evaluate the performance of ApproxHull as a data selection method for MOGA,
the problem of designing predictive time series models for Inside Air Temperature (IAT) was
considered. To address this problem, a non-dominated set of Nonlinear AutoRegressive with
eXogenous (NARX) models was designed by MOGA to predict the evolution of IAT over a
Prediction Horizon (PH), for rooms in a building at University of Algarve. The data
considered to design these models were the subsets of those that used to build the similar
models proposed in [3, 119]. The input variables were IAT, Inside Air Humidity (IAH),
Outside Air Temperature (OAT), Outside Solar Radiation (OSR), Reference Temperature
(RT) and Movement signal (MOV). The corresponding data was collected with a sample rate
of 5 minutes. For each variable 12 lags (i.e., one hour before) were considered to design the

models. As a result, a data set containing 5062 samples with 73 features was provided.

105

Two MOGA experiments were carried out to design the models. For both experiments, a
common training, testing and validation sets were applied to all models generated by MOGA
and throughout MOGA generations, each model is trained and evaluated using a reduced
version of the common data sets whose features corresponds to the model’s inputs. In the first
experiment, the common training, testing and validation sets were generated using common
random based data selection method. In this method, the common sets were created by
applying random data selection method on the whole data set (i.e., 5062 samples) and then
presented to the MOGA. In the second experiment, the common sets were generated using
common convex hull based data selection method in such a way that the common sets were
produced by employing ApproxHull on the whole data set and presented to the MOGA. In
this experiment, 1441 convex hull points were identified from the whole data set and included
in the training set. 1596 randomly selected samples from the whole data set were also added
to the training set. The size of the data sets is given in Table 5.1. Regarding MOGA
parameters, for both experiments, the early stopping method with maximum 100 iterations
was applied. The number of generations and the population size were both set to 100. The
ranges of number of neurons and features were set to [2, 30] and [0, 30], respectively. For
both experiments, the design objectives were typically the RMSE obtained in the training and
test data sets, and the model complexity. In both experiments, no restriction on objectives was
considered. The number of models in the non-dominated set of first and second experiments
was equal to 101 and 173, respectively. The results obtained by the evaluation of models in
the non-dominated set of both MOGA experiments are given in Table 5.2. The results are in
terms of RMSE (p) on the training (tr), testing (te), validation (va) and whole data set (D).

rnd and hull in Table 5.2 denote the first and second MOGA experiment, respectively.

TABLE 5.1. THE SIZE OF TRAINING, TESTING AND VALIDATION SETS.

Training set Testing set Validation set
| Size 3037 x 73 1012 x 73 1013 x 73

TABLE 5.2. RESULTS OBTAINED FROM THE MOGA EXPERIMENTS.

rnd hull rnd hull rnd hull rnd hull
Ptr Ptr Pte Pte Pva Pva Pp Pp

Min 0.0065 | 0.0066 | 0.0085 | 0.0081 | 0.0090 | 0.0085 | 0.0081 | 0.0079

Avg | 0.0082 | 0.0085 | 0.0091 | 0.0088 | 0.0231 | 0.0106 | 0.0144 | 0.0092

Max | 0.0108 | 0.0112 | 0.0107 | 0.0109 | 0.5392 | 0.0669 | 0.2413 | 0.0308

106

As it can be seen in Table 5.2, the performance in the training set using the random approach
is slightly better than the convex hull approach. This is expected as the latter includes the
convex hull points, using therefore a larger range than the former. This situation changes for
the testing set and regarding the validation set, as unseen data, and also the whole data set, the
performance of models obtained by applying ApproxHull (the second MOGA experiment) is
significantly better than those achieved by using the random selection method (the first

MOGA experiment).

5.3. Comparison of the use of the common and distinct convex hull based

data selection methods for MOGA

Simulation results obtained in Section 5.2 showed that the performance of the obtained
models by convex hull based data selection method is better than that of those achieved by
random data selection method.

Another question which remains to be answered is whether or not using the common convex
hull based data selection method (i.e., which was applied in the second experiment stated in
Section 5.2) brings us a better performance comparing to the situation where distinct convex
hull based data selection methods are used in MOGA (i.e., in which ApproxHull is used to
construct a customized training, testing and validation sets for each model generated by
MOGA). In the case of using distinct convex hull based data selection method, for each
model generated by MOGA, ApproxHull is applied on a reduced version of the whole data set
whose features corresponds to the model’s inputs. Afterwards, the corresponding training,
testing and validation sets are generated to train and evaluate the model.

In order to compare these two strategies, we focused on the first generation of MOGA, where
a number of models are randomly generated satisfying the restrictions imposed on the number
neurons and features (i.e., unlike other generations in which models are generated based on
the previous generation by using the crossover and mutation genetic operators).

Like Section 5.2, we considered the IAT models to compare the above two methods. The
evaluation results obtained from the two methods are given in Table 5.3. com and dis in
Table 5.3 denote the common and distinct convex hull based data selection methods,
respectively. pp denotes the RMSE on the whole data set. n.y,, and t.,, indicate the number
of convex hull points and ApproxHull run time, respectively.

Table 5.4 shows the total time spent to design all models in the first generation. In Table 5.4,

T.ny denotes the summation of ApproxHull run time over all models. Since in common

107

convex hull based data selection method, ApproxHull is applied only once on the whole data
set, T.py is equal to tipy" in Table 5.3. Ty, denotes the summation of training times over all
models in the common and distinct convex hull based data selection methods, respectively. In

Table 5.4, T denotes the total time including ApproxHull run time and training time over all

models in common and distinct convex hull based data selection methods.

TABLE 5.3. EVALUATION RESULTS OBTAINED FROM TWO METHODS.

o5 o5 nGm | nde | e (seo) | e (seo)
Min 0.0152 0.0152 1434 108 283.25 1.70
Avg 0.0294 0.0294 1434 889 283.25 19.21
Max 0.0652 0.0647 1434 1829 283.25 72.16

TABLE 5.4. TOTAL TIME TO DESIGN ALL MODELS IN THE TWO METHODS.

Tony (s€C) T;r (sec) T (sec)

Common data sets 283.25 1550.00 1833.25
based strategy

Distinct data sets 1421.32 1544.96 2966.28
based strategy

According to the first two columns of Table 5.3, there is no significant difference between the
performance of models in two cases. Based on the third and fourth columns of Table 5.3, the
number of convex hull points obtained using the common convex hull based data selection
method is much larger than that of those achieved from the distinct convex hull based data
selection method. This result stems from the fact that, in the former, ApproxHull is applied on
the whole data set containing 5062 samples with 73 features while in the latter, ApproxHull is
employed on reduced data sets containing the same number of samples with at most 30
features (due to forcing MOGA to generate models with at most 30 input features). As it can
be seen in Table 5.4, the total time spent to design all models in the common convex hull
based data selection method is much less than that in the other method. It comes from the fact
that in the former, ApproxHull is applied only once whereas in the latter, it is independently

employed for each model.

108

5.4. Conclusions

This chapter was aimed to evaluate the ApproxHull performance in MOGA. Two groups of
MOGA experiments were carried out to design time series models based on RBFNN to
predict one-step-ahead IAT for a building at the University of Algarve. The results obtained
from the first group of experiments showed that applying ApproxHull as a data selection
method can improve the performance of models in comparison with random selection
method. Moreover, we were motivated to study applying ApproxHull in MOGA based on two
methods; 1- common convex hull based data selection method 2- distinct convex hull based
data selection method. The results achieved from the second group of experiments showed
that not only the latter is not superior to the former, but also it takes more time in model

design, in comparison with the former.

109

110

6. Case Studies

6.1. Introduction

To show the feasibility of applying ApproxHull in real applications, this chapter addresses
three case studies in which ApproxHull has been employed as a data selection method to
create training, testing and validation sets.

The first case study is linked to design a group of predictive RBFNN models, as well as a
basic MLP model, which were aimed to forecast the energy consumption of a building at
University of Almeria, Spain [120].

The second case study was intended to present an intelligent weather station which not only
measures climate variables but also provides a prediction over a predefined prediction horizon
[14, 15]. The intelligent weather station was applied to implement a predictive control of
HVAC systems [3, 121]. In this case study, a series of predictive RBFNN models were
designed to forecast climate variables.

In the third case study, ApproxHull was applied to build a classification model based on
RBFNN, as an intelligent support system for automatic diagnosis for CVA, where the model
was designed based on the data extracted from CT images of several patients [117].

The rest of this chapter is organized as follows: Section 6.2 details the first case study since it
was carried out as a part of this PhD. Section 6.3 and 6.4 present a brief explanation of the
second and third case studies, respectively as ApproxHull was used by different researchers

involved in other projects. Finally some conclusions are given in Section 6.5.

6.2. Case Study 1: Energy consumption

Due to fast economic development affected by industrialization and globalization, energy
consumption has been steadily increasing over the last years [122, 123]. Industry,
transportation and buildings are the three main economic sectors which consume a significant
amount of energy, with buildings having the biggest proportion. For example in European
Union countries, energy consumption in buildings represents about 40% of the total energy
consumption [124]. In USA, more than 44% of domestic energy consumption belongs to
HVAC systems in buildings [125]. Studies have shown that by following the current energy
consumption pattern, the world energy consumption may increase more than 50% before
2030 [126], while most of the energy resources are not renewable in nature. Moreover, the

usage of energy causes environmental degradation [123]. Therefore, energy consumption

111

management is a very significant problem not only to tackle the loss resulting from increasing
consumption patterns but also to improve the performance of building energy systems. With
respect to energy management, a variety of policies have been considered. In recent years,
bioclimatic architectures for buildings have been focused to reduce the indoor consumption of
energy. In this kind of architecture, buildings are designed based on the local climate
conditions. These include wind speed and direction, daily exterior temperature and relative
humidity, as well as diverse passive solar technologies where heating and cooling techniques
passively absorb solar radiation or protect from it without containing mobile elements [127-
129]. Besides environmental variables, physical properties of buildings are considered in
bioclimatic architectures, such as shape, buildings' orientation related to the sun and wind,
wall thickness and roof construction [127, 130].

Utilizing renewable energy sources such as biomass, hydropower, geothermal, solar, wind
and marine energies have been considered as alternatives for conventional energy resources in
most developed and developing countries [131, 132]. In the European Union, the use of
renewable energies share is 20% of the total energy consumption and 10% of renewable
energies will be used in transportation by 2020 [133]. Using renewable energies not only
helps keeping the security of non-renewable energy supply in future, but also minimizes
environmental degradation [132].

Prediction of energy use in buildings has received a remarkable amount of attention from
researchers [122, 124, 134, 135], as an approach to reduce energy consumption, which is
intended to conserve energy and reduce environmental impacts [124]. The prediction of
energy usage in buildings and modeling the behavior of the corresponding energy system, are
complicated tasks due to influential factors such as weather variables, building construction,
thermal properties of the physical materials and occupants’ activities [124]. Furthermore,
there are several nonlinear inter-relationships among the involved variables, often in a noisy
environment, which amplify the difficulty in identifying the precise interaction among them
[136].

The methods aiming to predict building energy consumption can be categorized mainly into
statistical, engineering and artificial intelligence ones. A review on prediction methods can be
found in [124, 137].

Engineering methods, which are detailed comprehensive methods, use the structural
properties of buildings in the form of physical principles and thermal dynamics equations, as
well as environmental information such as climate conditions, occupants, their activities and

HVAC equipment parameters. On the one hand, these methods need a high level of details

112

about the structural and thermal parameters of buildings that are not always available and, on
the other hand, since engineering methods depend on complex physical principles, a high
level of expertise is needed to elaborately develop the corresponding models [54, 124]. To
reduce the complexity of the detailed comprehensive engineering methods, simplified
methods have been proposed, which can be seen in [138, 139].

Statistical methods use historical data to correlate energy consumption as target with most
influential variables as inputs. Hence, the quality and quantity of historical data has a crucial
role in developing statistical models [54, 140]. Unlike engineering methods, statistical
methods provide models with a smaller number of variables and much less physical
understanding. Regression models, CDA (Conditional Demand Analysis), ARMA (Auto
Regressive Moving Average), ARIMA (Auto Regressive Integrated Moving Average) and
GMM (Gaussian Mixture Models) are some instances of statistical models [140-143].

In recent years, artificial intelligence methods such as neural networks, support vector
machines and fuzzy logic have been widely considered in applications of energy
consumption. Like statistical methods, artificial intelligence methods use historical data
reflecting the behavior of the process to be modeled. Neural networks have shown a high
capability to capture complex nonlinear relationships between inputs and outputs. Since the
energy consumption process has a nonlinear behavior, neural networks are mostly applied in
this domain. In addition, they are quicker and easier to develop than engineering and
statistical methods, while being accurate estimators. Some instances of neural network based
models may be found in [54, 136, 144-148].

Recently, support vector machines have received much attention as quick methods to build
predictive models in applications of energy consumption. They can provide models with a
high level of generalization based on number of data. Their application on the prediction of
energy utilization can be viewed, for instance, in [149-151].

Besides neural network and support vector machine based models, another kind of models
have been considered, which benefit from fuzzy logic. Fuzzy logic deals with imprecise
reality and handles the concept of truth value ranging between completely true and completely
false (1-0) [152]. Some models of this type can be seen in [153, 154].

As mentioned earlier, both statistical and artificial intelligence methods need sufficient
historical data to provide accurate models. In cases where limited amounts of data are
available and the information about the process to be modeled is partially known, grey models

are suitable alternatives to the prediction of time series associated with processes [155-157].

113

The objective of this case study is to compare an MLP model obtained in [54] with the
RBFNN models obtained by MOGA, to predict the electric power demand of the CIESOL
building located at University of Almeria, Spain. Authors in [54] determined the structure and
the order of the model by statistical and analytical methods while in this article a non-
dominated set of models is generated by a MOGA considering a set of objectives to be
optimized. For the sake of completion, the performance of MOGA models is also compared
with the results obtained by a Naive Autoregressive Baseline (NAB) approach, introduced in
[158].

The following briefly describes the structural properties and power demand profile of
CIESOL building. Afterwards the model proposed in [54] and the models generated by

MOGA are widely described and finally, experimental results are shown.

6.2.1. Experimental setup: The CIESOL building

The CIESOL building, see Fig. 6.1(a), is a mixed solar energy research center between
CIEMAT (Centre for Energy, Environment and Technology — Centro de Investigaciones
Energéticas, MedioAmbientales y Tecnoldgicas (in Spanish)) and the University of Almeria,
situated in the south-east of Spain. This geographical location is characterized by having a
typical semi-desert Mediterranean climate [159]. This building is divided into two floors with
a total surface approximately equal to 1100 m2. More specifically, the upper floor is
composed by four laboratories, the director's office and a meeting—room. In the lower floor,
five offices, four laboratories, two bathrooms and a kitchen are located. Besides these, the
machinery of the solar cooling installation is placed into an environment which occupies two
floors.

This building has been designed and built within a research project named PSE-ARFRISOL
[160], following bioclimatic architecture criteria. Therefore, it makes a beneficial use of
natural ventilation and solar energy in order to reduce energy consumption and CO,
emissions. To do that, it employs a HVAC system based on solar cooling installation, which
can be observed in Fig. 6.1(b), composed by a solar collector field, a hot water storage
system, a boiler and an absorption machine with its refrigeration tower [160], and a
photovoltaic power plant with a peak power of 9 kW which provides electricity to the
building (see Fig. 6.1(c) and (d)). Furthermore, a wide network of sensors has been installed
in order to monitor the most representative enclosures of the building. Concretely, this

network of sensors includes, among others, air temperature, relative humidity, CO;

114

concentration, solar radiation, wind velocity and power consumption sensors. Moreover, these
sensors are connected to different Compact FieldPoint modules from National Instruments
that are distributed by means of an Industrial Ethernet network all around the building [160].
Data provided by the network of sensors are being stored through a SCADA (Supervisory
Control And Data Acquisition) system developed with LabVIEW® [160]. Finally, it is
necessary to take into account that this building is a research center which includes chemical,
environmental analysis and modeling and control research groups. Hence, the machinery,
other electrical devices and experiments performed by these research groups alter the energy
use profile of the building in comparison with more common ones, such as residential

buildings.

Fig. 6.1. The CIESOL building: (a) Exterior of the CIESOL building; (b) Solar cooling
installation; (c) Photovoltaic power plant: PV panels; (d) Photovoltaic power plant: PV
inverters.

115

6.2.1.1. Power demand profiles of the CIESOL building

From a power demand point of view, the CIESOL building has some special characteristics
mainly derived from the research tasks which are being developed inside it. Therefore, it is
necessary to perform an exhaustive analysis of the different energy demand profiles which
can be found at the CIESOL building. Specifically, a statistical characterization involving
certain parameters like arithmetic mean (X), standard deviation (o), and minimum and
maximum values of the power demand (min and max respectively) under several conditions

(different seasons and types of days), has been performed (see Table 6.1).

TABLE 6.1. STATISTICAL ANALYSIS OF THE POWER DEMAND PROFILES (IN
KW).

X o min max
Working day 2436 | 639 | 17.39 | 44.17
Non-working day | 19.45 | 1.83 | 12.72 | 23.86

Winter 2645 | 455 | 18.93 | 39.48
Spring 2391 | 6.76 | 12.56 | 42.79
Autumn 2423 | 458 | 15.85 | 48.14
Summer 28.74 | 8.67 | 16.28 | 63.48

To predict the power demand within a building, it is necessary to consider numerous energy
consuming elements, such as illumination, electrical devices, HVAC systems, etc. At the
CIESOL building, the element which has the greatest energy consumption is the solar cooling
installation. Furthermore, to calculate the total energy demand of the CIESOL building it is
necessary to consider both the energy supplied by the electricity company and the energy
produced by the photovoltaic power plant which is directly consumed by the building, that is,
at this moment it is not possible to store the energy from the photovoltaic power plant.

Firstly, the main differences according to typical power demand profiles between working
and non-working days have been studied, as presented in Fig. 6.2. To do that, a typical day for
each demand profile, considering working and non-working days, and each season, has been
selected as a function of several environmental variables: mean, maximum and minimum
temperature, temperature ranges and solar radiation. The methodology consists of selecting
the day with the minimum value obtained from the sum of the weighted absolute difference
between each parameter (daily) and the mean value of this parameter along the analyzed
period. A detailed description of the procedure which has been followed can be found in

[161]. It can be observed that power demand in a working day begins to increase around

116

08:00 am and starts to decrease at 05:00 pm, reaching a stationary value around 8 pm,
whereas, in a non-working day it has a stationary value approximately equal to 20 kW, mainly
due to the machinery and experimental tests performed inside this building. From the
perspective of the statistical analysis shown in Table 6.1, it can be inferred that the mean
power demand for a working day is equal to 24.36 kW with a standard deviation of 6.39 kW.
On the contrary, for a non-working day, a mean power demand of 19.45 kW and a standard
deviation equal to 1.83 kW have been obtained. In addition, working days also present a

higher peak power demand, in comparison with non-working days.

a0 T

Warking day
Mon-woarking day

=
[}

WA}
[}

[}
[}

Power demand [KW]

.
[}

0
0000 08:00 16:00 00:00
Time [HH:MM]|

Fig. 6.2. Energy demand profiles for working and non-working days.

Secondly, a detailed examination of the power demand of the CIESOL building through a
typical week (from Monday to Sunday), along different environmental conditions has been
performed, as shown in Fig. 6.3. The main objectives of this analysis were to determine if
there were representative differences among the different seasons of the year and also to
identify if there was any characteristic element of the building able to considerably influence
its power demand. More specifically, as it can be deduced from Fig. 6.3, the different seasons
of the year follow an analogous pattern among working and non-working days. In addition, it
can also be inferred that spring and summer seasons present a higher power demand in
comparison with winter and autumn. Besides, along the summer season there are several
power demand peaks that do not follow any specific pattern associated with the type of day.
Therefore, in order to clarify this issue, a detailed analysis of this fact has been performed,
and the main conclusions derived from it were that these peaks were associated with the use
of a heating pump (for research purposes) and the solar cooling installation. Hence, as the use
of both elements is directly associated with the users of the building, it has been decided to

take into account the state variables representing these elements within the preliminary list of

117

variables (see Table 6.2). Finally, according to the statistical analysis, it can be concluded that
the highest peak power demand and variance is associated with the summer season mainly

due to the use the HVAC system for cooling purposes [160].

] I I _____ | — Winter Spring Autumn 5ummer| _____ ll _______________ i
s A R A
= .)
= l, 1 I I g !
E A0 - ||-" II ""'il ||||| : "f.“'-. :h : | -
g a Wl ek kit H o MR N
g a0 B 3 SRERREN o o o0l ; « O S, L, '|’1"" | | e
2 | i l | E _|
. Monday I Tuesday !Wednesday ! Thursday I Friday ! Saturday : Sunday
00:00 00:00 00:00 00:00 00:00 00:00
Time [HH:MM]
Fig. 6.3. Weekly energy demand profiles for each season.
TABLE 6.2. PRELIMINARY LIST OF VARIABLES [54].
Variable Unit Measurement range
Type of the day (Working day/Non-working day) — {0, 1}
Hour of the day h [0, 23]
Outdoor temperature [°C] [-5, 50]
Outdoor humidity [%] [0, ..., 100]
Outdoor solar radiation [W/m’] [0, 1440]
Outdoor wind speed m/s [0, 22]
Outdoor wind direction © [0, 360]
State of the pump B1.1 (Off/On) — {0, 1}
State of the pump B1.2 (Off/On) — {0, 1}
State of the pump B2.1 (Oft/On) — {0, 1}
State of the pump B2.2 (Off/On) — {0, 1}
State of the pump B3.1 (Oft/On) — {0, 1}
State of the pump B3.2 (Off/On) — {0, 1}
State of the pump B7 (Off/On) — {0, 1}
State of the boiler (Off/On) — {0, 1}
State of the absorption machine (Off/On) — {0, 1}
State of the refrigeration tower (Off/On) — {0, 1}
State of the heat pump (Oft/On) — {0, 1}
Electric power demand [kW] [0, 85]
Electric power injected by the PV plant [kW] [0, 9]

Finally, the principal conclusions which have been reached after this precise analysis can be
summarized in: a) there is a clear power demand profile within a week and also, the
differences among working and non-working days power demand profiles can be undoubtedly

established; b) the power demand for summer is higher mainly due to the typical semi-desert

118

Mediterranean climate of Almeria; and c) the use of the solar cooling installation has a

considerable influence on the final energy consumption.

6.2.1.2. Data acquisition

As mentioned previously, in this case study, several energy consumption prediction models
based on RBFNNs were designed and compared with the corresponding MLP model
proposed in [54]. These models were obtained by means of different methodologies. More
specifically, groups of non-dominated sets of RBFNN models were designed by MOGA.
Afterwards, these groups of models were compared with a basic MLP model presented in
[54]. To do that, a historic data set acquired at the CIESOL building was used. Concretely,
this data set comprises data from 01/09/2010 to 29/02/2012 with a sample time of 1 minute
and it includes a preliminary list of variables which can be observed in Table 6.2. These
variables are related with the environmental conditions and the state of the main energy
consuming elements of the solar cooling installation.

Subsequently a whole data set containing 514762 samples was obtained. To design the basic
MLP model proposed in [54], the whole data set was split into three sub-data sets training,
testing and validation involving 318340, 107264 and 89158 samples, respectively. This
division has been performed by hand since there were some discontinuities in time series.
More information about the methodology followed to obtain these data subsets can be found
in [54]. On the other hand, to design a group of non-dominated sets of RBFNN models by
MOGA, the original whole data set was resampled from 1 minute to 15 minutes to reduce the
size of the whole data set due to the presence of limitations in MOGA against large size data
sets. Afterwards, along each week period, the corresponding data of three random days were
selected. Consequently, a reduced data set consisting of 8640 samples was achieved. To
generate the corresponding training, testing and validation sets, ApproxHull algorithm
proposed in Section 4.3 was applied as a data selection method. As a result, for all MOGA
experiments, the training, testing and validation set including 2592, 864 and 864 samples
were generated, respectively. The detailed explanation of the data preparation process for

MOGA is given in Section 6.2.3.1.

119

6.2.2. A Non-linear AutoRegressive with eXogenous inputs Multi-Layer Perceptron

Neural Network model

In [54] a prediction model based on MLP for the energy consumption of the CIESOL building
was proposed. To do that, the Neural Network Toolbox™ provided by MATLAB® was used.
Concretely, the proposed model had a Non-linear AutoRegressive with eXogenous inputs
(NARX) architecture, see Eq. (6.1), typified by having a tapped delay line for the input
signals set and another one for the output signal, that is, the power demand prediction of the
CIESOL building. Moreover, this model was trained using a gradient-descent based
algorithm, more specifically the Levenberg-Marquardt algorithm [33].

y[k+1]=f(u[k]ulk=1],... T - (6.1)

- - a - a - a L P ay

In Eq. (6.1), u[k]and y[k]represent the input and output signals at time instantk , du >1,
d, >1 (subjected to d, >d,) are the memory orders for the input and output tapped delay

lines, respectively, and f represents a non-linear mapping function which, in this case, was

approximated by an MLP network.

The structure of an MLP network is completely defined by indicating: a) the number of
hidden layers and the number of neurons in each layer; b) the number of neurons in the output
layer; and c) the activation function used in each neuron of the hidden and output layers.
More specifically, in the model presented in [54], an MLP with only one hidden layer
composed by 10 neurons with tangent hyperbolic activation functions and one neuron with
linear activation function at the output layer was considered, since it is a universal
approximator [162].

Afterwards, the selection of input variables from the preliminary variables list, see Table 6.2,
was performed through analytical methods, since they allow to establish the existing linear
and non-linear dependencies. Besides, the scatter-plots and the model tests were used in order
to complete the information provided by analytical methods. A detailed description of these
methods can be found in [54]. Therefore, after the application of the methods mentioned
above, the preliminary variables list was reduced to the following ones: type of the day; hour
of the day; outdoor temperature and solar radiation; state variables related to the solar cooling

installation; and the total power demand of the CIESOL building.

120

Finally, it was necessary to select the order of the signal inputs, that is, the embedding delay
7 and the embedding dimension 4 [54]. The former was determined by means of the average
mutual information [163], whereas for the latter, optimal values were calculated by the False
Neighbors Method [164]. The list of final input variables and their order can be observed in
Table 6.3.

TABLE 6.3. FINAL LIST OF VARIABLES WITH THEIR ORDER (EMBEDDING

DELAY AND DIMENSION).

Variable Unit Measurement T d

range
Type of the day (Working day/Non-working day) — {0, 1} 1 1
Hour of the day — [0, 23] 1 1
Outdoor temperature [°C] [-5, 50] 1 4
Outdoor solar radiation [W/m’] [0, 1440] 1 4
State of the pump B1.1 (Oft/On) — {0, 1} 1 5
State of the pump B1.2 (Oft/On) — {0, 1} 1 5
State of the pump B2.1 (Off/On) — {0, 1} 1 5
State of the pump B2.2 (Oft/On) — {0, 1} 1 5
State of the pump B3.1 (Off/On) — {0, 1} 1 5
State of the pump B3.2 (Oft/On) — {0, 1} 1 5
State of the pump B7 (Off/On) — {0, 1} 1 5
State of the boiler (Off/On) — {0, 1} 1 5
State of the absorption machine (Off/On) — {0, 1} 1 5
State of the refrigeration tower (Off/On) — {0, 1} 1 5
State of the heat pump (Off/On) — {0, 1} 1 5
Electric power demand [kW] [0, 100] 1 3

6.2.3. Radial Basis Function Neural Network based models generated by MOGA

MOGA is a design framework which can be applied to determine both the structure and the
parameters of ANN based models (i.e., please see Sections 2.6 and 2.7). The models used in
this case have a NARX structure as shown in (6.1), with the difference that f{.) is now a
RBFNN, instead of a MLP. In this approach, instead of one model, a non-dominated set of
models are generated. From this set, one solution must be selected. In this section, data

preparation for MOGA and related experiments are described.

121

6.2.3.1. Data preparation

After an analysis of the original data, a new code was considered for the feature “day type”.
The new code refers to “special days”. By comparing the amount of energy consumption for
working and non-working days, it has been revealed that for some days over the years 2010
and 2011, the amount of energy consumption has an average value between working and non-
working days. By comparing these special days with the Spanish calendar for both years, it
was found that those days occurred in the early days of the year, or in working days which
were located between national/regional holidays and weekends. Based on that, these special
days received the code 0.5. Fig. 6.4 shows the distribution of whole data samples in terms of
“day type”. Since the original data was obtained with a sampling interval of 1 minute, its size
was too large (514762 samples) to be handled by the MOGA framework, and was reduced in
several stages. Due to presence of gaps in the data, there were 51 consecutive periods over the
whole data. In the first stage, each period was divided into one week length segments. Based
on these divisions, those durations whose length was less than two weeks were ignored in this
work. This stage resulted into 13 periods containing at least two weeks of data. Table 6.4
shows the periods selected in the first stage.

In the second stage, the data for all periods was reduced by a factor of 15 by averaging every
15 consecutive samples inside each segment. The sampling interval was then increased to 15
minutes.

In the third stage, by starting from the second week within each period, 3 random days along
with the last 7 consecutive days were selected as lags for each variable. This way, a data set D
with 8640 samples was obtained. Fig. 6.5 shows the distribution of samples of data set D in

terms of “day type”.

122

500,000 -
450,000 -
400,000 -~
350,000 -
300,000 -~
250,000 -
200,000 -
150,000 -
100,000 -
50,000 -

0 .

469,517

working days

212,287

non-working days

22,174

special days

Fig. 6.4. Distribution of original data samples in terms of day type from 01/09/2010 to

29/02/2012.

TABLE 6.4. THE PERIODS SELECTED IN THE FIRST STAGE.

Period number

Start

End

1

02-Sep-2010 00:00:00

15-Sep-2010 23:59:00

24-Sep-2010 00:00:00

14-Oct-2010 23:59:00

09-Nov-2010 00:00:00

22-Nov-2010 23:59:00

27-Dec-2010 00:00:00

09-Jan-2011 23:59:00

11-Jan-2011 00:00:00

31-Jan-2011 23:59:00

09-Feb-2011 00:00:00

01-Mar-2011 23:59:00

11-Mar-2011 00:00:00

31-Mar-2011 23:59:00

02-Jun-2011 00:00:00

22-Jun-2011 23:59:00

O |0 |I[N| N | (W[

08-Jul-2011 00:00:00

01-Sep-2011 23:59:00

14-Oct-2011 00:00:00

27-Oct-2011 23:59:00

05-Nov-2011 00:00:00

23-Dec-2011 23:59:00

29-Dec-2011 00:00:00

11-Jan-2012 23:59:00

19-Jan-2012 00:00:00

08-Feb-2012 23:59:00

123

6,000 -

5,472

5,000 -
4,000 -
3,000 - 2,784

2,000 -

1,000 -

working days non-working days special days

Fig. 6.5. Distribution of samples in data set D in terms of day type.

6.2.3.2. Design Experiments

Based on the model design cycle described in Section 2.7.4, several designs were conducted
in such a way that their results led to the definition of a new design, by redefining variables
and their corresponding lag terms, as well as imposing restrictions on objectives.

In a first step, we conducted designs with features requiring lag terms spread over at most 7
days.

After analyzing and comparing the results with those obtained in [54], the spread of lags was
reduced to cover at most 2 days, and finally to cover at most one day. Based on that, 4 new
designs were carried out.

For all designs, data set D, stated in section 6.2.3.1, containing 8640 samples was used. Since
a sampling interval of 15 minutes was used, and the objective was to obtain forecasts of
electric power 1 hour-ahead, a prediction horizon of 4 steps was employed. In this work, as in
[17], two groups of RBFNN models were considered. The first group contains simple models
where only weather variables are used as exogenous variables. The second group considers
complete models involving both weather and solar cooling operation variables. The list of
candidate variables used and the range of lags for the design experiments are given in Table

6.5 and 6.6, respectively.

124

TABLE 6.5. LIST OF VARIABLES USED.

Variable Notation | Unit Range in D
Electric power demand added up with the x1 kw [11.73,74.65]
electric power supplied by the PV plant
Day type (working day/non-working X2 - {0,0.5,1}
day/semi-holidays)
Outdoor temperature x3 °C [2.73,43.79]
Outdoor solar radiation x4 W /m? [0,1127.81]
State of pump B1.1 (Off/On) x5 - {0,1}
State of Pump B1.2 (Off/On) x6 - {0,1}
State of Pump B2.1 (Off/On) x7 - {0,1}
State of Pump B2.2 (Off/On) x8 - {0,1}
State of Pump B7 (Off/On) x9 - {0,1}
State of the boiler (Off/On) x10 - {0,1}
State of the absorption machine (Off/On) x11 - {0,1}
State of the cooling tower (Off/On) x12 - {0,1}
State of the heat pump (Off/On) x13 - {0,1}
TABLE 6.6. DESCRIPTION OF THE LAGS USED.

Variable Experiment | Experiment 11 Experiment 111 Experiment [V
x1 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day
x2 0 lags 0 lags 0 lags 0 lags
x3 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day
x4 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day | 20 lags over 1 day
%5 _ - 1 lag 1 lag
%6 _ - 1 lag 1 lag
x7 - - 1 lag 1 lag
x8 - - 1 lag 1 lag
x9 - - 1 lag 1 lag

x10 - - 1 lag 1 lag
x11 - - 1 lag 1 lag
x12 - - 1 lag 1 lag
x13 - - 1 lag 1 lag

As it can be seen in Table 6.6, Experiments I and II correspond to simple models in which

only weather variables have been used; Experiments III and IV consider complete models. In

Table 6.6, “lag 0 for variable “day type” (x2) is translated into the day type of instant k + 1

125

for which the electric power demand is predicted. In fact, weather and electric power demand
variables are strongly related to their most recent values and also, to a certain extent, to their
values 24 h before. As a result, for x, x3 and x, a heuristic, proposed in [24], was used to
select 20 lags over one full day, in such a way that more recent values predominate in the set
of searchable lags for these variables. Hence, based on this heuristic, the 20 lags used are
[1,2,3,4,5,6,7,9,11,13,16, 20, 24,29,36,43,53,65,79,96]. In this list, and as an
example, lags 1 and 2 denote delays of 15 and 30 minutes, respectively. The objectives and
the corresponding goals are given in Table 6.7. D¢, D9 and D* denote the training, testing and
simulation sets, respectively. £(D*) and (DY) refer to the RMSE of D* and DY, respectively.
e(D*®,16) is a vector of RMSEs of D® over a prediction horizon with 16 steps (i.e., one hour)
so that the first element of the vector corresponds to the RMSE of 1-step-ahead prediction and
the last one corresponds to the RMSE of 16-steps-ahead prediction. O(u) denotes the model
complexity, which is equal to the number of input features + 1, multiplied by the number of

hidden neurons (i.e., for further information about the objectives, please refer to Section

2.7.2.1).

TABLE 6.7. OBJECTIVES AND THEIR CORRESPONDING RESTRICTION OF

EXPERIMENTS.

Experiment I | Experiment Il | Experiment Il | Experiment IV
e(DYH Minimize <0.059 Minimize <0.054
(DY) Minimize <0.061 Minimize <0.052

e(D*,16) Minimize Minimize Minimize Minimize
0w Minimize <317 Minimize <444

Regarding MOGA'’s parameters specification, for experiments I and III, the range [d,,, dy],
where d,,, and d,, are the minimum and maximum number of features, was set to [1, 30]
while for experiments II and IV they were set to [1, 15] and [1, 21], respectively. Similarly,
for experiments [and III, the range [n,,, ny], where n,, and n, are the minimum and
maximum number of neurons, was set to [2, 30] while for experiments II and IV, these ranges
were set to [1, 18] and [1,21], repectively. For all designs, the population size and the
number of generations were set to 100.

For each experiment, a proper sub dataset D" was derived from data set D whose features are
those columns of D which correspond to the lags defined in the corresponding experiment.

In order to generate training, testing and validation sets for each experiment, firstly the

ApproxHull algorithm proposed in Section 4.3 was applied on corresponding D" to obtain

126

convex points reflecting the whole input-output range in which the model is supposed to be
used. Secondly, 50% of whole samples in DV were used to generate training (D), testing
(DY) and validation (DV) sets with proportions of 60%, 20% and 20%, respectively. In this
step all convex points were incorporated in the training set. Afterwards, the remaining
samples were shared randomly into the rest of the training set, and the testing and validation
sets. Regarding the simulation dataset D°, 1344 consecutive samples from 01-Oct-2010
00:00:00 to 14-Oct-2010 23:59:00 were considered. In this set, the rows correspond to the
variables used, whose samples are in each column while, for the other sets, the number of
rows correspond to the patterns, and the number of columns to the features. The size of
training, testing and validation datasets as well as the simulation dataset of each experiment is

given in Table 6.8.

TABLE 6.8. SIZE OF TRAINING, TESTING AND VALIDATION SETS.

Experiment I | Experiment Il | Experiment IIl | Experiment IV
Dt 2592 x 62 2592 x 62 2592 x 71 2592 x 71
D9 864 x 62 864 x 62 864 x 71 864 x 71
DV 864 x 62 864 x 62 864 x 71 864 x 71
D* 4 x 1344 4 x 1344 13 x 1344 13 x 1344

After one run of the MOGA for each experiment, the non-dominated and preferred sets of
models were generated. In the case that no restriction is considered on objectives, the non-
dominated set is the same as preferred set; otherwise, the preferred set is a subset of the non-
dominated set whose solutions satisfy the goals. Please refer to [47] for further information
about how the preferred set can be obtained from the non-dominated set by applying the
preferably criterion. The number of models in non-dominated and preferred sets for each

experiment is given in Table 6.9.

TABLE 6.9. SIZE OF NON-DOMINATED AND PREFERRED SETS.

Non-dominated set Preferred set
Experiment [346 346
Experiment 1 238 88
Experiment I11 289 289
Experiment [V 366 182

127

6.2.4. Results and discussion

The models presented in this case study were tested and compared by means of real data
acquired at the CIESOL building. To do that, a battery of tests was selected according to
certain representative characteristics, such as, the type of day (working and non-working
days), the season of the year and the quantity of solar radiation (sunny and cloudy days). A
complete description of the battery of tests is shown in Table 6.10. Furthermore, a prediction
horizon over 1 hour was set mainly due to the energy price changes and the dynamic
behaviour of indoor temperature [54].

Since in MOGA related experiments, the data was used with a sampling interval of 15
minutes, each test in Table 6.10 contains 96 samples. Moreover, the corresponding prediction
horizon over 1 hour is equal to 4 steps. For the model proposed in [54], each test includes
1440 samples due to the 1 minute sampling rate. Hence, the corresponding prediction horizon
over 1 hour is equal to 60 steps. For convenience, the complete model proposed in [54] and
the models obtained by MOGA will be denoted as PREVIOUS and MOGA models,
respectively. In order to compare the MOGA models obtained from each experiment with the
PREVIOUS model, one model was selected from the non-dominated/preferred set, with a

good compromise between performance and complexity.

TABLE 6.10. BATTERY OF TESTS PERFORMED.

Test Day Temperature | Radiation (mm)?igai;ifyyy)
(A) Working day Summer Sunny 06/29/2011
(B) | Non-working day Summer Sunny 09/19/2010
(©) Working day Winter Cloudy 02/15/2011
(D) | Non-working day Winter Sunny 02/20/2011
(E) | Non-working day Winter Cloudy 02/28/2011
(F) | Non-working day Summer Cloudy 07/02/2011

In our work, models I, II, IIT and IV were the selected MOGA models from experiments I, II,
IIT and IV, respectively. Information about the selected MOGA models as well as the
PREVIOUS is given in Table 6.11. Using the notation of Table 6.6, the formal description of
models [to IV is given by Egs. (6.2) to (6.5), respectively.

128

TABLE 6.11. SELECTED MOGA MODELS AND PREVIOUS MODEL.

Number of features Number of neurons Complexity
Model I 18 13 247
Model 11 14 18 270
Model 111 29 11 330
Model IV 18 20 380
NARX-MLP 67 10 680

yk+1) = fi(xy(k), ..., x1(k — 6),x1(k — 8),x, (k —11),x,(k — 12),x,(k — 19),
x,(k + 1),
x3(k = 2), x3(k — 7),x3(k — 10), (6.2)
x4(k —4),x4(k — 10),x4(k — 17))

yk+1) = fz(xl(k)i...,xl(k —4),x,(k —6),x,(k—9),x,(k —10),x,(k — 15) ,x,(k
—18),

x3(k—9),
(6.3)
x4(k), x4(k — 8),x4(k — 18))

Jk+1) = fa(xy(k — 1), x,.(k — 3),x,(k — 4),x,(k = 5),x,(k — 7),x,(k — 10),
xq1(k — 11), 21 (k — 12),x, (k — 14), x1 (k — 15),x,(k — 16),
x(k + 1),
x3(k), x3(k — 2),x3(k — 3),x3(k — 4), x3(k — 8), x3(k — 12), x3(k — 13), (6.4)
x3(k —15), x3(k — 16),
x4(k = 2),x4(k = 3), x4 (k = 5), x4 (k = 7), x4 (k — 12),

x7(k), %11 (k), x13(k))

Yk +1) = fo(x k), x (k= 1),x1(k —2),x,(k —3),x;(k —5),x,(k —17),
xy(k + 1),
x5 (k — 18), 6.5)
X4 (k —3),x,(k —5),x4(k —10), x4 (k — 14),x,(k — 15), x,(k — 18),
0 (K), %10 (K), %11 (), %15 (K))

129

y(k+ 1) in Egs. (6.2) to (6.5) is the output of the corresponding RBFNN model. Each
function f] ,{ = 1,2,3,4} has its own set of input terms. These input terms, all together,
constitute the input data sample at instant k.

To compare MOGA models with the PREVIOUS model over the battery of tests stated in
Table 6.10, five statistical criteria were considered: MAE, MRE, MAPE, MaxAE and o
(introduced in Section 2.5). The evaluations of MOGA and PREVIOUS models over the
battery of tests for a prediction horizon of 1 hour are given in Tables 6.12 to 6.17. The best

values for each criterion are identified in bold.

TABLE 6.12. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER
TEST A, FOR A PH OF 1 HOUR.

Model 1 Model 11 Model 111 Model IV PREVIOUS
MAE((kW) 1.92 2.14 2.28 3.55 1.96
MRE(kW) 0.06 0.08 0.07 0.12 0.06
MAPE(%) 6.29 8.11 7.66 12.39 6.38
MaxAE(kW) 12.36 14.22 10.21 13.82 10.99
o (kW) 8.92 7.86 8.91 6.99 7.17

TABLE 6.13. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST B, FOR A PH OF 1 HOUR.

Model I Model 11 Model 111 Model IV PREVIOUS
MAE((kW) 0.95 1.22 1.29 0.93 0.84
MRE(kW) 0.05 0.07 0.07 0.05 0.05
MAPE(%) 5.60 7.21 7.86 5.80 5.13
MaxAE(kW) 3.60 3.15 4.83 3.38 3.59
o (kW) 2.01 2.48 1.78 1.75 1.52

TABLE 6.14. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST C, FOR A PH OF 1 HOUR.

Model I Model 11 Model III Model IV PREVIOUS
MAE(KkW) 1.99 3.46 1.75 1.95 1.86
MRE(kW) 0.06 0.1 0.06 0.06 0.06
MAPE(%) 6.62 10.55 6.25 6.40 6.26
MaxAE(kW) 8.82 16.56 5.69 7.04 8.15
o (kW) 6.04 6.94 6.78 7.75 6.70

130

TABLE 6.15 RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER TEST

D, FOR A PH OF 1 HOUR.

Model 1 Model 11 Model III Model IV PREVIOUS
MAE(kW) 0.94 1.12 0.82 0.88 1.08
MRE(kW) 0.04 0.05 0.03 0.04 0.05
MAPE(%) 4.21 5.34 3.81 4.17 4.86
MaxAE(kW) 4.65 6.35 5.20 5.45 6.28
o (kW) 1.95 1.64 1.08 1.72 1.52

TABLE 6.16. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST E, FOR A PH OF 1 HOUR.

Model I Model 11 Model III Model IV PREVIOUS
MAE((kW) 1.38 1.45 1.16 1.30 1.49
MRE(kW) 0.06 0.06 0.05 0.05 0.06
MAPE(%) 6.00 6.30 5.06 5.77 6.38
MaxAE(kW) 4.44 5.59 4.81 4.49 6.89
o (kW) 1.80 1.39 1.28 1.65 1.43

TABLE 6.17. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST F, FOR A PH OF 1 HOUR.

Model I Model 11 Model III Model IV PREVIOUS
MAE((kW) 1.02 0.80 1.35 0.89 0.95
MRE(kW) 0.04 0.03 0.06 0.04 0.04
MAPE(%) 4.87 3.70 6.53 4.28 431
MaxAE(kW) 3.43 2.63 5.68 3.73 3.75
o (kW) 1.95 1.99 1.44 1.97 1.88

Regarding test A, a working sunny day in summer, Model I, as a simple model, not only has

minimum values in terms of MAE, MRE and MAPE among other MOGA models but also

has a better performance than PREVIOUS in terms of these criteria. In this test, in overall,

simple models I and II have better performance in comparison with complete models III and

IV.

With respect to test B, a non-working sunny day in summer, Model IV, as a complete model,

has minimum values of MAE, MRE and ¢ in comparison with other MOGA models; with

respect to MaxAE, it has a compromise performance between Model II and PREVIOUS.

In test C, a working cloudy day in winter, and in test D, a non-working sunny day in winter,

the complete model I1II has minimum values in terms of MAE, MAPE and MaxAE among all

models. Model I, a simple model, has also a good performance; actually better in four criteria
than the complete PREVIOUS model, in test D.

In test E, a non-working cloudy day in winter, both simple and complete MOGA models have
lower values in terms of MAE, MAPE and MaxAE than the PREVIOUS model. Model III
has better performance in all criteria.

Regarding test F, a non-working cloudy day in summer, simple model II and complete model
IV have better performance in terms of MAE, MAPE and MaxAE than PREVIOUS model. In
this comparison, model II has minimum values in all criteria, except o.

According to Tables 6.12 to 6.17, in the group of simple models, model I, in most cases, has
better performance than model II. In the group of complete models, model IIL, in most cases,
is better than model IV. Figs. 6.6 to 6.8 show the comparison between measured and
predicted value of electric power demand in CIESOL building, over tests A-F for a prediction
horizon of 1 hour, for the PREVIOUS model, model I and III, respectively.

Comparing the performance of all MOGA models over the battery of tests, in general
complete models I1I and IV have a better performance in winter than in summer, while simple

model I has a compromise performance between summer and winter.

50 : Ell
——— ANN prediction (E0-step)
|| ——Real power demand

—— = ANN prediction (E0-step)
— Real power demand

Power demand [KW]

Power demand [Ki¥]

i L i i
-0 0500 16:00 2400 00 0800 15:00 2600
Time [HH:MM] Time [HH:MM]

(A) B)

— —— ANN prediction [E0-step)
—— Real power demand

=
&
T

w
=]
T

Power demand [KUY]
.
=]

Poweer demand [KW]

=]

i i i i
0300 1600 2400 000 05:00 16:00 24:00
Time [HH:MM] Time [HH:MM]

©) (D)

o
&
=
8

— — = ANN prediction (E0-step)
—— Real power demand

Power demand [KW]

Poweer demand [KW]

=

i L L L
00:00 08:00 16:00 24:00 00:00 08:00 16:00 24:00
Time [HH:MM] Time [HH:MM]

(E) (F)
Fig. 6.6. Prediction results for tests A-F using the PREVIOUS model.

132

Power demand [KW] Power demand [KwW]

Power demand [Kw]

i
16:00
Time [HH:MM]

(A)

40 = = = AN preciction (4-steps)

L L
16:00 24:00

Time [HH:MM]

©

= AN prediction (4-steps)
28 Real power demand -

R

1 1
1600 24:00

Tirme [HH:MM]

(E)

Power demand [KW] Power demand [KW]

Power demand [Kw]

L
0&.00

30

Time [HH:MM]

(B)

L
16:00

L
24.00

MM prediction (4-steps)
el povwer demand

20

L
08:00

L
16:00

L
2400

00.00
Time [HH:MM]
2% T !
— — — ANM prediction (4-steps) :
26 Resal powver demand
24+ :

1
0800

Time [HH:MM]

()

Fig. 6.7. Prediction results for tests A-F using model L.

133

w
3

m
=

— — — NN prediction (4-steps)
Real povver demand

-
-
i

@

=
T

Power demand [Kw]
w
I
Power demand [Kw]
E

=

i i
0o:00 08:00 1600 24:00
Time [HH:MM] Time [HH:MM]

o
2
=
3
=]
=
=]
=]
=
5]
:
B
=)
=]

T T
— — = AN prediction (4-eps) |- oeeeeeee AR e
Real power demand : :

Ll e

=
&

S
5
=

oo
@
5
I

o
&
n
=
T

Power demand [Kw]
w
=]
i

Power demand [Kw]
N
13

=
T

15 ; ; ; ; ; ;
00:00 0%:00 16:00 2400 00:00 0500 16:00 2400
Time [HH:MM] Time [HH:MM]

© (D)

w
=2
5
5

— — — ANN prediction (4-steps) : — — — ANN prediction (4-steps)
Real power demand :

&

Real power demand

[
5
r
L

M
5

n

=
T
1

Power demand [KW]
.
3
i
Power demand [KW]
™~
M

18 h ; ; 4 ; ;
00:00 08:00 16:00 24:00 00:00 0300 16:00 2400
Time [HH:MM] Time [HH:MM]

(E) (F)

Fig. 6.8. Prediction results for tests A-F using model III.

6.2.4.1. Comparison of MOGA models with NAB approach

The performance of MOGA models was also compared with a Naive Autoregressive Baseline
model, introduced in [158]. The NAB approach considers, as estimate of the electric power
demand at instant k&, the measured value of consumption at the correspond instant of time, in
the same day of the previous week. It is therefore a simple model which does not need any
computation to predict electric power demand at each time instant k. To apply the NAB
approach to tests A-F, consecutive data corresponding to the previous week would be needed.
Since there were several gaps in the whole dataset among tests A-F, only for tests D and E,
corresponding to special days in winter, consecutive data exist to implement this method. In
order to evaluate the NAB model in summer, we considered another special day in summer,
corresponding to 06-Aug-2011, hereinafter called test G. For convenience, the description of

the tests D, E and G is given in Table 6.18.

134

TABLE 6.18. BATTERY OF TESTS PERFORMED TO COMPARE THE NAB MODEL
WITH THE NEURAL NETWORKS MODELS.

Test Day Temperature | Radiation | Date (mm/dd/yyyy)
(D) Non-working day Winter Sunny 02/20/2011
(E) Non-working day Winter Cloudy 02/28/2011
(G) Non-working day Summer Sunny 08/06/2011

In order to compare the performance of NAB model with MOGA models and PREVIOUS

model, the three models were evaluated over the battery of tests stated in Table 6.18. The

results obtained over tests D, E and G are given in Tables 6.19 to 6.21. Please note that the
results of MOGA models and PREVIOUS model, for tests D and E, are obtained from Tables

6.15 and 6.16, respectively, and are reproduced here for easy of comparison with the NAB

approach.

TABLE 6.19. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST D, FOR A PH OF 1 HOUR.

Modell | ModelII | Model III | Model IV | PREVIOUS NAB
MAE (kW) 0.94 1.12 0.82 0.88 1.08 1.9439
MRE (kW) 0.04 0.05 0.03 0.04 0.05 0.0856
MAPE (%) 421 5.34 3.81 4.17 4.86 8.5575
MaxAE (kW) 4.65 6.35 5.20 5.45 6.28 6.8341
o (kW) 1.95 1.64 1.08 1.72 1.52 1.8933

TABLE 6.20. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST E, FOR A PH OF 1 HOUR.

Model I | Model IT | Model III | Model IV | PREVIOUS NAB
MAE (kW) 1.38 1.45 1.16 1.30 1.49 4.8314
MRE (kW) 0.06 0.06 0.05 0.05 0.06 0.2086
MAPE (%) 6.00 6.30 5.06 5.77 6.38 20.8610
MaxAE (kW) 4.44 5.59 4.81 4.49 6.89 13.0946
o (kW) 1.80 1.39 1.28 1.65 1.43 5.6539

TABLE 6.21. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST G, FOR A PH OF 1 HOUR.

Model I | Model I | Model III | Model IV | PREVIOUS NAB
MAE (kW) 0.8297 1.2684 0.8089 0.7598 0.7787 3.2966
MRE (kW) 0.0472 0.0745 0.0465 0.0434 0.0432 0.1909
MAPE (%) 4.7154 7.4521 4.648 4.3363 4.3154 19.0867
MaxAE (kW) | 3.7347 7.4701 4.7188 3.8647 2.9473 13.6549
o (kW) 2.08 2.216 1.5135 1.2575 1.822 3.8805

135

Regarding these tests, the NAB model has the worst performance (by a large difference) in
comparison to MOGA and PREVIOUS models, in terms of all criteria.

Regarding test G, a new test corresponding to a non-working sunny day in summer, Model
IV, a complete model, has minimum values in terms of MAE and ¢. In terms of MRE and
MAPE, Model IV has approximately the same performance as PREVIOUS model. In the
same way as in tests D and E, the NAB model has the worst performance.

To sum up, comparing the performance of MOGA models and the PREVIOUS, despite the
fact that MOGA models were trained with a small training set of 2592 samples compared to
the 318340 samples used to train the PREVIOUS model, they have obtained better results,
except in Test B. Moreover, as it can be seen in Table 6.11, the complexity of models
obtained from MOGA is lower than the PREVIOUS model.

According to tests D, E and G reflecting special days in winter and summer, both MOGA and
PREVIOUS models have much better performance than the NAB model in terms of all

criteria.

6.3. Case Study 2: An Intelligent Weather Station

Since accurate measurements of global solar radiation, atmospheric temperature and relative
humidity as well as the ability of evaluating their predictions over time, are important for
different areas of applications, an intelligent weather station was developed by the University
of Algarve. For implementing the predictions, two groups of models were proposed. The first
group involved predictive models based on nearest-neighbors (NEN) algorithm whereas the
second group included NAR RBFNN models designed by MOGA.

The NEN models use pattern matching to compute the predictions. They need two parameters
d and k where d denotes the number of full days used to search the best matching patterns
and n corresponds to the number of closest neighbors that are be averaged to compute one-
step-ahead prediction. To design the models, data was collected by sampling 5 minutes
between 22-Feb-2015 and 7-Apr-2015. Totally, 12,800 samples were obtained. The first 35
days were used to compute predictions by NEN models over prediction horizon with 48 steps
(4 hours). For each climate variable, the first 10,000 samples were considered to design the
corresponding RBFNN models by MOGA. In this case, firstly, ApproxHull was applied on
the whole data set and then training set containing convex hull points and random samples as
well as testing and validation sets were generated. The size of training, testing and validation

set for each climate variable is given in Table 6.22.

136

The last 1350 samples were considered to evaluate both groups of models over prediction

horizon with 48 steps. The evaluation results of predictive models of each climate variable are

given in Tables 6.23 to 6.25.

TABLE 6.22. SIZE OF TRAINING, TESTING AND VALIDATION SETS FOR THE
ATMOSPHERIC CLIMATE MODELS.

Training Testing | Validation Convex hull
points
Atmospheric Air temperature 2888 x 74 | 962 x 74 964 x 74 696 x 74
Atmospheric Relative Humidity 2888 x 74 | 962 x 74 964 x 74 696 x 74
Global Solar Radiation 2895x 74 | 965x 74 966 x 74 659 x 74

TABLE 6.23. ATMOSPHERIC TEMPERATURE.

RMSE, | &8
z RMSE,;
i=1
NEN(2,2) 2.17 111.06
NEN(7,4) 1.93 101.52
NEN(35,4) 1.39 84.79
RBFNN 0.30 65.46

TABLE 6.24. ATMOSPHERIC RELATIVE HUMIDITY.

RMSE, |8
z RMSE,;
i=1
NEN(2,2) 14.34 742.17
NEN(7,4) 11.32 632.72
NEN(21,4) 8.52 497.36
RBFNN 0.99 409.43

TABLE 6.25. GLOBAL SOLAR RADIATION.

RMSE, |8
Z RMSE,;
i=1
NEN(2,2) 132.22 12109
NEN(7,4) 122.26 12173
NEN(14,4) 154.67 11951
RBFNN 29.49 7850

137

As it can be seen in Tables 6.23 to 6.25, for all climate variables, RBFNN model is superior to
its corresponding NEN models in terms of one-step-ahead RMSE and of the summation of
RMSE over the prediction horizon (48 steps).

Correspondingly, Figs. 6.9-6.11 show the one-step-ahead predictions of climate variables
obtained by the NEN algorithm and the RBFNN for the last 1350 samples, as well as the
evolution of the RMSE along the prediction horizon with 48 steps. As it can be seen in Figs

6.9-6.11, it is clear that the best performance is obtained by the RBFNN model.

— Measured

... — MEM2, 2} H

— NEM7, 4}
MNEM35, 4)

0 200 400 600 800 1000 1200

NER(2, 2)
NEN(7, 4)
NER(35, 4)

RBF ANN

0 10 20 30 40
Prediction horizon

Fig. 6.9. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last
1350 samples as well as the evolution of the RMSE along the prediction horizon with 48
steps for atmospheric temperature.

138

—MeESUIRd |
— NEN{2,2)
00 — weniz, 4)
90 H — MEN(21, 4)

= e
=
(=]
T
1

Relative humidity (%)
oo
(=]

s
100 :

: — Measured
90 : : : : — RBF ANN

Relative humidity (%)
-
(=]

60
50
40 i ;
0 200 400 600 800 1000 1200
18 T
16
14 i
= 12
£ 10
)
z . — NENEZ, 2)
p — NENI7. &)
— NENI2L, 4)
2 — RBF ANN
0 I

0 10 20 30 40
Prediction horizon
Fig. 6.10. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last
1350 samples as well as the evolution of the RMSE along the prediction horizon with 48
steps for atmospheric relative humidity.

139

;.'“ 1200 — Measured
£ 1000 — NENIZ,2)
E — NENI7, 4)
‘;’ 800 — NENI{14, 4)
=] :
% 600 :
® 400 '
E 1
2 200 i
v 0 H
0 200 400 600 800 1000 1200
o 1200 — Measured
§ 1000 — REF ANN
= 800 :
o .
% 600 :
8 400 f
©
2 200* . . O R &
v H
% 200 400 600 800 1000 1200
400 '
350} . —
-~ 300} [
= 250t 4
£ 200} _#:ﬁ’
& 150} — NEN(Z,2) H
g 100} - NEN(7,4) ||
— NENi14, 4)
50t — RBF ANN
0

0 10 20 30 40
Prediction horizon

Fig. 6.11. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last
1350 samples as well as the evolution of the RMSE along the prediction horizon with 48
steps for global solar radiation.

140

6.4. Case Study 3: An Intelligent Support System for Automatic Diagnosis

of Cerebral Vascular Accidents from Brain CT Images

In this case study, a RBFNN based diagnosis system for automatic identification of CVA
through analysis of CT images was considered. Totally 1,867,602 samples with 52 features
were extracted from 150 CT images, for which a collaborating Neuroradialogist registered his
opinions. To design RBFNN models, MOGA was applied. Two experiments, Exp.1 and
Exp.2, were carried out. In Exp.1 no restriction was imposed on MOGA objectives , while in
Exp.2, restrictions on two objectives, FP (False Positive) and FN (False Negative) labels on
the training set were imposed based on the results obtained from Exp.l1. To design both
experiments, ApproxHull was employed on the whole set (i.e., 1,867,602 samples) and
resulted in 13,023 convex hull points. Afterwards a training set with 20,000 samples was
created so that it included the convex hull points and 6,977 random samples. For testing and
validation sets, each of them involved 6,666 random samples.

Exp.1 resulted in a non-dominated set of 406 RBFNN models whereas from Exp.2 a non-
dominated set of 281 RBFNN models was obtained, from where 69 models were in the
preferred set. To compare Exp.1 and Exp.2, the best model from each of them was selected,
using a threshold on FP and FN in the whole set (i.e., 1,867,602 samples). Exp.1 and Exp.2
were additionally compared with an ensemble of Exp.2 preferable models, where the
classification output was obtained based on the majority of models outputs in the preferred set
of Exp.2.

Table 6.26 shows the evaluation results of Exp.1 and Exp2 as well as the ensemble of Exp.2
in terms of specificity and sensitivity (Please refer to Section 2.5) on the whole set. As it can
be observed in Table 6.26, Exp.2 has better performance in comparison with Exp.1. The

ensemble of Exp.2 resulted in the best performance in comparison with Exp.1 and Exp.2.

TABLE 6.26. EVALUATION RESULTS

Specificity | Sensitivity
Best model in EXP.1 97.04 97.12
Best model in EXP.2 97.60 97.66
Ensemble of EXP.2 98.01 98.22

141

6.5. Conclusions

The experimental results obtained from these case studies demonstrated the applicability of
ApproxHull, as a data selection method, on real data in high dimensions where for the first,
second and third case studies, Approxhull was applied on the corresponding whole data sets
with the maximum of 71, 145 and 52 features, respectively. In all cases, MOGA was used for
model design, employing the data partitions given by ApproxHull. According to the results
obtained from the first case study, MOGA models achieved better performance than MLP
models, designed using a much larger training set. The results achieved from the second case
study showed that MOGA achieved an excellent predictive performance, much better, for the
weather models, than the NEN approach. The third case study proved that the ApproxHull can

be applied successfully on very large size data sets (nearly 2 million samples).

142

7. Comparing four data selection methods for off-line model

design

7.1. Introduction

This chapter aims to compare four data selection methods including the Random Data
Selection (RDS) method, the Convex hull Based Data Selection (CBDS) method, the Entropy
Based Data Selection (EBDS) method and the Hybrid Data Selection (HDA) method. In this
study, the ApproxHull method introduced in Section 4.3 was considered as the CBDS
method. Regarding the EBDS method, the method proposed in [13] was applied which is one
of the latest efforts of using information theory in data selection. The methods were applied
on eight benchmarks: four binary class classification problems and, the other four related to
regression problems. The experiments were organized in three groups.

In the first group, for one classification problem (named Breast Cancer) and one regression
problem (named Bank), five runs of the MOGA were executed for each of the data selection
methods. Each MOGA execution resulted in a non-dominated set of RBFNN models. In this
case the MOGA selects the number of neurons and the inputs of the models in order to
minimize the objectives described in (please see Sections 2.7.1 and 2.7.2)

In the second and third groups of experiments MLPs were considered for all regression
problems and SVMs for all classification problems, respectively. In these cases, for each
benchmark problem the four data selection methods were applied, repeating the execution 10
times in each case. In this case the structure of the models was fixed beforehand and was the
same for the 10 executions.

The rest of this chapter is organized as follows: In Section 7.2, the entropy based data
selection method is briefly introduced. The procedure for constructing the training, testing and
validation sets for experiments is described in Section 7.3. Regarding the MOGA
experiments, the performance of the methods was analyzed based on two scenarios; the best
model scenario and the ensemble scenario. The experiments are detailed in Section 7.4. The
simulation results obtained from the evaluation of the methods in all experiments are

discussed in Section 7.5. Finally, some conclusions are given in Section 7.6.

143

7.2. An entropy based unsupervised data selection method

The main idea behind the EBDS method proposed in [13] is selecting k samples of a given
data set D for training set so that the information content and the diversity of data in the
training set used to adjust the model parameters is maximized. This method benefits from the

information entropy of any random variable X given in Eq. (7.1).

N (7.1)
HOO =) p(l ()
i=1

where N is the number of all possible observations of X. p(x;) denotes the probability that X
takes value x; and I(x;) denotes the information content (also called self-information or

surprisal) that X represents when it takes value x;. I (x) is defined as:

I(x) = —log, p(x) (7.2)

Suppose data set D = [X|y] consists of an input pattern matrix X of size N X d and a target
vector y of size N X 1. Each row of D is a point of dimension (1 X (d + 1)), and assume
that z; refers to the i™ point in D. Since data set D represents a set of values of a
multidimensional random variable Z, P(z;) is translated into the probability that Z takes z;. In

this method, P(z;) is estimated by Eq. (7.3) [165].

N d+1

1
AR [EXCAUEFAN (73)
j=1 1=1

where ky, (.) is a Gaussian kernel function whose bandwidth is h; which is obtained by [165]:

-1
h; = ;N@+1+49) (7.4)

where 4 is the sample standard deviation along dimension [of the data.

By using Eq. (7.3) for each point in D, vector P is obtained as (7.5).

P = [0(21),(22), - p(zn)] (7.5)
Using Eq. (7.2) for each point in D, vector I is obtained as,

144

I= [i(zl);f(zz); i(ZN)] (7.6)

where [(z;) denotes the self-information estimate which is presented by point z;.
Having P and T at hand, vector H is obtained as (7.7) by taking the Hadamard product of p by

~

I

H = [p(20)1(2,),p(22)1(2,), - D(zn)1(2y)] (7.7)

where p(z;)I(z;) is considered as the information based fitness of point z; reflecting the
contribution of point z; to the entropy obtained by Eq. (7.1).

Once vector H is obtained, k points are selected from D proportionally to their information
fitness, by means of the Stochastic Universal Sampling (SUS) method. For the additional

details please consult [13].

7.3. Construction of data sets for the experiments

To fairly compare the data selection methods, the existence of a common validation data set,
V, which does not have any contribution in model design, is needed. Notice, however, that in
a practical case, each data selection method should be applied to the whole data set, D. This is
particularly relevant for the methods relying in convex hull (CBDS and HDS methods), as
their rational is incorporating in the training set the convex hull points obtained from the
whole data set.

In this chapter, as we aim to compare the performance of the data selection models in a
common validation set, the procedure for constructing the data sets for all groups of
experiments of each model type is as follows. First, for each group of experiments, a common
validation set V containing N,, samples is randomly extracted from the whole data set D; the
remaining samples will constitute the set DSG, from where in a second step training set T and
testing set G containing N; and Ngsamples, respectively, will be extracted.

In RDS method, firstly, N, samples are extracted randomly from DSG (i.e., resulting in a
reduced set D’) to construct T. Subsequently, N, samples are randomly extracted from D’ to
form G.

Regarding the CBDS method, first ApproxHull is applied on the data set DSG to obtain the

convex hull points. Afterwards, the convex hull points as well as some random samples are

145

extracted from DSG (i.e., resulting in a reduced set D) to form T so that N; = Ny + Nyppg
where N, and N,,; denote the number of convex hull points and random samples,
respectively. Subsequently, as in the RDS method, N, samples are randomly extracted from
D' to form G.

In the EBDS method, N, samples are selected from DSG using the entropy based method
mentioned in Section 4.2 to form T. Then T is extracted from DSG resulting in a reduced set
D' and set G is constructed in the same way as in the RDS method.

Finally, the idea behind the HDS method is combining the two previous data selection
methods, CBDS and EBDS. In the first step of the HDS method, ApproxHull is applied on
DSG to obtain the convex hull points which are extracted from DSG (i.e, resulting in a
reduced set D") and included in T. In the next step, N; — N, samples are extracted from D’
using the EBDS method and included in T. G is obtained from the rest of the samples in the

same way as in the RDS method.

7.4. Experiments

In the first group of experiments, for the RBFNN models designed by the MOGA, two
scenarios are considered: the best model and ensemble scenarios. As in the end of each
MOGA run we have access to a set of non-dominated models, typically one model is selected
out of this set. This scenario will be called best model.

The criterion for selecting the best model out of the non-dominated set for the regression
problem is the minimum RMSE on the common validation set V. In the case of classification
problems the best model is selected on the basis of the Classification Rate (please see Section
2.5) in a procedure composed of the following three steps: first, the model which has the
maximum CR(V) is selected. In case of tie, the one with the maximum CR(G) is chosen.
Similarly, in case of tie, the one with the maximum CR(T) is selected. Finally if more than
one model is remained, one of them is randomly selected as the best model.

The second scenario, called ensemble, involves using all non-dominated solutions. In this
scenario, for the regression problem, the output of the ensemble scheme is the average of all
non-dominated models' outputs, whereas for the classification, the output of the ensemble
scheme is determined based on the majority of all models' outputs in the non-dominated set.
In this case, the class of an input pattern is the one in which the majority of the models in the

non-dominated set are unanimous.

146

The second and third groups of experiments do not involve the MOGA and employ different
kinds of models, MLPs for the four regression problems and SVMs for the four classification
problems, respectively. From the second group, the MLP models obtained in the regression
problem named Bank, trained with the modified LM algorithm introduced in [34, 166], are
compared to the RBFNN MOGA generated models from the first group of experiments.
Similarly, from the third group of experiments, the SVM models in the classification problem
named Breast Cancer, trained using the Matlab implementation, are compared to the RBFNN
MOGA generated models from the first group of experiments. For all models and
experiments, the four data selection methods were used. The datasets were taken from the
UCI repository [115]. Their names, number of samples (N) and inputs (d) are given in Table
7.1.
TABLE 7.1. DETAILS OF THE DATA SETS.

Problem N d
Bank Regression 8192 32
Puma Regression 8192 32
Concrete Regression 1030 8
Wine Quality | Regression | 4898 11
Breast Cancer | Classification | 569 30
Parkinson Classification | 1040 26
Satellite Classification | 2033 36
Letter Classification | 1555 16

The number of samples of T, G, and V sets, and the average number of convex hull points

(N,) obtained over all executions in the experiments of each problem, are given in Table 7.2.

TABLE 7.2. NUMBER OF SAMPLES OF T, G AND V AND THE AVERAGE NUMBER

OF CONVEX HULL POINTS.

N, t N, g M, v N chy
Bank 4195 1638 1639 3437

Regression Concrete 618 206 206 307
problems Puma 4915 1638 1639 3686
Wine Quality | 3134 784 980 599

Breast Cancer 300 76 193 183

Classification Parkinson 550 136 354 280
problems Satellite 1074 268 691 711
Letter 822 204 529 564

Regarding the MOGA experiments parameterization, the same parameters were used in all

experiments. The number of generations and the population size were both set to 100 and no

147

restriction on objectives was considered. The range of the number of neurons was set to [2,
30] and the range of the number of features for Bank and Breast Cancer was set to [1, 32] and
[1, 30], respectively. The early-stopping termination criteria within a maximum of 100
iterations were considered.

In terms of model structure, the MLP models in the second group of experiments had 2
hidden layers and used all features in the data sets as inputs. The number of neurons for each
hidden layer for Bank and Puma problems was 10, while for the other problems was 5. For all
MLP models, a maximum of 100 training iterations with early stopping method was
considered. Regarding the SVM models for the binary class classification problems, all input
features were used. The SVM hyper-parameters y and C were set as stated in [68]. These are

shown in Table 7.3.

TABLE 7.3. HYPER PARAMETERS OF SVM MODELS FOR THE CLASSIFICATION

PROBLEMS.
y C
Breast Cancer 0.05 1
Parkinson 0.1 200
Satellite 0.1142 500
Letter 0.6576 1

7.5. Experimental results

Considering the regression problem Bank in the first and second groups of experiments, the
average of the RMSEs obtained on the common dataset V over the experiments, for the two

MOGA result scenarios and for the MLP model, are given in Table 7.4.

TABLE 7.4. AVERAGE RMSES OBTAINED FOR DATASET BANK.

RDS CBDS | EBDS HDS
Best model | 0.1908 | 0.1901 | 0.1907 | 0.1903
Ensemble 0.1870 | 0.1872 | 0.1869 | 0.1878
MLP 0.1969 | 0.1963 | 0.1979 | 0.1963

As shown in Table 7.4, independently of the data selection method, MOGA optimized models
are always better than MLP models, despite the latter being much more complex. In fact,
MLPs have a model complexity (number of nonlinear parameters) of 440 while the MOGA

generated RBFNNs have on average 100 (using the average number of input features and

148

neurons shown in Table 7.5). Another conclusion that can be taken from Table 7.4 is that the

ensemble scenario provides better performance than the best model.

TABLE 7.5. AVERAGE NUMBER OF FEATURES AND NEURONS OF THE BEST
MOGA MODELS FOR DATASET BANK.

Method Number of features Number of neurons
RDS 24 4
CBDS 20 5
EBDS 25 4
HDS 25 4

Regarding all regression problems in the second group of experiments, where MLP models

were considered, Table 7.6 shows the average RMSE obtained over the 10 executions.

TABLE 7.6. AVERAGE RMSE FOR THE REGRESSION PROBLEMS.

RDS CBDS | EBDS HDS

Bank 0.1969 | 0.1963 | 0.1979 | 0.1963
Concrete 0.1408 | 0.1417 | 0.1458 | 0.1408
Puma 0.0687 | 0.0671 | 0.0676 | 0.0687
Wine Quality 0.2361 | 0.2349 | 0.2370 | 0.2370

Regarding the best data selection method, the bold values in Tables 7.4 and 7.6 denote the
best performance, for each model type/problem. Although it seems to indicate that CBDS and
HDS should be chosen as best, with a slightly advantage of the former, the average RMSEs
might not be the only criterion for that selection.

To analyze the statistical validity of the results, two tests are used: a sign test, and a Wilcoxon
signed-ranks test [59] (as presented in Sections 2.9.1 and 2.9.2). For the former, we counted,
for each problem or group of problems, the number of times (C) that a data selection method
(say j) had a better performance than another method (i), for each model type. For the latter
test, the test value T is obtained using a rank based approach and then it is compared with its
corresponding critical value (please see Section 2.9.2).

Tables 7.7 shows the C(i,j) and T values, considering the Best and the Ensemble RBFNN

models, for dataset Bank.

149

TABLE 7.7. C(1,J) /T FOR BANK — BEST AND ENSEMBLE MODELS.

C(ij)/T RDS CBDS EBDS HDS
RDS 8/19 4/26.5 6/27
CBDS 2/19 4/21 4/20
EBDS 5/26.5 6/21 4/23
HDS 4/27 6/20 6/23

Analyzing the results of Tables 7.4 and 7.7 shows the CBDS method is the best one.
Statistically, however, according to the Wilcoxon test, no method can be considered better
than the others, while according to the sign test (weaker than the Wilcoxon test), we can only
say CBDS outperforms RDS method, with a level of significance of 10%.

Table 7.8 shows the C(i,j) and T values for the 40 MLP regression experiments in the second

group.
TABLE 7.8. C(LJ) /T FOR ALL MLP MODELS
C(ij)/T RDS CBDS EBDS HDS
RDS 25/307 17/308.5 22/386.5
CBDS 13/307 12/238.5 16/306
EBDS 23/308.5 27/238.5 24/305.5
HDS 18/386.5 23/306 15/305.5

Analyzing this table, CBDS should also be the chosen data selection method, which has,
according to both tests, statistical validity, with a level of significance of 5%.
Considering now the classification problems, the average CR values for dataset Breast Cancer

are shown in Table 7.9.

TABLE 7.9. AVERAGE CRS FOR BREAST CANCER.

RDS CBDS | EBDS HDS
Best model 0.9762 | 0.9803 | 0.9762 | 0.9783
Ensemble 0.9689 | 0.9689 | 0.9700 | 0.9679
SVM models | 0.9601 | 0.9668 | 0.9611 | 0.9653

As it can be seen, MOGA models achieve better performance than SVM models, despite the
huge difference in complexity. The average number of features (#F) and neurons for the

MOGA models (#N) as well as the average number of support vectors for SVMs (#S) are

150

given in Table 7.10. We can say that the largest complexity of RBFNN MOGA models is 42,
while the smallest complexity of SVMs is 4691.

TABLE 7.10. AVERAGE NUMBER OF FEATURES, NEURONS OF THE BEST MOGA
MODELS, AND SUPPORT VECTORS, FOR BREAST CANCER.

Method #F #N #S
RDS 8 3 159
CBDS 10 3 160
EBDS 13 3 156
HDS 6 3 159

In contrast with the results found for Bank, here the performance of the ensemble is inferior to
the best model.

Analyzing the performance of the four data selection models in Table 7.9, CBDS seems again
to be the method to apply. Regarding all classification problems with SVM models, Table
7.11 shows the averages CRs.

TABLE 7.11. AVERAGE CRS FOR THE CLASSIFICATION PROBLEMS.

RDS CBDS | EBDS HDS
Breast Cancer 0.9600 | 0.9668 | 0.9611 | 0.9653
Parkinson 0.6588 | 0.6692 | 0.6732 | 0.6689
Satellite 0.9900 | 0.9903 | 0.9881 | 0.9903
Letter 0.9968 | 0.9985 | 0.9964 | 0.9985

The bold values denote the best performance for each data selection/problem combination. As
it can be seen, for all classification problems except Parkinson, CBDS is superior to the
others. For Satellite and Letter problems, HDS has the same performance as CBDS.

In the same way as in the regression cases, Table 7.12 illustrates the C(i,j) and T values for

the MOGA models, and Table 7.13 for all the 40 SVM models.

TABLE 7.12. C(1,J) /T FOR BREAST CANCER — BEST AND ENSEMBLE.

C(ij)/T RDS CBDS EBDS HDS
RDS 4/14.5 3/25 3/19.5
CBDS 2/14.5 3/22.5 3/23
EBDS 4/25 4/22.5 5/25
HDS 3/19.5 5/23 4/25

151

TABLE 7.13. C(1,J) /T FOR ALL SVM MODELS.

C(ij)/T RDS CBDS EBDS HDS
RDS 20/222.5 16/399.5 20/215
CBDS 8/222.5 9/251.5 9/391

EBDS 16/339.5 23/251.5 21/292
HDS 9/215 10/391.5 9/292

In the case of MOGA models, the indication found in Table 7.9 seems to be confirmed,
although without statistical validity. For the SVM models, we can say that, with a level of
significance of 5%, CBDS is better than RDS and EBDS, and HDS is better than EBDS,
according to the sign test.; based on the Wilcoxon test, HDS and CBDS are better than RDS,
and HDS is better than EBDS.

7.6. Conclusions

In this chapter we have compared the performance obtained by RBFNN models designed by a
MOGA to that obtained by MLPs (for regression) and by SVMs (for classification). It was
shown that the former obtain much better performance, despite the much smaller complexity
of MOGA models. Another conclusion that can be taken is that the naive versions of the
ensemble of non-dominated MOGA models proposed here, in some cases perform better,
while in other cases worse than the selected best model. In relation with the best data
selection methods, we can say that the CBDS and HDS should be used for SVM and MLP
models. For the RBFNN MOGA models, the same conclusion can be taken although without
any statistical validity. This can be explained by the small number of experiments conducted,
which was due to the high computational time, and also to the much better performance
obtained by these models, compared with MLPs and SVMs, which reduces the range of

differences between the data selection methods.

152

8. A Convex hull, sliding-window based online adaptation method

8.1. Introduction

Principally, the online adaptation process is considered in two situations in the domain of
data-driven models. The first case is when only a small number of training samples is
available offline and it is impossible to collect additional informative data samples reflecting
the whole operating region(s) of the process to be modeled. The second case is when the
behavior of the process is time-varying (i.e., its dynamics and operating regions change over
time). In both cases, data-driven models need to be updated to cover new dynamics and
operating regions of the underlying process.

Specifically, for Feedforward Neural Networks such as RBFNN models, online adaptation
process can be considered from the structure, parameter and data points of view. In the
structure aspect, the number of hidden nodes may be changed or kept constant over the online
adaptation process. As pointed out earlier, the RBFNNs have two groups of parameters; 1-
linear parameters 2- nonlinear parameters. In online adaptation either only the former group
or both are updated online. Regarding the data, a specific RBFNN model can be adapted in
several ways. Based on how much data is available/used and how to manage those data, a
variety of online learning methods have been proposed.

This chapter is organized as follows: Section 8.2 gives an overview of related works in online
adaptation. A new online adaptation method based on convex hull and sliding-window is
introduced in Section 8.3. Experimental results are given in Section 8.4. In this section, two
case studies are considered to evaluate the proposed method. The comparison between the
performances of both case studies is given in Section 8.5. The proposed method is compared

with others in Section 8.6. Finally, conclusions are given in Section 8.7.

8.2. A brief overview of online adaptation methods

In order to update models online, sequential learning methods, also called online learning
methods, are applied. Regarding the model structure, the online learning methods are
categorized into two main classes. In the first class, the structure of the model, translated into
the number of hidden neurons is constant over the adaptation process and only the parameters
are adjusted; In the second class, the hidden neurons are inserted or removed from the model

structure using specific growing and pruning criteria, respectively.

153

From a parameter point of view, online learning methods can be categorized into two groups.
The first group only updates the linear parameters while the nonlinear parameters are kept
unchanged, while in the second group both linear and nonlinear parameters are updated.
Online learning methods can also be categorized according to the amount of data that they use
[167, 168]. The first class uses the information of the new observation at each time instant.
Regarding only linear parameters, in case that nonlinear parameters have been determined
offline and are kept unchanged throughout online adaptation process, first order methods such
as Least Means Square (LMS) [169] and Normalized Least Means Square (NLMS), and
second order methods such as Recursive Least Squares (RLS) [170] and Kalman Filter and its
variants [171] can be used to update only linear parameters. Regarding all parameters,
recursive version of offline algorithms such as Stochastic Gradient Descent Back Propagation
(SGBP) [172] as the first order method, and Recursive Least Squares (RLS) [170] and
recursive Levenberg-Marquardt [173, 174] as the second order methods can be applied to
update both linear and nonlinear parameters.

The second class of online learning method from data point of data uses a sliding-window of
past observations to update the parameters. Moving average of LMS/NLMS search directions
[175], maximum error method and Gram-Schmidt orthogonalization [176] are methods used
to updated only linear parameters while any gradient descent based methods mentioned in
Section 2.4.1 with a window management policy can be employed to update both linear and
nonlinear parameters.

Fig 8.1 briefly illustrate the classification of online methods from the three different points of
view.

In the following sections, we summarize important contributions on RBFNN online model
adaptation, regarding models with a fixed structure and models with an adaptive structure,

whose structure varies through time.

154

Online learning methods

v

Structure of model

/\

Constant Variable

(a)

Online learning methods

— T

Only linear parameters Both linear and nonlinear
are updated. parameters are updated.

(b)

Online learning methods

/\\

New arriving sample Sliding window of
past observations

AN N

Linear All Linear All
parameters parameters parameters parameters
h 4 N N \
First and Recursive Moving average of Gradient based
second versions of LMS/NLMS search methods with a
order offline directions, maximum window management
methods methods error method and policy.

Gram-Schmidt
orthogonalization
method

(©)

Fig. 8.1. Classification of online learning methods. (a) From the model structure point of
view; (b) From the model’s parameters point of view; (c) From the data point of view.

8.2.1. Online learning methods for RBFNNs with fixed structure

As mentioned earlier, from the model structure point of view, there is a group of methods
which keep the structure fixed throughout the online adaptation process and only updates the
model parameters. Authors in [1] presented an online adaptation method to update a fixed-
structure RBFNN model, designed offline by MOGA [44, 45, 47]. Subsequently, both linear
and nonlinear parameter are updated using the Levenberg-Marquardt method [32, 33],

working on a sliding-window of the past observations, employing a FIFO management policy.

155

The same authors in [168] improved their method, using the Akaike information criterion
[177] for off-line model design. In this method, a new sliding-window management policy,
based on a dissimilarity measure, was proposed to overcome the problem of gradually
forgetting previous mappings over the online adaption process, typically found using a FIFO
policy.

Authors in [178] presented a new method to tune a fixed-structure RBFNN model.In this
method, the contribution of each hidden neuron to the overall network performance is
measured based on the increment of the error variance. The neuron with the smallest
increment of is considered as an insignificant neuron and is replaced with the information of
the new arriving sample. The linear weights are updated using the Multi-Innovative Recursive
Least Square (MRLS) method over a sliding-window of p past observations, while the
nonlinear parameters (centers and spreads) of the new node are adjusted using Quantum
Particle Swarm Optimization method (QPSO).

An efficient sequential algorithm was proposed in [179] as well as an online version of the
Extreme Learning Machine (ELM) method. In this method, the centers and spreads are
arbitrarily chosen and only the weights, as linear parameters, are updated. The update is done
using the proposed online version of ELM based on the new observation or a chunk of new

observations over the online adaptation process.

8.2.2. Online learning methods for RBFNNs with adaptive structure

Regarding RBFNNs with adaptive structure, the first approach known as Resource
Allocation Network (RAN) was proposed by Platt [180]. This method starts with a RBFNN
with no hidden neurons. For each new observation at time instant k, if a new arriving sample
has enough novelty, a new hidden neuron containing the information of the sample is added to
the existing network, so that the updated network not only preserves the accuracy of the
mapping for the previous samples which have been received so far, but also reflects a new
mapping for the new sample. The novelty of the new sample is computed based on a
prediction error and a distance criteria which are compared with user-defined thresholds. In
the case that the new observation does not reflect a desired level of novelty, the model
structure is kept unchanged and only the model parameters are updated. Both weights as
linear parameters and, centers and spreads as nonlinear parameters of the existing network are
updated by LMS method. This update is only done based on the new observation. An
enhanced version of RAN known as RAN-EKF was subsequently proposed by

156

Kadirkamanathan and Niranjan [171], where the Extended Kalman Filter (EKF) as a
sequential method was applied in place of the LMS method to improve the convergence rate
of RAN.

For both RAN and RAN-EKF, no pruning strategy is considered. Thus, a large size network is
obtained which is not suitable to be applied in real time applications, due to the high
computational run time. To deal with this drawback of both RAN methods, a considerable
improvement to RAN-EKF was made by Lu Yingwei et al. [181]. This version of RAN,
which is known as M-RAN, presents a pruning strategy to remove insignificant hidden
neurons with the aim of making the underlying network parsimonious and compact. In other
words, the hidden neurons for which the relative contribution to the overall network output is
less than a user-defined threshold are removed.

In the method proposed in [182], a new hidden neuron is added using a growing criterion
based on the normalized error reduction. Beside the proposed growing strategy, a pruning
strategy was also proposed to remove those hidden neurons which have had small
contribution to the model output over [consecutive observations. Both linear and nonlinear
parameters are updated using pseudo-inverse method based on a fixed-size sliding-window
with FIFO management policy.

In [183], a criterion called “Active Firing Rate” is used to present new neurons to the hidden
layers. In this method, the hidden neurons whose Active Firing is larger than the user-defined
threshold AF, (i.e., 0.05 < AF, < 0.3) are divided into N, (i.e., Npey < 10) new neurons
where N,.,, is determined based on the Active Firing Rate of the neuron. This criterion
reflects the contribution of the neuron to the overall model output. Moreover, a pruning
criterion based on the mutual information between hidden neurons and the output neuron is
used to remove those hidden neurons which have a low connectivity strength with the output
neuron. Both linear and nonlinear parameters are updated using a gradient based method
based on the new observation.

The method proposed in [184] applies three criteria to add a new hidden neuron centered with
the new sample. Those criteria are: the distance of the new sample to the nearest center, the
output error of the new sample and the neuron’s significance. Only the parameters (i.e., linear
and nonlinear) of the new neuron are determined using the EKF method based on the new
sample. If after update, the new hidden neuron is identified as an insignificant one, it will be
removed from the model structure.

The authors in [185] proposed a method called EOS-ELM. The proposed method applies the

growing and pruning criteria introduced in MRAN to adapt the structure. The weights, as

157

linear parameters, are updated using an online version of ELM) method proposed in [179]
where the linear parameters can be updated based on either the new observation or a chunk of
new observations. On the other hand, the centers and spreads, as nonlinear parameters, are
updated using EKF based on the new observation. Other efforts in online adaptation of

RBFNNs with a flexible structure can be seen in [186-190].

8.3. A convex hull, sliding-window-based online adaptation method

In this section, we introduce a new online adaptation method based on convex hull and a
sliding-window technique to update RBFNN models. This method starts with a RBFNN
model which has been offline designed by MOGA based on a limited number of training,
testing and validation datasets corresponding to an earlier period of time. In this method, the
structure of the underlying model (i.e., hidden neurons) kept unchanged through the online
adaptation process and only the parameters (both linear and nonlinear) are updated. As it can
be realized from the title, the proposed method relies on two concepts; convex hull and
sliding-window. The basic idea behind the proposed method is updating the model if a new
arriving sample reflects a new range of input-output spaces. As we mentioned in Section
4.2.2.4, it is very important that the model is trained based on a set of data covering the whole
range of input-output space in which the process is intended to be modeled. Moreover, convex
hull algorithms can help us to select data samples reflecting the whole range of all existing
data samples. Since at the beginning of online adaptation process there exists a model which
is trained offline based on a limited number of samples and the corresponding convex hull
vertices may only reflect a local range of the existing data, the initial convex hull might need
to be updated with new samples changing the samples ranges. After updating the current
convex hull at each time instant, the model should be trained based on the updated convex
hull vertices as well as some inner points so that it can cover the whole range of the input-
output space over time.

In this method, the model is updated by the LM training method operating on a fixed-size
sliding-window. As mentioned in Section 8.2.2, applying sliding-window with FIFO policy
leads to parameter interference phenomenon reflecting the situation in which the model
forgets the mappings which have been constructed by the previous samples over time. Hence,
in this method, two management policies are applied. One is a management policy proposed

in [168] and the other is a convex hull based policy.

158

Mainly, the proposed method consists of three phases; evaluation of the arriving sample,

sliding-window update and parameters update. In the following we will describe these phases.

8.3.1. Evaluation of the arriving sample

At each time instant, a new arriving sample is evaluated to see whether it leads to a new range
of input-output space, or not. The new sample is compared with the current convex hull. The
new sample is considered as an informative sample when it is located outside the current
convex hull, meaning that a new range of input-output space must be determined, including
the new point. To determine whether the new sample is located outside the current convex
hull or not, a convex hull algorithm is applied on a set containing the vertices of current
convex hull and the new sample. If the new sample is marked as a new vertex of the convex
hull, it is definitely located outside the current convex hull; otherwise, it is considered as an
inner point. Since, in practice, the input space of the underlying model can have high
dimensions and standard real convex hull algorithms in high dimensions suffer from high
time complexity and memory requirements (i.e., please see Section 3.4), it is not feasible to
apply standard real convex hull algorithms in the online adaptation process.

To deal with this challenge, a heuristic is used to identify the location of a new sample with
respect to the current convex hull. The idea behind the heuristic stems from the basic property
of convex hull vertices. A point of a given set is a vertex of the corresponding convex hull if
and only if there is a hyperplane passing through the point and all remaining points are
located in the same side of the hyperplane. Figs. 8.2 and 8.3 illustrate a difference between a
vertex of convex hull and an inner point in terms of the hyperplanes passing through them.

If a point is a vertex of the convex hull, there is an infinite number of hyperplanes passing
through the point, so that all remaining points are located in the same side of each hyperplane.
Hence examining all possible hyperplanes passing through the point is not possible. In our
work, only the hyperplane whose direction of its normal vector is the same as that of the
vector from the center of the current convex hull to the new point is formed. After forming the
hyperplane, all vertices of the current convex hull are examined. If all vertices are located
below the hyperplane, the new arriving point is definitely an outer point; otherwise, if the
maximum distance to the hyperplane among those vertices which are located above the

hyperplane is very small, it can be interpreted as follows:

159

e Either the new point is located outside the convex hull but very close to the convex
hull
e Or the new point is an inner point which is very close to the convex hull.
If the maximum distance is large, it is very likely that the new point is located inside the

convex hull. Figs. 8.4 and 8.5 illustrate how intuitively the heuristic works.

Hyperplanes

Fig. 8.2. A vertex of the convex hull. Black and blue circles are convex hull vertices and inner
points, respectively.

Hyperplanes

Fig. 8.3. A point is located inside the convex hull. Black and blue circles are convex hull
vertices and inner points, respectively.

160

@
®
L 4
Y Center
Hyperplane
]
®
Negative half space Positive half space

Fig. 8.4. A new point is located outside the convex hull. Black and red circles denote the
convex hull vertices and the new point, respectively.

Normal

Negative half space Positive half space

Center Hyperplane

Fig. 8.5. A new point is located outside the convex hull but very close to the convex hull.
Black and red circles denote the convex hull vertices and the new point, respectively.

Since there is uncertainty in classifying the new point in the case that some vertices are
located above the hyperplane (i.e., the new point can be an outer or an inner point), we use a
threshold for the maximum distance to the hyperplane for those vertices. If the maximum
distance exceeds the threshold, the new point is marked as an inner point and rejected for
inserting into the sliding-window; otherwise, the new point is examined in the next step by
applying ApproxHull (i.e., please see Section 4.3) on all vertices of the current convex hull,
including the new point. If the new point is identified as a vertex of the convex hull, it is
accepted to be inserted into the sliding-window. In the following, we will explain how to

compute a hyperplane and the distance of a point to the hyperplane.

161

8.3.1.1. Hyperplane computation

Let ¢ = (¢4, ¢y, ..., €q) be the center of the current convex hull and p = (p1, P2, ---, Pg) anew

arriving sample in a d-dimensional Euclidean space. The vector from ¢ to p is defined as Eq.

(8.1).

CPp =< Py — C1,P3 — Cgy ey Pg — Cq > (8.1)

The normal vector whose direction is the same as that of ¢p can be obtained as Eq. (8.2).

] 8.2
i-? (8.2)
|cp|
where 4 =< a4, dy, ..., g > is the normal vector and |cp| denotes the length of vector ¢p.
The general form of hyperplane equation in d-dimensional Euclidean space is given as Eq.
(8.3).

X1+ axx, + -+ agxg =>b (8.3)

where b is the offset of hyperplane denoting the distance of hyperplane from the origin.

Since based on the heuristic, we are interested to have a hyperplane with a normal vector A

passing through point p, the offset b is computed as Eq. (8.4).

b =aip; +axp, + -+ agpg (8.4)

Having the equation of hyperplane H in hand, the distance of any point q to H is computed as
Eq. (8.5).
dist(H,q) = a1q, +aq, +--+agqq — b (8.5)

4 and b, as the normal vector and the offset, are computed with time complexity O(d). The
distance of a point to the hyperplane is also computed with time complexity O(d).
Assuming that the current convex hull contains v vertices at time instant k, the time

complexity of the heuristic is O (vd).

162

8.3.2. Sliding-windows update

In the proposed online adaptation method, two sliding-windows are considered; training
sliding-window and an additional sliding-window (described later in Section 8.3.2.2) which
can be updated using two proposed management policies, rather than FIFO policy: one is the
policy proposed in [168], hereinafter called F — R policy and the other is a convex hull based

policy. The following describes each of these two policies.

8.3.2.1. F — R policy

The F — R policy was introduced in [168] and for the sake of completion, is summarized
hereThe idea behind F — R policy is updating the sliding-window with the new point;
hopefully it can bring new information to the sliding-window and keep the sliding-window in
a desirable level of diversity. To achieve this goal, a dissimilarity measure based on Euclidean
distance is used in such a way that, in each iteration, a similarity vector rather than a
similarity matrix is updated in an efficient way. In the case of the similarity matrix, in each
iteration, (N(N — 2))/2 similarities should be computed while in the case of similarity
vectors only N — 1 elements are removed from the vector and N — 1 new elements are
appended into it, where N is the size of the involving sliding-window.

Suppose X = [x(1),x(2),-++,x(N)]" is the input matrix and y is the corresponding output
vector for a NARX model as ¥ = f(X) where the regressor vector x(k) is given as Eq. (8.6).

x(k) = [u(k), v1(k), -+, vm(k) 17 (8.6)

Vector u(k) consists of n,, lags of y and each vector v; denoting the i exogenous variable
includes nv; lags for i = 1,2, ---m. Examples of u and v; in the time instant k are shown in

Egs. (8.7) and (8.8).

u(k) = [y — 1), y(k = 1), y(k = Ii,)] (8.7)

vi(k) = [v(k = 11"), vi(k = 13), v (k = 3,)] (8.8)

where vectors I* and IYi denote the order of lags for output variable y and the input variable
v;, respectively. The number of elements in x(k) is d where d = n, + Y/%; nv;. In the case
of Nonlinear AutoRegressive (NAR) model where only the lags of output variable y are
considered, d = n,,. Hence X is a matrix N X d. Since in our problem, we suppose that a

163

NAR or NARX model will compute a one-step-ahead prediction, the output vector y

corresponding to the input matrix X is:

The underlying sliding-window T is defined as Eq. (8.10).

T = {X,y} (8.10)

where T(i) = {X(i),y(i)} denotes the i input-output pattern of T. When a new point
p = {X(k —1),y(k)} is presented to the model, two steps should be performed to update the
sliding-window. The first one is whether p can be inserted into the sliding window. If so, the
second one is which sample of T should be replaced with p ,since the size of sliding-window
is assumed to be constant throughout the online adaptation process. For the first and second
point, two criteria called Include and Exclude are considered, respectively. The following

describes the criteria.

e Include criterion
This criterion checks whether p has enough dissimilarity to all points of T. To do this, the
Euclidean distances between p and all points in T are considered. If all distances are greater
than a user-defined threshold, point p is inserted into T. Let §(n,m) be the Euclidean
distance between the n™ and m™ points of X (the n™ and m™ points will be called origin and
destination points, respectively). For any two points X (m,) and X(m,), we say point X(n) is
more similar to X(m,) than X(m,) if &6(n,m;) < §(n,m,). For any point X(n) in T, a
vector of distances between X(n) and its predecessors denoted by A(n) is defined as Eq.
(8.11).

A(n) =[6(1,n),6(2,n),,6(n—1,n)] (8.11)

The vector of distances between each pair of points in X is defined as Eq. (8.12).

D = [A(2),A(3), -, A(N) |T (8.12)

Suppose that new point p is the n arriving point. Based on the definitions above, p is
inserted into T if all distances in A(n) is greater than a user-defined threshold 7. Each pattern

in X is organized into several components so that each component corresponds to the number

164

of lags of a particular variable. Since the scales and dynamics may be different from variable
to variable, it motivates us to consider a separate analysis of the distance between p and all
points in X. Based on this idea, A(n)can be divided into several vectors as Egs. (8.13) and
(8.14).

A, (n) = [64(1,n),64(2,n),-, 6, (n — 1,n)] (8.13)

{a,,(n) = [6,,(1,n),6,,(2,n),",8,,(n—1,n)] m (8.14)

According to this idea, instead of considering one user-defined threshold 7, a set of thresholds

should be considered as Eq. (8.15).
n = {nu My, }i21} (8.15)

Therefore, point p is inserted into T if there is at least a distance vector in A(n) so that all
distances in A(n) are greater than the corresponding threshold. The Include criterion

denoted by [is defined as Eq. (8.16).

1({nnw ot} {am), 8@, {8, @) }) = A0 > n) or (A, (1) > 1) or (8.16)
@i €[12,-,ml:A,,(n) >ny,)

e Exclude criterion

If Include criterion is True for the new point p, to keep the size of T fixed, first one point is
removed from T and then p is inserted. The main idea behind the Exclude criterion is to
randomly remove one of two points in T which have the largest similarity (i.e., the minimum
Euclidean distance) between each other. As in each iteration, there is a correspondence
between T and D, by updating T, D should be updated. For each point X(n) in X, there are
exactly N — 1 occurrences in D so that for n —1 consecutive occurrences, X(n) is a
destination point whereas for N — n nonconsecutive occurrences, it is an origin point, where
N is the size of T. Suppose X(n) is a point that should be removed from T. To do this, their
corresponding occurrences in D should be identified and then discarded from D. To
efficiently find the index of the corresponding occurrences of X(n) in D, a sequence of
functions is needed. The following introduces such functions.

Given A(n) and D, function si(n) defined in Eq. (8.17) computes the starting index of A(n)
in D.

165

_ - _ n?—3n+4
si(n) = 1+Z(1—1) =— n>1 (8.17)
i=2
Suppose i is an arbitrary index on D. By the solutions obtained from si(n) = i, function
pn(i) defined in Eq. (8.18) computes the index of the point in X which is the destination point

in the i position of vector D.

3++/—7 +8i ,
— | i=1 (8.18)

pn0)=\

where |a] is the largest integer smaller than a. Using Egs. (8.17) and (8.18), the function
pm(i) is defined in Eq. (8.19) which computes the index of the point in X that is the origin
point in the i"™ position of vector D.

pm() =i-si(pn()+1, =1 (8.19)

The indices in D where X(n) is a destination point are obtained by the function dp(n,j)
defined in Eq. (8.20).

n?—-3n+2(G+1) ,
2 , 1S]Sn—1 (8.20)

dp(n,j) =si(m)+ (-1 =

The indices in D where X(n) is an origin point are obtained by the function op(n,j) defined
in Eq. (8.21).
op(n,j) =sim)+2n—-1)+n(G—n)+SG —n)

_—n?+n(2j+1)+25(G —n)

> , mn—-1<j<N-1 (8.21)

where

0, v<2

By means of Egs. (8.20) and (8.21), the index of jth occurrence of a distance in D involving
point X(n) is obtained by the function ni(n, j) defined in Eq. (8.22).

dp(n,j), 1<j<n-1

ni(n,j) = {op(n,j), n—-1<j<N-1 (8.22)

In terms of ni(n, j), the index vector of the occurrences of the distances in D involving point
X(n)is as:

166

onD = [ni(n,1),ni(n,2),--,ni(n,N — 1)]7 (8.23)
Assume the notation < a,§ > denotes the index of element a in vector § and suppose also
that function o(...) randomly returns one of its arguments. Hence by means of Egs. (8.18) and

(8.19), the Exclude criterion denoted by O is defined as Eq. (8.24).

0(D) = o(pm(< min(D),D >),pn(< min(D),D >)) (8.24)

After the index of the point that should be removed from T is determined by the Exclude
criterion, the point is removed from T and then all its corresponding indices in D given by
(8.23) are discarded from D. Afterwards, the new point is inserted into T and then its

corresponding A(n) is appended into D.

8.3.2.2. A proposed convex hull based policy

In the proposed online adaptation method, both the training and the additional sliding-window
are updated based on F — R policy as well as a convex hull based policy. If the new arriving
sample is accepted as an outer point with respect to the current convex hull, the current
convex hull is updated considering the new sample as a new vertex of the convex hull. In this
step, if some vertices of the current convex hull are marked as inner points by ApproxHull,
they are replaced with points from the additional sliding-window. Since the training sliding-
window should contain the vertices of convex hull as well as some inner points, these points
are selected from the additional set in such a way that those selected are located inside the
convex hull and are dissimilar enough from the convex hull vertices. To do this, r points
which have the largest minimum distance to all convex hull vertices are selected from the
additional sliding-window where r denotes the number of inner points.

To compute the largest minimum distances to the convex hull vertices, a distance matrix
denoted by DIS of size s X v is employed, where s and v refer to the size of the additional
sliding-window and the number of convex hull vertices, respectively. Finally, the selected
points and inner points are swapped between the training and the additional sliding-window.
Throughout this process, DIS is updated by removing r rows corresponding to the r selected
points from the additional sliding-window and appending r new rows into DIS where each
new row corresponds to a distance vector including the distances between an inner point to all
convex hull vertices. Besides DIS, two other vectors are updated, D, and D 44 denoting the

distance vector used in the F — R policy for managing the training and the additional sliding-

167

window, respectively. Afterwards, the new sample is inserted into the training-sliding window
by F — R policy but with the difference that the Include criterion of F — R policy is not
needed to be checked (i.e., the F — R policy is forced to insert the new point into the training
sliding-window) since the new point has been accepted as an outer point with the current
convex hull. If the new arriving sample is rejected from the convex-hull approach, it is tried to

be inserted into the additional sliding-window using the F — R policy.

8.3.3. Parameters update

The idea behind the procedure of parameters update in this work is the same as that
mentioned in [168]. As explained before, we assume that the change of dynamics of most
processes is gradual over a period of time. Hence, the underlying model does not need to be
updated whenever a new sample arrives and is inserted into the training sliding-window.
Additionally, frequently updating parameters over a period of time not only imposes an extra
computational cost but also may cause overfitting. In order to avoid unnecessary parameter
updates, two standard termination criteria (8.25) and (8.26) of the Levenberg-Marquardt
method are evaluated at time instant k, when a new sample is accepted and inserted into the

training sliding-window.

(Dku - ch < Bk (825)
lgrll < 31+ |) (8.26)
Hk = Tf(l + ch) (827)

where @, and @, denote the value of the cost function obtained based on the current
parameters update and the previous parameters in time instant k, respectively. g, is the
gradient vector of the cost function and 7y as the resolution parameter denoting a measure of
the desired correct number of digits in the cost function. ||.|| and |.| denote the 2-norm and
absolute operators.

When both criteria (8.25) and (8.26) are met, the model parameters are updated. The LM
method starts with the parameters found in the last update. In order to prevent overfitting, the
early-stopping method can be applied in the learning process using the additional sliding-

window as the test set.

168

8.3.4. Analysis of the proposed method

In this section, we address the analysis of time complexity of the new sample evaluation and
the sliding-window update. In this analysis, we consider the worst case scenario in terms of
run time, which is where a new arriving sample is determined as an outer point, inserted into
the training sliding-window, and additionally some inner points are identified due to the
updating the current convex hull by the new sample. In the following, we detail the analysis
of each phase.

As mentioned in Section 8.3.1, a new sample is accepted to be inserted into the training-
sliding window, if it meets two conditions. Firstly, the maximum distance of those vertices
located the positive half space to the corresponding hyperplane is less than or equal to a user-
defined threshold and secondly, ApproxHull marks the new sample as a new convex hull
vertex. As stated in Section 8.3.1.1, the time complexity for computing the maximum distance
is O(vd). According to Section 4.5, the time complexity of ApproxHull is O(n?d3v? + i3p®)
where n, d, v, i and p denote the number of total data samples, dimension, the number of
convex hull vertices, the number of iterations and the population size, respectively. In this
case, the number of samples on which the ApproxHull is applied, is equal to v + 1. Therefore,
the time complexity of ApproxHull in this situation takes O (v2d3u? + i3p3) where u denotes
the number of vertices of updated convex hull.

The parameters update phase consists of 8 steps. As stated before, for both training and
additional sliding-windows, the F R policy is applied. Per the F R policy, a vector of
distances between each two points of the sliding-window is formed and it is updated
whenever the sliding-window is updated. The time complexity of inserting a sample into the
sliding-window is O(Nd) due to computing the distances between the new sample and its
predecessors where N denotes the sliding-window size. Removing a sample from the sliding
window takes O(N) due to the computation of the indices of the distance vector, where the
sample is a either destination or origin point. Here we suppose that D, and D ;4 denote the
distance vector of the training and the additional sliding-window, respectively. In the
proposed method, matrix DIS with size s X v of distances between each point of the
additional sliding-window and the vertices of current convex hull is formed, where s is the
size of additional sliding-window.

Step 1 involves computing the distances between the new arriving sample and all points of the
additional sliding-window and appending the distances as a new column into DIS. The time

complexity of Step 1 is O(sd).

169

In Step 2, the vertices marked as inner points during the convex hull update are removed from
the training-sliding window. Step 2 takes O (rm) operations due to updating D;, where r and
m denote the number of inner points and the training-sliding-window size, respectively.

In Step 3, matrix DIS is updated by removing the corresponding columns of inner points.
Step 3 takes O(r) operations.

In Step 4, r points which have the largest minimum distance to all vertices of the updated
convex hull are selected from the additional sliding-window. Based on the matrix DIS,
computing the minimum distance for each point of the additional sliding-window takes O (su)
operations. Selecting r samples from the additional sliding-window which have the largest
minimum distance needs sorting these distances in descending order, and choosing the first r
corresponding points. Hence, sorting takes O(slogs) operations. In practice u is larger than
log s. Therefore, the maximum time complexity of Step 4 is O(su).

Step 5 involves removing the selected points from the additional sliding-window. This step
leads to update both DIS and D ;4. The time complexity for updating D 4,4 is O(rs) while
updating DIS takes O(r) operations. Hence the time complexity of Step 5 is O(rs).

Step 6 corresponds to adding r selected points from the additional sliding-window into the
training sliding-window. This step leads to update D, which takes O (rmd) operations.

Step 7 corresponds to add the inner points into the additional sliding-window which leads to
update DIS and D ,;,;. Updating DIS due to adding rows takes O(rud) operations. The time
complexity of updating D ;44 is O(rsd). Therefore, the time complexity of Step 7 is O (rud +
rsd).

Finally, In Step 8, the new arriving sample is added into the training sliding-window and Dy,
is updated. In this step, if the point which has been replaced with the new sample using the F-
R policy is a vertex of the convex hull, it will be removed from the vertices of convex hull and
DIS will also be updated. The time complexity of Step 8 is therefore O(m + md) = 0(md).
The total time complexity of the proposed method, in the worst case scenario at time k is
equal to O(w2d3u +i3p3+sd+rm+r+su+rs+rmd+rud+rsd +md) =
0(Ww?d3u® + i3p3 + su+ rmd + rud + rsd) = 0(v?3d3u3 + i3p® + su + rmd).

Concisely, the sliding-window update algorithm is presented in Algorithm 8.1.

170

Algorithm 8.1: Sliding-windows update

Inputs: T as the training sliding-window, D, as the distance vector obtained from T using the

F — R policy, A as the additional sliding-window, D 44,4 as the distance vector obtained from A using
the F — R policy, V as the vertices of current convex hull where V. c T, DIS as a matrix of distances

between each point of A4 to all points of ¥, B as a user-defined threshold, p = (x¥,y*) as the new

arriving sample at time instant k where x* and y* denote the input and output pattern.

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

Let ¢ be the center of the current convex hull.

Let H be the hyperplane passing by the new arriving sample so that the direction of its normal
vector is the same as that of the vector from c to p.

Let m,; be the maximum positive distance of points in V to H.
Let flag = True
If (mg < f) then
LetS =V U {p}
Let U be the vertices of convex hull obtained by Apply ApproxHull on §.
If (imy = 0 and p not in U) then
LetU =U U {p}
If (p in U) then
Let I =V — U be the set of inner points
LetV=U
Add the corresponding column of p into DIS.
If (I # @) then
Remove the inner points from T and update D, using the F — R policy.
Remove the corresponding columns of inner points from DIS.
Letr = |I|

Let W contains r points of A which have the largest minimum distance
to all vertices of V.

Let A = A\W and removing the corresponding elements of the points in
W from D44 using the F — R policy.

Remove the corresponding rows of points in W from DIS.
Let T = T U W and update D, using the F — R policy.

Let A = A U I and update D44 using the F — R policy.

171

23: Add the corresponding row of each point in I into DIS.

24: Add p into T and update D, using F — R policy.

25: Let q be the point which has been replaced with p using F — R policy.
26: If (g in V) then

27: LetV =V\q

28: Remove the corresponding column of q from DIS.

29: else

30: Let flag = False

31: else

32: Let flag = False

33: If (not flag) then

34: Add p into A and update D, ;4 using the F — R policy.

35: Let z be the point which has been replaced with p using F — R policy.
36: Remove the corresponding row of z from DIS.

37: Add the corresponding row of p into DIS.

Outputs: T, A, V,DIS, D, and D 4.

8.4. Experimental results

To evaluate the performance of the proposed online adaptation method, two case studies were
considered. In both case studies, a time series NAR model was chosen to compute the one-
step ahead value of Outside Air Temperature. The first case study explained in Section 8.4.1
uses the data collected at the University of Algarve, Portugal while the second one discussed
in Section 8.4.2 is linked to the data collected at the University of Almeria, Spain. For both
case studies, the corresponding models were designed offline using one run of MOGA. The
design objectives were the RMSE obtained in the training and test data sets as well as the
summation of RMSE over the prediction horizon with 48 steps obtained in the simulation data
set, and the model complexity. On the objectives, no restriction was considered (please refer
to Section 2.7.2.1). Regarding MOGA’s parameters, both the maximum number of generation
and the population size were set to 100. The early-stopping method was applied with a

maximum of 100 iterations. After one complete run of MOGA, one model was selected from

172

the non-dominated set for the case study. The following explains each case study along with

the analysis of the corresponding evaluation results.

8.4.1. Case Study 1: OAT model for the University of Algarve

The data provided by the University of Algarve has been collected over the years 2015 and
2016. In the design process, the data in the range 12-Nov2015 to 28-Nov-2015 (i.e.,
approximately 17 days) with a sample rate of 5 minutes was used to create the training,
testing and validation sets with 2538, 846 and 846 points, respectively. Data in the range 29-
Nov-2015 to 30-Nov-2015 (i.e, 2 days) was used as the simulation set, to evaluate the offline
models over 48-steps-ahead prediction (i.e., a 4 hours ahead prediction). ApproxHull was
applied on the whole data which resulted in 1356 convex hull points, that were included in the
training set. In this process, the range of features considered by MOGA comprised the first 48
lags (i.e., corresponding to the first 4 previous hours), together 25 lags centered on the sample
corresponding to one day before (1 hour before and 1 hour after). Therefore, 73 features were
considered by MOGA, and the formal description of the selected OAT model is given in Eq.
(8.28).

T;)(k + 1) = f(To(k)'To(k - 1): To(k - 2): To(k - 8)' To(k - 10)1To(k - 27):To(k
—32),T,(k — 42),T,(k — 44),T,(k — 277),T,(k — 280), T, (k (8.28)
—282),T,(k — 284),T,(k — 298))

According to Eq. (8.28), the selected model has 14 inputs which are all lags of OAT. The
corresponding RBFNN model has 3 hidden neurons and one output neuron. To simulate the
online adaptation process, 17 periods were considered. The periods are given in Table 8.1.
The simulation samples of each period were normalized in the range [—1,1]. Since the model
has only used 14 lags out of 73 lags in the design process, the initial convex hull of the model
should be obtained from the reduced version of the whole data which was supplied to MOGA.
ApproxHull was hence applied to the reduced dataset with 15 dimensions (inputs and target
pattern), which resulted in 875 convex hull points that were included in the initial training-
sliding window.

For all experiments, the online adaptation process starts with the parameters’ values obtained
in the offline training in the design process. The model is subsequently updated over the
periods based on the order stated in Table 8.1. In this procedure, at the beginning of each

period, the online adaptation process continues with the last update of the model over the

173

previous period. After each model update within a period, the model is evaluated based on its
48-steps-ahead prediction (i.e., 4 hours ahead prediction) over the period.

TABLE 8.1. PERIODS OVER THE YEARS 2015 AND 2016 IN CASE 1.

Period Name Range
01-Dec-2015 01-Dec-2015 00:00:00 to 13-Dec-2015 06:20:00
16-Dec-2015 16-Dec-2015 09:29:00 to 20-Dec-2015 09:39:00
20-Dec-2015 20-Dec-2015 10:22:00 to 29-Dec-2015 05:42:00
01-Jan-2016 01-Jan-2016 00:00:00 to 15-Jan-2016 09:45:00
21-Jan-2016 21-Jan-2016 19:07:00 to 31-Jan-2016 23:57:00
01-Feb-2016 01-Feb-2016 00:00:00 to 29-Feb-2016 23:55:00
01-Mar-2016 01-Mar-2016 00:00:00 to 31-Mar-2016 23:55:00
01-Apr-2016 01-Apr-2016 00:00:00 to 30-Apr-2016 23:55:00
01-May-2016 01-May-2016 00:00:00 to 11-May-2016 08:20:00
11-May-2016 11-May-2016 09:26:00 to 31-May 2016 23:56:00
01-Jun-2016 01-Jun-2016 00:00:00 to 30-Jun-2016 23:55:00
01-Jul-2016 01-Jul-2016 00:00:00 to 06-Jul-2016 02:45:00
04-Aug-2016 04-Aug-2016 22:26:00 to 31-Aug-2016 23:56:00
01-Sep-2016 01-Sep-2016 00:00:00 to 30-Sep-2016 23:55:00
01-Oct-2016 01-Oct-2016 00:00:00 to 31-Oct-2016 23:55:00
01-Nov-2016 01-Nov-2016 00:00:00 to 19-Nov-2016 17:05:00
19-Nov-2016 19-Nov-2016 18:01:00 to 26-Nov-2016 19:26:00

In this study, 6 different experiments were carried out. For all experiments, the training and
the additional sliding-window size were set to 2538 and 846, respectively. The maximum
number of iterations of the Levenberg-Marquardt method was set to 100 for all experiments.
Moreover, two user-defined thresholds S (the hyperplane distance threshold which is used in
the sliding-window management policy) and Ty (the desired resolution in the LM termination
criteria) were considered as parameters. 77 (the dissimilarity threshold which is used in the F-R
policy) had a fixed value of 0.005.

The experiments’ specification is given in Table 8.2. As we can see in Table 8.2, two groups
of experiments were carried out. For the first group Ty was set to 0.001 while for the second
one it was set to 0.0001. The aim was to see if an increase of the number of iterations in each
update process, could result in a better performance. For both groups, f was set to the

constant value 0.005 while n varies from 0.0 to 0.5.

174

TABLE 8.2. EXPERIMENT’S SPECIFICATION IN CASE 1.

T | B n

Exp.1 | 0.001 | 0.0 | 0.005
First group of experiments Exp.2 | 0.001 | 0.1 | 0.005
Exp.3 | 0.001 | 0.5 | 0.005
Exp.4 | 0.0001 | 0.0 | 0.005
Second group of experiments | Exp.5 | 0.0001 | 0.1 | 0.005
Exp.6 | 0.0001 | 0.5 | 0.005

In order to compare the experiments, the criteria stated in Table 8.3 were considered. Please

note that the number of samples in each period is obtained as 12*24=288*number of days.

TABLE 8.3. LIST OF CRITERIA USED TO COMPARE THE EXPERIMENTS IN CASE 1.

nr Number of samples which have been inserted into the training sliding-window over
all periods.
ny Number of samples which have been inserted into the additional sliding-window
over all periods.
ng Number of samples which have been rejected from inserting into both training and
additional sliding-window over all periods.
ny Number of parameter updates over all periods.
n; Average number of iterations of training process per each update over all periods.
Ncy Number of convex hull points at end of the last period.
ph Scaled one-step-ahead RMSE associated with the initial model.
P Scaled one-step-ahead RMSE associated with the updated model at end of the
period.
Pig Scaled 48-steps-ahead RMSE associated with the initial model.
Pis Scaled 48-steps-ahead RMSE associated with the updated model at the end of the
period.
st Summation of scaled RMSE's over the 48 steps of prediction associated with the
initial model.
s Summation of scaled RMSE's over the 48 steps of prediction associated with the

updated model at end of the period.

175

The statistical results obtained from the three groups of experiments are given in Table 8.4.

TABLE 8.4. STATISTICAL RESULTS OF THE EXPERIMENTS IN CASE 1.

nr ny ng | Ny n; | Ncy
Exp.1 | 456 | 86422 | 73 63 | 2.16 | 253
First group of experiments Exp.2 | 1232 | 85645 | 74 142 | 2.11 | 243
Exp.3 | 3304 | 83574 | 73 | 289 2 162
Exp.4 | 464 | 86414 | 73 | 241 | 2.23 | 256
Second group of experiments | Exp.5 | 1212 | 85666 | 73 606 | 2.14 | 225
Exp.6 | 3282 | 83597 | 72 | 1516 | 2.04 | 158

According to this Table for each group of experiments, increasing f causes an increase in nr
due to the fact that the new arriving samples have more chance to be inserted into the training
sliding-window. This, in turn, causes an increase in ny due to an increase of training sliding-
window updates. Moreover, we can see that in all experiments, n; is much smaller than ny.
This result reveals the fact that, the proposed method can prevent unnecessary parameter
updates whenever the training sliding-window is updated due to the insertion of the new
arriving sample.

Fig. 8.6 shows the number of samples of each period in the last training sliding window at the
end of the online adaptation process for both groups of experiments. As it can be seen in Fig.
8.6, each pair of experiments for which the same [has been used, (Exp.1, Exp.4), (Exp.2,
Exp.5) and (Exp.3, Exp.6), the pattern of training sliding window update is the same resulting
in somehow the same sliding window at the end of online adaptation process. The presence of
small variations between two experiments in each pair stems from the stochastic behavior of
ApproxHull. Furthermore, as it can be observed in Fig. 8.6, by increasing f3, the update rate of
the initial training sliding window containing samples of Nov-2015 is raising where
gradually, the samples of Nov-2015 are being replaced with the new arriving samples of the

other periods.

176

1574 1564

N S 4
&
¥ O e

(a) (b)

1000 1017

Fig.8.6. Number of samples of each period in the last training sliding window. (a), (c) and (e)
correspond to the Exps.1-3 of the first group of experiments of the case study 1, respectively.
(b), (d) and (f) denote Exps.4-6 of the second group of experiments of case study 1,
respectively.

For all experiments, the model has been evaluated in terms of the RMSE over each period in
two different situations: In the former, the initial model which was trained offline has been
evaluated over each period, while in the second one, in each period, after each update at time
instant k, the updated model has been evaluated over the corresponding period. The
evaluation results of three groups of experiments are given in Tables 8.5 to 8.7. In these

tables, the bold values indicate the best results over each period.

177

TABLE 8.5. ONE-STEP-AHEAD PREDICTION IN CASE 1.

p1

First group of experiments | Second group of experiments
pt | Exp.l | Exp2 | Exp3 | Exp4 | Exp.5 | Exp.6
01-Dec-2015 0.008 | 0.008 | 0.008 0.008 0.008 0.008 0.008
16-Dec-2015 0.007 | 0.007 | 0.007 | 0.007 0.007 0.007 0.007
20-Dec-2015 0.007 | 0.007 | 0.007 0.007 0.007 0.007 0.007
01-Jan-2016 0.007 | 0.007 | 0.007 | 0.007 0.007 0.007 0.007
21-Jan-2016 0.008 | 0.008 | 0.008 0.008 0.008 0.008 0.008
01-Feb-2016 0.010 | 0.009 | 0.008 0.009 0.008 0.008 0.008
01-Mar-2016 0.010 | 0.010 | 0.010 | 0.010 0.010 0.010 0.010
01-Apr-2016 0.010 | 0.010 | 0.010 | 0.010 0.010 0.010 0.010
01-May-2016 | 0.011 | 0.011 | 0.011 0.011 0.010 0.010 0.010
11-May-2016 | 0.014 | 0.012 | 0.012 0.012 0.011 0.011 0.011
01-Jun-2016 0.050 | 0.019 | 0.015 0.015 0.013 0.012 0.013
01-Jul-2016 0.041 | 0.020 | 0.015 0.014 0.013 0.012 0.013
04-Aug-2016 | 0.073 | 0.022 | 0.015 0.014 0.012 0.012 0.012
01-Sep-2016 0.069 | 0.019 | 0.013 0.013 0.012 0.011 0.011
01-Oct-2016 0.011 | 0.009 | 0.009 | 0.008 0.008 0.008 0.008
01-Nov-2016 | 0.009 | 0.009 | 0.009 | 0.009 0.009 0.009 0.009
19-Nov-2016 | 0.009 | 0.008 | 0.009 | 0.009 0.008 0.008 0.008

As it can be inferred from Table 8.5, the performance of the updated models in terms of the
one-step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the
periods Dec-2015 to May-2016 and Oct-2016 to Nov-2016 is, to some extent, similar to the
initial model (i.e., the offline model). In contrast, the updated models for all experiments
outperform significantly the initial model in the periods Jun-216 to Sep-2016. The updated
models for the second group of experiments have a slightly better performance than their

correspondents in the first group.

178

TABLE 8.6. 48-STEPS-AHEAD PREDICTION IN CASE 1.

u
Pig

First group of experiments | Second group of experiments

pig | Exp.l | Exp2 | Exp.3 | Exp4 | Exp.5 | Exp.6
01-Dec-2015 0.082 | 0.082 | 0.086 0.079 0.082 0.081 0.080
16-Dec-2015 0.102 | 0.102 | 0.104 0.099 0.102 0.099 0.101
20-Dec-2015 0.087 | 0.087 | 0.090 0.085 0.087 0.085 0.087
01-Jan-2016 0.129 | 0.123 | 0.124 0.131 0.120 0.120 0.127
21-Jan-2016 0.076 | 0.081 | 0.080 0.071 0.078 0.076 0.076
01-Feb-2016 0.104 | 0.131 | 0.130 0.108 0.091 0.087 0.096
01-Mar-2016 0.080 | 0.100 | 0.099 0.085 0.087 0.077 0.092
01-Apr-2016 0.094 | 0.123 | 0.099 0.103 0.092 0.088 0.096
01-May-2016 0.104 | 0.144 | 0.123 0.121 0.111 0.114 0.119
11-May-2016 0.108 | 0.139 | 0.128 0.129 0.111 0.110 0.116
01-Jun-2016 0.160 | 0.238 | 0.169 0.191 0.137 0.137 0.178
01-Jul-2016 0.157 | 0.228 | 0.175 0.198 0.155 0.162 0.214
04-Aug-2016 0.184 | 0.195 | 0.149 0.154 0.112 0.125 0.127
01-Sep-2016 0.159 | 0.206 | 0.138 0.156 0.121 0.132 0.129
01-Oct-2016 0.098 | 0.149 | 0.133 0.109 0.091 0.090 0.095
01-Nov-2016 0.088 | 0.209 | 0.320 0.115 0.079 0.086 0.093
19-Nov-2016 0.123 | 0.281 | 0.410 0.142 0.105 0.112 0.127

As it can be concluded from Table 8.6, in terms of the 48-steps-ahead prediction, the
performance of the updated model for all experiments over the periods 01-Dec-2015, 16-Dec-
2015, 20-Dec-2015, 01-Jan-2016 and 21-Jan-2016 is somehow the same as that of the initial
model.

The updated model in Exps.4 and 5 is slightly superior to the initial model. Regarding the
period 01-Feb-2016, the updated model in the second group of experiments is superior to the
initial model while that in the first group has worse performance in comparison with the
initial model. With respect to the period 01-Mar-2016, only the updated model in Exp.5 has
better performance than the initial model whereas that in Exp.1 has the worst performance.
Regarding the period 01-Apr-2016, the updated model in both Exp.4 and Exp.5 performs
better than the initial model. With respect to the periods 01-Jun-2016 to 19-Nov-2016, for the

179

most cases, the updated model in both Exp.4 and Exp.5 is significantly superior to the initial
model while the updated model in Exp.1 has the worst performance.
Over the periods 01-May-2016 and 11-May-2016, the initial model has slightly better

performance in comparison with the others.

TABLE 8.7. SUMMATION OVER PH IN CASE 1.

NG
First group of experiments | Second group of experiments
st | Exp.l1| Exp.2 | Exp.3 | Exp4 | Exp.5 | Exp.6
01-Dec-2015 2703 | 2.703 | 2.785 | 2.621 2.703 2.668 | 2.623
16-Dec-2015 3.239 | 3.239 | 3.250 | 3.157 3.239 3.143 | 3.173
20-Dec-2015 2.744 | 2.744 | 2.824 | 2.693 2.744 2.671 2.646
01-Jan-2016 3.824 | 3.617 | 3.694 | 3.894 3.542 3.571 3.745
21-Jan-2016 2426 | 2.528 | 2.528 | 2.342 2.464 2420 | 2.436
01-Feb-2016 3.699 | 3.980 | 3.851 3.456 2.800 2.703 | 3.022
01-Mar-2016 | 2.887 | 3.250 | 3.174 | 2.858 2.853 2.632 | 3.008
01-Apr-2016 3.111 | 3.834 | 3.306 | 3.330 3.008 2942 | 3.132
01-May-2016 | 3.561 | 4373 | 3.973 | 3.906 3.583 3.538 | 3.687
11-May-2016 | 3.639 | 4.198 | 3.892 | 3.818 3.504 3.383 | 3.465
01-Jun-2016 6.480 | 6.333 | 4917 | 5.373 4.414 4519 | 4915
01-Jul-2016 6.361 | 6.778 | 5.172 | 5.617 5.096 4.993 | 5.492
04-Aug-2016 | 8.021 | 6.129 | 4.599 | 4.664 3.813 4.148 | 3.834
01-Sep-2016 6.795 | 6.196 | 4.317 | 4.675 3.934 4.256 | 3.898
01-Oct-2016 3312 | 4.142 | 3.787 | 3.311 2.880 2.879 | 2.937
01-Nov-2016 | 2911 | 6.040 | 8919 | 3.767 2.667 2.892 | 3.002
19-Nov-2016 | 3.854 | 9.682 | 14.027 | 4.680 3.282 3.609 | 3.867

As it can be seen in Table 8.7, in terms of the summation of RMSE over the prediction
horizon of 48 steps, the updated models in the second group of experiments significantly
outperform the initial model over the periods 01-Jun-2016 to 01-Oct-2016; over the other
periods, no considerable difference can be seen between the performance of the updated
model in the second group of experiments and that of the initial model. To conclude, we can

say that the updated model in the second group of experiment has better performance than

180

that of the first one and is superior to the initial model. In relation with the parameter Beta, the
value of 0.1 seems to be the best one.

In order to graphically compare the performance of the updated model throughout every
period, with the initial model, the corresponding updated model of Exp.5 was selected as an
alternative for the initial model since according to the Tables 8.5 to 8.7, the updated model in
Exp.5 is superior to the others. Figs. 8.7 to 8.23 illustrate the real values of OAT (blue line),
the one-step-ahead predictions over each period for the initial (red) and the updated model

(green) of Exp.5.

22

0l1l-Dec-2015 to 13-Dec-2015 (one-step-ahead prediction)

—— Real value

—— Predicted value-initial model
-0 | —— Predicted value-Updated model | |

Outside Air Temperature

(o] 500 1000 1500 2000 2500 3000 3500
Samples

Fig. 8.7. One-step-ahead prediction over the 01-Dec-2015 period in case 1.

181

Outside Air Temperature

Outside Air Temperature

20

16-Dec-2015 to 20-Dec-2015 (one-step-ahead prediction)

—— Real value
— Predicted value-initial model
—— Predicted value-Updated model

80 100 200 300 400 500 600 700 800 900
Samples
Fig. 8.8. One-step-ahead prediction over the 16-Dec-2015 period in case 1.
s 20-Dec-2015 to 29-Dec-2015 (one-step-ahead prediction)
10 R
Real value
—— Predicted value-Initial model
—— Predicted value-Updated model
80 500 1000 1500 2000 2500

Samples

Fig. 8.9. One-step-ahead prediction over the 20-Dec-2015 period in case 1.

182

Outside Air Temperature

Qutside Air Temperature

20

0Ol-Jan-2016 to 15-Jan-2016 (one-step-ahead prediction)

— Real value
—— Predicted wvalue-initial model
— Predicted value-Updated model

"¢

20

500 1000 1500 2000 2500 3000 3500 4000
Samples

. 8.10. One-step-ahead prediction over the 01-Jan-2016 period in case 1.

21-Jan-2016 to 31-Jan-2016 (one-step-ahead prediction)

)

—— Real value
—— Predicted value-initial model
—— Predicted value-Updated model

L \ \ T T
500 1000 1500 2000 2500 3000
Samples

. 8.11. One-step-ahead prediction over the 21-Jan-2016 period in case 1.

183

Qutside Air Temperature

20

Ol1l-Feb-2016 to 29-Feb-2016 (one-step-ahead prediction)
18 | I B

16 -

12 |

. |

ald— Real value a
—— Predicted value-Initial model
—— Predicted value-Updated model

Qutside Air Temperature

T T T L \ L \ \
[o] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Samples

Fig. 8.12. One-step-ahead prediction over the 01-Feb-2016 period in case 1.

0l1l-Mar-2016 to 31-Mar-2016 (one-step-ahead prediction)

22

— Real value

—— Predicted value-initial model
20 - —— Predicted value-Updated model N
18 \ .
16 | n
14 .
1z .
10 l ‘ —

(o] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Samples

Fig. 8.13. One-step-ahead prediction over the 01-Mar-2016 period in case 1.

184

Outside Air Temperature

30

N
c

[
u
T

10

O1l-Apr-2016 to 30-Apr-2016 (one-step-ahead prediction)

Real value
Predicted value-initial model
— Predicted value-Updated model

1000 2000 3000 4000 5000 6000 7000 8000 9000
Samples

Fig. 8.14. One-step-ahead prediction over the 01-Apr-2016 period in case 1.

Outside Air Temperature

28

26

24

22

20

18

16

14

12

10

01l-May-2016 to 11-May-2016 (one-step-ahead prediction)

T
— Real value

— Predicted value-Initial model
—— Predicted value-Updated model ||

(o] 500 1000 1500 2000 2500 3000

Samples

Fig. 8.15. One-step-ahead prediction over the 01-May-2016 period in case 1.

185

11-May-2016 to 31-May-2016 (one-step-ahead prediction)

30
25 -
e
=
=
fiad
[T}
=
E
2 20 .
]
<
z)|
3
A
=]
o
15 5
— Real value
—— Predicted value-Initial model
—— Predicted value-Updated model
10 1 I I I I
o 1000 2000 3000 4000 5000 6000

Samples

Fig. 8.16. One-step-ahead prediction over the 11-May-2016 period in case 1.

01-Jun-2016 to 30-Jun-2016

(one-step-ahead prediction)

35
30 | —
=
=
o
@ 25H 1
(=8
E:
@
=
<L
g 20 R
=
=
(=]
15 | .
—— Real value
—— Predicted wvalue-initial model
—— Predicted value-Updated model
10 1 i I 1 I I I I
(o] 1000 2000 3000 4000 5000 6000 JOooo 8000 9000

Samples

Fig. 8.17. One-step-ahead prediction over the 01-Jun-2016 period in case 1.

186

Outside Air Temperature

Outside Air Temperature

01-Jul-2016 to 06-Jul-2016 (one-step-ahead prediction)

— Real value
Predicted wvalue-Initial model
Predicted value-Updated model | |

32

18

1 1 1 1 1
(o] 200 400 600 800 1000 1200
Samples

Fig. 8.18. One-step-ahead prediction over the 01-Jul-2016 period in case 1.

04-Aug-2016 to 31-Aug-2016 (one-step-ahead prediction)

40
—— Real value
— Predicted value-Initial model
—— Predicted value-Updated model
35 |- .
30 | ‘ ‘ ‘ | i =
{ ’ [’
| Ll
! [‘1 * I‘ [l I i |
25 —
20 | —
15 1 L L L 1 L L
(o] 1000 2000 3000 4000 5000 6000 7J000 8000

Samples

Fig. 8.19. One-step-ahead prediction over the 04-Aug-2016 period in case 1.

187

Outside Air Temperature

Outside Air Temperature

01-Sep-2016 to 30-Sep-2016 (one-step-ahead prediction)

40

— Real value

—— Predicted value-Initial model

—— Predicted value-Updated model
35 | —
30 H —

0 Kb . \ q | |
i f
25 -
20 |- —
15 | -
10 L L L L 1 L L 1
(o] 1000 2000 3000 4000 5000 6000 J000 8000 9000

Samples

Fig. 8.20. One-step-ahead prediction over the 01-Sep-2016 period in case 1.

30

25

20

15

10

01-Oct-2016 to 31-Oct-2016 (one-step-ahead prediction)

Samples

—— Real value
—— Predicted value-Initial model
—— Predicted value-Updated model
L L | | | T T T
o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 8.21. One-step-ahead prediction over the 01-Oct-2016 period in case 1.

188

25

Qutside Air Temperature
= N
wn o

=
o]

01-Nowv-2016 to

19-Nov-2016 (one-step-ahead prediction)

T
— Real value

— Predicted value-initial model
—— Predicted value-Updated model

1000

2000 3000 4000
Samples

5000

6000

Fig. 8.22. One-step-ahead prediction over the 01-Nov-2016 period in case 1.

20

18

B M B
N B o

Outside Air Temperature

]
c

19-Nowv-2016 to

26-Nowv-2016 (one-step-ahead prediction)

T
Real value

— Predicted value-Initial model
—— Predicted value-Updated model

200

400

600 800 1000 1200
Samples

1400

1600

1800

Fig. 8.23. One-step-ahead prediction over the 19-Nov-2016 period in case 1.

189

8.4.2. Case Study 2: OAT model for the University of Almeria

The data provided by the University of Almeria has been collected over the years 2010 to
2012, including climate variables such as outside air temperature, outside air humidity,
outside solar radiation, etc. In the design process, the data in range 02-Sep-2010 to 11-Sep-
2010 (i.e., 10 days) with a sample rate of 5 minutes was used to create the training, testing and
validation sets with 1548, 516 and 516 points, respectively. ApproxHull was applied on the
whole data which resulted in 880 convex hull points, that were included in the training set.
Like the previous case study in Section 8.4.1, 73 lags out of the available 300 lags (i.e.,
corresponding to one day and one hour) were considered by MOGA.. The formal description

of the selected OAT model is given in Eq. (8.29).

T,(k + 1) = f(T,(k),T,(k — 1), T,(k — 10), T, (k — 25), T, (k — 30), T, (k — 38), T, (k
— 44),T,(k — 276), T, (k — 296)) (8.29)

According to Eq. (8.29), the selected model has 9 inputs which are lags of OAT. The
corresponding RBFNN model has 14 hidden neurons. To simulate the online adaptation
process, 12 periods over the years 2010 and 2011 were considered, shown in Table 8.8. The
samples of each period were normalized in the range [—1,1]. Since the model has only used 9
lags out of the 73 lags in the design process, the initial convex hull of the model should be
obtained from the reduced version of the whole data which was supplied to MOGA.
ApproxHull was hence applied to the reduced dataset with 10 dimensions (i.e., 9 inputs and
the target pattern) which resulted in 544 convex hull points that were included in the initial
training-sliding window.

For all experiments, the scenario of model update throughout the online adaptation process is
the same as that for the previous case study. In this case study, 9 different experiments
corresponding to 9 different combinations of 7¢, f and 1 values were carried out. For all
experiments, the sizes of the training and the additional sliding-window size were set to 1548
and 500, respectively. The maximum number of iterations of the Levenberg-Marquardt
method was set to 100 for all experiments.

The experiments’ specification is given in Table 8.9. “ES” in Table 8.9 stands for Early-
Stopping method, using the additional sliding window as a test set. As we can see in Table
8.9, three groups of experiments were carried out. For the first group of experiments, the

model is updated without applying the early-stopping method. In this case, for each update,

190

the training process ends when the three standard termination criteria are met, without
considering the early stopping method. For the second and third groups of experiments, the
early-stopping method was applied. In this situation, for the first five iterations of the training
process, only the three standard termination criteria are checked. After the initial five
iterations, training stops when the three termination criteria (2.40 — 2.42), or early-stopping is

met. Early stopping method uses the last 4 iterations.

TABLE 8.8. PERIODS OVER THE YEARS 2010 AND 2011 IN CASE 2.

Period name Range
Oct 01-Oct-2010 to 19-Oct-2010 (19 days)
Nov 09-Nov-2010 to 28-Nov-2010 (20 days)
Dec 04-Dec-2010 to 15-Dec-2010 (12 days)
Jan 11-Jan-2011 to 31-Jan-2011 (21 days)
Feb 09-Feb-2011 to 28-Feb-2011 (21 days)
Mar 11-Mar-2011 to 31-Mar-2011 (21 days)
Apr 07-Apr-2011 to 12-Apr-2011 (6 days)
May 20-May-2011 to 31-May-2011 (12 days)
Jun 02-Jun-2011 to 23-Jun-2011(22 days)
Jul 08-Jul-2011 to 31-Jul-2011 (24 days)
Aug 01-Aug-2011 to 31-Aug-2011 (31 days)
Sept 02-Sept-2010 to 11-Sept-2010 (10 days)

TABLE 8.9. EXPERIMENT’S SPECIFICATION IN CASE 2.

5 B n ES
Exp.l | 0.001 | 0.0 | 0.005 | No
First group of experiments Exp.2 | 0.001 | 0.1 | 0.005 | No
Exp.3 | 0.001 | 0.5 | 0.005 | No
Exp.4 | 0.001 | 0.0 | 0.005 | Yes
Second group of experiments | Exp.5 | 0.001 | 0.1 | 0.005 | Yes
Exp.6 | 0.001 | 0.5 | 0.005 | Yes
Exp.7 | 0.0001 | 0.0 | 0.005 | Yes
Third group of experiments Exp.8 | 0.0001 | 0.1 | 0.005 | Yes
Exp.9 | 0.0001 | 0.5 | 0.005 | Yes

191

Similarly, to compare the experiments, the criteria stated in Table 8.3 were used. Since in this
case study, as in the previous one, a sample rate of 5 minutes were considered, the number of
samples in each period is obtained as 12*24=288*number of days. The statistical results

obtained from the three groups of experiments are given in Table 8.10.

TABLE 8.10. STATISTICAL RESULTS OF EXPERIMENTS IN CASE 2.

nr ny ng | Ny n; | Ncu
Exp.l | 414 | 58393 | 377 | 24 | 425 | 184
First group of experiments Exp.2 | 2134 | 56684 | 366 | 38 | 3.68 | 128
Exp.3 | 7376 | 51447 | 361 | 61 | 3.11 | 191
Exp.4 | 419 | 58390 | 375 | 23 | 435 | 176
Second group of experiments | Exp.5 | 2103 | 56712 | 369 | 37 | 3.57 | 130
Exp.6 | 7214 | 51611 | 359 | 72 3 180
Exp.7 | 420 | 58385 | 379 | 23 |10.65| 182
Third group of experiments Exp.8 | 2088 | 56727 | 369 | 46 | 6.52 | 127
Exp.9 | 7404 | 51419 | 361 | 106 | 4.65 | 164

According to this Table for each group of experiments, increasing [causes an increase in ny ,
due to the fact that the new arriving sampls has more chance to be inserted into the training
sliding-window. This, in turn, causes an increase in ny due to an increase of training sliding-
window updates. Moreover, we can see that in all experiments, n; is much smaller than ny.
This result reveals the fact that, the proposed method can prevent unnecessary parameter
updates whenever the training sliding-window is updated due to the insertion of the new
arriving sample.

For all experiments, the initial and updated models have been evaluated over each period in
the same way used in Section 8.4.1. The evaluation results of the three groups of experiments

are given in Tables 8.11 to 8.13.

192

TABLE 8.11. ONE-STEP-AHEAD PREDICTION IN CASE 2.

Pi

First group of
experiments

Second group of
experiments

Third group of
experiments

Pl

Exp.1

Exp.2

Exp.3

Exp.4

Exp.5

Exp.6

Exp.7

Exp.8

Exp.9

0.075

0.007

0.007

0.006

0.007

0.007

0.006

0.007

0.006

0.006

0.387

0.008

0.008

0.007

0.009

0.009

0.007

0.008

0.008

0.007

0.290

0.008

0.008

0.007

0.009

0.007

0.008

0.007

0.007

0.007

0.480

0.009

0.005

0.005

0.009

0.006

0.005

0.006

0.005

0.005

0.409

0.009

0.007

0.008

0.009

0.009

0.007

0.007

0.007

0.007

0.293

0.008

0.007

0.006

0.007

0.007

0.007

0.007

0.007

0.006

0.152

0.007

0.006

0.006

0.006

0.006

0.008

0.006

0.006

0.006

0.046

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.008

0.008

0.024

0.006

0.006

0.006

0.006

0.006

0.007

0.010

0.007

0.006

0.007

0.006

0.006

0.006

0.006

0.006

0.007

0.417

0.039

0.008

Aug

0.017

0.007

0.006

0.006

0.007

0.006

0.006

2.271

0.022

0.008

Sept

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.006

0.005

0.006

As it can be concluded from Table 8.11, the performance of the updated model for the one-
step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the periods
Oct to Jun is much better than that of the initial model. Regarding the period Aug, the
performance of the updated model for all experiments except Exps.7 and 8 is also better than
that of the initial model. Moreover, for all experiments except Exps.7 and 8, the performance
of the updated model over the period Jul is somehow the same as that of the initial model.
Furthermore, over the period Sept, for all experiments, similar performances of the updated
model and the initial model can be observed, which is due to the fact that the range of data, in

those months, is similar to the range used in the offline design (12 days in September of the

last year).

193

TABLE 8.12. 48-STEPS-AHEAD PREDICTION IN CASE 2.

u
Pig

First group of
experiments

Second group of
experiments

Third group of
experiments

i
Pag

Exp.1

Exp.2

Exp.3

Exp4

Exp.5

Exp.6

Exp.7

Exp.8

Exp.9

Oct

0.161

0.119

0.124

0.098

0.122

0.120

0.106

0.134

0.125

0.085

Nov

0.387

0.126

0.158

0.107

0.159

0.159

0.137

0.307

0.112

0.134

Dec

0.314

0.140

0.150

0.148

0.173

0.149

0.162

0.202

0.146

0.160

Jan

0.469

0.117

0.113

0.181

0.168

0.180

0.147

0.212

0.151

0.146

Feb

0.407

0.147

0.138

0.165

0.150

0.166

0.148

0.212

0.135

0.144

Mar

0.307

0.149

0.159

0.127

0.156

0.126

0.150

0.193

0.127

0.158

Apr

0.216

0.144

0.192

0.110

0.148

0.116

0.134

0.139

0.143

0.127

May

0.115

0.135

0.136

0.115

0.135

0.099

0.119

0.112

0.141

0.165

Jun

0.103

0.116

0.133

0.087

0.115

0.072

0.105

0.083

0.108

0.936

Jul

0.079

0.084

0.120

0.135

0.084

0.090

0.117

0.099

0.095

0.127

Aug

0.081

0.097

0.109

0.108

0.080

0.097

0.100

0.102

0.101

0.120

Sept

0.051

0.068

0.087

0.098

0.063

0.083

0.083

0.070

0.107

0.102

With respect to the 48-steps-ahead prediction

experiments, the updated model considerably outperforms the initial model over the periods
Nov to Apr. Regarding the periods May and Jun, for Exp.5, the updated model has the best
performance and is superior to the initial model. For Exp.4, the updated model has the best
performance over the period Aug in comparison with the others and has the same
performance as the initial model. Moreover, the initial model over the periods Jul and Sept

has the best performance, in comparison with the corresponding updated model of each

experiment.

194

(i.e., 4 hours ahead prediction), in all

TABLE 8.13. SUMMATION OVER PH IN CASE 2.

Su
First group of Second group of Third group of
experiments experiments experiments

Ssi |Exp.1|Exp.2 | Exp.3|Exp.4|Exp.5 | Exp.6|Exp.7 |Exp.8|Exp.9
Oct | 7.442 |4.077[4.990 |3.740 | 4.423 | 4.373 | 3.869 | 4.092 | 4.033 | 2.916
Nov | 19.98 [5.640|6.124 | 4.283 | 5.528 | 6.475 | 4.736 | 8.756 | 4.532 | 4.543
Dec | 16.15 |5.853 [6.004 |5.225|6.156 |5.280 | 5.019 | 6.662 | 5.306 | 4.877
Jan | 23.79 [5.245|4.117 | 5.456 | 5.346 | 5.457 | 4.343 | 6.294 | 4.396 | 4.672
Feb | 20.77 |7.208 | 5.021 | 5.645|5.503 | 5.782|4.853 | 6.732 | 4.481 | 4.973
Mar | 16.17 |7.880|5.745|4.252 | 6.130 | 5.017 | 4.598 | 6.453 | 4.218 | 5.292
Apr | 10.80 |5.639|5.5334.073 |4.883 |4.255|4.308 |4.827 | 3.893 | 3.955
May | 5.119 [4.267 |4.298 |4.299 |4.291 | 3.349 | 3.963 | 3.709 | 4.222 | 4.739
Jun | 4.239 |3.629 4.008 | 3.033 |3.790 | 2.540 | 3.646 | 2.785 | 3.341 | 7.373
Jul | 2.716 |2.7333.855|3.9392.699 | 3.009 | 4.139|6.107 | 3.831 | 4.147
Aug | 3.026 |3.179 |3.444 |3.730 | 2.718 | 3.325 | 3.495 [9.037 | 3.501 | 3.836
Sept | 1.684 |2.210|2.765|3.300|2.082 |2.889|3.130|2.482 | 3.202 | 3.297

In order to analyze the performance of the initial and updated model over the whole prediction
horizon within each period, we compared the initial model with the updated model in terms of
the summation of RMSEs over the prediction horizon of 48 steps, within each period.
Similarly, the bold values in Table 8.13 denote the best result over each period. In all
experiments, the updated model performs much better than the initial model over the
prediction horizon for the periods Oct to Apr. For the remaining periods, in all experiments
except in Exp.7 for the periods Jul and Aug and in Exp.9 for the period Jun, the behavior of
the updated model over the prediction horizon is, to some extent, similar with that of the
initial model.

To sum up, based on the evaluation results shown in Tables 8.11 to 8.13, we can say that in
all experiments, the performance of the updated model within the periods of autumn and
winter is much better than that of the initial model, which has been trained based on
September data. On the other hand, in all experiments except Exp.7 and Exp.9, the updated
model within the periods of spring and summer can keep the mappings which have been

obtained for the previous periods. Hence, the behavior of the updated models, for all periods,

195

is better or similar to that of the initial model, the latter obtained when the range of the
considered period is similar to the one used for off-line model design.

In order to graphically compare the performance of the updated model with the initial model,
the updated model of Exp.1 was selected. Figs. 8.24 to 8.35 illustrate the one-step-ahead

prediction over each period for both initial and updated model of Exp.1.

01-Oct-2010 to 19-Oct-2010 (one-step-ahead prediction)

32 r
—— Real value
— Predicted value-Initial model

30 I —— Predicted value-Updated model | |

28 H B
a
5 26 -
@
g 24 .
8
= 22 H B
@
I
w
s 20 w R
S

18 B

16 L —

14 1 L 1 L L

o] 1000 2000 3000 4000 5000 6000
Samples
Fig. 8.24. One-step-ahead prediction over the Oct period in case 2.
_— 09-Nowv-2010 to 28-Nov-2010 (one-step-ahead prediction)

Outside Air Temperature

il

10 | =
—— Real value
— Predicted value-Initial model
—— Predicted value-Updated model
5 I T 1 1 1
(0] 1000 2000 3000 4000 5000 6000

Samples

Fig. 8.25. One-step-ahead prediction over the Nov period in case 2.

196

35

30

25

20

15

Qutside Air Temperature

10

30

Qutside Air Temperature

04-Dec-2010 to 15-Dec-2010 (one-step-ahead prediction)

Samples

Fig. 8.27. One-step-ahead prediction over the Jan period in case 2.

197

—— Real \.raliue
— Predicted value-Initial model
—— Predicted value-Updated model
! : .|
I £ ‘ | “ |
(8] SCIIO 10|00 15|00 ZOIOO 25:00 30I00 3500
Samples
Fig. 8.26. One-step-ahead prediction over the Dec period in case 2.
11-Jan-2011 to 31-Jan-2011 (one-step-ahead prediction)
—— Real value .j
— Predicted value-Initial model
— Predicted value-Updated model
o] 1000 2000 30:00 4000 50|00 6000

30

25

N
=]

Outside Air Temperature
[.]
4]

10

Samples
Fig. 8.28. One-step-ahead prediction over the Feb period in case 2.
S 11-Mar-2011 to 31-Mar-2011 (one-step-ahead prediction)
25 —
o | ’ ‘
=
o
5 20 F -
2, }
£
&
E A
g 15 i
£
S
10 -
—— Real value
—— Predicted value-Initial model
—— Predicted value-Updated model
50 10|00 20|00 30|00 40|00 50|00

09-Feb-2011 to 28-Feb-2011 (one-step-ahead prediction)

U —— Real value
—— Predicted value-Initial model

—— Predicted value-Updated model

L L I I I
o] 1000 2000 3000 4000 5000

6000

Samples

Fig. 8.29. One-step-ahead prediction over the Mar period in case 2.

198

6000

30

Outside Air Temperature

O07-Apr-2011 to 12-Apr-2011 (one-step-ahead prediction)

—— Real value
—— Predicted value-Initial model
—— Predicted value-Updated model

100 200 200 600 800 1000 1200 1400 1600
Samples
Fig. 8.30. One-step-ahead prediction over the Apr period in case 2.
= 20-May-2011 to 31-May-2011 (one-step-ahead prediction)
—— Real value
—— Predicted wvalue-initial model
—— Predicted value-Updated model
30 g
2
=
=
ar
j=%
=
25 L .
=
o]
=
w
= k
o /
20 g
15 d 1 1 1 1 1 1
[o] 500 1000 1500 2000 2500 3000 3500

Samples

Fig. 8.31. One-step-ahead prediction over the May period in case 2.

199

02-Jun-2011 to 23-jJun-2011 (one-step-ahead prediction)

35
—— Real value
—— Predicted value-lnitial model
—— Predicted value-Updated model
30 —

Outside Air Temperature
[\
(4]
T

N
=]
e
i

15 1 L L L 1 L
o 1000 2000 3000 4000 5000 6000 F000

Samples
Fig. 8.32. One-step-ahead prediction over the Jun period in case 2.
b 08-Jul-2011 to 31-Jul-2011 (one-step-ahead prediction)
—— Real value
—— Predicted wvalue-Initial model
— Predicted value-Updated model
35| E
e
=
©
5 30 -
j=1
=
i)
:}:
g 25 4 =
v
=
<
20 =
15 1 1 1 1 1 1
(0] 1000 2000 3000 4000 5000 6000 FJO0O0o

Samples

Fig. 8.33. One-step-ahead prediction over the Jul period in case 2.

200

01-Aug-2011 to 31-Aug-2011 (one-step-ahead prediction)

T
—— Real value
— Predicted value-Initial model

—— Predicted value-Updated model
35 - 1
30 —
25 \ 1

40

Outside Air Temperature

200 10:00 ZOIOO 30:00 40I00 50:00 GOIOO 70:00 SOIOO 9000
Samples
Fig. 8.34. One-step-ahead prediction over the Aug period in case 2.
- 02-Sep-2010 to 11-Sep-2010 (one-step-ahead prediction)

— Real value

—— Predicted value-initial model
W\ —— Predicted value-Updated model ||

o 500 1000 1500 2000 2500 3000
Samples

Outside Air Temperature

18

Fig. 8.35. One-step-ahead prediction over the Sept period in case 2.

As we can see in Figs. 8.24 to 8.35, there is a significant difference between the initial and the
updated models at the end of Oct to May periods. For these periods, comparing the predicted
value (the green curve) with the corresponding real value (the black curve), the updated model

has a much higher level of accuracy at the end of each period. As it can be seen, in those

201

months, the output range of the initial model is similar to the one obtained in September,
where the off-line design was done Moving to summer months, we can see that the difference
between the updated model and the initial model is decreasing, but with the former
performing better. It reflects the fact that the updated model not only keeps the mappings
which have been constructed over the periods of winter but also adapts itself with new

samples arriving during the summer periods.

8.5. Comparison between the two case studies

In order to compare the first case study (i.e., OAT model of the University of Algarve) with
the second one (i.e., OAT model of the University of Almeria), Exp.4 from the first case
study and Exp.1 from the second one were selected (i.e., the corresponding graphs of Exp.4
and Exp.1 over each period were shown in Section 8.4.1 and 8.4.2, respectively.). Fig 8.36
shows the comparison of the updated models at the end of each period in Exp.4 and Exp.1
with their corresponding initial model in terms of RMSE for the 48-steps-ahead prediction.

As it can be seen in Fig. 8.36, the difference between the performance of the updated model in
Exp.1 (i.e., Fig 8.36(b)) and that of its corresponding initial model is significantly larger than
that in Exp.4 (i.e., 8.36(a)). Regarding the initial model of case study 1, we can say that the
initial model could somehow cover the operating regions of all periods except 1-Aug-2016
and 1-Sep-2016, where model update was necessary. This stems from the fact that the range
of data used to design the initial model (i.e., November data) covers, to some extent, the range
of most periods.

In contrast, in case 2, the initial model has a considerably worse performance than the updated
model, for the majority of the periods. As it can be seen in Fig. 8.36(b), the performance
difference between over periods Nov to Apr is considerable. This is explained by the
observation that in September the temperature ranges from 20° to 34°, roughly (please see Fig.
8.35), and in several months the minimum temperature is much lower, while in Summer

months the maximum is higher than 34°.

202

Case Study 1: OAT model of the University of Algarve

0.2
0.18
0.16
0.14

0.12 H
0.1 -
0.08 =—4—|nitial model

0.06 ——Updated model
0.04

0.02
0

RMSE for 48-steps-ahead prediction

1-Dec-15
1-Jan-16 -
1-Feb-16 -
1-Mar-16 -
1-Apr-16
1-May-16 -
1-Jun-16 -
1-Jul-16 -
1-Aug-16
1-Sep-16 1
1-Oct-16 -
1-Nov-16

~

a)

Case Study 2: OAT model of the University of Almeria

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0 . . T . . . T i

¢—Initial model

—i—Updated model

RMSE for 48-steps-ahead prediction

(b)

Fig. 8.36. Comparison of the updated model with its corresponding initial model. (a) Exp.4 in
case study 1; (b) Exp.1 in case study 2.

8.6. Comparison with other methods

This section addresses the comparison of the proposed online adaptation method, herein after
called CHSWNLM, with others.

As it has been referred, in [168] two methods using a sliding window strategy, called
SWNLM and SAWNLM were proposed, and served as the basis of the method introduced in
this thesis. Recalling, in SWNLM, the sliding window is managed using FIFO policy, while

203

in the SAWNLM, the sliding-window management policy is based on a dissimilarity measure.
In order to compare the CHSWNLM with the SWNLM and SAWNLM methods, data from
case study 2 (i.e., the OAT model for the University of Almeria) was used with the same
scenario mentioned in Section 8.4.2. The statistical and evaluation results are shown in Table
8.14 and 8.15, respectively. In Table 8.14, n denotes the number of new arriving samples over
all periods. The other statistics in this table are ones used in Table 8.3. In Table 8.15, p; and
P4g denote the scaled one-step-ahead and the 48-steps-ahead RMSEs associated with the
updated model at the end of each period, respectively. The bold values in these tables refer to

the best results.

TABLE 8.14. COMPARISON OF STATISTICAL RESULTS OBTAINED BY EXP.1,
SWNLM AND SAWNLM.

n nr ny np ny n;

CHSWNLM 59184 414 58393 377 24 4.25
SWNLM 59184 59184 - 0 270 2.77
SAWNLM 59184 58794 - 390 52 3.21

As it can be seen in Table 8.14, the total number of new arriving samples which have been
inserted into the training sliding window (nr), the total number of updates (ny) and the total

number of iterations (ny X n;) in CHSWNLM are much smaller than in the other methods.

TABLE 8.15. COMPARISON OF CHSWNLM WITH SWNLM AND SAWNLM.

P1 Pas
CHSWNLM | SWNLM | SAWNLM | CHSWNLM | SWLNM | SAWNLM

Oct 0.030 0.015 0.022 0.115 0.115 0.114
Nov 0.045 0.042 0.040 0.148 0.854 0.144
Dec 0.008 6.977 0.008 0.140 2.855 0.162
Jan 0.009 143.44 0.007 0.118 1.278 0.133
Feb 0.010 8.353 0.007 0.149 1.006 0.158
Mar 0.008 0.024 0.007 0.150 0.104 0.168
Apr 0.007 0.150 0.007 0.145 0.160 0.142
May 0.007 0.017 0.007 0.136 0.112 0.131
Jun 0.006 0.554 0.006 0.116 0.149 0.112
Jul 0.007 0.010 0.007 0.084 0.111 0.096
Aug 0.008 0.013 0.008 0.094 0.089 0.127
Sept 0.006 0.013 0.006 0.068 0.067 0.120

According to Table 8.14, SWNLM is clearly the worst method. Regarding CHSWNLM and
SAWNLM the mean values of p; are 0.0126 and 0.0110, respectively, while the

204

corresponding values for p4g are 0.1219 and 0.1339. Therefore, for this data, SAWNLM is
better than CHSWNLM for small prediction horizons, but worse for large ones.

As stated in Section 8.2.2, the method proposed in [179] is an efficient online version of
offline method ELM [191, 192]. In this method, called OS-ELM, the centers and spreads are
arbitrarily chosen and only the weights as linear parameters are updated. This method was
evaluated in several benchmarks in classification, regression and time series problems. It was
also evaluated using two types of feedforward networks: MLPs and RBFNNs. Moreover in
[179], the proposed method was compared with other online methods including RAN [180],
RAN-EKF [171], MRAN [181] and GGAP-RBF [193]. In this study, the CHSWNLM was
applied on Mackey-Glass time series stated in [179] where a RBFNN model was considered.

The time series problem is generated from the following delay differential equation as (8.30).

dx(t) ax(t—1) B (8.30)
a0 1+xc-g O

By integrating Eq. (8.30) over the time interval [t,t + 1], the equation for one-step-ahead
prediction is obtained as Eq. (8.31).

2—b © + a x(t+1-1) x(t—1) (8.31)
3 24+bl1+x(t+1—-17) 1+x9(t—-1)

x(t+1) =

The time series used is generated under the condition x(t —7) = 0.3 for0 <t <7,a=0.2,
b = 0.1 and 7 = 17 and predicted using the four past samples Sy_s5¢, Sk—_44, Sk—3g and Si_3»

for each time instant k. Therefore, the time series predictive model can be described as Eq.

(8.32).

y(k) = F(Sk-50, Sk—56+ Sk—62> Sk—68) (8.32)

In the phase of performance evaluation in [179], the weights as linear parameters of the
corresponding RBFNN model are adjusted using the proposed online adaptation method
based on the training set of size 4000 samples; then the model is evaluated based on the one-
step-ahead prediction RMSE in the training and in a testing set of size 500 samples. All
samples were scaled in the range [0, 1]. In our work, in order to compare the CHSWNLM

with the others in [179], a fixed-structure RBFNN model with 120 hidden neurons was used

205

as the one that was selected in the OS-ELM method. To keep further consistency, in our
study, an initial sliding window of the first 1620 samples (i.e., number of hidden neurons +
1500) was considered. Moreover, the next 650 samples were selected to initialize the
additional sliding window and then the next 1730 samples were considered as new arriving
samples throughout online adaptation process. Finally, the last 500 samples were constituted

the testing set. In this study, ¢, 7 and B were set to 0.001, 0.005 and 0.5, respectively.

The comparison of evaluation results obtained by CHSWNLM and those achieved by the
others methods in [179] is given in Table 8.16. In this Table, p;;- and p;, denote the average
of RMSE on the training and testing sets over 50 trials, respectively. In addition, n,, refers to
the number of hidden neurons in the corresponding RBFNN model.

As it can be observed in Table 8.16, CHSWNLM is much superior to the other methods.

TABLE 8.16. COMPARISON BETWEEN THE CHSWNLM METHOD AND OTHER
METHODS DESCRIBED IN [179].

Ptr Pte L2
OS-ELM 0.0184 0.0186 120
GGAP-RBF 0.0700 0.0368 13
MRAN 0.1101 0.0337 16
RAN-EKF 0.0726 0.0240 23
RAN 0.1006 0.0466 39
CHSWNLM 0.0016 0.0016 120

8.7. Conclusions

In this chapter, a sliding-window based online adaptation method was proposed to update a
RBFNN model, previously designed offline. The proposed method is an extension of the ones
proposed in [168], where the convex hull concept is employed, incorporating the current
sample in the training sliding window if it lies outside the current convex hull.

Experimental results showed that the proposed method can considerably improve the
performance of offline designed models for time-varying processes. In addition, it presents a

performance similar to SAWNLM, and much better performance than other methods.

206

9. Conclusions and future work

9.1. Conclusions

This PhD was intended to address two important problems in the model design process which
are very important for an HVAC MPC application: data selection and online model
adaptation.

In a first step, a sequence of predictive RBFNN models were designed offline with the aim of
intelligently control HVAC systems to save energy and provide thermal comfort. Since
RBFNN models are data-driven models, data has a critical role in the model’s performance.
Inclusion of the input range boundary data samples in the training set is vital as they indicate
the input-output range of system/process. To identify such samples, convex hull algorithms

are applied. Due to the inefficiency of standard convex hull algorithms in terms of time and

space in high dimensions (they take O(nEJ) time and space where n and d denote the number
of samples and dimensions, respectively), as the first phase of this PhD thesis a new
randomized approximation convex hull algorithm in high dimensions called ApproxHull was
proposed, to cope with the limitations of standard convex hull algorithms in high dimensions.
ApproxHull takes O(n?d3v3 + i3p3) time where v denotes the number of convex hull
vertices found, and i and p denote the number of iterations and population size, respectively.

ApproxHull was evaluated (Chapter 4) by comparing it to Quickhull [8], a known efficient
standard real convex hull algorithm, and also to Wang’s algorithm [68], a known
approximation algorithm in high dimensions, where the Quickhull algorithm was considered a
baseline for the comparisons. The simulation results obtained by applying them on a number
of artificial data sets showed that all vertices identified by ApproxHull belong to the set of
vertices of the real convex hull obtained by Quickhull, indicating a 100% precision, and also
demonstrated that ApproxHull could identify a higher percentage of vertices of the real
convex hull in comparison to the percentage identified by Wang’s algorithm, indicating a
higher recall. The ApproxHull’s performance was also evaluated in classification and
regression problems by applying it as a data selection method to create a proper training set
for designing models. For classification problems, SVM models were used while for
regression problems, MLP models were employed. In this evaluation, ApproxHull was
compared to a common random data selection method. The simulation results showed that

ApproxHull had better performance than random selection method for all classification and

207

regression problems except for one classification and one regression problem in which both
selection methods presented the same results.

As in this work the MOGA was used to design RBFNN models, the influence of applying
ApproxHull in the MOGA model design framework was studied (Chapter 5) by comparing it
to the random selection method. The results demonstrated that ApproxHull had better
performance than random selection method in the context of the MOGA model design
framework. Two strategies were followed to design the models by the MOGA. In the first,
ApproxHull was employed on the whole data set to select fixed training, testing and
validation data sets to fit the parameters of all models in all generations of the MOGA. In the
second strategy, ApproxHull was independently applied for each single model to create
distinct training, testing and validation sets. The results showed that not only, the fixed and
distinct data sets strategies presented the same performance, but also that the run time of the
first strategy was much smaller than that of the second one.

To demonstrate the use of ApproxHull in real applications, three case studies were introduced
(Chapter 6). The two first corresponded to the estimation of the electricity consumption of a
building and to the application of MPC to the HVAC system in several rooms in order to save
energy and maintain thermal comfort. They demonstrated that the models designed by
benefiting from ApproxHull and the MOGA framework are comparable to those obtained by
other methods, but with much less complexity. In the third case study, which was intended to
develop an intelligent support system for automatic diagnosis of CVAs, a set of RBFNN
classification models were designed using ApproxHull and MOGA. This case study proved
the capability of ApproxHull to be applied on large size data sets in high dimensions. To
provide a more in-depth analysis of ApproxHull’s performance, it was compared (Chapter 7)
to other three methods, including random data selection, an entropy based unsupervised data
selection method proposed in [13] and a hybrid method involving ApproxHull and the
entropy based data selection method. Based on the experimental results, in most cases, the
ApproxHull and the hybrid method were superior to the others.

In the second phase of the work (Chapter 8), a convex-hull-based sliding window online
adaptation method was proposed. The goal was to update the models training data by
capturing newly arrived points that are out of the known input-output range, and hence being
able to adapt the models over time. The basic idea behind the method consists in comparing
newly arrived points to the known convex hull obtained by ApproxHull. If the new point is
outside the known convex hull (and sufficiently far) it is considered to update the model. To

evaluate the proposed method, two case studies were considered so that in both cases, a

208

RBFNN predictive model was considered to forecast the one-step-ahead outside air
temperature, where the corresponding model was gradually updated over a number of periods
in one year. The results showed that the proposed method could prevent unnecessary updates
while keeping the model in an acceptable level of accuracy, and also comparable to, or better

than to other online adaptation methods.

9.2. Future works

Experimental results showed that the hybrid data selection method involving ApproxHull and
the entropy based data selection method proposed in [13], in most cases was comparable to
ApproxHull and superior to the other methods. This means that the combination of
ApproxHull to other filtering methods (e.g., unsupervised methods) should be studied. For
example, a clustering based method could be a proper alternative for random data selection
method. Based on such studies, a data selection tool could be provided allowing the user to
create training, testing and validation sets using different methods to hybridize with
ApproxHull.

Regarding the ApproxHull method, one of the termination criteria is the maximum
approximation distance of the furthest points to the current convex hull. The evaluation of this
criterion needs finding 2 X d nearest neighbors of each furthest point and then solving a
quadratic optimization problem. Replacing this criterion with the heuristic applied in the new
proposed online adaptation method could be studied in terms of the run time and the
performance. In this work the proposed online adaptation method was evaluated based on
only one time series problem (i.e., the outside air temperature model). Applying the method
for a variety of case studies in different situations and comparing it with other online

adaptation methods could be considered.

209

210

References

[1]

[14]
[15]

[16]

[17]
[18]

[19]

A. E. Ruano, E. M. Crispim, E. Z. E. Conceicao, and M. Lucio, "Prediction of
building's temperature using neural networks models," Energy and Buildings, vol. 38,
no. 6, pp. 682-694, Jun 2006.

P. M. Ferreira, A. E. Ruano, S. Silva, and E. Z. E. Conceicao, "Neural Networks based
predictive control for thermal comfort and energy savings in public buildings," Energy
and Buildings, vol. 55, pp. 238-251, 2012.

A. E. Ruano et al., "The IMBPC HVAC system: A complete MBPC solution for
existing HVAC systems," Energy and Buildings, vol. 120, pp. 145-158, May 2016.

P. M. Ferreira and A. E. Ruano, "Evolutionary multiobjective neural network models
identification: evolving task-optimised models," New Advances in Intelligent Signal
Processing, vol. 372, pp. 21-53, 2011 2011.

V. Bayer, "Survey of algorithms for the convex hull problem," Department of
Computer Science; Oregon State University, 1999.

R. L. Graham, "An efficient algorithm for determining the convex hull of a finite
planar set," Inf. Process. Lett., vol. 1, no. 4, p. 2, 1972.

R. A. Jarvis, "On the identification of the convex hull of a finite set of points in the
plane," Information Processing Letters, vol. 2, no. 1, pp. 18-21, 1973/03/01 1973.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The Quickhull algorithm for convex
hulls," ACM Transactions on Mathematical Software, vol. 22, no. 4, pp. 469-483, Dec
1996.

F. P. Preparata and S. J. Hong, "Convex hulls of finite sets of points in two and three
dimensions," Commun. ACM, vol. 20, no. 2, pp. 87-93, 1977.

J. L. Bentley, F. P. Preparata, and M. G. Faust, "Approximation algorithms for convex
hulls," Commun. ACM, vol. 25, no. 1, pp. 64-68, 1982.

F. P. Preparata and M. 1. Shamos, Computational geometry. an introduction. Springer-
Verlag New York, Inc., 1985, p. 390.

K. L. Clarkson and P. W. Shor, "Applications of random sampling in computational
geometry," Discrete & Computational Geometry, vol. 4, no. 5, pp. 387-421, 1989
1989.

P. M. Ferreira, "Entropy based unsupervised selection of data sets for improved model
fitting," in Proceedings of the 2016 International Joint Conference on Neural
Networks (World Congress on Computational Intelligence), Vancouver, Canada,
2016: IEEE.

G. Mestre et al., "An intelligent weather station," Sensors, vol. 15, no. 12, p. 29841,
2015.

A. E. Ruano ef al., "A neural-network based intelligent weather station," in Intelligent
Signal Processing (WISP), 2015 IEEE 9th International Symposium on, 2015, pp. 1-6.

W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous
activity," The bulletin of mathematical biophysics, journal article vol. 5, no. 4, pp.
115-133, 1943.

S. Haykin, Neural networks: A comprehensive foundation, 2nd ed. Prentice Hall,
1999.

A. Ruano, Artificial neural networks. Faro, Portugal: University of Algarve, Centre for
Intelligent Systems.

M. W. Gardner and S. R. Dorling, "Artificial neural networks (the multilayer
perceptron) - A review of applications in the atmospheric sciences," Atmospheric
Environment, vol. 32, no. 14-15, pp. 2627-2636, Aug 1998.

211

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. S. Broomhead and D. Lowe, "Multivariable Functional Interpolation and Adaptive
Networks," Complex Systems, vol. 2, pp. 321--355, 1988.

O. Kaynak, "Artificial neural networks and neural information processing," in Joint
International Conference Icann/Icinip, Istanbul, Turkey, 2003: Springer Berlin
Heidelberg.

A. E. Ruano, C. Cabrita, J. V. Oliveira, and L. T. Koczy, "Supervised training
algorithms for B-Spline neural networks and neuro-fuzzy systems," International
Journal of Systems Science, vol. 33, no. 8, pp. 689-711, Jun 2002.

A. E. Ruano, P. J. Fleming, C. Teixeira, K. Rodriguez-Vazquez, and C. M. Fonseca,
"Nonlinear identification of aircraft gas-turbine dynamics," Neurocomputing, vol. 55,
no. 3-4, pp. 551-579, Oct 2003.

A. E. Ruano, P. M. Ferreira, and C. M. Fonseca, "An overview of nonlinear
identification and control with neural networks," in Intelligent Control Systems using
Computational Intelligence Techniques, A. E. Ruano, Ed. (IEEE Control Engineering
Series, no. 70): Institution of Electrical Engineers, 2005, pp. 37-87.

T. Kavli and E. Weyer, "ASMOD (Adaptive Spline Modelling of Observation Data):
some theoretical and experimental results," presented at the Advances in Neural
Networks for Control and Systems, IEEE Colloquium on, Berlin, 1994.

T. Kavli, "ASMOD - An algorithm for adaptive spline modeling of observation data,"
International Journal of Control, vol. 58, no. 4, pp. 947-967, Oct 1993.

V. Vapnik, The nature of statistical learning theory, 2 ed. (Information Science and
Statistics). Springer-Verlag New York, 2000, p. 314.

C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no.
3, pp. 273-297, Sep 1995.

T. Thomas Frie, N. Cristianini, and C. Campbell, "The kernel-adatron algorithm: A
fast and simple learning procedure for support vector machines," presented at the
Proceedings of the Fifteenth International Conference on Machine Learning, 1998.

W. Sun, Ya-Xiang, Optimization Theory and Methods, 1 ed. Springer US, 2006.

D. Tsegay and A. Mebrahtu, "Multidimensional and multi-parameter fortran-based
curve fitting tools," MEJS, vol. 1, no. 1, p. 20, 2009.

K. Levenberg, "A method for the solution of certain problems in least squares," Quart.
Applied Math., vol. 2, pp. 164-168, 1944.

D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear
parameters," Journal of the Society for Industrial and Applied Mathematics, vol. 11,
no. 2, pp. 431-441, 1963.

A. E. B. Ruano, D. L. Jones, and P. J. Fleming, "A new formulation of the learning
problem for a neural network controller," in 30th IEEE Conference on Decision and
Control, Brighton, UK, 1991, vol. 1, pp. 865-866.

Y. Wang, M. Chang, H. Chen, and M. Q. Wang, "Application of RBF neural network
in intelligent fault diagnosis system," in International Conference on Soft Computing
Techniques and Engineering Application, Icsctea, 2013, vol. 250, pp. 561-566.

K. B. Kim and C. K. Kim, "Performance improvement of RBF network using ART2
algorithm and fuzzy logic system," in Advances in Artificial Intelligence, 2004, vol.
3339, pp. 853-860.

S. Papadimitriou, S. Mavroudi, L. Vladutu, and A. Bezerianos, "Generalized radial
basis function networks trained with instance based learning for data mining of
symbolic data," Applied Intelligence, vol. 16, no. 3, pp. 223-234, May-Jun 2002.

J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing
units," Neural Comput., vol. 1, no. 2, pp. 281-294, 1989.

212

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least-squares learning
algorithm for radial basis function networks," leee Transactions on Neural Networks,
vol. 2, no. 2, pp. 302-309, Mar 1991.

S. Chen, P. M. Grant, and C. F. N. Cowan, "Orthogonal least-squares algorithm for
training multioutput radial basis function networks," lee Proceedings-F Radar and
Signal Processing, vol. 139, no. 6, pp. 378-384, Dec 1992.

C.-M. Huang and F.-L. Wang, "An RBF network with OLS and EPSO algorithms for
real-time power dispatch," leee Transactions on Power Systems, vol. 22, no. 1, pp. 96-
104, Feb 2007.

D. Whitley, "A genetic algorithm tutorial," Statistics and Computing, vol. 4, no. 2, pp.
65-85, Jun 1994.

C. M. M. d. Fonseca, "Multiobjective genetic algorithms with application to control
engineering problems," PhD, Department of Automatic Control and Systems
Engineering, University of Sheffield, 1995.

A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multiobjective
evolutionary algorithms: A survey of the state of the art," Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 32-49, Mar 2011.

E. Zitzler, K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary
algorithms: Empirical results," Evolutionary Computation, vol. 8, no. 2, pp. 173-195,
2000.

C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in
multiobjective optimization," Evolutionary Computation, vol. 3, no. 1, pp. 1-16, 1995.

C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. 1. A unified formulation," Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 28, no. 1, pp.
26-37, 1998.

C. M. Fonseca and P. J. Fleming, "Multiobjective genetic algorithms made easy:
Selection, sharing and mating restriction," presented at the Genetic Algorithms in
Engineering Systems: Innovations and Applications, UK, 1995.

C. A. Teixeira, M. G. Ruano, A. E. Ruano, and W. C. A. Pereira, "A soft-computing
methodology for noninvasive time-spatial temperature estimation," /IEEE Transactions
on Biomedical Engineering, vol. 55, no. 2, pp. 572-580, Feb 2008.

P. M. Ferreira, E. A. Faria, and A. E. Ruano, "Neural network models in greenhouse
air temperature prediction," Neurocomputing, vol. 43, pp. 51-75, Mar 2002.

C. E. Shannon, "A Mathematical Theory of Communication," The Bell System
Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

W. Li, "Mutual information functions versus correlation functions," Journal of
Statistical Physics, journal article vol. 60, no. 5, pp. 823-837, 1990.

M. B. Stojanovic, M. M. Bozic, M. M. Stankovic, and Z. P. Stajic, "A methodology
for training set instance selection using mutual information in time series prediction,"
Neurocomputing, vol. 141, pp. 236-245, Oct 2 2014.

R. Mena, F. Rodriguez, M. Castilla, and M. R. Arahal, "A prediction model based on
neural networks for the energy consumption of a bioclimatic building," Energy and
Buildings, vol. 82, pp. 142-155, 10// 2014.

M. Rosenblatt, "Remarks on some nonparametric estimates of a density function " in
The Annals of Mathematical Statistics, 1956, vol. 27, pp. 832-837: Institute of
Mathematical Statistics.

E. Parzen, "On estimation of a probability density function and mode," The Annals of
Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

213

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]
[73]

[74]

[75]

[76]

R. Moddemeijer, "On estimation of entropy and mutual information of continuous
distributions," Signal Processing, vol. 16, no. 3, pp. 233-248, 1989/03/01 1989.

Y.-I. Moon, B. Rajagopalan, and U. Lall, "Estimation of mutual information using
kernel density estimators," Physical Review E, vol. 52, no. 3, pp. 2318-2321, 09/01/
1995.

F. Wilcoxon, "Individual comparisons by ranking methods," in Breakthroughs in
Statistics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New York,
NY: Springer-Verlag New York, 1992, pp. 196-202.

J. Demsar, "Statistical comparisons of classifiers over multiple data sets," Journal of
Machine Learning Research, vol. 7, pp. 1-30, Jan 2006.

0. R. Joseph, Computational geometry in C, 2 ed. Cambridge University Press, 1998.
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational geometry:
Algorithms and applications, 3rd ed. Berlin Heidelberg: Springer-Verlag 2008, p. 386.
H. Edelsbrunner, W. Brauer, G. Rozenberg, and A. Salomaa, Eds. Algorithms in
combinatorial geometry (EATCS Monographs in Theoretical Computer Science, no.
10). Springer Berlin Heidelberg, 1987, p. 423.

H. R. Khosravani, A. E. Ruano, and P. M. Ferreira, "A simple algorithm for convex
hull determination in high dimensions," in Intelligent Signal Processing (WISP), 2013
IEEFE 8th International Symposium on, 2013, pp. 109-114.

B. Griinbaum, G. M. Ziegler, Ed. Convex polytopes, 2 ed. (Graduate Texts in
Mathematics, no. 221). New York: Springer-Verlag, 2003.

R. Seidel, "Constructing higher-dimensional convex hulls at logarithmic cost per
face," presented at the Proceedings of the eighteenth annual ACM symposium on
theory of computing, Berkeley, California, USA, 1986.

B. Chazelle, "An optimal convex hull algorithm in any fixed dimension," Discrete &
Computational Geometry, journal article vol. 10, no. 4, pp. 377-409, 1993.

D. Wang, H. Qiao, B. Zhang, and M. Wang, "Online support vector machine based on
convex hull vertices selection," IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 4, pp. 593-609, Apr 2013.

J. Arturo Olvera-Lopez, J. Ariel Carrasco-Ochoa, J. Francisco Martinez-Trinidad, and
J. Kittler, "A review of instance selection methods," Artificial Intelligence Review,
vol. 34, no. 2, pp. 133-143, Aug 2010.

D. R. Wilson and T. R. Martinez, "Reduction techniques for instance-based learning
algorithms," Machine Learning, vol. 38, no. 3, pp. 257-286, Mar 2000.

T. M. Cover and P. E. Hart, "Nearest neighbor pattern classification," [EEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21-+, 1967 1967.

P. Hart, "The condensed nearest neighbor rule (Corresp.)," IEEE Transactions on
Information Theory, vol. 14, no. 3, pp. 515-516, 1968.

H. Liu and H. Motoda, Instance selection and construction for data mining. Springer
US, 2013.

G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour, "An algorithm for a selective
nearest neighbor decision rule (Corresp.)," IEEE Transactions on Information Theory,
vol. 21, no. 6, pp. 665-669, 1975.

K. Gowda and G. Krishna, "The condensed nearest neighbor rule using the concept of
mutual nearest neighborhood (Corresp.)," IEEE Transactions on Information Theory,
vol. 25, no. 4, pp. 488-490, 1979.

C.-H. Chou, B.-H. Kuo, and F. Chang, "The generalized condensed nearest neighbor
rule as a data reduction method," in [8th International Conference on Pattern
Recognition (ICPR 2006), Hong Kong, PEOPLES R CHINA, 2006, pp. 556-559,
2006.

214

[77]

[78]

[79]

[80]

[81]
[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-2, no. 3, pp. 408-
421, 1972.

I. Tomek, "An experiment with the edited nearest-neighbor rule," IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-6, no. 6, pp. 448-452, 1976.

H. Brighton and C. Mellish, "Advances in instance selection for instance-based
learning algorithms," Data Mining and Knowledge Discovery, vol. 6, no. 2, pp. 153-
172, Apr 2002.

J. R. Cano, F. Herrera, and M. Lozano, "Using evolutionary algorithms as instance
selection for data reduction in KDD: An experimental study," IEEE Transactions on
Evolutionary Computation, vol. 7, no. 6, pp. 561-575, Dec 2003.

P.-Y. Yin, Modeling, analysis, and applications in metaheuristic computing:
Advancements and trends. 1GI Publishing, 2012, p. 463.

L. I. Kuncheva, "Editing for the k-nearest neighbors rule by a genetic algorithm,"
Pattern Recognition Letters, vol. 16, no. 8, pp. 809-814, 8// 1995.

L. I. Kuncheva, "Fitness functions in editing k-NN reference set by genetic
algorithms," Pattern Recognition, vol. 30, no. 6, pp. 1041-1049, 6// 1997.

L. I. Kuncheva and J. C. Bezdek, "Nearest prototype classification: Clustering, genetic
algorithms, or random search?," IEEE Transactions on Systems Man and Cybernetics
Part C-Applications and Reviews, vol. 28, no. 1, pp. 160-164, Feb 1998.

V. Cerveron and F. J. Ferri, "Another move toward the minimum consistent subset: A
tabu search approach to the condensed nearest neighbor rule," IEEE Transactions on
Systems Man and Cybernetics Part B-Cybernetics, vol. 31, no. 3, pp. 408-413, Jun
2001.

H. B. Zhang and G. Y. Sun, "Optimal reference subset selection for nearest neighbor
classification by tabu search," Pattern Recognition, vol. 35, no. 7, pp. 1481-1490, Jul
2002, Art. no. Pii s0031-3203(01)00137-6.

F. Glover and M. Laguna, "Tabu Searchx," in Handbook of Combinatorial
Optimization, M. P. Pardalos, D.-Z. Du, and L. R. Graham, Eds. New York, NY:
Springer New York, 2013, pp. 3261-3362.

J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and J. F. Martinez-Trinidad, "Sequential
search for decremental edition," Intelligent Data FEngineering and Automated
Learning Ideal 2005, Proceedings, vol. 3578, pp. 280-285, 2005 2005.

J. Kittler, "Feature selection and extraction," in Handbook of pattern recognition and
image processing, T. Young and K. Fu, Eds. New York: Academic Press, 1986, pp.
203-217.

J. A. Olvera-Lopez, J. F. Martinez-Trinidad, and J. A. Carrasco-Ochoa, "Restricted
sequential floating search applied to object selection," Machine Learning and Data
Mining in Pattern Recognition, Proceedings, vol. 4571, pp. 694-702, 2007 2007.

P. Pudil, F. Ferri, J. Novovicova, and K. J, "Floating search methods for feature
selection with nonmonotonic criterion functions," in Proceedings of the 12th
international conference on pattern recognition, 1994, pp. 279-283: IEEE Computer
Society Press.

Y. G. Li, Z. H. Hu, Y. Z. Cai, and W. D. Zhang, "Support vector based prototype
selection method for nearest neighbor rules," Advances in Natural Computation, Pt 1,
Proceedings, vol. 3610, pp. 528-535, 2005 2005.

A. Srisawat, T. Phienthrakul, and B. Kijsirikul, "SV-kNNC: An algorithm for
improving the efficiency of k-nearest neighbor," Pricai 2006: Trends in Artificial
Intelligence, Proceedings, vol. 4099, pp. 975-979, 2006 2006.

215

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

R. A. Mollineda, F. J. Ferri, and E. Vidal, "An efficient prototype merging strategy for
the condensed 1-NN rule through class-conditional hierarchical clustering," Pattern
Recognition, vol. 35, no. 12, pp. 2771-2782, Dec 2002, Art. no. Pii s0031-
3203(01)00208-4.

C.J. Veenman and M. J. T. Reinders, "The nearest subclass classifier: A compromise
between the nearest mean and nearest neighbor classifier," IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1417-1429, Sep 2005.
C. J. Veenman, M. J. T. Reinders, and E. Backer, "A maximum variance cluster
algorithm," /IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 9, pp. 1273-1280, Sep 2002.

J. Arturo Olvera-Lopez, J. Ariel Carrasco-Ochoa, and J. Francisco Martinez-Trinidad,
"Object selection based on clustering and border objects," in Computer Recognition
Systems 2, M. Kurzynski, E. Puchala, M. Wozniak, and A. Zolnierek, Eds. Berlin,
Heidelberg: Springer, 2007, pp. 27-34.

R. Paredes and E. Vidal, "Weighting prototypes. A new editing approach," in /5th
International Conference on Pattern Recognition (ICPR-2000), Barcelona, Spain,
2000, pp. 25-28, 2000.

J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and J. F. Martinez-Trinidad, "Prototype
selection via prototype relevance," Progress in Pattern Recognition, Image Analysis
and Applications, Proceedings, vol. 5197, pp. 153-160, 2008 2008.

D. R. Wilson and T. R. Martinez, "Improved heterogeneous distance functions,"
Journal of Artificial Intelligence Research, vol. 6, pp. 1-34, 1997 1997.

A. Guillen, L. J. Herrera, G. Rubio, H. Pomares, A. Lendasse, and 1. Rojas, "New
method for instance or prototype selection using mutual information in time series
prediction," Neurocomputing, vol. 73, no. 10-12, pp. 2030-2038, 6// 2010.

T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," in
Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp.
14-21.

J. C. Riquelme, J. S. Aguilar-Ruiz, and M. Toro, "Finding representative patterns with
ordered projections," Pattern Recognition, vol. 36, no. 4, pp. 1009-1018, Apr 2003,
Art. no. Pii s0031-3203(02)00119-x.

B. L. Narayan, C. A. Murthy, and S. K. Pal, "Maxdiff kd-trees for data condensation,"
Pattern Recognition Letters, vol. 27, no. 3, pp. 187-200, Feb 2006.

J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best
matches in logarithmic expected time," ACM Trans. Math. Softw., vol. 3, no. 3, pp.
209-226, 1977.

P. Malosek and V. Stopjakova, "PCA data preprocessing for neural network-based
detection of parametric defects in analog IC," in IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems, 2006, pp. 131-135.

A. Lopez-Chau, L. L. Garcia, J. Cervantes, X. Li, and W. Yu, "Data selection using
decision tree for SVM classification," presented at the 24th International Conference
on Tools with Artificial Intelligence (ICTAI), 2012.

J. Nalepa and M. Kawulok, "A memetic algorithm to select training data for support
vector machines," presented at the Proceedings of the 2014 conference on genetic and
evolutionary computation, Vancouver, BC, Canada, 2014.

A. Lopez Chau, X. Li, and W. Yu, "Large data sets classification using convex-
concave hull and support vector machine," Soft Computing, vol. 17, no. 5, pp. 793-
804, May 2013.

216

[111]
[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

E. W. Weisstein. (2014). Plane. Available: http://mathworld.wolfram.com/Plane.html
E. W. Weisstein. (2014). Point-Plane Distance. Available:
http://mathworld.wolfram.com/Point-PlaneDistance.html

C. B. Barber. (1995). Imprecision in Qhull. Available: http://www.qghull.org/html/gh-
impre.htm

K. Sastry and D. Goldberg, "Search methodologies," in Introductory Tutorials in
Optimization and Decision Support Techniques, E. K. K. Burke, Graham, Ed.:
Springer US, 2005.

A. Frank and A. Asuncion, "UCI machine learning repository," ed, 2013.

E. Hajimani, M. G. Ruano, and A. E. Ruano, "MOGA design for neural networks
based system for automatic diagnosis of cerebral vascular accidents," in Intelligent
Signal Processing (WISP), 2015 IEEE 9th International Symposium on, 2015, pp. 1-6.
M. G. Ruano, E. Hajimani, and A. E. Ruano, "A radial basis function classifier for the
automatic diagnosis of cerebral vascular accidents," presented at the GMEPE/PAHCE,
Madrid, Spain, 2016.

C. E. Rasmussen et al (1996). Delve datasets. Available:
http://www.cs.toronto.edu/~delve/data/datasets.html

A. E. Ruano et al., "Improving a neural networks based HVAC predictive control
approach," in [Intelligent Signal Processing (WISP), 2015 IEEE 9th International
Symposium on, 2015, pp. 1-6.

H. Khosravani, M. Castilla, M. Berenguel, A. Ruano, and P. Ferreira, "A comparison
of energy consumption prediction models based on neural networks of a bioclimatic
building," Energies, vol. 9, no. 1, p. 57, 2016.

A. Ruano et al., "PVM-based intelligent predictive control of HVAC systems," /FAC-
PapersOnLine, vol. 49, no. 5, pp. 371-376, 2016.

L. Perez-Lombard, J. Ortiz, and C. Pout, "A review on buildings energy consumption
information," Energy and Buildings, vol. 40, no. 3, pp. 394-398, 2008 2008.

P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Abd. Majid, "A global
review of energy consumption, CO2 emissions and policy in the residential sector
(with an overview of the top ten CO2 emitting countries)," Renewable & Sustainable
Energy Reviews, vol. 43, pp. 843-862, Mar 2015.

H.-x. Zhao and F. Magoules, "A review on the prediction of building energy
consumption,”" Renewable & Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586-
3592, Aug 2012.

J. Liang and R. Du, "Model-based fault detection and diagnosis of HVAC systems
using support vector machine method," International Journal of Refrigeration-Revue
Internationale Du Froid, vol. 30, no. 6, pp. 1104-1114, Sep 2007.

L. Suganthi and A. A. Samuel, "Energy models for demand forecasting-A review,"
Renewable & Sustainable Energy Reviews, vol. 16, no. 2, pp. 1223-1240, Feb 2012.

F. Manzano-Agugliaro, F. G. Montoya, A. Sabio-Ortega, and A. Garcia-Cruz,
"Review of bioclimatic architecture strategies for achieving thermal comfort,"
Renewable & Sustainable Energy Reviews, vol. 49, pp. 736-755, Sep 2015.

C. Gallo, "Bioclimatic architecture," Renewable Energy, vol. 5, no. 5-8, pp. 1021-
1027, Aug 1994.

A. F. Tzikopoulos, M. C. Karatza, and J. A. Paravantis, "Modeling energy efficiency
of bioclimatic buildings," Energy and Buildings, vol. 37, no. 5, pp. 529-544, May
2005.

R. Albatici and F. Passerini, "Bioclimatic design of buildings considering heating
requirements in Italian climatic conditions. A simplified approach," Building and
Environment, vol. 46, no. 8, pp. 1624-1631, Aug 2011.

217

http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/Point-PlaneDistance.html
http://www.qhull.org/html/qh-impre.htm
http://www.qhull.org/html/qh-impre.htm
http://www.cs.toronto.edu/~delve/data/datasets.html

[131]

[132]

[133]

[134]

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in
environmental protection: A review," Renewable & Sustainable Energy Reviews, vol.
15, no. 3, pp. 1513-1524, Apr 2011.

Y. Hua, M. Oliphant, and E. Jing Hu, "Development of renewable energy in Australia
and China: A comparison of policies and status," Renewable Energy, vol. 85, pp. 1044
- 1051, 2016.

N. Scarlat, J.-F. Dallemand, F. Monforti-Ferrario, M. Banja, and V. Motola,
"Renewable energy policy framework and bioenergy contribution in the European
Union — An overview from national renewable energy action plans and progress
reports," Renewable and Sustainable Energy Reviews, vol. 51, pp. 969 - 985, 2015.

A. S. Ahmad et al., "A review on applications of ANN and SVM for building
electrical energy consumption forecasting," Renewable & Sustainable Energy
Reviews, vol. 33, pp. 102-109, May 2014.

N. Fumo, "A review on the basics of building energy estimation," Renewable &
Sustainable Energy Reviews, vol. 31, pp. 53-60, Mar 2014.

S. A. Kalogirou, "Artificial neural networks in energy applications in buildings,"
International Journal of Low Carbon Technologies, vol. 1, no. 3, p. 15, 2006.

A. Foucquier, S. Robert, F. Suard, L. Stephan, and A. Jay, "State of the art in building
modelling and energy performances prediction: A review," Renewable & Sustainable
Energy Reviews, vol. 23, pp. 272-288, Jul 2013.

M. S. Al-Homoud, "Computer-aided building energy analysis techniques," Building
and Environment, vol. 36, no. 4, pp. 421-433, May 2001.

S. W. Wang and X. H. Xu, "Simplified building model for transient thermal
performance estimation using GA-based parameter identification," International
Journal of Thermal Sciences, vol. 45, no. 4, pp. 419-432, Apr 2006.

X. Lu, T. Lu, C. J. Kibert, and M. Viljanen, "Modeling and forecasting energy
consumption for heterogeneous buildings using a physical-statistical approach,"
Applied Energy, vol. 144, pp. 261-275, Apr 15 2015.

A. Lomet, F. Suard, and D. Cheze, "Statistical modeling for real domestic hot water
consumption forecasting," International Conference on Solar Heating and Cooling for
Buildings and Industry, Shc 2014, vol. 70, pp. 379-387, 2015 2015.

Z. Ma, H. L1, Q. Sun, C. Wang, A. Yan, and F. Starfelt, "Statistical analysis of energy
consumption patterns on the heat demand of buildings in district heating systems,"
Energy and Buildings, vol. 85, pp. 464-472, Dec 2014.

N. Fumo and M. A. R. Biswas, "Regression analysis for prediction of residential
energy consumption," Renewable & Sustainable Energy Reviews, vol. 47, pp. 332-
343, Jul 2015.

A. Hernandez Neto and F. A. Sanzovo Fiorelli, "Comparison between detailed model
simulation and artificial neural network for forecasting building energy consumption,"
Energy and Buildings, vol. 40, no. 12, pp. 2169-2176, 2008 2008.

M. Aydinalp-Koksal and V. I. Ugursal, "Comparison of neural network, conditional
demand analysis, and engineering approaches for modeling end-use energy
consumption in the residential sector," Applied Energy, vol. 85, no. 4, pp. 271-296,
Apr 2008.

P. M. Ferreira, A. E. Ruano, R. Pestana, and L. T. Kéczy, "Evolving RBF predictive
models to forecast the Portuguese electricity consumption " presented at the 2nd IFAC
International Conference on Intelligent Control Systems and Signal Processing,
Turkey, 2009.

218

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

K. Li, H. Su, and J. Chu, "Forecasting building energy consumption using neural
networks and hybrid neuro-fuzzy system: A comparative study," FEnergy and
Buildings, vol. 43, no. 10, pp. 2893-2899, Oct 2011.

S. Karatasou, M. Santamouris, and V. Geros, "Modeling and predicting building's
energy use with artificial neural networks: Methods and results," Energy and
Buildings, vol. 38, no. 8, pp. 949-958, Aug 2006.

F. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, "Forecasting electricity
consumption: A comparison of regression analysis, neural networks and least squares
support vector machines," International Journal of Electrical Power & Energy
Systems, vol. 67, pp. 431-438, May 2015.

B. Dong, C. Cao, and S. E. Lee, "Applying support vector machines to predict
building energy consumption in tropical region," Energy and Buildings, vol. 37, no. 5,
pp. 545-553, May 2005.

H. C. Jung, J. S. Kim, and H. Heo, "Prediction of building energy consumption using
an improved real coded genetic algorithm based least squares support vector machine
approach," Energy and Buildings, vol. 90, pp. 76-84, Mar 1 2015.

L. Suganthi, S. Iniyan, and A. A. Samuel, "Applications of fuzzy logic in renewable
energy systems - A review," Renewable & Sustainable Energy Reviews, vol. 48, pp.
585-607, Aug 2015.

L. Ciabattoni, M. Grisostomi, G. Ippoliti, and S. Longhi, "Fuzzy logic home energy
consumption modeling for residential photovoltaic plant sizing in the new Italian
scenario," Energy, vol. 74, pp. 359-367, Sep 1 2014.

K. Li and H. Su, "Forecasting building energy consumption with hybrid genetic
algorithm-hierarchical adaptive network-based fuzzy inference system," Energy and
Buildings, vol. 42, no. 11, pp. 2070-2076, Nov 2010.

C. Hamzacebi and H. A. Es, "Forecasting the annual electricity consumption of
Turkey using an optimized grey model," Energy, vol. 70, pp. 165-171, Jun 1 2014.
Y.-S. Lee and L.-I. Tong, "Forecasting energy consumption using a grey model
improved by incorporating genetic programming," Energy Conversion and
Management, vol. 52, no. 1, pp. 147-152, Jan 2011.

J. J. Guo, J. Y. Wu, and R. Z. Wang, "A new approach to energy consumption
prediction of domestic heat pump water heater based on grey system theory," Energy
and Buildings, vol. 43, no. 6, pp. 1273-1279, Jun 2011.

P. Dagnely, T. Ruette, and T. Tourwe, "Predicting hourly energy consumption. Can
you beat an autoregressive model?," in 24th Annual Machine Learning Conference of
Belgium and the Netherlands, Benelearn, 2015.

Estacion Experimental "Las Palmerillas", C. R. d. Almeria, Ed. Datos meteorologicos.
Camparias agricolas 76/77 - 94/95. 1997, p. 54.

M. A. Castilla, Jos¢ Domingo Rodriguez, Francisco de Asis Berenguel, Manuel,
Comfort control in buildings, 1 ed. (Advances in Industrial Control). London,
England: Springer London, 2014, pp. XXI1V, 237.

M. R. Heras, M. J. Jimenez, M. J. San Isidro, L. F. Zarzalejo, and M. Perez, "Energetic
analysis of a passive solar design, incorporated in a courtyard after refurbishment,
using an innovative cover component based in a sawtooth roof concept," Solar
Energy, vol. 78, no. 1, pp. 85-96, 2005 2005.

K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are
universal approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989 1989.

A. M. Fraser and H. L. Swinney, "Independent coordinates for strange attractors from
mutual information," Physical Review A, vol. 33, no. 2, pp. 1134-1140, Feb 1986.

219

[164]

[165]

[166]

[167]

[168]

[169]
[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]
[178]

[179]

[180]

[181]

[182]

M. B. Kennel, R. Brown, and H. D. I. Abarbanel, "Determining embedding dimension
for phase-spece reconstruction using a geometrical construction," Physical Review A,
vol. 45, no. 6, pp. 3403-3411, Mar 15 1992.

D. W. Scott and S. R. Sain, "Multidimensional density estimation," in Handbook of
Statistics: Data Mining and Data Visualization: Elsevier, 2005.

P. M. Ferreira, A. E. Ruano, and I. Ieee, "Exploiting the separability of linear and
nonlinear parameters in radial basis function networks," in Adaptive Systems for
Signal Processing, Communications and Control Symposium, 2000, pp. 321-326:
IEEE.

P. M. Ferreira and A. E. Ruano, "On-line sliding-window Levenberg-Marquardt
methods for neural network models," in International Symposium on Intelligent Signal
Processing, 2007, pp. 163-168: 1IEEE.

P. M. Ferreira and A. E. Ruano, "Online sliding-window methods for process model
adaptation," IEEE Transactions on Instrumentation and Measurement, vol. 58, pp.
3012-3020, 2009.

B. Widrow and M. A. Lehr, "30 years of adaptive neural networks - perceptron,
madaline and backpropagation," 1990, vol. 78, no. 9, pp. 1415-1442: IEEE.

O. Nelles, Nonlinear system identification, 1 ed. Springer-Verlag Berlin Heidelberg,
2001, p. 786.

V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential
learning with neural networks," Neural Computation, vol. 5, no. 6, pp. 954-975, Nov
1993.

Y. LeCun, L. Bottou, G. B. Orr, and K. R. Muller, "Efficient backprop," Neural
Networks: Tricks of the Trade, vol. 1524, pp. 9-50, 1998 1998.

L. S. H. Ngia, J. Sjoberg, and M. Viberg, "Adaptive neural nets filter using a recursive
Levenberg-Marquardt search direction," in 32nd Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, Ca, 1998, pp. 697-701, 1998.

V. S. Asirvadam, S. F. McLoone, and G. W. Irwin, "Parallel and separable recursive
Levenberg-Marquardt training algorithm," Neural Networks for Signal Processing Xii,
Proceedings, pp. 129-138, 2002 2002.

J. Nagumo and A. Noda, "A learning method for system identification," [EEE
Transactions on Automatic Control, vol. 12, no. 3, pp. 282-287, 1967.

P. C. Parks and J. Militzer, "A comparison of five algorithms for the training of
CMAC memories for learning control systems," Automatica, vol. 28, no. 5, pp. 1027-
1035, 1992.

H. Akaike, "A new look at the statistical model identification," IEEE Transactions on
Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

H. Chen, Y. Gong, and X. Hong, "Online modeling with tunable RBF network," IEEE
Transactions on Cybernetics, vol. 43, no. 3, pp. 935-947, Jun 2013.

N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and
accurate online sequential learning algorithm for feedforward networks," IEEE
Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, Nov 2006.

J. Platt, "A resource-allocating network for function interpolation," Unsupervised
Learning: Foundations of Neural Computation, pp. 341-353, 1999 1999.

Y. W. Lu, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for
function approximation using minimal radial basis function neural networks," Neural
Computation, vol. 9, no. 2, pp. 461-478, Feb 15 1997.

J.-c. Yin, Z.-j. Zou, and F. Xu, "Sequential learning radial basis function network for
real-time tidal level predictions," Ocean Engineering, vol. 57, pp. 49-55, Jan 1 2013.

220

[183]

[184]

[185]

[186]

[187]

[188]
[189]

[190]

[191]

[192]

[193]

H.-G. Han, Q.-1. Chen, and J.-F. Qiao, "An efficient self-organizing RBF neural
network for water quality prediction," Neural Networks, vol. 24, no. 7, pp. 717-725,
Sep 2011.

G. B. Huang, P. Saratchandran, and N. Sundararajan, "An efficient sequential learning
algorithm for growing and pruning RBF (GAP-RBF) networks," IEEE Transactions
on Systems Man and Cybernetics Part B-Cybernetics, vol. 34, no. 6, pp. 2284-2292,
Dec 2004.

Y. Jun and M. J. Er, "An enhanced online sequential extreme learning machine
algorithm," in Chinese Control and Decision Conference, 2008, vol. 1-11, pp. 2902-
2907.

D. K. S. Tok, D.-L. Yu, C. Mathews, D.-Y. Zhao, and Q.-M. Zhu, "Adaptive structure
radial basis function network model for processes with operating region migration,"
Neurocomputing, vol. 155, pp. 186-193, May 1 2015.

A. Alexandridis, H. Sarimveis, and G. Bafas, "A new algorithm for online structure
and parameter adaptation of RBF networks," Neural Networks, vol. 16, no. 7, pp.
1003-1017, Sep 2003.

A. Alexandridis, "Evolving RBF neural networks for adaptive soft-sensor design,"
International Journal of Neural Systems, vol. 23, no. 6, Dec 2013, Art. no. 1350029.
X. P. Lai and B. Li, "An efficient learning algorithm generating small RBF neural
networks," Neural Network World, vol. 15, no. 6, pp. 525-533, 2005 2005.

V. S. Asirvadam, S. F. McLoone, and R. Palaniappan, "Bio-signal identification using
simple growing RBF-network (OLACA)," in International Conference on Intelligent
& Advanced Systems, 2007, vol. 1-3, pp. 263-267.

G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning
scheme of feedforward neural networks," in /EEE International Joint Conference on
Neural Networks (IJCNN), Budapest, HUNGARY, 2004, pp. 985-990, 2004.

G. B. Huang and C. K. Siew, "Extreme learning machine: RBF network case," in 8th
International Conference on Control, Automation, Robotics and Vision, 2004, vol. 1-
3, pp. 1029-1036.

G. B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and
pruning RBF (GGAP-RBF) neural network for function approximation," [EEE
Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, Jan 2005.

221

