
HAMID REZA KHOSRAVANI

ARTIFICIAL NEURAL NETWORK MODELS:

DATA SELECTION AND ONLINE ADAPTATION

UNIVERSIDADE DO ALGARVE

Faculdade de Ciências e Tecnologia

2017

HAMID REZA KHOSRAVANI

ARTIFICIAL NEURAL NETWORK MODELS:

DATA SELECTION AND ONLINE ADAPTATION

Doutoramento em Engenheira Informática

(Especialidade em Inteligência Artificial)

Trabalho efeuado sob a orientação de:

António Eduardo de Barros Ruano e Pedro Miguel Frazão F. Ferreira

UNIVERSIDADE DO ALGARVE

Faculdade de Ciências e Tecnologia

2017

ARTIFICIAL NEURAL NETWORK MODELS:

DATA SELECTION AND ONLINE ADAPTATION

Declaração de autoria de trabalho

Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados

estão devidamente citados no texto e constam da listagem de referências incluída.

Hamid Reza Khosravani

Copyright: Hamid Reza Khosravani

A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no

Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra,

independentemente do meio utilizado, bem como de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de

investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor

respetivos.

To my love, Elmira

To my parents, Parvin and Mehdi

To my brother, Ehsan

Acknowledgements

Undoubtedly doing this PhD would have not been possible without the sincere support and

guidance that I received from many people throughout four years studying at the University of

Algarve. First of all, I would like to express my special thanks to my supervisors Prof.

Antonio Ruano and Prof. Pedro Ferreira for all their precious advices and encouragements

allowing me to grow as a research scientist. They were not only continuously supporting me

but also gave me a chance to find myself in academic atmosphere.

I greatly appreciate the Erasmus Mundus SALAM scholarship program for kindly funding me

towards this PhD. I also would like to particularly acknowledge Prof. Hamid Shahbazkia as

the coordinator of SALAM scholarship program for all his supports during these years.

Many thanks also to my friend, Sergio Silva, as the CSI laboratory’s administrator for his

non-stop help and support in providing all stuffs that I needed to proceed my PhD. I also

would like to appreciate Prof. Eslam Nazemi who was one the most influent people in my

academic life for his great guidance towards my PhD.

My deepest acknowledgement goes to my beloved, resilient and patient wife Elmira for

bearing and accompanying me shoulder to shoulder in ups and downs throughout last four

years.

Last but not least, I would like to express my special appreciate to my parents and my brother

Ehsan for their ever support and encouragement during my life that enabled me to achieve

this goal.

I

Abstract

Energy consumption has been increasing steadily due to globalization and industrialization.

Studies have shown that buildings have the biggest proportion in energy consumption; for

example in European Union countries, energy consumption in buildings represents around

40% of the total energy consumption. Hence this PhD was intended towards managing the

energy consumed by Heating, Ventilating and Air Conditioning (HVAC) systems in buildings

benefiting from Model Predictive Control (MPC) technique. To achieve this goal, artificial

intelligence models such as neural networks and Support Vector Machines (SVM) have been

proposed because of their high potential capabilities of performing accurate nonlinear

mappings between inputs and outputs in real environments which are not noise-free. In this

PhD, Radial Basis Function Neural Networks (RBFNN) as a promising class of Artificial

Neural Networks (ANN) were considered to model a sequence of time series processes where

the RBFNN models were built using Multi Objective Genetic Algorithm (MOGA) as a design

platform. Regarding the design of such models, two main challenges were tackled; data

selection and model adaptation.

Since RBFNNs are data driven models, the performance of such models relies, to a good

extent, on selecting proper data throughout the design phase, covering the whole input-output

range in which they will be employed. The convex hull algorithms can be applied as methods

for data selection; however the use of conventional implementations of these methods in high

dimensions, due to their high complexity, is not feasible. As the first phase of this PhD, a new

randomized approximation convex hull algorithm called ApproxHull was proposed for high

dimensions so that it can be used in an acceptable execution time, and with low memory

requirements. Simulation results showed that applying ApproxHull as a filter data selection

method (i.e., unsupervised data selection method) could improve the performance of the

classification and regression models, in comparison with random data selection method. In

addition, ApproxHull was employed in real applications in terms of three case studies. The

first two were in association with applying predictive models for energy saving. The last case

study was related to segmentation of lesion areas in brain Computed Tomography (CT)

images. The evaluation results showed that applying ApproxHull in MOGA could result in

models with an acceptable level of accuracy. Specifically, the results obtained from the third

case study demonstrated that ApproxHull is capable of being applied on large size data sets in

high dimensions. Besides the random selection method, it was also compared with an entropy

based unsupervised data selection method and a hybrid method involving ApproxHull and the

II

entropy based method. Based on the simulation results, for most cases, ApproxHull and the

hybrid method achieved a better performance than the others.

In the second phase of this PhD, a new convex-hull-based sliding window online adaptation

method was proposed. The goal was to update the offline predictive RBFNN models used in

HVAC MPC technique, where these models are applied to processes in which the data input-

output range changes over time. The idea behind the proposed method is capturing a new

arriving point at each time instant which reflects a new range of data by comparing the point

with current convex hull presented via ApproxHull. In this situation the underlying model’s

parameters are updated based on the new point and a sliding window of some past points. The

simulation results showed that not only the proposed method could efficiently update the

model while a good level of accuracy is kept but also it was comparable with other methods.

Keywords: Neural Networks; Multi-Objective Genetic Algorithm; Data Selection; Online

Adaptation.

III

Resumo

Devido aos processos de industrialização e globalização o consumo de energia tem

aumentado de forma contínua. A investigação sobre o consumo mostra que os edifícios

consomem a maior fatia de energia. Por exemplo nos países da União Europeia essa fatia

corresponde a cerca de 40% de toda a energia consumida. Assim, esta tese de Doutoramento

tem um objetivo prático de contribuir para melhorar a gestão da energia consumida por

sistemas Heating, Ventilating and Air Conditioning (HVAC) em edifícios, no âmbito de uma

estratégia de controlo preditivo baseado em modelos. Neste contexto foram já propostos

modelos baseados em redes neuronais artificiais e máquinas de vetores de suporte, para

mencionar apenas alguns. Estas técnicas têm uma grande capacidade de modelar relações não-

lineares entre entradas e saídas de sistemas, e são aplicáveis em ambientes de operação, que,

como sabemos, estão sujeitos a várias formas de ruído. Nesta tese foram consideradas redes

neuronais de função de base radial, uma técnica consolidada no contexto da modelação de

séries temporais. Para desenhar essas redes foi utilizada uma ferramenta baseada num

algoritmo genético multi-objectivo. Relativamente ao processo de desenho destes modelos,

esta tese versa sobre dois aspetos menos estudados: a seleção de dados e a adaptação em linha

dos modelos.

Uma vez que as redes neuronais artificiais são modelos baseados em dados, a sua

performance depende em boa medida da existência de dados apropriados e representativos do

sistema/processo, que cubram toda a gama de valores que a representação entrada/saída do

processo/sistema gera. Os algoritmos que determinam a figura geométrica que envolve todos

os dados, denominados algoritmos convex hull, podem ser aplicados à tarefa de seleção de

dados. Contudo a utilização das implementações convencionais destes algoritmos em

problemas de grane dimensionalidade não é viável do ponto de vista prático. Numa primeira

fase deste trabalho foi proposto um novo método randomizado de aproximação ao convex

hull, cunhado com o nome ApproxHull, apropriado para conjuntos de dados de grande

dimensão, de forma a ser viável do ponto de vista das aplicações práticas. Os resultados

experimentais mostraram que a aplicação do ApproxHull como método de seleção de dados

do tipo filtro, ou seja, não supervisionado, pode melhorar o desempenho de modelos em

problemas de classificação e regressão, quando comparado com a seleção aleatória de dados.

O ApproxHull foi também aplicado em três casos de estudo relativos a aplicações reais. Nos

dois primeiros casos no contexto do desenvolvimento de modelos preditivos para sistemas na

área da eficiência energética. O terceiro caso de estudo consiste no desenvolvimento de

IV

modelos de classificação para uma aplicação na área da segmentação de lesões em imagens de

tomografia computorizada. Os resultados revelaram que da aplicação do método proposto

resultaram modelos com uma precisão aceitável. Do ponto de vista da aplicabilidade do

método, os resultados mostraram que o ApproxHull pode ser utilizado em conjuntos de dados

grandes e com dados de grande dimensionalidade. Para além da comparação com a seleção

aleatória de dados, o método foi também comparado com um método de seleção de dados

baseado no conceito de entropia e com um método híbrido que resulta da combinação do

ApproxHull com o método entrópico. Com base nos resultados experimentais apurou-se que

na maioria dos casos estudados o método híbrido conseguiu melhor desempenho que os

restantes.

Numa segunda fase do trabalho foi proposto um novo método de adaptação em linha com

base no algoritmo ApproxHull e numa janela deslizante no tempo. Uma vez que os processos

e sistemas na envolvente do sistema HVAC são variantes no tempo e dinâmicos, o objetivo

foi aplicar o método proposto para adaptar em linha os modelos que foram primeiramente

obtidos fora de linha. A ideia base do método proposto consiste em comparar cada novo par

entrada/saída com o convex hull conhecido, e determinar se o novo par tem dados situados

fora da gama conhecida. Nessa situação os parâmetros dos modelos são atualizados com base

nesse novo ponto e num conjunto de pontos numa determinada janela temporal deslizante. Os

resultados experimentais demonstraram não só que o novo método é eficiente na atualização

dos modelos e em mantê-los num bom nível de precisão, mas também que era comparável a

outros métodos existentes.

Palavras-chave: Redes Neuronais; Algoritmo Genético Multi-Objectivo; Seleção de dados;

Adaptação on-line.

V

Contents

Abstract ... I

Resumo ... III

List of Tables .. XI

List of Figures .. XV

List of Algorithms ... XXI

List of Acronyms .. XXIII

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Main contributions .. 2

1.3. Thesis structure ... 5

2. Theoretical background .. 7

2.1. Introduction .. 7

2.2. Artificial Neural Networks ... 7

2.2.1. Multi-Layer Perceptron Neural Network .. 8

2.2.2. Radial Basis Function Neural Network ... 10

2.2.3. B-Spline Network .. 11

2.3. Support Vector Machines ... 13

2.4. Learning methods ... 15

2.4.1. Supervised learning methods ... 17

2.4.1.1. Steepest decent method .. 18

2.4.1.1.1. Back propagation technique .. 19

2.4.1.2. Newton’s method .. 20

2.4.1.3. Quasi-Newton method .. 21

2.4.1.4. Gauss-Newton method ... 21

2.4.1.5. Levenberg-Marquardt method .. 23

2.4.1.6. Four strategies for training RBFNNs .. 25

2.4.1.7. Termination criteria in training process .. 26

2.5. Performance Criteria ... 27

2.6. Genetic Algorithm .. 29

2.6.1. Selection .. 29

2.6.2. Recombination ... 31

VI

2.6.3. Mutation... 34

2.6.4. Replacement .. 34

2.6.5. Multi-Objective Genetic Algorithm .. 34

2.7. Neural network based model design by MOGA .. 37

2.7.1. Specification of 𝝁𝒑 in classification problems .. 38

2.7.2. Specification of 𝝁𝒑 in regression problems .. 38

2.7.2.1. Specification of 𝝁𝒑 in time series prediction problems ... 38

2.7.3. Model representation in MOGA .. 39

2.7.4. Model design cycle .. 40

2.8. Information Theory ... 41

2.9. Overview of two statistical tests ... 42

2.9.1. Sign test ... 42

2.9.2. Wilcoxon signed-ranks test ... 42

3. Convex hull algorithms and state of the art.. 45

3.1. Introduction .. 45

3.2. An overview of convex hull algorithms ... 45

3.3. Introduction of convex hull algorithms in two and three dimensions 47

3.3.1. Graham’s scan ... 47

3.3.2. Jarvis’s march .. 49

3.3.3. Quickhull ... 50

3.3.4. A divide and conquer based convex hull algorithm .. 52

3.3.5. Approximation Algorithms for Convex Hulls ... 53

3.3.6. Online convex hull algorithms .. 55

3.3.7. Randomized algorithms ... 56

3.4. Introduction of convex hull algorithms in higher dimensions .. 57

3.5. Conclusions .. 59

4. A convex hull-based data selection method for data driven models 61

4.1. Introduction .. 61

4.2. A review on instance selection methods ... 62

4.2.1. Wrapper instance selection methods ... 63

4.2.1.1. 𝑲−𝑵𝑵 rule based methods .. 63

4.2.1.2. Instance selection methods based on search algorithms ... 65

4.2.1.3. SVM based methods ... 67

VII

4.2.2. Filter instance selection methods ... 67

4.2.2.1. Clustering based methods ... 68

4.2.2.2. Weighting based methods ... 68

4.2.2.3. Information theory based methods ... 69

4.2.2.4. Other methods... 70

4.3. ApproxHull: A randomized approximation convex hull algorithm for high dimensions

 71

4.3.1. Hyperplane ... 71

4.3.1.1. Hyperplane distance ... 71

4.3.1.2. Hyperplane computation ... 72

4.3.2. Convex hull distance ... 73

4.3.3. The Proposed Algorithm ... 73

4.4. Simulation results ... 84

4.4.1. Experiment 1.. 84

4.4.2. Experiment 2.. 87

4.4.3. Experiment 3.. 89

4.5. Run time analysis.. 91

4.6. Memory requirements analysis ... 99

4.7. Conclusions .. 104

5. Applying ApproxHull in MOGA ... 105

5.1. Introduction .. 105

5.2. Comparison of using random and convex hull based data selection methods for MOGA

 105

5.3. Comparison of the use of the common and distinct convex hull based data selection

methods for MOGA ... 107

5.4. Conclusions .. 109

6. Case Studies ... 111

6.1. Introduction .. 111

6.2. Case Study 1: Energy consumption .. 111

6.2.1. Experimental setup: The CIESOL building ... 114

6.2.1.1. Power demand profiles of the CIESOL building.. 116

6.2.1.2. Data acquisition .. 119

6.2.2. A Non-linear AutoRegressive with eXogenous inputs Multi-Layer Perceptron Neural

Network model ... 120

VIII

6.2.3. Radial Basis Function Neural Network based models generated by MOGA 121

6.2.3.1. Data preparation ... 122

6.2.3.2. Design Experiments .. 124

6.2.4. Results and discussion ... 128

6.2.4.1. Comparison of MOGA models with NAB approach ... 134

6.3. Case Study 2: An Intelligent Weather Station .. 136

6.4. Case Study 3: An Intelligent Support System for Automatic Diagnosis of Cerebral

Vascular Accidents from Brain CT Images ... 141

6.5. Conclusions .. 142

7. Comparing four data selection methods for off-line model design 143

7.1. Introduction .. 143

7.2. An entropy based unsupervised data selection method .. 144

7.3. Construction of data sets for the experiments .. 145

7.4. Experiments .. 146

7.5. Experimental results ... 148

7.6. Conclusions .. 152

8. A Convex hull, sliding-window based online adaptation method 153

8.1. Introduction .. 153

8.2. A brief overview of online adaptation methods ... 153

8.2.1. Online learning methods for RBFNNs with fixed structure 155

8.2.2. Online learning methods for RBFNNs with adaptive structure 156

8.3. A convex hull, sliding-window-based online adaptation method 158

8.3.1. Evaluation of the arriving sample .. 159

8.3.1.1. Hyperplane computation ... 162

8.3.2. Sliding-windows update .. 163

8.3.2.1. 𝑭 − 𝑹 𝒑𝒐𝒍𝒊𝒄𝒚 ... 163

8.3.2.2. A proposed convex hull based policy ... 167

8.3.3. Parameters update .. 168

8.3.4. Analysis of the proposed method .. 169

8.4. Experimental results ... 172

8.4.1. Case Study 1: OAT model for the University of Algarve ... 173

8.4.2. Case Study 2: OAT model for the University of Almeria ... 190

8.5. Comparison between the two case studies ... 202

8.6. Comparison with other methods ... 203

IX

8.7. Conclusions .. 206

9. Conclusions and future work .. 207

9.1. Conclusions .. 207

9.2. Future works ... 209

References .. 211

X

XI

List of Tables

Table 4.1. Description of artificial datasets consisting of uniformly distributed random

samples. Dim and #s denote the number of dimensions and samples, respectively. 84

TABLE 4.2. Run time (in seconds) of approxhull with stochastic policy and ga-based policy

on datasets UDS1-4. ... 87

TABLE 4.3. Run time (in seconds) of approxhull with stochastic policy and ga-based policy

on datasets NDS1-4. ... 87

Table 4.4. Description of the datasets used in classification. #F, #DS, #TR, #TE are the

number of features, total number of samples, number of training samples and test samples,

respectively. C and 𝛄 are the SVM hyper-parameters. .. 88

Table 4.5. Average classification rate for test dataset in two cases for all datasets in Table IV.

𝑪𝑹𝑻𝒆(𝟏) and 𝑪𝑹𝑻𝒆(𝟐) denote the classification rates for the test dataset USING random

selection and using ApproxHull, respectively. ... 88

Table 4.6. Description of the datasets used in regression. #F, #DS, #TR, #TE and #VAL are

the number of features, total samples, training samples, test samples and validation samples,

respectively. .. 89

Table 4.7. Average RMSE for THE test datasets in two cases for all datasets in Table vI.

𝑬𝑻𝒆(𝟏) and 𝑬𝑻𝒆(𝟐) denote RMSE for test dataset in first case (random selection) and second

case (data selection using ApproxHull) respectively. .. 90

Table 4.8. Average RMSE for THE validation datasetS in two cases for all datasets in Table

VI. 𝑬𝑽𝒂𝒍(𝟏) and 𝑬𝑽𝒂𝒍(𝟐) denote RMSE for validation dataset in first case (random

selection) and second case (data selection using ApproxHull) respectively. 90

Table 4.9. Average run time of ApproxHull on datasets described in Tables 4.4 and 4.6. 92

Table 4.10. Corresponding minimum and maximum run time of ApproxHull on datasets used

in Fig. 4.8 and 4.9. RTMIN_1 and RTMIN_2 denote the minimum run time in the first and

the second group of datasets respectively. RTMAX_1 and RTMAX_2 DENOTE the

maximum run time in the first and the second group of datasets, respectively. 97

Table 4.11. Corresponding minimum and maximum percentage of samples identified as

vertices of convex hull from datasets used in Fig. 4.14 and 4.15 PMIN_1 and PMIN_2 denote

the minimum percentage in first and second group of datasets. PMAX_1 and PMAX_2 denote

the maximum percentage in first and second group of datasets. .. 97

TABLE 4.12. Description of the artificial datasets consisting of uniformly distributed random

samples. Dim and #s denote the number of dimensionS and samples respectively. 99

XII

TABLE 4.13. Number of facets, Total and average memory size for both algorithms on DS1

to DS4 in the last iteration. ... 103

Table 5.1. The size of training, testing and validation sets. ... 106

Table 5.2. Results obtained from the MOGA experiments. ... 106

Table 5.3. Evaluation results obtained from two METHODS. .. 108

Table 5.4. Total Time to design all models in the two METHODS. 108

Table 6.1. Statistical analysis of the power demand profiles (in kW). 116

Table 6.2. Preliminary list of variables [54]. .. 118

Table 6.3. Final list of variables with their order (embedding delay and dimension). 121

Table 6.4. The periods selected in the first stage. .. 123

Table 6.5. List of variables used. ... 125

Table 6.6. Description of the lags used. ... 125

Table 6.7. Objectives and their corresponding restriction of experiments. 126

Table 6.8. Size of training, testing and validation sets. .. 127

Table 6.9. Size of non-dominated and preferred sets. .. 127

Table 6.10. Battery of tests performed. .. 128

Table 6.11. Selected MOGA models and PREVIOUS model. .. 129

Table 6.12. Results obtained by MOGA and PREVIOUS models over Test A, for a PH of 1

hour. .. 130

Table 6.13. Results obtained by MOGA and PREVIOUS models over Test B, for a PH of 1

hour. .. 130

Table 6.14. Results obtained by MOGA and PREVIOUS models over Test C, for a PH of 1

hour. .. 130

Table 6.15 Results obtained by MOGA and PREVIOUS models over Test D, for a PH of 1

hour. .. 131

Table 6.16. Results obtained by MOGA and PREVIOUS models over Test E, for a PH of 1

hour. .. 131

XIII

Table 6.17. Results obtained by MOGA and PREVIOUS models over Test F, for a PH of 1

hour. .. 131

Table 6.18. Battery of tests performed to compare the NAB model with the neural networks

models. ... 135

Table 6.19. Results obtained by neural network and NAB models over Test D, for a PH of 1

hour. .. 135

Table 6.20. Results obtained by neural network and NAB models over Test E, for a PH of 1

hour. .. 135

Table 6.21. Results obtained by neural network and NAB models over Test G, for a PH of 1

hour. .. 135

Table 6.22. Size of Training, Testing and Validation sets for the atmospheric climate models.

 .. 137

Table 6.23. Atmospheric Temperature. .. 137

Table 6.24. Atmospheric Relative Humidity. .. 137

Table 6.25. Global Solar Radiation. ... 137

Table 6.26. Evaluation results .. 141

Table 7.1. Details of THE data sets. ... 147

Table 7.2. Number of samples of T, G and V and the average number of convex hull points.

 .. 147

Table 7.3. Hyper parameters of SVM models for the classification problems. 148

Table 7.4. Average RMSEs obtained for dataset Bank. ... 148

Table 7.5. Average number of features and neurons of the best MOGA models for dataset

Bank. .. 149

Table 7.6. Average RMSE for the regression problems. ... 149

Table 7.7. C(i,j) /T for Bank – best and ensemble models. .. 150

Table 7.8. C(i,j) /T for all MLP models ... 150

Table 7.9. Average CRs for Breast Cancer. ... 150

Table 7.10. Average number of features, neurons of the best MOGA models, and support

vectors, for Breast Cancer. ... 151

XIV

Table 7.11. Average CRs for the classification problems. ... 151

Table 7.12. C(i,j) /T for Breast Cancer – best and ensemble. .. 151

Table 7.13. C(i,j) /T for all SVM models. .. 152

Table 8.1. Periods over the years 2015 and 2016 in case 1. ... 174

Table 8.2. Experiment’s specification in case 1. .. 175

Table 8.3. List of criteria used to compare the experiments in case 1. 175

Table 8.4. Statistical results of the experiments in case 1. ... 176

Table 8.5. one-step-ahead prediction in case 1. ... 178

Table 8.6. 48-steps-ahead prediction in case 1. .. 179

Table 8.7. Summation over PH in case 1. ... 180

Table 8.8. Periods over the years 2010 and 2011 in case 2. ... 191

Table 8.9. Experiment’s specification in case 2. .. 191

Table 8.10. Statistical results of experiments In case 2. .. 192

Table 8.11. One-step-ahead prediction in case 2. .. 193

Table 8.12. 48-steps-ahead prediction in case 2. .. 194

Table 8.13. Summation over PH in case 2. .. 195

Table 8.14. Comparison of statistical results obtained by Exp.1, SWNLM and SAWNLM. 204

Table 8.15. Comparison of CHSWNLM with SWNLM and SAWNLM. 204

Table 8.16. Comparison Between the CHSWNLM method AND other methods described in

[179]. .. 206

XV

List of Figures

Fig. 2.1. A classification of ANNs [18]. .. 8

Fig. 2.2. An MLP network with two hidden layers. ... 10

Fig. 2.3. A RBFNN structure. .. 11

Fig. 2.4. B-Spline quadratic (𝑘 = 3) functions for (a) one and (b) two dimensional feature

spaces [24]. ... 13

Fig. 2.5. An example of SVM [28]. ... 14

Fig. 2.6. Classification of learning methods [18]. .. 17

Fig. 2.7. An Example of parameters update by steepest decent method. 18

Fig. 2.8. Early stopping method. .. 27

Fig. 2.9. Single-point crossover ... 32

Fig. 2.10. Two-point crossover .. 32

Fig. 2.11. Cut and Splice crossover .. 33

Fig. 2.12. Uniform crossover ... 33

Fig. 2.13. Bi-objective minimization problem. The shaded region presents dominated

solutions and the solid curve illustrates non-dominated solutions [47]. 35

Fig. 2.14. An example of Pareto ranking [48, 49]. ... 35

Fig. 2.15. An example of Pareto-based ranking for two objectives with the same priorities. For

each objective, a predefined goal is considered [43, 47]. .. 36

Fig. 2.16. An example of Pareto-based ranking for two objectives in the case that objective 2

has higher priority than objective 1. For each objective, a predefined goal is considered [43,

47]. .. 36

Fig. 2.17. Chromosome representation in MOGA. .. 40

Fig. 3.1. (a): convex set, (b): concave set ... 46

Fig. 3.2. Convex hull of a set of points. ... 47

Fig. 3.3. Categories of convex hull algorithms. ... 47

Fig. 3.4. Graham’s scan on ten points. ... 49

XVI

Fig. 3.5. Jarvis’s march on ten points. .. 50

Fig. 3.6. The steps of Quickhull applied on 20 points. .. 51

Fig. 3.7. The steps of the divide and conquer based algorithm applied on 20 points. 53

Fig. 3.8. The steps of the approximation convex hull algorithm applied on 22 points. 54

Fig. 3.9. The update process of the online convex hull algorithm based on support lines. 55

Fig. 3.10. Constructing a large 2-simplex .. 58

Fig. 3.11. Partitioning step ... 59

Fig. 4.1. Classification of instance selection methods ... 63

Fig. 4.2. Flow chart of ApproxHull. ... 83

Fig. 4.3. Average value of criterion P for ApproxHull with both policies and Wang’s

algorithm on UDS1 to UDS4. .. 85

Fig. 4.4. Average value of criterion R for ApproxHull with both policies and the Wang’s

algorithm on UDS1 to UDS4. .. 86

Fig. 4.5. Average value of criterion R for ApproxHull using both policies on NDS1 to NDS4.

 .. 86

Fig. 4.6. Average percentage of total samples identified as vertices of convex hull for each

dataset described in Tables 4.4 and 4.6. ... 91

Fig. 4.7. Average number of iterations in ApproxHull for each dataset described in Tables 4.4

and 4.6. ... 92

Fig. 4.8. Relationship between the size of five datasets containing uniformly distributed

random samples and the run time of ApproxHull. ... 93

Fig. 4.9. Relationship between the size of five datasets containing normally distributed

random samples and the run time of ApproxHull. ... 94

Fig. 4.10. Relationship between the population size (input parameter 𝒑) and the run time of

ApproxHull on six datasets containing uniformly distributed random samples. 94

Fig. 4.11. Relationship between the population size (input parameter 𝒑) and the run time of

ApproxHull on six datasets containing normally distributed random samples. 95

Fig. 4.12. Number of iterations in ApproxHull with six values for population sizes on six

datasets containing 5000 uniformly distributed random samples. ... 95

XVII

Fig. 4.13. Number of iterations in ApproxHull with six values for population sizes on six

datasets containing 5000 normally distributed random samples. ... 95

Fig. 4.14. Percentage of samples identified as vertices of convex hull by employing

ApproxHull with six values for population sizes on six datasets containing 5000 uniformly

distributed random samples. ... 96

Fig. 4.15. Percentage of samples identified as vertices of convex hull by employing

ApproxHull with six values for population sizes on six datasets containing 5000 normally

distributed random samples. ... 96

Fig. 4.16. Run time of ApproxHull and the error obtained by the model on two groups of

datasets. (a) First group: uniformly distributed random samples; (b) Second group: normally

distributed random samples. ... 98

Fig. 4.17. Trend of memory consumption over iterations on DS1. (a) Quickhull; (b)

ApproxHull ... 100

Fig. 4.18. Trend of memory consumption over iterations on DS2. (a) Quickhull; (b)

ApproxHull ... 101

Fig. 4.19. Trend of memory consumption over iterations on DS3. (a) Quickhull; (b)

ApproxHull ... 102

Fig. 4.20. Trend of memory consumption over iterations on DS4. (a) Quickhull; (b)

ApproxHull ... 103

Fig. 6.1. The CIESOL building: (a) Exterior of the CIESOL building; (b) Solar cooling

installation; (c) Photovoltaic power plant: PV panels; (d) Photovoltaic power plant: PV

inverters. ... 115

Fig. 6.2. Energy demand profiles for working and non-working days. 117

Fig. 6.3. Weekly energy demand profiles for each season. .. 118

Fig. 6.4. Distribution of original data samples in terms of day type from 01/09/2010 to

29/02/2012. ... 123

Fig. 6.5. Distribution of samples in data set 𝑫 in terms of day type. 124

Fig. 6.6. Prediction results for tests A-F using the PREVIOUS model. 132

Fig. 6.7. Prediction results for tests A-F using model I. .. 133

Fig. 6.8. Prediction results for tests A-F using model III. .. 134

XVIII

Fig. 6.9. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last 1350

samples as well as the evolution of the RMSE along the prediction horizon with 48 steps for

atmospheric temperature. ... 138

Fig. 6.10. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 steps

for atmospheric relative humidity. ... 139

Fig. 6.11. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48 steps

for global solar radiation. ... 140

Fig. 8.1. Classification of online learning methods. (a) From the model structure point of

view; (b) From the model’s parameters point of view; (c) From the data point of view. 155

Fig. 8.2. A vertex of the convex hull. Black and blue circles are convex hull vertices and inner

points, respectively. .. 160

Fig. 8.3. A point is located inside the convex hull. Black and blue circles are convex hull

vertices and inner points, respectively. .. 160

Fig. 8.4. A new point is located outside the convex hull. Black and red circles denote the

convex hull vertices and the new point, respectively. .. 161

Fig. 8.5. A new point is located outside the convex hull but very close to the convex hull.

Black and red circles denote the convex hull vertices and the new point, respectively. 161

Fig.8.6. Number of samples of each period in the last training sliding window. (a), (c) and (e)

correspond to the Exps.1-3 of the first group of experiments of the case study 1, respectively.

(b), (d) and (f) denote Exps.4-6 of the second group of experiments of case study 1,

respectively. .. 177

Fig. 8.7. One-step-ahead prediction over the 01-Dec-2015 period in case 1. 181

Fig. 8.8. One-step-ahead prediction over the 16-Dec-2015 period in case 1. 182

Fig. 8.9. One-step-ahead prediction over the 20-Dec-2015 period in case 1. 182

Fig. 8.10. One-step-ahead prediction over the 01-Jan-2016 period in case 1. 183

Fig. 8.11. One-step-ahead prediction over the 21-Jan-2016 period in case 1. 183

Fig. 8.12. One-step-ahead prediction over the 01-Feb-2016 period in case 1. 184

Fig. 8.13. One-step-ahead prediction over the 01-Mar-2016 period in case 1. 184

Fig. 8.14. One-step-ahead prediction over the 01-Apr-2016 period in case 1. 185

XIX

Fig. 8.15. One-step-ahead prediction over the 01-May-2016 period in case 1. 185

Fig. 8.16. One-step-ahead prediction over the 11-May-2016 period in case 1. 186

Fig. 8.17. One-step-ahead prediction over the 01-Jun-2016 period in case 1. 186

Fig. 8.18. One-step-ahead prediction over the 01-Jul-2016 period in case 1. 187

Fig. 8.19. One-step-ahead prediction over the 04-Aug-2016 period in case 1. 187

Fig. 8.20. One-step-ahead prediction over the 01-Sep-2016 period in case 1. 188

Fig. 8.21. One-step-ahead prediction over the 01-Oct-2016 period in case 1. 188

Fig. 8.22. One-step-ahead prediction over the 01-Nov-2016 period in case 1. 189

Fig. 8.23. One-step-ahead prediction over the 19-Nov-2016 period in case 1. 189

Fig. 8.24. One-step-ahead prediction over the Oct period in case 2. 196

Fig. 8.25. One-step-ahead prediction over the Nov period in case 2. 196

Fig. 8.26. One-step-ahead prediction over the Dec period in case 2. 197

Fig. 8.27. One-step-ahead prediction over the Jan period in case 2. 197

Fig. 8.28. One-step-ahead prediction over the Feb period in case 2. 198

Fig. 8.29. One-step-ahead prediction over the Mar period in case 2. 198

Fig. 8.30. One-step-ahead prediction over the Apr period in case 2. 199

Fig. 8.31. One-step-ahead prediction over the May period in case 2. 199

Fig. 8.32. One-step-ahead prediction over the Jun period in case 2. 200

Fig. 8.33. One-step-ahead prediction over the Jul period in case 2. 200

Fig. 8.34. One-step-ahead prediction over the Aug period in case 2. 201

Fig. 8.35. One-step-ahead prediction over the Sept period in case 2. 201

Fig. 8.36. Comparison of the updated model with its corresponding initial model. (a) Exp.4 in

case study 1; (b) Exp.1 in case study 2. ... 203

XX

XXI

List of Algorithms

Algorithm 4.1: Obtaining the corresponding hyperplane of a facet ... 75

Algorithm 4.2: ApproxHull with Stochastic Policy ... 78

Algorithm 4.3: ApproxHull with GA-based Policy ... 80

Algorithm 8.1: Sliding-windows update .. 171

XXII

XXIII

List of Acronyms

ANN Artificial Neural Network

ARIMA Auto Regressive Integrated Moving Average

ARMA Auto Regressive Moving Average

ASMOD Adaptive Spline Modeling of Observation Data

BP Back Propagation

BSE Backward Sequential Edition

CDA Conditional Demand Analysis

CIEMAT Centre for Energy, Environment and Technology - Centro de Investigaciones

Energéticas, MedioAmbientales y Tecnológicas (in Spanish)

CIESOL Solar Energy Research Center - Centro de Investigación en Energía SOLar (in

Spanish)

CNN Condensed Nearest Neighbor rule

CR Classification Rate

CT Computed Tomographic

CVA Cerebral Vascular Accident

DROP Decremental Reduction Optimization Procedure

EKF Extended Kalman Filter

ELM Extreme Learning Machine

ENN Edited Nearest Neighbor rule

FIFO First In First Out

FN False Negative

FNN Feedforward Neural Network

FP False Positive

GA Genetic Algorithm

GCNN Generalized Condensed Nearest Neighbor rule

GGA Generalized Genetic Algorithm

GMCA Generalized Modified Change Algorithm

GMM Gaussian Mixture Models

HVAC Heating, Ventilating and Air Conditioning

HVDM Heterogeneous Value Difference Metric

IAH Inside Air Humidity

IAT Inside Air Temperature

XXIV

ICF Iterative Case Filtering

IGA Intelligent Genetic Algorithm

IMBPC Intelligent Model Based Predictive Control

k-NN K nearest neighbors

LMS Least Mean Square

LS Least Square

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MaxAE Maximum Absolute Error

MI Mutual Information

MLP Multi-Layer Perceptron

MNV Mutual Nearest Neighborhood

MOGA Multi Objective Genetic Algorithm

MOV Movement Signal

MPC Model Predictive Control

MRE Mean Relative Error

MRLS Multi-innovative Recursive Least Square

NAB Naive Autoregressive Baseline

NAR Non-linear AutoRegressive

NARX Non-linear AutoRegressive with eXogenous inputs

NEN Nearest-Neighbor algorithm

NSB Nearest Subclass Classifier

OAT Outside Air Temperature

OAKM Optimal Adaptive K-Means

OLS Orthogonal Least Square

OSC Object Selection by Clustering

OSR Outside Solar Radiation

PBLT Population-Based Incremental Learning

PCA Principal Components Analysis

PDF Probability Density Function

PMV Predicted Mean Vote

POP Pattern by Ordered Projections

PSR Prototype Selection by Relevance

XXV

QPSO Quantum Particle Swarm Optimization

RAN Resource Allocation Network

RBFNN Radial Basis Function Neural Network

RFOS Restricted Floating Object Selection

RMSE Root Mean Square Error

SCADA Supervisory Control And Data Acquisition

SGBP Stochastic Gradient Descent Back Propagation

SNN Selective Nearest Neighbor rule

SSGA Steady-State Genetic Algorithm

STP Set Temperature Point

SUS Stochastic Universal Sampling

TN True Negative

TP True Positive

WLS Weighted Least Square

XXVI

 1

1. Introduction

1.1. Motivation

In European Union countries, primary energy consumption in buildings represents about 40%

of the total energy consumption, and, with variations from country to country, half of this

energy is spent for indoor climate conditioning. Advanced techniques for the control of

HVAC systems, and in particular, Model Predictive Control (MPC), offer enormous potential

for huge savings in building energy consumption. Regarding the application of MPC

technique in energy sectors, authors in [1] have shown in simulations that savings of energy in

the order of 30% could be obtained, while maintaining a convenient temperature regulation.

In a more recent work [2, 3], authors were able to control, in real-time, the air conditioning

systems of several rooms in a building. Average savings of 50% were obtained, in summer

and winter conditions, while maintaining thermal comfort. The MPC technique uses several

ANN models. There are already some available state-of-the-art tools for designing neural

network models [4], in terms of input selection, model structure determination and parameter

estimation. On the other hand, as ANNs are data driven models, the data used to design the

models has a direct influence on the models’ performance and, ultimately, on the performance

of the HVAC MPC technique. It is very important that the data which is selected to design

ANN models involve the boundary samples; those samples that reflect the whole input-output

range in which the underlying process is modeled. To catch such samples out of the whole

data set, convex hull algorithms [5-12] as one of the fundamental concepts in computational

geometry, can be applied (i.e., please refer to Chapter 3).

The standard convex hull algorithms suffer from both time and space in high dimensions (i.e.,

more than three dimensions). They take 𝑂(𝑛⌊
𝑑

2
⌋) time and space in the worst case where 𝑛 and

𝑑 denote the number of samples and the dimension, respectively. Hence this problem prevents

us from employing convex hull algorithms in real applications where we are interested in

applying them to data sets containing larger numbers of samples and higher dimensions. The

first phase of this PhD proposes a state-of-the-art approach to tackle the challenges of

standard convex hull algorithms in high dimensions.

Regarding the HVAC MPC technique, the processes involved are time-varying and dynamic.

For instance, models designed with winter data will have their performance degraded on

summer data. Furthermore, the temperature in a room depends on the occupancy and on

equipment being used in the room. Whether the variation has seasonal and/or dynamic

 2

origins, it causes changes in the input-output range of the data applied to the models. To deal

with these problems, an online adaptation method is required to update the model parameters.

The adaptation method should be capable of capturing the new input-output ranges presented

by the newly arrived samples throughout time. Based on that newly selected data, the models

should become efficiently updated and appropriate for a real time application. The second

phase of this PhD is one step towards proposing a state-of-the-art online adaptation method.

1.2. Main contributions

As the first phase of this PhD, a new randomized approximation convex hull algorithm in

high dimensions coined ApproxHull was proposed. The performance of ApproxHull as a filter

type data selection method was evaluated for a number of classification and regression

problems. This was done by comparing ApproxHull with other data selection methods

including random selection, an entropy based unsupervised method [13] and a hybrid method

involving ApproxHull and the entropy based method. Since the main goal of this PhD was

employing ApproxHull to construct proper data sets for designing ANN models for the

HVAC MPC technique, it was exploited in two related case studies.

In the first case study [14, 15], ApproxHull was used to provide data sets for designing

several time series predictive RBFNN models to forecast the one-step-ahead measures of

outside climate variables, including outside air temperature, outside relative humidity and

outside solar radiation, so that all models were integrated in an intelligent weather station.

Additionally, another series of RBFNN models were also designed to predict the one-step-

ahead of inside climate variables which have a significant role in the HVAC MPC technique.

In order to design these models, the Multi-Objective Genetic Algorithm was applied to select

model structures optimized for the specific task.

The second case study resulted from a collaboration between the University of Algarve in

Portugal and the University of Almeria in Spain. It was aimed at the development of time

series predictive RBFNN models to forecast the one-step-ahead value of the electricity power

demand for a building inside the campus of the University of Almeria. As for the previous

case study, ApproxHull was applied to supply data sets for the MOGA model design

framework. In this case study, a selected MOGA generated model was compared to a RBFNN

model designed by means of statistical and analytical tools.

ApproxHull was also exploited by other researchers in the field of biomedical image

processing where the goal was presenting an RBFNN based diagnosis system for automatic

 3

identification of Cerebral Vascular Accident (CVA) through analysis of Computed

Tomographic images. In this case study, ApproxHull was applied on a large size data set in

high dimensions (i.e., 1,867,602 samples with 52 features). The simulation results obtained

from the case studies showed that not only the proposed method is capable of being applied in

real applications but also its performance is comparable with other data selection methods.

In the second phase of this PhD a new convex-hull-based sliding window online adaptation

method was proposed. Since at a given time instant the current convex hull reflects the whole

input-output range of all observed data, this method enables the comparison of newly arrived

samples to the current convex hull to find out whether it presents data outside the known

range. In case it does, the current convex hull is updated and consequently the training sliding

window is also updated. Afterwards, the model is adjusted based on the modified sliding

window. To verify the proposed online adaptation method, a time series predictive RBFNN

model for outside air temperature was considered. The simulation results demonstrated that

not only the model could be efficiently updated, but it could also preserve relevant input-

output pairs that had been presented over time.

As a result of the efforts carried out in this PhD, the following articles were published.

1. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M.

G. & FERREIRA, P. M. 2014. Seismic detection using support vector machines.

Neurocomputing, 135, 273-283.

2. MESTRE, G., RUANO, A., DUARTE, H., SILVA, S., KHOSRAVANI, H., PESTEH, S.,

FERREIRA, P. M. & HORTA, R. 2015. An Intelligent Weather Station. Sensors, 15, 31005–

31022.

3. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M.,

KHOSRAVANI, H. & HORTA, R. 2015. The IMBPC HVAC system: a complete MBPC

solution for existing HVAC systems. Energy and Buildings,120, pp- 145-158

4. KHOSRAVANI, H., CASTILLA, M., BERENGUEL, M., RUANO, A. & FERREIRA, P.

M. 2016. A Comparison of Energy Consumption Prediction Models Based on Neural

Networks of a Bioclimatic Building. Energies, 9, 57.

 4

5. KHOSRAVANI, H., RUANO, A. & FERREIRA, P. M. 2016. A Convex Hull-based Data

Selection Method for Data Driven Models. Applied Soft Computing, 47, pp. 515-533

6. RUANO, A. E., MADUREIRA, G., BARROS, O., KHOSRAVANI, H. R., RUANO, M.

G. & FERREIRA, P. M. A Support Vector Machine Seismic Detector for Early-Warning

Applications. In: FERREIRA, P. M., ed. Intelligent Control and Automation Science (ICONS

2013), 2-4 Sept 2013 Chengdu, China. IFAC, 400-405.

7. KHOSRAVANI, H. R., RUANO, A. E. & FERREIRA, P. M. A Simple Algorithm for

Convex Hull Determination in High Dimensions. 8th IEEE International Symposium on

Intelligent Signal Processing (WISP 2013), Sep, 16-18, 2013 Funchal, Madeira, Portugal. 109

- 114.

8. RUANO, A., KHOSRAVANI, H. R. & FERREIRA, P. M. 2015. A Randomized

Approximation Convex Hull Algorithm for High Dimensions. IFAC-PapersOnLine, 48, 123-

128.

9. RUANO, A. E., MESTRE, G., DUARTE, H., SILVA, S., PESTEH, S., KHOSRAVANI,

H. R., FERREIRA, P. M. & HORTA, R. A Neural-Network based Intelligent Weather

Station. 9th IEEE International Symposium on Intelligent Signal Processing (WISP 2015),

15-17 May 2015 Siena, Italy. 96-101.

10. RUANO, A. E., SILVA, S., PESTEH, S., FERREIRA, P. M., DUARTE, H., MESTRE,

G., KHOSRAVANI, H. R. & HORTA, R. Improving a neural networks based HVAC

predictive control approach. 9th IEEE International Symposium on Intelligent Signal

Processing (WISP 2015), 15-17 May 2015 Siena, Italy. 90-95.

11. RUANO, A., PESTEH, S., SILVA, S., DUARTE, H., MESTRE, G., FERREIRA, P. M.,

KHOSRAVANI, H. & HORTA, R. PVM-based intelligent predictive control of HVAC

systems. 4th IFAC International Conference on Intelligent Control and Automation Sciences

(ICONS 2016) 1-3 Jun 2016 Reims, France. IFAC.

 5

1.3. Thesis structure

This dissertation is organized in 9 chapters. Chapter 2 addresses the introduction of the

theoretical concepts which were relevant for this PhD. In this chapter, two well-known data-

driven models; ANNs and SVMs as well as a number of renowned standard learning

algorithms for ANNs are explained. Moreover, the GA, the MOGA, information theory

concepts and two statistical tests are presented in this chapter. Chapter 3 introduces a number

of standard convex hull algorithms in low and high dimensions. This chapter also discusses an

effort done in recent years to deal with the very high time and space complexity of standard

convex hull algorithms in high dimensions. Chapter 4 addresses a review of instance selection

methods and introduces ApproxHull as the-state-of-the-art in the convex-hull-based data

selection domain. In addition, a number of experiments to verify and evaluate the

performance of the ApproxHull regarding time and memory requirements are presented and

analyzed in Chapter 4. Since, in this PhD, most of the models were designed by the MOGA,

Chapter 5 addresses the evaluation of ApproxHull’s performance within the MOGA model

design framework. To verify and evaluate ApproxHull’s performance in real applications,

Chapter 6 introduces three case studies in which ApproxHull has been applied to design

RBFNN models. To further analyze the ApproxHull’s performance, Chapter 7 compares it

with three data selection methods, including random selection method, an entropy based

unsupervised method and a hybrid method involving ApproxHull and the entropy based

method. All methods were applied for classification and regression. In the second phase of the

PhD, Chapter 8 addresses a brief overview on online adaptation method and then introduces a

new convex-hull-based, sliding-window online adaptation method. Furthermore, to verify and

evaluate the performance of the proposed method, several online adaptation experiments

associated with two case studies along with the corresponding results and comparisons with

other methods are explained in this chapter. Finally, a brief conclusion of all efforts done in

this PhD as well as some future work directions are discussed in Chapter 9.

 6

 7

2. Theoretical background

2.1. Introduction

Since this PhD thesis aims to propose new data selection and online model adaptation

methods for data driven models, in this chapter two well-known classes of data driven

models, ANNs and SVMs, are introduced. Additionally, some basic concepts related to the

design of data driven models are explained. This chapter is organized as follows. Section 2.2

addresses the introduction of several types of ANNs. Section 2.3 introduces the SVM as

another class of data driven models applied to classification problems. Well-known ANNs

supervised learning methods are discussed in Section 2.4. The most common criteria used to

evaluate the performance of regression and classification problems are introduced in Section

2.5. As in this study a Genetic Algorithm (GA) was used in the proposed data selection

method, and most ANN models were designed by means of the MOGA, Section 2.6 explains

the basic concepts of GA and MOGA. Section 2.7 discusses the application of MOGA to the

design of ANN models.

As the proposed data selection method was compared with an entropy based unsupervised

method proposed in [13], two key concepts of information theory, entropy and mutual

information, are explained in Section 2.8. Additionally, in this PhD thesis, two statistical tests

were employed to compare the performance of the proposed data selection method with other

methods. Section 2.9 describes these two statistical tests.

2.2. Artificial Neural Networks

The fundamental concepts of ANNs were introduced in the 1940s by McCulloch and Pitts

[16] with the aim of simulating brain behavior in information processing and computations,

where each part of the brain, responsible to perform a particular task, consists of a network

with a huge number of neurons as processing units. Since then, ANNs have been used in a

wide variety of applications such as image processing, pattern recognition, signal processing,

modeling and time series, to mention a few [17]. ANNs are mainly divided into two groups

[18]: 1- feed-forward networks 2- recurrent/feedback networks. Each of these two groups, in

turn, is divided into several subgroups. Fig. 2.1 shows a brief classification of ANNs.

 8

Fig. 2.1. A classification of ANNs [18].

Since in this PhD, specifically, the Multi-Layer Perceptron, Radial Basis Function and B-

Spline networks were employed, the following subsections address only these types of

networks.

2.2.1. Multi-Layer Perceptron Neural Network

The Multi-Layer Perceptron (MLP), as one of the renowned feed-forward networks, has been

extensively applied to classification and regression problems over years. The fully connected

structure of the MLP is organized in three types of layers including input, hidden and output

layers. Each layer has a number of neurons and each neuron in a layer is connected to all

neurons of its predecessor layer via weighted links. Fig. 2.2 illustrates an MLP network with

two hidden layers. As it can be seen, each input signal which can be translated into an input

variable or a feature is linked to a particular neuron in the input layer while each neuron in the

output layer corresponds to a specific output signal/variable. When an input signal is fed into

the input layer, several mappings are done through hidden neurons with smooth, nonlinear

activation functions to produce the corresponding output signal. Generally speaking, the MLP

 9

is a black box function approximator that reflects a nonlinear relationship between input and

output signals.

Bounded functions such as sigmoid or hyperbolic tangent are mostly used as the activation

functions of the hidden neurons. Eq. (2.1) shows a sigmoid function.

𝜑𝑖
𝑙(𝐰𝑙, 𝐱) =

1

1 + 𝑒
−(𝑏𝑖

𝑙+∑ 𝑤𝑖,𝑗
𝑙 𝜑𝑗

𝑙−1(𝐰𝑙−1,𝐱)
𝑛𝑙−1
𝑗=1

)

(2.1)

where 𝜑𝑖
𝑙 is the output of the i

th
 neuron at hidden layer l . 𝑛𝑙−1 and 𝑏𝑖

𝑙 denote the number of

neurons in hidden layer 𝑙 − 1 and the bias of hidden layer 𝑙, respectively. 𝑤𝑖,𝑗
𝑙 refers to the

weight connecting the 𝑗th neuron in hidden layer 𝑙 − 1 to the 𝑖th neuron in hidden layer l.

The outputs of the MLP network are obtained by Eq. (2.2) which is a linear combination of

the activation functions of the last hidden layer.

𝑦𝑜 = 𝑏𝑜
𝐿 +∑𝑤𝑜,𝑘

𝐿 𝜑𝑘
𝐿

𝑛𝐿

𝑘=1

(2.2)

where 𝑦𝑜 and 𝐿 denote the 𝑜th
 output neuron and the number of hidden layers, respectively. In

the design process, the structure of the MLP network, which is specified by the number of

layers and the number of neurons in each layer, should be determined. This structure

determination should be done in such a way that the overfitting phenomenon is avoided.

Overfitting refers to a situation where the number of neurons, and consequently the number of

parameters, is larger than needed [19].

 10

Fig. 2.2. An MLP network with two hidden layers.

2.2.2. Radial Basis Function Neural Network

The Radial Basis Function (RBF) Neural Network (NN) was firstly proposed by Broomhead

and Lowe [20] . It is another type of feed-forward neural network that has received much

attention due to its universal approximation and robustness to outlier points. From the

structural point of view, RBFNNs, like MLPs, have three types of layers including input,

hidden and output layers. Fig. 2.3 illustrates a RBFNN with three layers. As it can be seen in

Fig. 2.3, each feature of the input pattern is connected to a node of input layer via a link

without weight. The input neurons are only simple sensory nodes passing the input pattern

without any changes toward the hidden layer. To each hidden node, a radial basis function is

assigned implementing a nonlinear relation between the input and the output spaces. For the

most cases, Gaussian radial basis function, thin-plate spline, multiquadrics and inverse

multiquadrics are used as the activation function for the hidden neurons as Eq. (2.3).

𝜑𝑖(𝐱, 𝐜𝑖 , 𝜎𝑖) = 𝑒
−
‖𝐱−𝐜𝑖‖

2

2𝜎𝑖
2

(2.3)

 11

where 𝜑𝑖 denotes the activation function of the 𝑖th hidden neuron. 𝒄𝑖 and 𝜎𝑖 refer to the

corresponding nonlinear parameters, the center and spread of 𝜑𝑖, respectively. The 𝜑𝑖 are

localized functions around each 𝒄𝑖, whose localization degree is defined by 𝜎𝑖 [21]. 𝐱 is the

input pattern.

The output of the RBFNN is obtained by Eq. (2.4) which is a linear combination of the

outputs of the hidden layer.

𝑦(𝐱) = 𝑤0 + ∑𝑤𝑖𝜑𝑖

𝑛

𝑖=1

(𝐱)

(2.4)

where 𝑛 is the number of hidden neurons and 𝑤𝑖 denotes the corresponding weight of 𝑖th

hidden neuron. 𝑤0 refers to the bias.

Fig. 2.3. A RBFNN structure.

2.2.3. B-Spline Network

B-spline neural networks belong to the class of networks denoted as lattice-based associative

memory networks [22, 23]. In this type of networks, the basis functions are polynomial

functions with a predefined order 𝑘. The range of each input variable is divided into 𝑛𝑖

intervals and throughout the intervals, there are exactly 𝑘 active functions. The 𝑛𝑖 intervals

are formed by defining 𝑟𝑖 internal knots over the input range as well as by defining the

 12

nonlinear parameters of the network [24]. The 𝑗th interval of the 𝑖th input variable is defined as

Eq. (2.5).

𝐼𝑖,𝑗 = {
[𝜆𝑖,𝑗−1, 𝜆𝑖,𝑗) 𝑓𝑜𝑟 𝑗 = 1,⋯ 𝑟𝑖

[𝜆𝑖,𝑗−1, 𝜆𝑖,𝑗] 𝑖𝑓 𝑗 = 𝑟𝑖 + 1

(2.5)

where 𝜆𝑖,𝑗 denotes the 𝑗th knot of the 𝑖th input variable. According to Eq. (2.5), 𝜆𝑖,0 and 𝜆𝑖,𝑟𝑖+1

denote the minimum and the maximum value of the input range, respectively. By dividing the

range of each input variable into several intervals, the input space is organized into a lattice

where for each cell, there exist exactly ∑ 𝑘𝑖
𝑑
𝑖=1 active functions where 𝑑 denotes the input

dimension. In case 𝑑 = 1, the 𝑗th univariate basis function of order 𝑘, denoted by Ψ𝑘
𝑗
, is

defined in a recursive manner as Eq. (2.6).

Ψ𝑘
𝑗
(𝑥) = (

𝑥 − 𝜆𝑗−𝑘

𝜆𝑗−1 − 𝜆𝑗−𝑘
)Ψ𝑘−1

𝑗−1
(𝑥) + (

𝜆𝑗 − 𝑥

𝜆𝑗 − 𝜆𝑗−𝑘+1
)Ψ𝑘−1

𝑗
(𝑥)

(2.6)

Ψ1
𝑗(𝑥) = {

1 𝑖𝑓 𝑥 ∈ 𝐼𝑗 ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the case of multidimensional input space, the multidimensional basis functions Ψ𝑘
𝑗
 are

obtained by applying a tensorial product of univariate basis functions defined over input

variables as Eq. (2.7).

Ψ𝑘
𝑗(𝒙) =∏Ψ𝑘𝑖

𝑗 (𝑥𝑖)

𝑑

𝑖=1

(2.7)

Fig. 2.4 shows an example of two B-Spline quadratic (𝑘 = 3) functions for one and two

dimensional input spaces.

Regarding B-Spline networks, the complexity increases exponentially with respect to the

dimension (i.e., the number of variables). In one hand, in order to overcome the complexity,

and on the other hand to make a model with a high level of generalization, the ASMOD

(Adaptive Spline Modeling of Observation data) algorithm [25, 26] is an efficient design

technique to generate parsimonious models using observed data. In this way, a set of low

dimensional B-Spline sub-models are generated instead of one high dimensional B-Spline

model. Each sub-model depends on a subset of all the input variables. The final model output

is a linear combination of sub-models’ output, as given by Eq. (2.8),

 13

𝑜(𝑥) =∑𝑐𝑖𝑏𝑖(𝑥)

𝑀

𝑖=1

(2.8)

where 𝑀 is the number of sub-models. 𝑏𝑖 and 𝑐𝑖 denote the 𝑖th B-Spline sub-model and its

corresponding coefficient, respectively.

The ASMOD algorithm consists of two main steps including refining and pruning. It starts

with a simple model with a small number of input variables. In the refining step, it tries to

make the simple model complicated by adding and coupling more input variables, by

changing the internal structure and by increasing the degree of the basis functions. In the

pruning step, the variables are decoupled which results in a number of subsets of input

variables. The internal structure is also simplified and the degree of the basis functions is

decreased. These two steps are repeated until some termination criteria are met.

(a)

(b)

Fig. 2.4. B-Spline quadratic (𝑘 = 3) functions for (a) one and (b) two dimensional feature

spaces [24].

2.3. Support Vector Machines

The Support Vector Machine was proposed by Vapnik and et al [27, 28] as an efficient

powerful machine learning method for two class classification problems where data are

nonlinearly separable with respect to the target feature. The main idea behind SVMs is

transferring the original input feature space to a higher dimensional feature space in which

data are linearly separable and then finding the optimal hyperplane separating the two classes.

The optimal hyperplane has the largest distance to the closest training samples of each class.

This distance is so called the maximal margin and the samples located on the margin are

marked as support vectors. Fig. 2.5 shows an example of an optimal hyperplane and

associated support vectors. As it can be seen, the two classes of samples are separated from

 14

each other (i.e., the samples of the first class are shown by unfilled circles and the samples of

the second class are shown by black filled circles) by the optimal hyperplane. The samples of

both classes surrounded by a red circle are the support vectors.

Fig. 2.5. An example of SVM [28].

The determination of the optimal hyperplane is translated into solving a constrained quadratic

optimization problem where the Lagrangian stated in Eq. (2.9) should be maximized with

respect to 𝛼𝑖 subject to the constraints given in Eq. (2.10),

𝐿 =∑𝛼𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖, 𝐱𝑗)

𝑁

𝑖,𝑗=1

(2.9)

∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶

(2.10)

where 𝑁 and 𝛼𝑖 denote the number of samples of the training set and the corresponding

Lagrange multiplier of the 𝑖th sample, respectively. 𝐱𝑖 and 𝑦𝑖 ∈ {−1,+1} refer to the 𝑖th input

pattern and the corresponding target, respectively. The target value indicates the class of the

input pattern. 𝐾(𝐱𝑖, 𝐱𝑗) is the inner-product kernel stated in Eq. (2.11) and 𝐶 a user specified

parameter that establishes a trade-off between the SVM complexity and the number of non-

separable patterns, often called the regularization parameter.

 15

𝐾(𝐱𝑖, 𝐱𝑗) =∑𝜙𝑧(𝐱𝑖)𝜙𝑧(𝐱𝑗)

𝑚

𝑧=1

(2.11)

In Eq. (2.11), 𝑚 is the dimension of the destination feature space (i.e., the higher dimensional

feature space) and 𝜙𝑧(𝐱𝑖) is equal to the 𝑧th
 dimension of the transformed sample 𝐱𝑖 in the

destination feature space. Common kernels used in SVMs are given in Eqs. (2.12) to (2.14).

 Homogeneous polynomial

𝐾(𝐱𝒊, 𝐱𝒋) = (𝐱𝒊. 𝐱𝒋)
𝑑

 (2.12)

 Inhomogeneous polynomial

𝐾(𝐱𝒊, 𝐱𝒋) = (𝐱𝒊. 𝐱𝒋 + 𝟏)

𝑑
 (2.13)

 Gaussian radial basis function 𝐾(𝐱𝒊, 𝐱𝒋) = 𝑒𝑥𝑝(−
‖𝐱𝒊 − 𝐱𝒋‖

𝟐

2𝜎2
)

(2.14)

The output of a SVM model can be obtained by Eq. (2.15).

𝑓(𝐱) = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖
∗𝐾(𝐱, 𝐱𝑖)

𝑖∈𝑆𝑉

− 𝜃)

(2.15)

where 𝛼𝑖
∗s are the solution of the constrained optimization problem stated in Eq. (2.9). 𝑆𝑉 are

the indices of the support vectors in the training set and 𝜃 is a user-defined threshold [29].

2.4. Learning methods

In order to fit the parameters of any data driven classification or regression model, learning

methods are applied to adjust the model parameters by means of a data set of training

samples. Learning methods can be considered from three points of view [18].

In the first aspect, they are categorized into four classes including supervised, unsupervised,

combination of supervised and unsupervised, and reinforcement methods. In supervised

learning methods, data samples are labeled so that each input pattern corresponds to a target

value. In this case the parameters of the model are adjusted based on the comparison between

the model outputs and corresponding target values. On the other hand, in unsupervised

learning methods, unlabeled data samples are employed. In this case the methods try to group

data samples into a number of clusters so that those samples which are more similar to each

other are located in the same cluster. In some cases, in order to improve the performance of

 16

models, a combination of supervised and unsupervised learning methods is applied to fit the

parameters. Finally, reinforcement learning methods are another class of learning methods

that try to learn from their consecutive actions and from the interaction with the operational

environment.

From a second point of view, learning methods can be categorized into offline or online. In

the offline case a set of samples are first collected from the process or system and then

processed at the same time by the learning method. In the online case the model is inserted (or

simulated) in the operational environment and every time a new pattern is generated, the

model parameters are possibly readjusted.

In the third aspect, learning methods can be classified into deterministic or stochastic. If the

method follows a specific path to update the parameters, it is considered deterministic.

Otherwise it is stochastic in the sense that it follows a randomized behavior to fit the

parameters.

Fig. 2.6 briefly illustrates a taxonomy of learning methods. In the following subsections

supervised and unsupervised learning methods are described.

 17

Fig. 2.6. Classification of learning methods [18].

2.4.1. Supervised learning methods

Supervised learning methods adjust the model parameters based on the labeled samples,

where each input pattern along with its corresponding target value is presented to the learning

method. Then the model parameters are adjusted on the basis of the comparison between the

model outputs and corresponding target values. Actually, the goal of supervised learning

methods is fitting the parameters so that the error obtained from the comparisons is globally

minimized. The following discussion introduces a number of well-known supervised learning

methods.

 18

2.4.1.1. Steepest decent method

One of the simplest and the most common gradient based methods is the steepest descent.

This method is applied to solve unconstrained optimization problems. Given a cost function

Ω(𝑤0, 𝑤1, … , 𝑤𝑛) where the 𝑤𝑖s are linear or nonlinear parameters, the steepest decent

method tries to obtain optimal values for 𝑤𝑖 that minimize Ω, based on its gradient with

respect to each 𝑤𝑖. At the first step the parameters are initialized and then updated in a

recursive way over a number of iterations. Eq. (2.16) shows the update of parameters by the

steepest decent method,

𝑤𝑘
(𝑡+1)

= 𝑤𝑘
(𝑡)
− 𝛼

𝜕

𝜕𝑤𝑘
(𝑡)
Ω(𝑤0

(𝑡)
, 𝑤1

(𝑡)
, … , 𝑤𝑛

(𝑡)
), 𝑘 = 0,1,2, … , 𝑛

(2.16)

where 𝑤𝑘
(𝑡)

 denotes the value of 𝑘th
 parameter in the 𝑡th

 iteration. 𝛼 denotes the learning rate,

indicating the step size that the steepest decent method takes in the direction of a local minima

of the cost function Ω. The disadvantage of this method is its likelihood of being trapped into

a local minimum instead of obtaining the global minimum. Fig. 2.7, shows an example of

minimizing a cost function with two parameters 𝑤0 and 𝑤1. As it can be seen in Fig. 2.7, the

minimum value of the cost function that is found by the method depends on the initial point in

parameter space. By starting from point 𝑎, after a number of iterations the local minimum is

achieved at 𝑏, while by starting from point 𝑐, another local minimum is reached at 𝑑.

Fig. 2.7. An Example of parameters update by steepest decent method.

 19

2.4.1.1.1. Back propagation technique

In order to apply the steepest descent method in MLP neural networks, the Back Propagation

(BP) algorithm is employed. The cost function used in BP is given in Eq. (2.17),

Ω(𝐰) =
1

2N
×∑(y(𝐱𝑖, 𝐰) − 𝑡𝑖)

2

𝑁

𝑖=1

(2.17)

where 𝑁 is the number of samples in the training set. 𝐰 denotes the weights as the linear

parameters of the MLP. 𝐱𝑖 and 𝑡𝑖 refer to the i
th

 input pattern and its corresponding target

value, respectively. y(𝐱𝑖, 𝐰) denotes the MLP output for 𝐱𝑖 with respect to 𝐰. Each weight of

the MLP in any layer is updated based on the update rule stated in Eq. (2.18),

𝑤𝑎𝑏
𝑙 (𝑗)

= 𝑤𝑎𝑏
𝑙 (𝑗−1)

− 𝛼
𝜕

𝜕𝑤𝑎𝑏
𝑙 (𝑗−1)

 Ω(𝐰)

(2.18)

where 𝑤𝑎𝑏
𝑙 (𝑗−1)

 is the weight of the link connecting neuron 𝑎 in layer 𝑙 to neuron 𝑏 in layer

𝑙 − 1 in the (𝑗 − 1)th
 iteration. 𝛼 denotes the learning rate and

𝜕

𝜕𝑤𝑎𝑏
𝑙 (𝑗−1) Ω(𝐰) refers to the

gradient of the cost function Ω(𝐰) with respect to 𝑤𝑎𝑏
𝑙 (𝑗−1)

.

The learning process has two passes: the forward pass and the backward propagation. In the

forward pass, the MLP outputs are calculated for each input pattern while in the backward

propagation pass, for each node in layer 𝑙, the contribution of the neuron to the outputs error

of the MLP is computed for each input pattern in (𝑗 − 1)th
 iteration. Suppose the MLP has 𝐿

hidden layers so the layer 1 is assigned to the input layer and layer (𝐿 + 1) corresponds to the

output layer. The contribution of neuron 𝑎 in layer 𝑙 to the output error of the MLP is defined

in terms of the partial gradient (i.e., denoted by 𝛿𝑎
𝑙 (𝑗−1)

) of Ω(𝐰) with respect to the input of

neuron 𝑎 in layer 𝑙 in the (𝑗 − 1)th
 iteration. If neuron 𝑎 is an output neuron, 𝛿𝑎

𝑙 (𝑗−1)
 is

directly computed from the output error of the MLP. In the case that neuron 𝑎 is a hidden

neuron, it is computed in a recursive way as stated in Eq. (2.19),

𝛿𝑎
𝑙 (𝑗−1)

= 𝑔′(𝑧𝑎
𝑙 (𝑗−1)

) ∑ 𝛿𝑘
(𝑙+1) (𝑗−1)

𝑁𝑙+1

𝑘=1

𝑤𝑘𝑎
𝑙+1 (𝑗−1)

, 2 ≤ 𝑙 ≤ 𝐿

(2.19)

where 𝑔′ is the first derivative of the activation function defined in Eq. (2.20) and 𝑧𝑎
𝑙 (𝑗−1)

 is

the input of neuron 𝑎 in layer 𝑙 in iteration (𝑗 − 1)th
defined in Eq. (2.21). 𝑁𝑙+1 denotes the

 20

number of neurons in layer 𝑙 + 1. 𝑤𝑘𝑎
𝑙+1 (𝑗−1)

 refers to the weight of the link connecting

neuron 𝑘 in layer 𝑙 + 1 to neuron 𝑎 in layer 𝑙 in iteration (𝑗 − 1)th
. In Eq. (2.21), 𝐱𝑖 denotes

the 𝑖th input pattern.

𝑔′(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧)) where 𝑔(𝑧) =
1

1+𝑒−𝑧

(2.20)

𝑧𝑎
𝑙 (𝑗−1)

=

{

𝐰1 (𝑗−1)𝐱𝑖 , 𝑙 = 2

∑ 𝑤𝑎𝑘
(𝑙) (𝑗−1)

∗ 𝑧𝑘
(𝑙−1) (𝑗−1)

𝑁𝑙−1

𝑘=1

, 3 ≤ 𝑙 ≤ L

(2.21)

Backward propagation is done for all samples and then the gradient of the cost function

Ω(𝐰) with respect to 𝑤𝑎𝑏
𝑙 (𝑗−1)

 is obtained by Eq. (2.22),

𝜕

𝜕𝑤𝑎𝑏
𝑙 (𝑗−1)

Ω(𝐰) =
1

𝑚
×∑𝜑𝑏

(𝑙−1) (𝑗−1)
(𝐱𝑖)𝛿𝑎

(𝑙) (𝑗−1)
(𝐱𝑖)

𝑚

𝑖=1

(2.22)

where 𝜑𝑏
(𝑙−1) (𝑗−1)

 is the output of neuron 𝑏 in layer 𝑙 − 1 for input pattern 𝐱𝑖 in (𝑗 − 1)th

iteration.

2.4.1.2. Newton’s method

Since the convergence speed of the steepest descent method is slow, Newton’s method was

proposed to speed up the learning process. In Newton’s method an approximation of the cost

function Ω(𝐰) is considered by using the second order Taylor expansion of Ω(𝐰) around

point 𝐰(𝑡) = (𝑤0
(𝑡), 𝑤1

(𝑡), … , 𝑤𝑛
(𝑡)). This approximation gives rise to the quadratic

optimization problem stated in Eq. (2.23).

Ω(𝐰) ≈ Ω(𝐰(𝑡)) + ∇𝐰(𝑡) × (𝐰−𝐰
(𝑡))𝑇 +

1

2
× (𝐰 −𝐰(𝑡))𝑇𝐇(𝑡)(𝐰 −𝐰(𝑡))

(2.23)

Where ∇𝐰(𝑡) and 𝐇(𝑡) denote the first and second derivatives of Ω(𝐰) with respect to 𝐰,

respectively. 𝐇(𝑡) is also called the Hessian matrix. The minimum value for the estimated cost

function Ω(𝐰) is obtained by solving Eq. (2.24).

∇𝐰(𝑡) + 𝐇
(𝑡)(𝐰 −𝐰(𝑡)) = 0 (2.24)

 21

The solution of Eq. (2.24) is obtained by Eq. (2.25) which is the Newton’s update method.

𝐰 = 𝐰(𝑡) − (𝐇(𝑡))−1∇𝐰(𝑡) (2.25)

In order to update the parameters 𝐰 in each iteration by Eq. (2.25), 𝐇(𝑡) must be positive

definite which is not always guaranteed by Newton’s method [17]. In addition, computing the

inverse of 𝐇(𝑡) takes 𝑂(𝑛3) time for each iteration 𝑡 where 𝑛 is the number of parameters. In

order to deal with this limitation of Newton’s method, several efficient methods were

proposed. In the following, we will introduce some of them.

2.4.1.3. Quasi-Newton method

The Quasi-Newton method updates 𝐇(𝑡) based on the changes between the gradient of the

current iteration and that of the previous one, instead of completely computing 𝐇(𝑡) in each

iteration. Several methods have been proposed to gradually update 𝐇(𝑡) including the

Davidon–Fletcher–Powell formula (DFP), SR1 formula (Symmetric Rank one), the BHHH

method, the BFGS method and the low memory extension of BFGS called L-BFGS [30].

Among these, the BFGS stated in Eq. (2.26) is considered the most effective method for a

general unconstrained optimization problem [18].

𝐇𝐵𝐹𝐺𝑆
(𝑡+1)

= 𝐇(𝑡) + (1 +
(𝐪(𝑡))𝑇𝐇(𝑡)𝐪(𝑡)

(𝐬(𝑡))𝑇𝐪(𝑡)
)
𝐬(𝑡)(𝐬(𝑡))𝑇

(𝐬(𝑡))𝑇𝐪(𝑡)
− (

𝐬(𝑡)(𝐪(𝑡))𝑇𝐇(𝑡) +𝐇(𝑡)𝐪(𝑡)(𝐬(𝑡))𝑇

(𝐬(𝑡))𝑇𝐪(𝑡)
)

(2.26)

where 𝐬(𝑡) = 𝐰(𝑡+1) −𝐰(𝑡) and 𝐪(𝑡) = 𝛻𝐰(𝑡+1) − 𝛻𝐰(𝑡).

2.4.1.4. Gauss-Newton method

As another alternative to Newton’s method, the Gauss-Newton method applies an

approximation of 𝐇(𝑡) with the assumption that the underlying problem is a nonlinear least

square one with the cost function defined in Eq. (2.27),

Ω(𝐰) =
1

2
∑𝐞𝑖

2(𝐰)

𝑚

𝑖=1

 , 𝐰 = (𝑤0, 𝑤1, … , 𝑤𝑛)

(2.27)

 22

where 𝑚 is the number of training samples and 𝒆𝑖(𝐰) denotes the model output for 𝑖th input

pattern. 𝐰 refers to the parameters vector. The first-order partial derivative of Ω(𝐰) with

respect to each parameter 𝒘𝑗 for 𝑗 = 0,1,⋯ , 𝑛 is obtained by Eq. (2.28),

∇𝑤𝑗=∑𝐞𝑖
𝜕𝐞𝑖
𝜕𝒘𝑗

𝑚

𝑖=1

=∑𝐞𝑖𝐉𝑖𝑗

𝑚

𝑖=1

 , 𝑗 = 0,1, … , 𝑛

(2.28)

where 𝐉𝑖𝑗 is the element in 𝑖th row and 𝑗th column of the 𝑚 × 𝑛 matrix 𝐉, which is the so called

Jacobean matrix. The relation between the gradient vector 𝛁𝒘 and Jacobean matrix 𝐉 in 𝑡th

iteration is expressed by Eq. (2.29) which is the matrix notation of Eq. (2.28).

𝛁𝐰(𝑡) = (𝐉
(𝑡))𝑇𝐞(𝑡) (2.29)

In practice, the Hessian matrix 𝐇 is a squared matrix of size 𝑛 × 𝑛 whose elements are

computed by Eq. (2.30),

𝐇𝑗𝑘 =∑(
𝜕𝐞𝑖
𝜕𝐰𝑗

𝜕𝐞𝑖
𝜕𝐰𝑘

+ 𝐞𝑖
𝜕2𝐞𝑖

𝜕𝐰𝑗𝜕𝐰𝑘
)

𝑚

𝑖=1

 , 𝑗, 𝑘 = 0,1, … , 𝑛

(2.30)

where 𝐇𝑗𝑘 is the element in 𝑗th row and 𝑘th
 column of 𝐇. The Gauss-Newton method presents

an approximation to 𝐇 by eliminating the second term in Eq. (2.30). Hence the approximation

of 𝐇 can be stated as Eq. (2.31),

𝐇𝑗𝑘 ≈∑(
𝜕𝐞𝑖
𝜕𝐰𝑗

𝜕𝐞𝑖
𝜕𝐰𝑘

) =∑𝐉𝑖𝑗𝐉𝑖𝑘

𝑚

𝑖=1

𝑚

𝑖=1

 , 𝑗, 𝑘 = 0,1, … , 𝑛

(2.31)

whose matrix notation is given by Eq. (2.32),

𝐇(𝑡) = (𝐉(𝑡))𝑇𝐉(𝑡) (2.32)

where 𝐇(𝑡) and 𝐉(𝑡) denote the Hessian and the Jacobean matrix in 𝑡th
 iteration. By replacing

Eqs. (2.29) and (2.32) in Eq. (2.25), the Gauss-Newton update rule in 𝑡th
 iteration can be

obtained as Eq. (2.33).

 23

𝐰 = 𝐰(𝑡) − ((𝐉(𝑡))𝑇𝐉(𝑡))−1(𝐉(𝑡))𝑇𝐞(𝑡) (2.33)

2.4.1.5. Levenberg-Marquardt method

Although the approximation of the Hessian matrix 𝐇 in the Gauss-Newton method rprovides

increased speed of the method, the invertibility of ((𝐉(𝑡))𝑇𝐉(𝑡)) is still not guaranteed [31]. To

deal with this problem the Levenberg-Marquardt method [32, 33] was proposed. In each

iteration the term 𝛿𝐈 (a diagonal matrix) is added to ((𝐉(𝑡))𝑇𝐉(𝑡)) to guarantee that it becomes

a nonsingular matrix that is invertible. 𝛿 is a variable scalar value that changes in every

iteration by a given factor and 𝐈 is the identity matrix so that ((𝐉(𝑡))
𝑇
𝐉(𝑡) + 𝛿𝐈) is invertible.

The Levenberg-Marquardt update rule is stated in Eq. (2.34).

𝐰 = 𝐰(𝑡) − ((𝐉(𝑡))
𝑇
𝐉(𝑡) + 𝛿𝐈)−1(𝐉(𝑡))𝑇𝐞(𝑡) (2.34)

The value of 𝛿 has a critical role to change the behavior of Levenberg-Marquardt. For small

values of 𝛿, ((𝐉(𝑡))𝑇𝐉(𝑡)) has significant influence in parameters update. In this case, the

behavior of the Levenberg-Marquardt method is the same as the Gauss-Newton method. In

the case of assigning large values to 𝛿, ((𝐉(𝑡))𝑇𝐉(𝑡)) does not have significant contribution in

parameters update. In this situation, the Levenberg-Marquardt behaves like the steepest decent

method where only (𝐉(𝑡))𝑇𝐞(𝑡), as the gradient of cost function, (according to Eq. (2.29)) has

an important effect on the update. The method starts with a small value of 𝛿, therefore

behaving close to the Gauss-Newton method and continues decreasing 𝛿 as long as the error

decreases Whenever the error increases in an iteration, the parameters are reset to the values

obtained in the previous iteration and 𝛿 is made larger with the aim of changing the behavior

of the Levenberg-Marquardt method in the direction of the steepest decent method.

By considering the cost function as a least squares problem, the performance of learning

algorithms can be improved by separating parameters into linear and nonlinear in the learning

process [24]. Suppose 𝐮 and 𝛖 denote linear and nonlinear parameters, respectively. The

model output can be stated as Eq. (2.35).

𝐲 = 𝛟(𝛖)𝐮 (2.35)

 24

where 𝛟 denotes the output matrix of the last hidden layer possibly including a column of

ones corresponding to the model output bias. By replacing Eq. (2.35) in Eq. (2.27), the

following nonlinear least squares problem is obtained,

Ω(𝐮, 𝛖) =
1

2
∑𝐞𝑖

2(𝐮, 𝛖)

𝑚

𝑖=1

=
‖𝐭 − 𝛟(𝛖)𝐮‖2

2

2

(2.36)

where 𝐭 is the target vector. Considering any constant value of 𝛖, the optimum value of 𝐮

minimizing Ω(𝐮, 𝛖) can be obtained using the pseudo-inverse method:

�̂�(𝛖) = 𝛟(𝛖)+𝐭 (2.37)

By replacing Eq. (2.37) in Eq. (2.36), a new training criterion is obtained where the cost

function only depends on the nonlinear parameters 𝛖:

𝜓(𝛖) =
‖𝐭 − 𝛟(𝛖)𝛟(𝛖)+𝐭‖2

2

2

(2.38)

To minimize the criterion in Eq. (2.38), the corresponding gradient must be computed. It has

been proven in [34] that the gradient of 𝜓(𝛖) can be determined in such a way that, firstly,

the optimal value of 𝐮 is obtained by Eq. (2.37) and then it is replaced in Eq. (2.36).

Afterwards, the gradient of 𝜓(𝛖) can be obtained by performing the usual calculation. The

new criterion has several advantages when compared to the classic one in Eq. (2.36):

 It decreases the dimension of the optimization problem since only nonlinear parameters

are considered.

 It makes the Levenberg-Marquardt method faster since each iteration of the learning

process becomes computationally cheaper.

 A small number of iterations is needed to converge to the local minimum of the cost

function since the initial values obtained by using Eq. (2.38) are much lower than those

obtained by using Eq. (2.36). Moreover, the new criterion results in a faster rate of

convergence.

 25

2.4.1.6. Four strategies for training RBFNNs

The strategies considered for training RBFNNs differ on how the centers and spreads of the

hidden neurons are computed [17, 35, 36]. Regarding the basic strategy used in the standard

RBFNN proposed by Broomhead and Lowe [20], each sample of the training set corresponds

to a particular center of the RBFNN producing an interpolating surface which exactly passes

throughout all samples of the training set. In case of the presence of a large size training set, a

large size RBFNN is produced. Moreover, in application, the exact curve fitting is neither

useful nor desirable since it may lead to anomalous interpolation properties [20]. To relax the

strict interpolation, three main strategies can be employed.

In the first strategy [37], the center of each hidden neuron corresponds to a random input

pattern in the training set and for all hidden neurons, the same spread is considered as given

by Eq. (2.39),

𝜎 =
𝑑𝑚𝑎𝑥

√2𝑛

(2.39)

where 𝑛 is the number of centers and 𝑑𝑚𝑎𝑥 is the maximum Euclidean distance between the

selected centers. Afterwards, the linear parameters 𝐮 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑛,] can be obtained with

the application of pseudo-inverse method (see Eq. (2.37)).

The second strategy [38] benefits from both supervised and unsupervised learning methods.

In this strategy, which is also called self-organized selection of centers, the centers of the

hidden neurons are determined by applying for instance a clustering method like k-means or

any extended version of that. First, the samples in the training set are grouped into a number

of clusters and then the center of each cluster is considered as a center of a hidden neuron.

Afterwards, the spread of each hidden neuron can be determined by Eq. (2.39) or other

heuristics that have been proposed [24].

Once the centers and the spreads, as nonlinear parameters, are determined, the output linear

weights of the RBFNN model can be found as the solution of a linear least square

optimization problem (see Eq. 2.37).

The strategies described above determine the non-linear parameters by using stochastic or

heuristic methods. Therefore there is no guarantee that the non-linear parameters are the

optimal ones in the minimization of the training error criterion. The third strategy has already

been mentioned in Section 2.4.1.5 where the linear parameters can be obtained optimally by

using the pseudo-inverse operation and then the nonlinear parameters are determined using a

 26

nonlinear least squares optimization problem. This way all the parameters are involved in the

minimization of the training error criterion.

The fourth strategy which benefits from Orthogonal Least Squares (OLS) method is an

iterative task that starts with an empty hidden layer and continues with adding a center at a

time and updating the linear parameters (i.e., weights) until some criteria are met. Some

approaches based on OLS can be seen in [39-41].

2.4.1.7. Termination criteria in training process

The training process should be ended when a desired level of accuracy is obtained. In order to

achieve this goal, four approaches may be applied to terminate the training process.

The first approach focuses on a fixed number of iterations which is determined as a user-

defined threshold. The main disadvantage is that for a given problem it is not clear how many

iterations are necessary to guarantee that a desired level of accuracy is obtained.

In order to deal with the problem of the first approach, the second approach simultaneously

checks three termination criteria shown in Eqs. (2.40) to (2.42), that reflect the accuracy and

parameter convergence of the model [24]. Whenever all criteria are met, the training process

ends.

Ω[𝑘 − 1] − Ω[k] < θ[k] (2.40)

‖𝐰[𝑘 − 1] − 𝐰[𝑘]‖ < √𝜏𝑓 . (1 + ‖𝐰[𝑘]‖) (2.41)

‖𝐠[𝑘]‖ ≤ √𝜏𝑓
3 . (1 + |Ω[𝑘]|) (2.42)

θ[k] = 𝜏𝑓 . (1 + Ω[𝑘]) (2.43)

 In these criteria 𝑘 denotes the 𝑘th
 iteration. Ω, 𝐰 and 𝐠 refer to the cost function, the

parameters vector and the gradient vector, respectively. 𝜏𝑓 is a user-defined threshold

denoting a measure of the desired number of correct digits in the cost function. 𝜏𝑓 has a

critical role in the training process. For example, assigning a small value to 𝜏𝑓 may lead to

have an over-trained model. An over-trained model has a high level of accuracy for the

training samples but not an acceptable level of generalization for unseen data [24].

To avoid the over-training phenomenon, the third approach, which is called early stopping

method, is considered. The model is evaluated not only on the training samples but also on

another set of samples called testing set. In each iteration, the model error is computed for

 27

both training and testing sets. If both training and testing errors are decreasing in comparison

to the error in previous iterations, the training process is allowed to continue. In the case that

the training error is decreasing but the testing error is increasing, the training process

terminates since the model started losing its generalization capability. In this situation, the

values of the parameters may be set to the values obtained in an appropriate previous

iteration. Fig. 2.8 illustrates how the early stopping method works.

Fig. 2.8. Early stopping method.

2.5. Performance Criteria

Once models are trained, there are various criteria to evaluate their performance. These

criteria must allow the comparison of different types of models in terms of their

performances. Regarding regression problems, the performance criteria express how much

the model’s outputs (i.e., predicted values) are close to their corresponding real values (i.e.,

measured values). Hence, they are specified in terms of the errors obtained between the real

and the predicted values. Some criteria used in regression problems are the Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error (MRE), Mean Absolute

Percentage Error (MAPE), Maximum Absolute Error (MaxAE) and standard deviation of

predicted values (𝜎). These can be calculated by Eqs. (2.44) to (2.49).

 28

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (2.44)

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (2.45)

𝑀𝑅𝐸 =
1

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑁

𝑖=1

 (2.46)

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖|

𝑁

𝑖=1

 (2.47)

𝑀𝑎𝑥𝐴𝐸 = max (𝐴𝐸(𝑦, �̂�)) (2.48)

𝜎 = √
1

𝑁
∑(�̂�𝑖 − �̂��̅�(𝑖))

2

𝑁

𝑖=1

 (2.49)

In Eqs. (2.44) to (2.49), 𝑁, 𝑦𝑖 and 𝑦�̂� denote the number of samples, and the real and predicted

values of the output variable for the 𝑖𝑡ℎ sample, respectively.

Regarding classification problems, the most common criteria are the Classification Rate (CR),

the specificity and the sensitivity. These criteria can be calculated by using Eqs. (2.50) to

(2.52).

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑁

(2.50)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.51)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(2.52)

𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote True Positive, True Negative, False Positive and False Negative,

respectively. The corresponding definitions are as follows:

𝑇𝑃: The number of positive samples which have been correctly classified by the model.

𝑇𝑁: The number of negative samples which have been correctly classified by the model.

𝐹𝑃: The number of negative samples which have been wrongly classified as positive ones

 29

by the model.

𝐹𝑁: The number of positive samples which have been wrongly classified as negative ones

by the model.

2.6. Genetic Algorithm

The Genetic Algorithm was inspired by the natural process of evolution and was considered

as an optimization method where it, as a guided search method, tries to find an acceptable or

satisfactory solution in a search space. The problem being solved by a GA is viewed as a

black box system with a number of input parameters and one output parameter. In a more

formal way, the input parameters that describe a possible solution are encoded in a

representation called the chromosome, whereas the output parameter is usually the result of a

function that captures the fitness of the candidate solution to the problem being addressed.

The goal is finding a combination of input parameters’ values resulting in a satisfactory value

for the output parameter [42]. To find an optimal solution, GA starts with an initial population

of the potential solutions for the underlying problem. Each solution in the population, termed

an individual, is evaluated by the problem specific fitness function reflecting the problem

goal. Afterwards, the initial population is evolved by applying genetic operators that mimic

the natural process of evolution. The canonical GA considers, mating selection, parent

recombination, mutation and replacement operators. This way the initial population is

replaced by a new generation by mating the elitists of the initial population so that the

individuals in the new generation are expected to be more fit to the problem. The evolution

process continues by producing a number of generations, expecting that, eventually after an

appropriate number of generations, suitable individuals in terms of their fitness are available.

The following subsections describe the GA operators.

2.6.1. Selection

Once an initial population is generated and a fitness value is assigned to each individual in the

population, some of them should be selected to produce a new generation. There are several

well-known selection methods including roulette wheel (or Fitness Proportionate Selection),

Stochastic Universal Sampling (SUS), Tournament selection and Truncation selection. The

following briefly introduces these methods.

 30

 Roulette wheel

In this method, firstly, the individuals are sorted in an ascending order based on their

fitness values. Suppose that fitness value 𝑓𝑖 is assgind to the 𝑖th individual. In the second

step, for each individual, the corresponding normalized fitness value is computed as:

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝐼
𝑘=1

(2.53)

where 𝐼 is the number of individuals. Accually, the normalized fitness value 𝑝𝑖 denotes

the probability of 𝑖th individual to be selected. In the third step, for each individual, a

probability interval based on the accumulated normalized fitness values is computed as:

[𝑙𝑖, 𝑙𝑖 + 𝑝𝑖) = [∑𝑝𝑗

𝑖−1

𝑗=1

,∑𝑝𝑗

𝑖−1

𝑗=1

+ 𝑝𝑖)

(2.54)

where 𝑙𝑖 denotes the lower bound of the interval corresponding to 𝑖th individual. It is

notable that for the first individual, 𝑙1 is equal to zero. In the fourth step, a random number

𝑟 from the range [0,1] is selected and then the individual whose interval includes 𝑟 is

selected for mating. This step is repeated for a number of iterations to produce a pool of

parents for mating. Based on this method, the individuals with large fitness values have

more chance to be selected than the others. They are also likely to be selected more than

once throughout the selection process.

 Stochastic Universal Sampling

The Stochastic Universal Sampling method is the extended version of roulette wheel

method where multiple evenly spaced pointers are considered at a time instead of using a

single pointer to select an individual. Hence, in SUS, multiple individuals are selected at a

time. The advantage of SUS is giving a chance to weaker individuals to be selected as

well. This method reduces the unfair behavior of the roulette wheel method which mostly

ignores the weaker individuals. In SUS method, firstly, a random value 𝑟 is selected from

the range [0, 𝑘] where 𝑘 is obtained as:

𝑘 =
𝐹

𝐼

(2.55)

where 𝐹 and 𝐼 are the summation of fitness values and the number of individuals that are

supposed to be selected by the method, respectively. In the second step, 𝐼 pointers are

generated as:

 31

𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 = [𝑝1, 𝑝2,⋯,𝑝𝑁], 𝑝𝑖 = 𝑟 + (𝑖 − 1) ∗ 𝑘 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐼 (2.56)

Like roulette wheel method, for each pointer 𝑝𝑖, the individual whose interval includes 𝑝𝑖

is selected for mating.

 Tournament

Tournament selection method tries to randomly select a subset of size 𝑘 (i.e., tournament

size) of the current population for several times. In each tournament, the best individual is

selected as a parent to reproduce the next generation. If 𝑘 is a large value, the weaker

individuals have a lower chance to be selected. On the other hand, when 𝑘 = 1,

tournament method acts as the random selection method.

 Truncation

Truncation method is one the simplest selection methods where firstly, the individuals are

sorted based on their fitness value and then some proportion, 𝑝, of the best individuals are

selected.

2.6.2. Recombination

The children are generated through the combination of their parents’ genes in form of new

chromosomes. Combining the genes is performed by the genetic operator called crossover.

The crossover operator is done with a probability called crossover rate which usually takes a

large value of probability (e.g., 0.7). A number of crossover methods have been proposed.

Among them, single-point, two-point, Cut and Splice and Uniform are well-known crossover

methods. Suppose that a chromosome is a binary string so that each gene takes a value from

{0,1}. The follwoing explaines the crossover methods mentioned above.

 Single-point crossover

In single-point method, a common crossover point is selected for both parents and then all

genes beyond the point are swapped between the two parents which results in having two

children whose lengths are the same as that of their parents. Fig. 2.9 shows an example of

single-point crossover method.

 Two-point crossover

In two-point method, two common crossover points are selected rather than one point. In

this method, all genes between two points are swapped between the two parents which

 32

results in having two children whose lengths are the same as that of their parents. Fig.

2.10 shows an example of two-point crossover method.

Fig. 2.9. Single-point crossover

Fig. 2.10. Two-point crossover

 Cut and Splice crossover

Cut and Splice method is similar to single-point method but with the difference that each

parent has its own crossover point. All genes beyond each point are swapped between the

two parents which results in having two children with different lengths. Fig. 2.11

illustrates an example of Cut and Splice method.

 33

Fig. 2.11. Cut and Splice crossover

 Uniform crossover

Unlike previous methods, in Uniform method, the parents have contribution in producing

the children in gene level instead of segment level. In other words, each gene is decided

whether to be exchanged with its corresponding gene in the other parent or to be kept

unchanged. In this method, each gene is swapped with a fixed probability, typically 0.5

where for each child, approximately half of its genes belong to the first parent and the

other half is inherited from the second parent. Fig. 2.12 shows an example of Uniform

method.

Fig. 2.12. Uniform crossover

 34

2.6.3. Mutation

In order to bring diversity to the next generation, another genetic operator called mutation is

performed on a generated child where one or more genes of the corresponding chromosome

is/are modified. Unlike the crossover rate, the mutation rate takes a very small value. The

common mutation method modifies the value of a gene with a probability
1

𝑙
 where 𝑙 is the

length of the chromosome.

2.6.4. Replacement

Once a population of children is generated and evaluated, the last decision is how to replace

the current generation with it. The common way is replacing the current population with all

generated children. In some advanced methods, the parents of the current population are

allowed to compete with the children where a percentage of the current population migrates to

the next generation. Some advanced methods can be found in [43].

2.6.5. Multi-Objective Genetic Algorithm

In the real world, the optimization of an engineering problem is a complicated task due to the

presence of multiple objectives which, most of the time, are conflicting with each other. This

means that improving one may deteriorate the other. In this case, there is a Pareto-optimal or

non-dominated set of solutions in which each solution is not better than the other with respect

to the multiple objectives. Fig. 2.13 shows an example of a minimization problem with two

objectives. The whole space of solutions is divided into two groups: the shaded region

presents the dominated solutions while the solid curve illustrates the non-dominated set of

solutions regarding objectives obj.1 and obj.2. As it can be seen in Fig. 2.13, A and B denote

two non-dominated solutions.

The goal of a multi-objective optimizer is improving the surface of non-dominated solutions

(i.e., the solid curve) in such a way that it approaches the origin (i.e., point ‘O’ in Fig. 2.13) as

much as possible.

GAs are well established tools to deal with multi-objective optimization problems [44-46]. In

the Multi Objective Genetic Algorithm [4, 24, 46, 47], each individual in the population is

evaluated in the space of multiple objectives rather than in one single objective. In addition,

at the end of one run of MOGA, a Pareto set of solutions is provided instead of achieving one

solution that is better than all others.

 35

Fig. 2.13. Bi-objective minimization problem. The shaded region presents dominated

solutions and the solid curve illustrates non-dominated solutions [47].

An efficient Pareto-based ranking method has been proposed in [43, 47]. In this method, each

individual is ranked based on the number of individuals by which they are dominated. For

non-dominated individuals, rank 0 is considered; if an individual is dominated by 𝑚

individuals, rank 𝑚 will be assigned to it. Fig. 2.14 shows an example of Pareto-based

ranking for two objectives that should be minimized.

Fig. 2.14. An example of Pareto ranking [48, 49].

In most applications, it is common to assign different priorities to the objectives or define

different goals for them which the MOGA tries to achieve. In the case that all objectives have

the same priorities, for those individuals which satisfy all goals, their corresponding rank is

similarly equal to the number of individuals by which they are dominated. Those individuals

which do not meet some goals are penalized by a higher rank. Fig. 2.15 illustrates an example

 36

of Pareto-based ranking for two objectives which have the same priorities. For each objective

a predefined goal is considered that should be met.

Fig. 2.15. An example of Pareto-based ranking for two objectives with the same priorities. For

each objective, a predefined goal is considered [43, 47].

In the case that, objective 2 has higher priority than objective 1, individuals which meet goal

𝑔2 are ranked based on how well they optimize objective 1. Others that do not satisfy 𝑔2 are

assigned the worst rank without considering their performance with respect to objective 1.

Fig. 2.16 shows an example of this case.

Fig. 2.16. An example of Pareto-based ranking for two objectives in the case that objective 2

has higher priority than objective 1. For each objective, a predefined goal is considered [43,

47].

 37

2.7. Neural network based model design by MOGA

The problem of designing a neural network based model can be divided into two sub-

problems as follows [4]:

 Neural network structure: It denotes the network inputs, the number of hidden layers, and

the number of neurons in each layer.

 Neural network parameters: They depend on the model chosen and are usually

determined by a suitable learning algorithm.

Since the RBFNN models considered in this thesis were designed by a MOGA, the remaining

of this section details the MOGA application to the design of RBFNN models for

classification and regression problems.

The output of a RBFNN model is given by Eq. (2.57):

𝑜[𝑘] = 𝑤𝑙+1 + ∑ 𝑤𝑚𝑒

‖𝒊𝑗[𝑘]−𝑪(𝑚)]‖2
2

2𝜎𝑚
2

𝑙

𝑚=1

(2.57)

In Eq. (2.57), 𝑜[𝑘] and 𝒊𝑗[𝑘] denote the model output and the 𝑗th input at time instant 𝑘,

respectively. 𝒘 represents the vector of the linear weights, 𝐂(𝑚) refers to the vector

(extracted from the 𝐂 matrix) of the center associated with the 𝑚th
 hidden neuron, σm is its

corresponding spread, and
2

 represents the Euclidean distance. The network parameters

which will be denoted as the parameter vector 𝐩, are therefore 𝐂, 𝛔 and 𝐰. In order to design

a RBFNN model that satisfies a set of defined goals, it is necessary to define a set of quality

measures in the form of objectives for each sub-problem mentioned above.

Assume that 𝑫 = (𝑿, 𝒚) is a data set composed of 𝑁 input-output pairs, which is divided into

a training set, 𝑫𝑡, a generalization or testing set 𝑫𝑔 and a validation set 𝑫𝑣. Assume also that

𝐹 is a set of all possible input features (delayed values of the modeled and exogenous

variables in time-series regression problems). The problem of designing RBFNN model by

MOGA can be expressed as follows:

The Dataset 𝑫, the allowed range 𝑑 ∈ [𝑑𝑚, 𝑑𝑀] of input features from 𝐹 and the range

𝑛 ∈ [𝑛𝑚, 𝑛𝑀] of hidden neurons are given as design parameters to the MOGA. After the

execution it generates a non-dominated set of RBFNN models that minimize [𝜇𝑝, 𝜇𝑠], where

 38

𝜇𝑝 and 𝜇𝑠 denote a set of objectives related to the RBFNN’s parameters 𝐩 and its structure,

respectively. 𝜇𝑠 includes only one objective,

 s O (2.58)

that denotes the model complexity which is a function of the number of input features and the

number of the hidden neurons.

Since the specification of 𝜇𝑝 is different in the classes of problems considered, the following

subsections address the specification of 𝜇𝑝 for each class.

2.7.1. Specification of 𝝁𝒑 in classification problems

In classification problems, we are mainly interested to minimize 𝐹𝑃 and 𝐹𝑁 criteria (see

Section 2.5). Hence the corresponding objectives for 𝜇𝑝 are considered as:

𝜇𝑝 = [𝐹𝑃𝑫𝑡 , 𝐹𝑁𝑫𝑡 , 𝐹𝑃𝑫𝑔 , 𝐹𝑁𝑫𝑔] (2.59)

where 𝐹𝑃𝑫𝑡 and 𝐹𝑁𝑫𝑡 denote the 𝐹𝑃 and 𝐹𝑁 on the training set 𝑫𝑡, respectively. Similarly,

𝐹𝑃𝑫𝑔 and 𝐹𝑁𝑫𝑔 refer to the 𝐹𝑃 and 𝐹𝑁 on the testing set 𝑫𝑔, respectively.

2.7.2. Specification of 𝝁𝒑 in regression problems

The specification of 𝜇𝑝 in for the case of regression problems relies on the minimization of

the error between model outputs and desired values. Therefore, the corresponding objectives

for 𝜇𝑝 are defined as:

𝜇𝑝 = [휀(𝑫
𝒕), 휀(𝑫𝑔)] (2.60)

where 휀(𝑫𝑡) and 휀(𝑫𝑔) denote the Root Mean Square Errors (RMSE) of the model

considering training 𝑫𝑡 and the testing set 𝑫𝑔.

2.7.2.1. Specification of 𝝁𝒑 in time series prediction problems

Regarding time series prediction problems, the basic objectives specified for regression

problems are also taken into account. Besides these, an additional objective, 휀(𝑫𝑠, 𝑃𝐻), is

also considered. Hence the corresponding objectives for 𝜇𝑝 can be defined as:

 39

𝜇𝑝 = [휀(𝑫𝑡), 휀(𝑫𝑔), 휀(𝑫𝑠, 𝑃𝐻)] (2.61)

To understand 휀(𝑫𝑠, 𝑃𝐻), assume 𝑬(𝑫𝑠, 𝑃𝐻) is an error matrix defined over the simulation

set 𝑫𝑠 as expressed in Eq. (2.62), where 𝑫𝑠 is composed of a number of consecutive samples

with respect to the time instant.

𝐸(𝑫𝑠, 𝑃𝐻) = [

𝑒[1,1] 𝑒[1,2] ⋯ 𝑒[1, 𝑃𝐻]
𝑒[2,1] 𝑒[2,2] ⋯ 𝑒[2, 𝑃𝐻]
⋮ ⋮ ⋱ ⋮

𝑒[𝑚 − 𝑃𝐻, 1] 𝑒[𝑚 − 𝑃𝐻, 2] ⋯ 𝑒[𝑚 − 𝑃𝐻, 𝑃𝐻]

]

(2.62)

where ,e i j is the model prediction error taken from instant i of sD at step j within the

prediction horizon PH. Denoting ., i as the RMS function operating over the i
th

 column

of its argument matrix, then 휀(𝑫𝑠, 𝑃𝐻) is defined as:

휀(𝑫𝑠, 𝑃𝐻) =∑𝜌(𝑬(𝑫𝑠, 𝑃𝐻), 𝑖)

𝑃𝐻

𝑖=1

(2.63)

This value is proportional to the area below the curve defined by 𝜌(𝑬(𝑫𝑠, 𝑃𝐻), 𝑖) for 𝑖 within

the prediction horizon, reflecting the model accuracy over the complete prediction horizon for

the data set considered.

2.7.3. Model representation in MOGA

Each RBFNN model in the population has a chromosome representation consisting of two

components. The first corresponds to the number of hidden neurons and the second one to a

string of integers, each one representing the index of a particular feature in 𝐹. The

chromosome representation is shown in Fig. 2.17.

 40

Fig. 2.17. Chromosome representation in MOGA.

Before being evaluated in the MOGA, each model has its parameters determined by a

Levenberg-Marquardt algorithm [32, 33] minimizing the error criterion in Eq. (2.38) that

exploits the linear-nonlinear relationship of the RBFNN model parameters [34, 50]. The

initial values of the nonlinear parameters (𝑪 and 𝝈) are chosen randomly, or by the use of a

clustering algorithm, 𝒘 is determined as a linear least-squares solution, and the procedure is

terminated using the early-stopping approach [17] within a maximum number of iterations.

2.7.4. Model design cycle

There are three main actions in the model design cycle: problem definition, solution(s)

generation and analysis of results. In the problem definition stage, the data sets, the ranges of

features and neurons are defined, as well as the objectives. After this stage, the MOGA

execution performs a search to obtain models that satisfy the predefined objectives and goals.

In the third stage, the set of models obtained by the MOGA that lie in the Pareto front are

analyzed. For this purpose, the performance of the models in the validation set (not involved

in the training) is also considered and is of paramount importance. If good solutions are

found, the process stops. Otherwise, based on the analysis of results, the search space can be

reduced, and/or the objectives and goals can be redefined, therefore restricting the trade-off

surface coverage. A more detailed description on the application of the MOGA to the design

of ANN models can be found, for instance, in [4, 24].

 41

2.8. Information Theory

Information theory addresses the quantification, storage and communication of information.

Entropy, as one of the basic concepts in information theory, measures the expected value of

the information contained in any random variable. For a given discrete random variable 𝑿

with 𝑁 possible observations, the Shannon entropy is defined as Eq. (2.64) [51].

𝐻(𝑿) = −∑𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)

𝑁

𝑖=1

(2.64)

where 𝑃(𝑥) denotes the Probability Density Function (PDF) of 𝑿. Mutual Information (MI) as

another key concept in information theory measures the dependency between variables.

Unlike the correlation coefficient that measures only the linear relationship between variables,

MI does not consider any assumption for the underlying relationship. In addition, MI can be

defined between groups of variables [52]. MI between two variables 𝑿 and 𝒀 (they can be

univariate or multivariate variables) denoted by 𝐼(𝑿; 𝒀) can be interpreted in several ways.

Informally, 𝐼(𝑿; 𝒀) measures the amount of information that 𝑿 and 𝒀 share. Formally,

𝐼(𝑿; 𝒀) measures the amount of knowledge of 𝑿 that reduces the uncertainty about 𝒀 and vice

versa [53]. It is also translated into the degree of predictability of the second variable knowing

the first one [54]. In the case that 𝑿 (i.e., with 𝑁 possible observations) and 𝒀 (i.e., with 𝑀

possible observations) are discrete variables, MI is computed by Eq. (2.65).

𝐼(𝑿; 𝒀) =∑∑𝑃(𝑥𝑖 , 𝑦𝑗) log
𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑥𝑖). 𝑃(𝑦𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

(2.65)

where 𝑃(. , .) and 𝑃(.) denote the joint and marginal PDF, respectively. Since the

computation of entropy and MI depends on the PDF, the related problematic issue is the

estimation of the PDF. The most common methods for PDF estimation are histograms and

kernel estimators [55, 56]. Moreover, there is another approach allowing us to directly

estimate entropy and MI from data instead of PDF estimation. Some methods for estimating

entropy and MI can be seen in [57, 58].

 42

2.9. Overview of two statistical tests

In order to compare the performance of machine learning methods on classification and

regression problems, from a statistical point of view, several statistical tests have been

proposed. In this way, at the first step, the two involved classification or regression methods

are independently applied on to the same data sets. At the second step, based on the

corresponding evaluation results (i.e., they can be in terms of RMSE and classification rate

for regression and classification problems, respectively) obtained by each method, the

comparison of the methods’ performances are statistically verified by rejecting or accepting a

null hypothesis (i.e., the null hypothesis is equivalent to the assumption that the two methods

perform equally well). In this section, the two statistical tests which have been applied in this

thesis are explained.

2.9.1. Sign test

Applying Sign test [59] is one of the simple ways to compare the performances of two

methods. In this test, two methods are compared with each other in terms of the number of

times that the first method has performed better than the second one. This number is also

known as the number of wins. In case of tie, the corresponding count is evenly split between

them; if there is an odd number of them, one is ignored. In case that multiple methods should

be compared, pairwise comparisons are organized in a matrix. Typically, for a large number 𝐿

of data sets, the critical number of wins with the significance level of 𝛼 = 0.05 is equal to

𝐿/2 + (1.96√𝐿)/2 or 𝐿/2 + √𝐿. The first method performs better than the second one, if its

number of wins is greater than or equal to the critical value.

2.9.2. Wilcoxon signed-ranks test

According to the suggestion of [60], a Wilcoxon signed-ranks test [59] is a proper alternative

for 𝑡-test. Firstly, Wilcoxon signed-ranks test is safer than 𝑡-test since it does not assume the

normal distributions. Secondly, the outliers have less effect on the Wilcoxon’s performance

than they have on the 𝑡-test. This is a non-parametric test, which ranks the differences in

performances of two methods for each data set, ignoring the signs, and compares the ranks for

the positive and the negative differences. Assume that 𝑑𝑖 is the difference between the

performance scores of the two methods on the i
th

 out of 𝐿 data sets. The differences are ranked

according to their absolute values; average ranks are assigned in case of ties. Let 𝑅+ be the

 43

sum of ranks for the data sets on which the second method outperformed the first, and 𝑅− the

sum of ranks for the opposite. Ranks of 𝑑𝑖 = 0 are split evenly among the sums; if there is an

odd number of them, one is ignored. Eqs. (2.66) and (2.67) present R
+
 and R

−
, respectively.

0 0

1

2
i i

i i

d d

R Rank d Rank d

(2.66)

0 0

1

2
i i

i i

d d

R Rank d Rank d

(2.67)

Assume that 𝑇 is the minimum of the sums, 𝑇 = min (𝑅+, 𝑅−). For a small number of data

sets (i.e., 𝐿 < 60), most books in general statistics contain a table of exact critical values of 𝑇

based on some different significance levels of 𝛼. For a large number of data sets (i.e., 𝐿 ≥

60), the statistic

)12)(1(
24

1

)1(
4

1

LLL

LLT

z is distributed approximately normally. With

𝛼 = 0.05, the null hypothesis can be rejected if z is smaller than -1.96.

 44

 45

3. Convex hull algorithms and state of the art

3.1. Introduction

The convex hull of a dataset is a widely known concept in computational geometry. It has

been applied in many fields such as computer graphics, pattern recognition, image processing,

file searching, statistics, cartography, metallurgy, etc. For example, in some applications, the

size of an object can be computed through its image. In case that some pixels of the image

might be lost or not be visible, convex hull can provide us an approximated shape of the

underlying object. In machine vision applications, convex hull can be applied to detect

collisions while navigating over a field of obstacles, where the objects can be substituted with

their corresponding convex hull.

The convex hull of a set of data can be presented in terms of vertices and facets where the

vertices refer to the boundary points of the data set and the facets denote the connections

among the vertices. Since convex hull vertices are useful and informative points reflecting the

whole range of data, convex hull can also be considered in the data selection phase in machine

learning and data mining tasks.

This chapter is intended to address the explanation of the basic concept of convex hull as well

as introducing some standard convex hull algorithms applicable to low and high dimensions.

The rest of this chapter is organized as follows: the definition of convex hull along with an

overview of convex hull algorithms are explained in Section 3.2. In Section 3.3, some

standard convex hull algorithms for low dimensions are introduced. As a state-of-the-art, a

proposed convex hull algorithm in high dimensions is introduced in Section 3.4 and finally

some conclusions are drawn in Section 3.5.

3.2. An overview of convex hull algorithms

From a computational geometry’s point of view, an object in Euclidean space is convex if for

any pair of points within the object, the straight line segment that joins them is also within the

object. A set is convex if, for any pair, 𝑥, 𝑦 ∈ 𝑆, and all 𝑡 ∈ [0,1], the point (1 − 𝑡)𝑥 + 𝑡𝑦

is in 𝑆 otherwise 𝑆 is a concave set. Moreover, if 𝑆 is a convex set, for any 𝑢1, 𝑢2, … , 𝑢𝑟 ∈ 𝑆,

and any nonnegative numbers {𝜆1, 𝜆2, … , 𝜆𝑟}: ∑ 𝜆𝑖 = 1𝑟
𝑖=1 , the vector ∑ 𝜆𝑖𝑢𝑖

𝑟
𝑖=1 is called a

convex combination of 𝑢1, 𝑢2, … , 𝑢𝑟. Intuitively, Figs. 3.1(a) and 3.1(b) illustrate convex and

concave sets, respectively.

S

 46

(a)

(b)

Fig. 3.1. (a): convex set, (b): concave set

According to the definitions above, the convex hull or convex envelope of a set 𝑋 of points in

the Euclidean space can be defined in terms of convex sets or convex combinations [61-63]:

 the minimal convex set containing 𝑋, or

 the intersection of all convex sets containing 𝑋, or

 the set of all convex combinations of points in 𝑋.

Based on the definition of convex hull, a 𝑘-simplex is a 𝑘-dimensional polytope which is the

convex hull of 𝑘 + 1 affinely independent points. Intuitively, 0-simplex, 1-simplex, 2-simplex

and 3-simplex correspond to a point, a line segment, a triangle and a tetrahedron, respectively.

Generally, a 𝑘-simplex consists of the elements called 𝑖-faces where 𝑖 ≤ 𝑘 − 1. 0-faces, 1-

faces and (𝑘 − 1)-faces are called vertices, edges and facets of the 𝑘-simplex, respectively.

Fig. 3.2 shows the convex hull of a set of points.

Convex hull algorithms can be categorized from three points of view. An algorithm can be

deterministic or randomized depending on the order of vertices found. If the order is fixed

from execution to execution, the algorithm is deterministic [6]; otherwise, it is randomized

[12]. Furthermore, an algorithm can be considered as a real or approximation algorithm. If it

is capable of identifying all vertices of the real convex hull, the algorithm is classified as real

[8]; otherwise, it is an approximation [10, 64]. Finally, we can also classify convex hull

algorithms into offline and online algorithms. The former uses all the data to compute the

convex hull, while the latter employs newly arrived points to adapt an already existing convex

hull [5]. Fig 3.3 shows the main categories of convex hull algorithms from the three points of

view.

 47

Fig. 3.2. Convex hull of a set of points.

Fig. 3.3. Categories of convex hull algorithms.

3.3. Introduction of convex hull algorithms in two and three dimensions

In one dimension, the convex hull vertices of a set of 𝑛 points are the minimum and

maximum values (i.e., the corresponding convex hull involves two vertices). Hence the time

complexity of finding convex hull in one dimension is 𝑂(𝑛). For 2 and 3-dimensional

Euclidean space, some standard algorithms have been proposed so that the time complexity of

most of them is 𝑂(𝑛 log 𝑛). For 2-dimensional Euclidean space, some basic algorithms have

been proposed which are strongly similar to standard sort algorithms where they produce the

convex hull vertices in a counterclockwise order. The following introduces some standard real

algorithms as well as approximation, online and randomized algorithms in two and three

dimensions.

3.3.1. Graham’s scan

Graham’s scan [6] is one of earliest real deterministic offline algorithm in two dimensions.

This algorithm which outputs the vertices in counterclockwise order works based on three

 48

elements including the angle between each point and the center of points, the distance of each

point to the center and the left turn concept.

Three points 𝒑𝟏 = (𝑝11, 𝑝12), 𝒑𝟐 = (𝑝21, 𝑝22) and 𝒑𝟑 = (𝑝31, 𝑝32) make a left turn when

|

𝑝11 𝑝12 1
𝑝21 𝑝22 1
𝑝31 𝑝32 1

| is positive where |. | denotes the determinant operation. The positive value

demonstrates that the three points are in counterclockwise order while the non-positive value

refers to clockwise order corresponding to the right turn.

In Graham’s scan, first, all points are lexicographically sorted with respect to the polar angle

and the distance from the center of points. In the second step, the lowest leftmost point, called

the start point, as well as the two consecutive points after that are inserted in the vertices list.

Then the algorithm starts traversing the points onwards in a circular way. At each traverse, the

new point is compared with the last two vertices found in the previous traverses. If the new

and the last two vertices make a left turn then the new point is inserted into the list and the

traverse progresses; otherwise, the last vertex is deleted from the list and again the left turn

examination is done. This backward elimination is repeated as long as the left turn

examination is not met. The algorithm stops when all points are traversed. Fig. 3.4 illustrates

an example of applying Graham’s scan on a set of 10 points. As it can be seen in Fig. 3.4, the

origin of coordinates is transferred to the center point and then all points are sorted with

respect to the polar angle and the distance from the center. Consequently, the sorted list is

obtained as {𝒑𝟐, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖, 𝒑𝟗, 𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏}. In Fig. 3.4, 𝑺𝒕𝒂𝒓𝒕 is the lowest

rightmost point which is definitely a vertex of convex hull. Three points, 𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏 and 𝒑𝟐

are selected as vertices of convex hull and then the next point which is 𝒑𝟑 is examined. As it

can be seen in Fig. 3.4, triple (𝒑𝟏, 𝒑𝟐, 𝒑𝟑) makes a left turn so 𝒑𝟑 is selected as a convex hull

vertex. In the next traverse, point 𝒑𝟒 is considered. As it can be observed in Fig. 3.4, triple

(𝒑𝟐, 𝒑𝟑, 𝒑𝟒) makes a right turn so 𝒑𝟑 is removed from the vertices list and then triple

(𝒑𝟏, 𝒑𝟐, 𝒑𝟒) is examined. Since this triple makes a left turn, the algorithm traverses the next

point which is 𝒑𝟓. Triple (𝒑𝟐, 𝒑𝟒, 𝒑𝟓) makes a left turn therefore 𝒑𝟓 is inserted to the vertices

list and it allows the algorithm to examine triple (𝒑𝟒, 𝒑𝟓, 𝒑𝟔). As this triple makes a right

turn, 𝒑𝟓 is removed from the vertices list and then triple (𝒑𝟐, 𝒑𝟒, 𝒑𝟔) is examined that allows

the algorithm to traverse the next point 𝒑𝟕. This procedure continues until all points are

traversed. Finally Graham’s scan outputs the vertices list as {𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏, 𝒑𝟐, 𝒑𝟒, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖}.

The time complexity of Graham’s scan is 𝑂(𝑛 log 𝑛).

 49

Fig. 3.4. Graham’s scan on ten points.

3.3.2. Jarvis’s march

Jarvis’s march [7] is another instance of real deterministic offline methods . It works based on

the theorem stating that a segment line between two points is an edge of the convex hull in

planar space if and only if all the remaining points are located in the same side of the edge [5].

The algorithm starts with the lowest rightmost point as the new origin (i.e., the original

coordinates is transferred to the new origin) which is a vertex of convex hull. Then the point

with the smallest angle with respect to the positive 𝑥 axis is selected as the second vertex of

the convex hull. In the next step, the second vertex is set as the new origin and then another

point with the smallest angle with respect to the positive 𝑥 axis is selected as a new vertex.

This procedure continues until it gets to the highest rightmost point. From this point, the

algorithm continues to find a new point with the smallest angle with respect to the negative 𝑥

axis. The algorithm terminates when we get to the lowest rightmost point. Fig. 3.5 illustrates

an example of applying Jarvis’s march on a set of 10 points. As it can be seen in Fig. 3.5, the

algorithm starts with 𝑺𝒕𝒂𝒓𝒕 as the lowest rightmost point which is definitely a vertex of the

convex hull. In next step, the coordinates are transferred to 𝑺𝒕𝒂𝒓𝒕 as the origin and then 𝒑𝟏 as

a point with the smallest angle with respect to the positive 𝑥 axis is selected as a convex hull

vertex. In next step, the coordinates are transferred to 𝒑𝟏 as the origin and then 𝒑𝟐 as a point

with the smallest angle with respect to the positive 𝑥 axis is selected as a convex hull vertex.

In next step 𝒑𝟒 is selected as another vertex. Since 𝒑𝟒 is the highest rightmost point, for next

steps, the smallest angle is considered with respect to the negative 𝑥 axis. Considering 𝒑𝟒 as

the origin, 𝒑𝟔 is selected as another vertex rather than 𝒑𝟓. This procedure continues until we

get to the 𝑺𝒕𝒂𝒓𝒕. Ultimately, Jarvis’s march results in a vertices list

{𝑺𝒕𝒂𝒓𝒕, 𝒑𝟏, 𝒑𝟐, 𝒑𝟒, 𝒑𝟔, 𝒑𝟕, 𝒑𝟖}.

 50

The time complexity of Jarvis’s march is 𝑂(𝑛𝑓) where 𝑛 and 𝑓 denote the number of points

and the number of convex hull vertices, respectively. Hence this algorithm is an example of

output-sensitive algorithms where the time complexity depends not only on the input size but

also on the output size. In the worst case, when all points are located on the hull (i.e., no point

is identified as an inner point), the time complexity is 𝑂(𝑛2).

Fig. 3.5. Jarvis’s march on ten points.

3.3.3. Quickhull

Quickhull [8] as a promising real deterministic offline algorithm is faster than other proposed

algorithms in two dimensions and it can be extended to more than two dimensions. The idea

behind Quickhull is growing the current convex hull in each iteration by finding the furthest

point with respect to the facets of the current convex hull. In each iteration, the current convex

hull is presented in terms of both vertices and facets. The algorithm starts with an initial

convex hull which is the maximum 2-simplex being translated to a triangle with maximum

area (i.e., the initial convex hull has three vertices). In the next step, the points inside the

initial convex hull are marked as inner points and then removed from the set of points. In this

step, the initial convex hull with three facets divides the whole space into three subspaces.

Afterwards, inside each subspace, the point which has the maximum distance to its

corresponding facet is marked. Among the marked points, the point with maximum distance,

called the furthest point, is selected as a new vertex of the convex hull. In the next step, two

new facets are generated in such a way that each new facet involves the furthest point and one

of the two vertices of the corresponding facet. Consequently, a new triangle is generated.

Afterwards, the points inside the triangle are marked as the inner points and are removed from

the set. Then the corresponding facet of the furthest point is removed to update the current

 51

convex hull. This procedure continues with the current convex hull and stops when no

furthest point is identified. Fig. 3.6 illustrates the steps of Quickhull applied on a set of 20

points.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 3.6. The steps of Quickhull applied on 20 points.

 52

As it can be observed in Fig. 3.6, in each step, the furthest point with respect to the current

convex hull is identified and marked as a convex hull vertex. Afterwards, two new facets are

generated and based on those, the inner points are removed from the underlying set. Then the

corresponding facet of the furthest point is removed. This procedure continues until no new

vertex is found.

From the time complexity point of view, for dimensions 𝑑 ≤ 3, Quickhull runs in time

𝑂(𝑛 log 𝑟), where 𝑛 and 𝑟 are the number of all points and the number of processed points,

respectively. In the worst case, the time complexity is 𝑂(𝑛2). For 𝑑 ≥ 4, Quickhull runs in

time 𝑂(𝑛𝑓𝑟/𝑟), where 𝑓𝑟 is the maximum number of facets for 𝑟 vertices. Since 𝑓𝑟 =

𝑂(𝑟⌊
𝑑

2
⌋/ ⌊

𝑑

2
⌋ !), for high dimensions, a massive number of facets would be generated for 𝑟

vertices. Consequently, Quickhull is not feasible for high dimensions, both in terms of

execution time and memory requirements.

3.3.4. A divide and conquer based convex hull algorithm

Preparata and Hong [9] proposed a convex hull algorithm based on the divide and conquer

technique. This algorithm starts with sorting set 𝑆 of points with respect to the first dimension

denoted as 𝑥 (i.e., the second dimension is denoted as 𝑦). Then 𝑆 is divided into two equal

size subsets 𝑆1 and 𝑆2 so that the first half of points is assigned to 𝑆1 and the second one to 𝑆2.

The algorithm is recursively performed on 𝑆1 and 𝑆2. Sorting points produces a set of

nonintersecting sub-convex hulls throughout the execution of the algorithm. Any standard

convex hull algorithm in 2-dimensional space can be applied to obtain the sub-convex hull of

each subset. Another phase of the algorithm is merging any two sub-convex hulls. Fig. 3.7

shows the steps of the divide and conquer based algorithm applied on a set of 20 points. As it

can be seen in Fig. 3.7, the underlying set is divided into the subsets recursively. Generating

sub-convex hulls and merging them are also done in a recursive manner. Sorting the points

takes 𝑂(𝑛 log 𝑛) operations. The time complexities of generating a set of sub-convex hulls

and merging them are 𝑂(𝑛 log 𝑛) and 𝑂(𝑛), respectively. To sum up, the time complexity of

the algorithm is 𝑂(𝑛 log 𝑛). The extended version of the algorithm in 3-dimensional

Euclidean space also takes 𝑂(𝑛 log 𝑛) time.

 53

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3.7. The steps of the divide and conquer based algorithm applied on 20 points.

3.3.5. Approximation Algorithms for Convex Hulls

As mentioned earlier, there exists a subclass of convex hull algorithms called approximation

algorithms where a subset of vertices of real convex hull is obtained. The approximation

algorithms are proper for real time applications. Approximation algorithms are also suitable

for statistical applications in which data observations are not accurate. Since the obtained real

convex hull from inaccurate data is not the same as the one obtained from the accurate data,

one can rely on an approximation convex hull. Authors in [10] proposed approximation

algorithms for two and three dimensions. The basic idea behind these algorithms is selecting a

subset 𝑆 of the whole set containing 𝑛 points and then applying any convex hull algorithm on

 54

𝑆 to obtain an approximation convex hull. The key point in these algorithms is proposing a

method based on data partitioning to select the subset 𝑆. In two dimensions, firstly the

minimum and maximum points with respect to 𝑥 axis (i.e., the first dimension) are included in

𝑆. In second step, the points are partitioned into 𝑘 equally spaced strips with respect to 𝑥 axis.

In third step, in each strip, the minimum and maximum points with respect to 𝑦 (i.e., the

second dimension) are included in 𝑆 and finally a convex hull algorithm is applied on 𝑆 to

obtain an approximation convex hull. The steps of the algorithm applied on 22 points (i.e.,

𝑛 = 22) with 8 equally spaced strips (i.e., 𝑘 = 8) are illustrated in Fig. 3.8. As it can be seen

in Fig. 3.8(c), one outer point which is a vertex of the real convex hull has not been identified

by the approximation algorithm. The time complexity of the approximation algorithm in two

dimensions is 𝜃(𝑛 + 𝑘). In a 3-dimensional Euclidean space, firstly, the minimum and

maximum points with respect to both 𝑥 and 𝑦 axis are included in 𝑆. In the second step, the

points are partitioned into a 𝑘 × 𝑘 grid of squares obtained with respect to 𝑥 and 𝑦 axis. In the

third step, in each square, the minimum and maximum points with respect to 𝑧 axis (i.e., the

third dimension) are also included in 𝑆 and finally any convex hull algorithm for three

dimensions can be applied on 𝑆 to result in an approximated convex hull. The time

complexity of the approximation algorithm in three dimensions is 𝜃(𝑛 + 𝑘2 log 𝑘).

(a)

(b)

(c)

Fig. 3.8. The steps of the approximation convex hull algorithm applied on 22 points.

 55

3.3.6. Online convex hull algorithms

Unlike offline algorithms, online convex hull algorithms process points at a time in the sense

that the current convex hull is gradually updated whenever a new arriving point is received.

The online convex hull problem can be described as follows: firstly, the convex hull of a

given 𝑁 points 𝑝1, ⋯ , 𝑝𝑁 is identified and then the convex hull is updated by the new arriving

point 𝑝𝑖. Throughout the convex hull update process, three cases may happen. In the first

case, the new arriving point is an inner point meaning that the new point is located inside the

current convex hull. In this case, the new point is rejected and the current convex hull is kept

unchanged. In the second case, the new point is an outer point meaning that the point is

located outside the current convex hull. This situation causes elimination of some vertices of

the current convex hull which have been already converted to inner points. In the third case,

the new point is an outer point but does not affect the vertices of the current convex hull. In

this case, the new point is appended into the list of vertices.

One of the earliest online convex hull algorithms in 2-dimensional spaces was proposed by

Preparat and Shamos [11]. The main idea behind their algorithm is updating the current

convex hull benefiting from two support lines (i.e., left and right support lines). A support line

is a line which passes through the new arriving point and one of the vertices of the current

convex hull so that the remaining points lie in the same side of the line. If no support line is

founded, it means that the new point is an inner point. In case that the new point is an outer

point, all vertices between two support lines are marked as inner points and will be eliminated

in the update process. Fig. 3.9 shows the update process of the online convex hull algorithm

based on the support lines.

Fig. 3.9. The update process of the online convex hull algorithm based on support lines.

 56

The online algorithm takes 𝜃(𝑛 log 𝑛) time for obtaining the convex hull of 𝑛 points with

𝜃(logn 𝑛) update time. The extended version of this algorithm in 3-dimensional Euclidean

space also takes 𝜃(𝑛 logn 𝑛) time.

3.3.7. Randomized algorithms

Unlike deterministic convex hull algorithms, randomized algorithms construct the structure of

convex hull in a random manner. They are similar to online algorithms in the sense that the

convex hull is incrementally formed due to processing random points at a time. In online

algorithms, however, the initial convex hull is formed based on a limited number of points

while in random algorithms, all points are available to be processed. Therefore, some

information of the resulting convex hull can be obtained before it is constructed.

In randomized incremental algorithms, a convex hull is incrementally constructed in three

steps. In the first step, an unprocessed random point is selected. In the second step, the

boundary of visible facets with respect to the point is identified. This boundary is called

horizon ridges. Afterwards, new facets are generated using the point and the horizon ridges.

Finally, the visible facets as well as the inner points are eliminated. This procedure is repeated

until no unprocessed point remains [8]. In this method, the convex hull is presented as a set of

a finite number of extreme points which are the convex hull vertices. Hence, this

representation of the convex hull is known as vertex representation or V-representation [65].

The time complexity of such randomized algorithms is 𝑂(𝑛 log 𝑛) for 𝑑 ≤ 3. Convex hull can

also be defined in terms of the intersection of a finite number of half-spaces in the form of a

system of linear inequalities as follows:

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑑𝑥𝑑 ≤ 𝑏1
 ⋮ ⋮ ⋮ ⋮

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑑𝑥𝑑 ≤ 𝑏𝑚

Each inequality denotes a half-space where 𝑚 and 𝑑 are the number of halfspaces defining the

convex polytope and the dimension, respectively. The concise form of the above system can

be represented in the form of matrix inequality as 𝑨𝒙 ≤ 𝒃 where each row of 𝑨 and 𝒃

together correspond to the definition of a supporting hyperplane of the convex polytope in

terms of normal and offset, respectively. This presentation of convex hull is known as half-

space representation or H-representation [65].

One of the earliest randomized convex hull algorithms which provides H-representation of the

convex hull was proposed by Clarkson and Shor [12]. In each iteration of the algorithm, an

 57

unprocessed random half-space is added into the current convex polytope by intersecting it

with the previous half-spaces enveloping the convex polytope. The algorithm takes 𝑂(𝑚 +

𝑛 log 𝑛) expected time and 𝑂(𝑛) space in the worst case, where 𝑛 and 𝑚 denote the number

of points and the number of intersecting pairs reported.

3.4. Introduction of convex hull algorithms in higher dimensions

In higher dimensions 𝑑 ≥ 4, two main methods are considered to identify the convex hull: 1-

gift wrapping method [5, 66] 2- beneath-beyond method [63].

The idea behind the gift wrapping method is constructing the convex hull by starting a facet

and finding the adjacent facets. This procedure is iteratively conducted for each new

identified facet. Since each facet is linked to its corresponding adjacent facets, the way in

which the convex hull formed is like wrapping around a convex polytope in 𝑑-dimensional

space. Jarvis’s march algorithm introduced in Section 3.3.2 is a special case of the gift

wrapping method in a 2-dimensional space. Like Jarvis’s march, the gift wrapping method in

high dimensions is an output-sensitive method whose time complexity also depends on the

size of output 𝑓 which can be the number of facets of the generated convex hull. Therefore,

the time complexity of the gift wrapping method in high dimensions is 𝑂(𝑛𝑓). Based on the

upper bound theory, the number of generated facets is 𝑂(𝑣⌊
𝑑

2
⌋) where 𝑣 is the number of

convex hull vertices. In the worst case where 𝑛 = 𝑣, the time complexity of the gift wrapping

method is 𝑂(𝑛⌊
𝑑

2
⌋+1). An improved version of the original gift wrapping method was proposed

by Seidel [66] where the algorithm takes 𝑂(𝑛2 + 𝑓 log 𝑛) time. Based on the upper bound

theory, in the worst case, the time complexity of the algorithms is 𝑂(𝑛⌊
𝑑

2
⌋ log 𝑛).

The Beneath-beyond method is considered as an incremental approach constructing the

convex hull by adding one point into the current convex hull at a time. The update process of

the current convex hull includes adding new facets into the current convex hull and removing

the visible facets with respect to the new point. The Quickhull algorithm, as a deterministic

incremental algorithm stated in Section 3.3.3, and also the randomized incremental

algorithms, described in Section 3.3.7, where the convex hull is presented in terms of vertices

(i.e., V-representation) are special beneath-beyond methods in a 2-dimensionl Euclidean

space. The time complexity of the beneath-beyond method in high dimensions is 𝑂(𝑛 log 𝑛 +

𝑛⌊
(𝑑+1)

2
⌋) with 𝑂(𝑛⌊

𝑑

2
⌋) space [63]. The method was improved by [67] through derandomizing

the randomized incremental algorithm proposed by [12] . The time complexity of the

 58

improved version is 𝑂(𝑛 log 𝑛 + 𝑛⌊
𝑑

2
⌋). Since both time and memory requirement increase

exponentially with respect to dimension 𝑑 ≥ 4 with a fixed number of samples, applying the

traditional convex hull algorithms in very high dimensions with a huge number of samples is

not feasible.

As the state of the art, one of the recent work done to overcome these challenges in high

dimensions is the proposal of an approximation convex hull algorithm by Wangs and et al.

[68]. The proposed algorithm represents the convex hull in terms of vertices with the aim of

including extreme points in the training set for online adaptation process of SVM models. The

algorithm is based on samples partitioning where for each partition, the corresponding sub-

convex hull is obtained and then the union of vertices of all sub-convex hulls is considered as

the set of vertices of an approximation convex hull. The algorithm results an approximation

convex hull throughout three steps. In the first step, 𝑑 + 1 samples are selected as the vertices

of the initial convex hull so that these samples can constitute a 𝑑-simplex as large as possible

where 𝑑 is the dimension. Since the 𝑑-simplex has 𝑑 + 1 facets, it divides the space into

𝑑 + 1 partitions. For example, Fig. 3.10 illustrates a 2-simplex which is translated into a

triangle. As it can be seen in Fig. 3.10, the vertices of the 2-simplex are {𝑥1, 𝑥2, 𝑥3}. Assume 𝑜

is the center of the 2-simplex. As can be seen in Fig. 3.10, the rays 𝑜𝑥1, 𝑜𝑥2 and 𝑜𝑥3 divide

the samples outside the 2-simplex into three partitions named 𝑃1, 𝑃2 and 𝑃3.

Fig. 3.10. Constructing a large 2-simplex

In the second step, each partition whose number of samples is greater than a user-defined

threshold 𝐿 is divided into 𝑑 new partitions based on the furthest sample to the corresponding

facet of the partition. Afterwards, the furthest sample is appended into the list of convex hull

 59

vertices. This procedure continues until there exists no partition whose number of samples

exceeds 𝐿. For example, in Fig. 3.11, partition 𝑃3 is divided into two new smaller partitions

named 𝑃31 and 𝑃32 based on the furthest sample named 𝑥4 to the facet 𝑥2𝑥3. As it can be seen

in Fig. 3.11, the facet 𝑥2𝑥3 is removed and two new facets 𝑥2𝑥4 and 𝑥3𝑥4 are generated.

Fig. 3.11. Partitioning step

At the end of this step, each facet is considered as a sub-convex hull including 𝑑 vertices. In

the third step, each sub-convex hull is tried to be expanded by identifying the furthest sample

to the whole sub-convex hull and appending it into the list of the sub-convex hull vertices.

This procedure continues until an approximation convex hull with at most 𝑀 vertices is

obtained, where 𝑀 is a user-defined threshold. The time complexity of the algorithm is at

most 𝑂(𝑛𝑑4) where 𝑛 is the number of samples. Although the algorithm can cope with the

time complexity in high dimensions, as it will be shown in Section 4.4.1, it presents some

points as vertices of the approximation convex hull that do not belong to the vertices of the

corresponding real convex hull.

3.5. Conclusions

Convex hull, as one of the fundamental concepts in computational geometry, has been applied

in a wide variety of applications such as data selection, image processing, pattern recognition,

collision detection, file searching, cluster analysis, etc. Convex hull algorithms can be

considered from three points of view: deterministic or randomized, in terms of vertices order,

 60

real or approximation, depending if all convex hull points are found, or not, and offline and

online, depending on the use of data.

To the best of our knowledge, the standard algorithms in two and three dimensions that have

been proposed by far, present the real convex hull in the time complexity 𝑂(𝑛 log 𝑛).

Moreover, the proposed standard real algorithms in high dimensions (i.e., more than three

dimensions) take 𝑂(𝑛⌊
𝑑

2
⌋) time and space in the worst case; where 𝑛 and 𝑑 denote the number

of samples and the dimension, respectively. Since in practice, applying the standard real

algorithm on a huge number of samples in high dimensions is not feasible, approximation

algorithms have received much attention to cope with challenges in high dimensions. As one

of the state of the art, Wangs and et al. [68] proposed an approximation algorithm in high

dimensions with the time complexity 𝑂(𝑛𝑑4). Since this algorithm marks some points as the

convex hull vertices which do not belong to the vertices of the real convex hull, a randomized

approximation convex hull algorithm for high dimensions is proposed in Section 4.3. The

proposed algorithm not only overcomes the time and space complexity in high dimensions,

but also presents a subset of informative vertices of the corresponding real convex hull.

 61

4. A convex hull-based data selection method for data driven

models

4.1. Introduction

As stated in Section 3.4, the standard convex hull algorithms suffer from high time and space

complexity in high dimensions (i.e., the latter being 𝑂(𝑛⌊
𝑑

2
⌋) where 𝑛 and 𝑑 are the number of

samples and dimensions, respectively.). Hence, in practice, they cannot be applied in high

dimensions. For example, if Quickhull [8], a real deterministic convex hull algorithm

described in Section 3.3.3, is applied to an artificial dataset including 1000 uniformly

distributed random samples in just 9 dimensions, in a computer with Ubuntu Linux OS, Intel

Core i5 processor and 4 Gigabytes of RAM, one can see that it suffers from insufficient

memory.

A small number of efforts have been done to overcome these problems in high dimensions.

The approximation algorithm proposed in [68] has significantly reduced the time complexity

to 𝑂(𝑛𝑑4). The problem of the algorithm, as reported previously, is that some points which

are marked as convex hull vertices do not belong to the real convex hull.

This chapter introduces a randomized approximation convex hull algorithm called

ApproxHull , with the aim of being applied as a filter data selection method to design data

driven models. ApproxHull not only is capable of being applied on large size data sets in high

dimensions but also presents a set of informative vertices which all belong to the real convex

hull. The main application of ApproxHull in the data selection phase is constructing a training

set that reflects the whole input-output range of the design data. To do that, the training set

incorporates the convex hull points obtained from ApproxHull, as well as some random points

from the whole data.

This chapter is organized as follows. A review on instance selection methods is presented in

Section 4.2. ApproxHull is introduced in Section 4.3. To verify and evaluate the performance

of the algorithm, a number of experiments were carried out. Section 4.4 explains the

simulation results obtained. The run time and memory requirements of ApproxHull are

discussed in Section 4.5 and 4.6, respectively. Finally, some conclusions are given in Section

4.7.

 62

4.2. A review on instance selection methods

In many machine learning and data mining problems two basic tasks have to be considered:

feature selection and instance selection. The former denotes choosing a subset from all

available features so that the selected subset has the strongest relation to the model output and

yields improved model performance. The latter refers to sample selection where we are

interested in selecting a subset of useful and informative data samples (denoted by 𝑆) among

all existing data samples (denoted by 𝑇). The goal is that the model obtained using 𝑆 can

maintain or even exceed the performance level (for instance, accuracy) that would be attained

using 𝑇. The instance selection process not only helps decreasing the run time of the training

process but also has the benefit of reducing the memory requirements of learning algorithms.

This is important when classification or regression tasks rely on existing large-size training

sets.

Generally speaking, instance selection methods can be classified from the search direction and

selection criterion points of view. Regarding the search direction, the methods are categorized

as incremental or decremental. In the former, the selection process starts with 𝑆 = ∅ and

progresses iteratively by inserting selected samples from 𝑇 into 𝑆. In the latter, in contrast, the

selection process starts with 𝑆 = 𝑇 and superfluous samples are discarded from 𝑆 in an

iterative manner. Finally, for both methods, we have 𝑆 ⊂ 𝑇 by the end of the selection process

[69, 70].

From the selection criterion point of view, instance selection methods are classified as

wrapper or filter methods. Wrapper methods use a model as a selection criterion, where the

performance of the model is evaluated based on a subset of samples iteration by iteration to

select those samples which have the most contribution on the model accuracy. Most works

found in literature on wrapper methods relate to classification tasks. Unlike wrapper methods,

filter methods employ a model independent selection function to choose informative samples

[69]. This means that the accuracy of the model does not have any contribution in the

selection criterion; instead, a selection rule is applied.

Fig. 4.1 shows the two main classes of instance selection methods along with their subgroups.

The following details wrapper and filter methods along with some related works.

 63

Fig. 4.1. Classification of instance selection methods

4.2.1. Wrapper instance selection methods

Collectively, wrapper methods may be further subcategorized into three groups. The first

gathers methods which are based on 𝑘 − 𝑁𝑁 (𝐾 Nearest Neighbors) classifiers [71], whereas

the second group involves a broad class of wrapper methods that can be based on any

classifier. The second group which is mostly based on search algorithms tries to find an

optimal set 𝑆 from 𝑇 to keep the classifier in a desirable level of accuracy. The third group

benefits from SVM [27] where they are applied to constitute set 𝑇𝑠, containing only support

vectors of 𝑇 , which is used for 𝐾 − 𝑁𝑁 classifiers. The following addresses the three groups

of wrapper instance selection methods.

4.2.1.1. 𝑲−𝑵𝑵 rule based methods

One of the earliest incremental method called CNN (Condensed Nearest Neighbor rule) was

proposed by Hart [72]. It focuses on misclassified samples as critical samples that matter the

most to the 𝑘 − 𝑁𝑁 classifier to ensure that unlabeled samples which are similar to the

misclassified ones are correctly classified [73]. This method constitutes set 𝑆 from set 𝑇 by

randomly selecting samples of each class. Afterwards, all samples in 𝑇 are classified by the

1−𝑁𝑁 rule using 𝑆 as the training set. Then all misclassified samples are included in 𝑆 to

ensure that the unlabeled samples similar to the misclassified samples are correctly classified.

The main disadvantage of this method is to allow noisy samples to be included in 𝑆 since they

are mostly misclassified based on their neighbors. As another version of the CNN, Ritter et

al.[74] proposed the SNN (Selective Nearest Neighbor rule). In this method, set 𝑆 is

composed in such a way that, for each sample in set 𝑇, its nearest neighbor can be found in set

𝑆. Hence, a sample of 𝑇 is correctly classified based on the 1 − 𝑁𝑁 rule using 𝑆. In

 64

classification tasks, the samples which are close to the decision boundary involve useful

information to discriminate classes from each other. Since in the CNN and some of its

variations samples are randomly selected from each class without considering their position

with respect to the decision boundary, the boundary samples may be selected occasionally. To

deal with this problem, some extended versions of the CNN were proposed.

Gowda and Krishna [75] proposed a method in which the set 𝑆 is formed using the concept of

mutual nearest neighborhood for selecting the boundary samples. If for two samples 𝑥𝑖 and

𝑥𝑗, 𝑥𝑗 being the 𝑚th
 nearest neighbor of 𝑥𝑖 and correspondingly , 𝑥𝑖 being the 𝑛th

 nearest

neighbor of 𝑥𝑗, the mutual neighborhood value of sample 𝑥𝑖 with respect to sample 𝑥𝑗 is

defined as 𝑀𝑁𝑉(𝑥𝑖 , 𝑥𝑗) = 𝑚 + 𝑛. The proposed method, firstly, measures 𝑀𝑁𝑉 for each

sample of 𝑇 with respect to its nearest sample in the opposite class. Samples that are close to

the decision boundary have a low 𝑀𝑁𝑉. Afterwards, the samples of 𝑇 are sorted in ascending

order based on their 𝑀𝑁𝑉 and the first sample of 𝑇 is inserted in 𝑆; the remaining samples are

classified based on the 1 − 𝑁𝑁 rule using 𝑆. Then, misclassified samples are included in 𝑆.

This process is repeated iteration by iteration until no misclassified sample is detected. As

another extended version of the CNN, GCNN (Generalized Condensed Nearest Neighbor

rule) was introduced by Chou et al [76]. In this method, sample 𝑥 as a prototype of 𝑇 is

included in 𝑆 if it violates the absorption criterion ‖𝑥 − 𝑞‖ − ‖𝑥 − 𝑝‖ > 𝛿 where 𝑝 is the

nearest neighbor of 𝑥 in the class to which 𝑥 belongs and 𝑞 is the nearest neighbor of 𝑥 in the

opposite class. 𝛿 is a user defined threshold and ‖. ‖ denotes the 2-norm operation.

So far, all introduced methods were based on 1 − 𝑁𝑁 rule. The authors in this literature have

also proposed the methods based on 𝑘 − 𝑁𝑁 where 𝑘 > 1. One of the earliest decremental

method known as 𝐸𝑁𝑁 (Edited Nearest Neighbor rule) using 𝑘 − 𝑁𝑁 rule was proposed by

Wilson [77]. In this method, 3 − 𝑁𝑁 rule is applied to remove the noisy samples from 𝑇 in

such a way that each sample of 𝑇 is classified using three nearest neighbors where the

majority class is considered for labeling the sample. Then, the misclassified samples are

removed from 𝑇. Finally, the reduced set 𝑇 is considred as set 𝑆 to classify new samples using

1 − 𝑁𝑁 rule. An extended version of the ENN called 𝑎𝑙𝑙 𝑘 − 𝑁𝑁 was introduced by Tomek

[78]. In this method, the ENN is repeated for different values of 𝑘 on set 𝑇 and those samples

which are incorrectly classified for at least one value of 𝑘 are removed from 𝑇.

A family of five incremental methods coined DROP1 to DROP5 (Decremental Reduction

Optimization Procedure, 1 to 5) can be seen in [70]. These methods, which are based on the

𝑘 − 𝑁𝑁 rule, remove noisy samples using the associates concept. The associates of sample 𝑥

 65

are those samples for which 𝑥 is one of their 𝑘 nearset neighbors. These methods remove

sample 𝑥 from 𝑇 whenever its associates are correctly classified without considering 𝑥. This

is because, in most cases, the majority of associates of a noisy sample belong to the opposite

class. Brighton and Mellish [79] introduced a method known as ICF (Iterative Case Filtering)

which applies two concepts, reachability and coverage, corresponding to the neighborhood

and associate sets, respectively. The reachable set does not have a fixed size; instead, it is

bounded by the number of nearest samples from the opposite class. The ICF method focuses

on removing noisy and superfluous samples from 𝑇. At the first stage, it applies the method

ENN proposed by Wilson [77] to remove noisy samples. Afterwards, it tries to discard the

superfluous samples relying on reachable and coverage sets. In this method, each sample 𝑥

which meets the condition |𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑥)| > |𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥)| is discarded from 𝑇. It is

translated to this fact that sample 𝑥 is far from the decision border. Hence 𝑥, as a superfluous

sample, can be removed from 𝑇 since their neighbors can correctly classify new arriving

similar samples to the 𝑥.

4.2.1.2. Instance selection methods based on search algorithms

So far, all the introduced methods were based on the 𝑘 − 𝑁𝑁 classifier model. In this

literature, there is another group of wrapper instance selection methods which are mostly

based on search algorithms. In this group of wrapper methods, the instance selection process

is carried out by evaluating an arbitrary classifier model iteratively. Among search algorithms,

evolutionary algorithms, as general-purpose search algorithms, have received much attention

in the literature of instance selection process. Specifically, GA-based methods have been

considered in this domain (for further information about GA, please consult Section 2.6). In

this group of instance selection methods, each chromosome 𝒄 corresponds to a subset 𝑆 of

𝑇 which is commonly presented by a binary string as 𝒄 = [0,1,1,0,1,1,0,0,⋯ ,0] so that

|𝒄| = 𝑁 where 𝑁 is the size of 𝑇. Each element 𝒄𝑗 of 𝒄 for 𝑗 = 1,2,⋯ ,𝑁 denotes the presence

or absence of 𝑗th sample of 𝑇 in 𝑆 [69, 80, 81].

When GA is customized for instance selection problem, the fitness value of a chromosome

representing a subset 𝑆 of 𝑇 is computed in terms of the model accuracy and the percentage of

instance reduction as Eq. (4.1) [80, 81].

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝜆 . 𝐶𝑟𝑎𝑡𝑒(𝑆) + (1 − 𝜆). 𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑆) (4.1)

 66

where 𝐶𝑟𝑎𝑡𝑒 and 𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 denote the classification rate obtained by the evaluation of the

model using 𝑆 and the percentage of instance reduction of 𝑆 with respect to 𝑇, respectively. In

order to compromise between the model accuracy and the size of 𝑆, 𝜆 is usually set to 0.5.

The percentage of instance selection is also computed by Eq. (4.2) [80, 81].

𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑆) =
#(𝑇) − #(𝑆)

#(𝑇)
 . 100

(4.2)

where #(.) denotes the size of underlying set.

In the literature of evolutionary instance selection, some variants of GA have been applied

from the most classic version to the most complex versions. Six evolutionary instance

selection methods including Generational Genetic Algorithm (GGA), Steady-State Genetic

Algorithm (SSGA), CHC Adaptive Search Algorithm, Intelligent Genetic Algorithm (IGA),

Steady-State Memetic Algorithm and Population-Based Incremental Learning (PBLI) have

been employed in [80, 81]. Moreover, some works that use GA in the application of instance

selection to improve the accuracy of 𝑘 − 𝑁𝑁 classification can be seen in [82-84].

As other works related to search based instance selection methods, the authors in [85, 86]

introduced the instance selection methods based on Tabu search [87] to find the best subset 𝑆

from 𝑇 for 1 − 𝑁𝑁 classification. Tabu search, so called adaptive memory programming, is

considered as a very efficient and straightforward optimization method to solve NP-hard

problems.

Tabu search benefits from short-term memory, called Tabu list, and neighborhood exploration

which make it distinctive from other search methods in terms of low computational cost and

better space exploration. Tabu search method starts with an initial solution 𝑆𝑖. Afterwards, a

set of possible moves with respect to the current solution 𝑆𝑐 is considered, in a sense that each

move is a neighbor solution of the 𝑆𝑐 , with a little bit modification in 𝑆𝑐. In the next step, all

neighbor solutions are evaluated and the best one is selected considering those Tabu moves

which have been previously inserted into the Tabu list (i.e., a short-term memory which is

usually managed by FIFO policy to keep track the recently examined solutions). Finally, the

Tabu list is checked to see if the best solution already exists within. If not, it will be inserted

in the Tabu list. This process continues until a termination criterion is met. The termination

criterion is:

1. exceeding a given number of iterations or

2. when there is no improvement with respect to the overall best solutions throughout a

given number of consecutive iterations.

 67

As a further effort in applying search based methods, authors in [88] proposed Backward

Sequential Edition method (BSE) as a decremental selection method benefiting from

backward sequential search [89] to select an optimum set 𝑆 from 𝑇. This method iteratively

discards a sample from the current set 𝑆 which has the minimum contribution on the

classification accuracy. This procedure stops when the classification accuracy starts to

decrease. Since this method is based on backward sequential method, the eliminated samples

have no chance to be reconsidered in the selection process in a forward manner. In order to

deal with this disadvantage of BSE, authors in [90] introduced the Restricted Floating Object

Selection (RFOS) which relies on sequential floating search [91] in a restricted manner due to

its extreme run time that allows the eliminated samples to be reconsidered in a forward

direction.

4.2.1.3. SVM based methods

In this group of methods, SVMs are applied to reduce the size of 𝑇. Authors in [92] proposed

an SVM based instance selection method. This method uses the algorithm DROP2 proposed

in [70] to discard noisy samples from 𝑇𝑠. 𝑇𝑠 contains the support vectors obtained by applying

SVM on 𝑇. Then, a new sample 𝑥 is classified by 1 − 𝑁𝑁 rule using 𝑇𝑠.

The SVM based method proposed in [93], uses 𝑘 −𝑚𝑒𝑎𝑛𝑠 clustering algorithm to cluster 𝑇𝑠

and then each support vector 𝑣 of 𝑇𝑠 is assigned a weight based on the proportion of its class

label in the cluster to which 𝑣 belongs. It is defined as
𝑁(𝑐𝑙𝑎𝑠𝑠(𝑣)

𝑁𝑐
 where 𝑁(𝑐𝑙𝑎𝑠𝑠(𝑣)) and 𝑁𝑐

denote the number of samples in the cluster which have the same class label as 𝑣 and total

number of samples in the cluster of 𝑣. Afterwards, a new sample 𝑥 is classified using 𝑘 − 𝑁𝑁

rule in such a way that firstly the weights of the nearest neighbors of the same class are

summed up and then the class label corresponding to the maximum summation is considered

as the class label of 𝑥.

4.2.2. Filter instance selection methods

As mentioned earlier, unlike wrapper methods, in filter methods, a classifier independent

criterion is applied to select instances. Mainly, filter methods can be organized into three

groups including clustering based methods, weighting based methods and information theory

based methods. Besides these groups, a few methods were proposed which do not belong to

 68

any specific group. The following describes three main groups of filter methods as well as

some other methods.

4.2.2.1. Clustering based methods

Among all efforts done in filter methods, some clustering based methods have been proposed

with the aim of obtaining a set of prototypes so that each of them is a representative of a

group of original instances in 𝑇. The idea behind this group of filter methods is clustering the

original instances and then considering the centers of obtained clusters as a set of prototypes

representing all instances in 𝑇 where finally unlabeled samples are classified based on the

obtained set of prototypes. Authors in [94] introduced Generalized Modified Change

Algorithm (GMCA) in which a merging strategy is exploited to merge two same-class nearest

clusters and then the new center is considered as a new prototype. The method proposed in

[95] called Nearest Subclass Classifier (NSB) clusters each class separately using Maximum

Variance Cluster Algorithm [96] where the number of clusters is different from class to class

as the distribution of samples may be different from class to class. In [97], a method known as

Object Selection by Clustering (OSC) was presented to select both border and interior

instances using clustering. In this method, the centers of homogeneous clusters are considered

as prototypes representing the interior instances while from heterogeneous clusters, the border

instance 𝑃 is selected. Instance 𝑃 in cluster 𝐶𝑗 is a border instance if it is the nearest neighbor

of another instance in cluster 𝐶𝑗 with different class label.

4.2.2.2. Weighting based methods

Weighting based methods, as another group of filter methods, work as follows: In the first

step, a weight is assigned to each instance; then, a percentage of instances based on a user-

defined threshold on their weights is selected as a subset 𝑆 of 𝑇. Authors in [98] proposed a

new approach based on instance weighting where weights 𝜎𝑖 (i.e., corresponding to the 𝑖th

sample) are obtained by minimizing cost function 𝐽(𝜎) using a gradient descent method. 𝐽(𝜎)

is a function of 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 dissimilarity between each instance and its

corresponding nearest neighbor, and also between the instance and its nearest enemy (i.e., the

nearest neighbor of the opposite class). Those instances whose weights are larger than a user-

defined threshold are removed from the whole training set 𝑇.

 69

As another weighting based method, Prototype Selection by Relevance (PSR) was introduced

in [99]. The idea behind the method is based on the fact that some instances in 𝑇 which

belong to the same class are more relevant than the others and they should be selected. Hence,

this method assigns a weight to each instance reflecting its amount of relevance. The

relevance of each instance is computed based on the average similarity of the instance to the

others. Heterogeneous Value Difference Metric (HVDM) [100] is applied as the similarity

function. Afterwards, 𝑟 most relevant instances of each class are selected and through them,

some border instances bringing useful information of class discrimination regions are also

chosen.

4.2.2.3. Information theory based methods

Recently another group of filter instance selection methods specifically for regression tasks

has received attentions. This group of methods benefits from information theory to select a

subset 𝑆 from 𝑇 so that 𝑆 contains the most informative samples which have the most

contribution in model fitting. Authors in [101] proposed a Mutual Information based method

for instance selection aimed to be applied in time series prediction. In fact, MI between two

random variables measures how much information of one of two variables reduces

uncertainty of the other. In this work, MI was applied to compute how much information can

be obtained about the target variable using the information of input variables in the form of

input patterns. The basic idea behind the work is that if the amount of MI loss due to the

absence of an input pattern 𝒙𝑖 in the whole training set 𝑇 is similar to that due to absence of

each of its 𝑘 nearest neighbors, the input pattern 𝒙𝑖 should be selected for subset 𝑆. As

another effort in exploiting of information theory in instance selection for time series

prediction, a MI based methodology was presented in [53]. The idea behind this work is

selecting those instances which share a significant amount of MI with the current predicted

instance at each step of the prediction horizon. In this method, at each step of prediction

horizon, the current input patterns are ranked based on MI between them and the current

predicted instance. Then, those input patterns whose ranks are greater than a user-defined

threshold constitute a subset 𝑆 of the current training set. Ferreira in [13] proposed an

unsupervised selection method based on Shannon’s information entropy [51, 102] which

measures the amount of information content of the data. In this method, firstly, the probability

of the presence of each instance in 𝑇 is estimated using a kernel based density estimation

proposed in [56] known as Parzen window method. Afterwards, a fitness value based on

 70

information entropy is assigned to each instance where this value reflects the amount of

informativeness of the instance. Finally the subset 𝑆 with size 𝑘 is selected from 𝑇 using SUS

method [103].

4.2.2.4. Other methods

Besides the three groups of filter methods, some works have been done which do not belong

to any specific group. Authors in [104] presented POP (Pattern by Ordered Projections)

method to remove interior instances and select some border instances based on the Weakness

concept. An instance 𝑃𝑖 of class 𝐶𝑗 is a border instance if 𝑃𝑖 is the nearest neighbor for an

instance of another class 𝐶𝑘, otherwise it is an interior instance. The concept Weakness

indicates how many times an instance is not a border instance with respect to each of its

features’ values. This method removes the irrelevant instance 𝑃, which is the instance whose

Weakness is equal to 𝑚 , where 𝑚 denotes the number of features.

The method proposed in [105] applies 𝑘𝑑-trees structure [106] which are binary trees to select

a subset 𝑆 of 𝑇. Based on 𝑘𝑑-trees structure, the root of the tree includes all instances in 𝑇.

Afterwards, 𝑇 is partitioned into two groups so that one of them corresponds to the left child

and the other corresponds to the right one. The separation of 𝑇 is performed using the

𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion. To calculate 𝑀𝑎𝑥𝑑𝑖𝑓𝑓, first the feature with maximum distance along

with consecutive samples (i.e., samples are sorted in ascending order with respect to the

feature) is considered and then the value of the corresponding feature of the sample which has

the maximum distance with its successor is considered as a pivot to split 𝑇. Those samples

whose values of the corresponding feature is less than or equal to the pivot constitute the left

child and the remaining forms the right one. The 𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion is satisfied if the pivot

value is greater than a user-defined threshold, otherwise the variance along features is

considered. If the maximum variance is greater than another user-defined threshold, the mean

value through the corresponding feature is considered as a pivot. This procedure is repeated

for each child. In the case that neither 𝑀𝑎𝑥𝑑𝑖𝑓𝑓 criterion nor the maximum variance is

satisfied, the algorithm is terminated and the samples which are located in the leaves of the

tree are considered as a subset 𝑆 of 𝑇.

Regarding the design of ANNs and SVMs as two examples of well-established data driven

machine learning approaches for classification and regression tasks, some filter instance

selection methods including Principal Components Analysis (PCA), convex hull and decision

tree have been proposed [68, 107-110]. In the design phase of such models, it is very

 71

important that subset 𝑆 covers the whole input-output range in which the underlying process

is modeled. To achieve this goal, convex hull algorithms can be employed to identify the

boundary points reflecting the whole range of data.

4.3. ApproxHull: A randomized approximation convex hull algorithm for

high dimensions

In this Section, ApproxHull as a randomized approximation convex hull algorithm for high

dimensions is introduced, providing a subset of all possible vertices of the corresponding real

convex hull in a stochastic manner. ApproxHull, which was inspired by Quickhull [8] (please

see Section 3.3.3) tries to identify some informative vertices of the real convex hull, relaying

on two fundamental concepts hyperplane [111, 112] and convex hull distance [68]. Hence

before addressing ApproxHull, these two concepts are explained in the following sections.

4.3.1. Hyperplane

Any hyperplane in a d-dimensional Euclidean space partitions it into two subspaces; positive

and negative subspaces. Any point in the positive subspace has a positive distance to the

hyperplane while the points located in the negative subspace have a negative distance to the

hyperplane. Computing the equation of a hyperplane based on some predetermined points,

which lie on the hyperplane, is intensively applied in computational geometry. Some convex

hull algorithms like Quickhull need to compute the corresponding hyperplane equations of the

current convex hull’s facets to find the next vertices. In the following we shall describe how

these equations can be obtained, starting by introducing the distance of a point to an

hyperplane.

4.3.1.1. Hyperplane distance

Suppose 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑑]
𝑇 is a point, 𝑭 is a d-vertex facet (each facet of d-dimensional

convex hull involves exactly 𝑑 vertices), and 𝐻 is the corresponding hyperplane of facet 𝑭 in

a d-dimensional Euclidean space. The general equation of an hyperplane 𝐻 is given as:

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑𝑥𝑑 + 𝑏 = 0 (4.3)

where 𝒏 = [𝑎1, 𝑎2, … , 𝑎𝑑]
𝑇 and 𝑏 are the normal vector and the offset of 𝐻, respectively.

The normalized distance from point 𝒑 to hyperplane 𝐻 is computed by Eq. (4.4).

 72

𝑑𝑠(𝒑, 𝐻) =
𝑎1𝑝1 + 𝑎2𝑝2 +⋯𝑎𝑑𝑝𝑑 + b

√𝑎1
2 + 𝑎2

2 +⋯𝑎𝑑
2

(4.4)

4.3.1.2. Hyperplane computation

Suppose that facet 𝑭 = [𝒗1, 𝒗2, ⋯ , 𝒗𝑑]
𝑇 consists of 𝑑 vertices 𝒗𝑖 = [𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝑑]

𝑇 , for

𝑖 = 1,2,⋯ , 𝑑 , and also that 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑑]
𝑇 is the center point of the current convex hull .

Since any vertex 𝒗𝑖 is located on the hyperplane 𝐻 which includes facet 𝑭, Eq. (4.3) is

satisfied by 𝒗𝑖 as (4.5).

𝑎1𝑣𝑖1 + 𝑎2𝑣𝑖2 +⋯+ 𝑎𝑑𝑣𝑖𝑑 = −𝑏 (4.5)

By adding (−𝑎1𝑐1 − 𝑎2𝑐2 −⋯− 𝑎𝑑𝑐𝑑) to the both side of Eq. (4.5), Eq. (4.6) is obtained.

𝑎1(𝑣𝑖1 − 𝑐1) + 𝑎2(𝑣𝑖2 − 𝑐2) + ⋯+ 𝑎𝑑(𝑣𝑖𝑑 − 𝑐𝑑) = −(𝑎1𝑐1 + 𝑎2𝑐2 +⋯+𝑎𝑑𝑐𝑑 + 𝑏) (4.6)

Suppose that point 𝒄 is located on the negative subspace with respect to 𝐻. Hence the

distance of 𝒄 to 𝐻 is negative as stated in (4.7).

𝑑𝑠(𝒄, 𝐻) =
𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b

√𝑎1
2 + 𝑎2

2 +⋯𝑎𝑑
2

< 0
(4.7)

 According to (4.7), (𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b) should have a negative value. Assume this

negative value is equal to -1. By replacing (𝑎1𝑐1 + 𝑎2𝑐2 +⋯𝑎𝑑𝑐𝑑 + b) with -1 in the right

side of Eq. (4.6), Eq. (4.8) is obtained.

𝑎1(𝑣𝑖1 − 𝑐1) + 𝑎2(𝑣𝑖2 − 𝑐2) +⋯+ 𝑎𝑑(𝑣𝑖𝑑 − 𝑐𝑑) = 1 (4.8)

Since facet 𝑭 consists of 𝑑 vertices, a system of equations can be obtained based on all

vertices:

 73

[

𝑎1(𝑣11 − 𝑐1) + 𝑎2(𝑣12 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣1𝑑 − 𝑐𝑑)

𝑎1(𝑣21 − 𝑐1) + 𝑎2(𝑣22 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣2𝑑 − 𝑐𝑑)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎1(𝑣𝑑1 − 𝑐1) + 𝑎2(𝑣𝑑2 − 𝑐2) + ⋯ + 𝑎𝑑(𝑣𝑑𝑑 − 𝑐𝑑)]

= [

1
1
⋮
1

]

(4.9)

By solving (4.9), the normal vector 𝒏 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑑]
𝑇of 𝐻 is obtained. Afterwards, the

offset 𝑏 of 𝐻 is obtained using Eq. (4.10).

𝑏 = −1 − (𝑎1𝑐1 + 𝑎2𝑐2 +⋯+ 𝑎𝑑𝑐𝑑) (4.10)

4.3.2. Convex hull distance

Given a set 𝑃 = {𝑥𝑖}𝑖=1
𝑛 ⊂ ℝ𝑑 and a point 𝑥 ∈ ℝ𝑑, the Euclidean distance between 𝑥 and the

convex hull of P, denoted by 𝑐𝑜𝑛𝑣(𝑃), can be computed by solving the quadratic

optimization problem stated in (4.11).

𝑚𝑖𝑛
𝑎

1

2
𝑎𝑇𝑄𝑎 − 𝑐𝑇𝑎

𝑠. 𝑡. 𝑒𝑇𝑎 = 1, 𝑎 ≥ 0

(4.11)

where 𝑒 = [1,1,⋯ ,1]𝑇 , 𝑄 = 𝑋𝑇𝑋 and 𝑐 = 𝑋𝑇𝑥, with 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛].

Suppose that the optimal solution of (4.11) is 𝑎∗; then the distance of point 𝑥 to 𝑐𝑜𝑛𝑣(𝑃) is

given by Eq. (4.12).

𝑑𝑐(𝑥, 𝑐𝑜𝑛𝑣(𝑃)) = √𝑥
𝑇𝑥 − 2𝑐𝑇𝑎∗ + 𝑎∗

𝑇
𝑄𝑎∗

(4.12)

4.3.3. The Proposed Algorithm

The idea behind ApproxHull is inspired from Quickhull, where the vertices of the real convex

hull are identified, based on the hyperplane distance of samples to the facets of the current

convex hull. Like Quickhull, ApproxHull is an incremental algorithm; it starts with an initial

convex hull and then the current convex hull grows iteratively by adding the new vertices into

it. In order to overcome the challenges of time complexity and memory requirements in high

dimensions, ApproxHull has two main properties. Firstly, it is an approximation algorithm

which is translated into obtaining a subset of the most informative vertices of the real convex

 74

hull using a user-defined threshold. On the contrary, Quickhull finds the total vertices of the

real convex hull which prevents it to be applicable in large, high dimensional datasets.

Secondly, the convex hull obtained by the ApproxHull is only given by vertices, whereas

Quickhull presents the convex hull in terms of both vertices and facets, which makes it

infeasible to be run for high dimensional datasets, due to the problem of high time complexity

and memory requirements.

A pre-processing phase is performed on the original data set before applying ApproxHull.

Duplicated rows (equal samples) and columns (equal features), rows with missing values, and

rows having non-numerical values are removed to decrease the risk of generating a singular

matrix corresponding to a random invalid facet in ApproxHull.

ApproxHull consists of five main steps:

Step 1: Scaling each dimension to the range [-1, 1].

Step 2: Identifying the maximum and minimum samples with respect to each dimension.

These samples are considered as vertices of the initial convex hull.

Step 3: Generating a population of 𝑘 facets based on the current vertices of convex hull. In

this step, the validity of all generated facets is checked in each iteration. A facet 𝐹 of 𝑑 points

in 𝑑 dimensions is valid if 𝐹 is a full rank matrix. In ApproxHull, to guarantee that the

population contains valid facets, two actions are considered. First, when 𝑑 vertices of the

current convex hull are selected to constitute a facet of the population, its validity is checked.

Invalid facets are ignored, being substituted by another combination of 𝑑 vertices of the

current convex hull until a valid facet is found. Second, in the case that there is a potential of

generating invalid facets iteratively, in order to reduce the time being spent to ignore the

invalid facets and generate the valid substitutions for them, the joggling method used in

Quickhull [113] can be employed as an optional action in the data preprocessing phase.

Joggling the input is performed to solve precision error in computational geometry context.

Mainly, in joggling (also called random perturbation) the input of each cell of the data set is

modified by a small random quantity (positive or negative) to solve the problem of coplanar

points that have the potential of generating invalid facets.

Step 4: Identifying the furthest points to each facet in the current facets population as new

vertices of convex hull, if they have not been detected before. To detect the furthest points

(i.e., those samples whose hyperplane distances are maximum with respect to a particular

facet), firstly, the corresponding hyperplane equation of the facet is obtained by Algorithm 4.1

in terms of the normal vector and the offset. Secondly, the hyperplane distance of samples to

the corresponding hyperplane is computed by Eq. (4.4). In fact, Algorithm 4.1 computes the

 75

hyperplane equation relying on the fact that the distance of the center point (a row vector

whose elements are obtained by averaging each dimension of the dataset) to the hyperplane is

a negative value. Algorithm 4.1 obtains the equation of the corresponding hyperplane

equation of the facet in form 𝐴𝑥 = 𝑏 where 𝐴 and 𝑏 are normal and offset of the hyperplane

equation respectively.

Step 5: Updating the current convex hull by adding the newly found vertices to the current set

of vertices.

Steps 3 to 5 are executed iteratively until one of the following two termination criteria is met:

 There are no newly found vertices in Step 4

 Let 𝑑𝑐 be the maximum of the approximated distances of the furthest points to the

current convex hull in each iteration. If there are new vertices as a consequence of

Step 4, and the difference between the maximum and the minimum of 𝑑𝑐 over the 𝑤

last iterations is less than a user-defined threshold 𝛽 (default value of 0.1), the

algorithm ends.

Algorithm 4.1: Obtaining the corresponding hyperplane of a facet

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples and 𝐹 = {𝑣𝑖}𝑖=1

𝑑 as a particular facet so that 𝑣𝑖 is a row

vector which denotes a specific sample in 𝐷𝑆.

 1. Let 𝑐 is a row vector which denotes th𝑒 center point of all samples in 𝐷𝑆.

 2. 𝑈 = {𝑢𝑖| 𝑢𝑖 = 𝑣𝑖 − 𝑐}𝑖=1
𝑑

 3. 𝐴 = {}

 4. 𝑏 = {}

 5. 𝐴 = 𝑈−1𝑒 where 𝑒 = [1,1,… ,1]𝑇

 6. 𝑏 = 1 + 𝑐𝐴

 7. 𝑡 = √∑ 𝑎𝑖
2𝑑

𝑖=1 where 𝑎𝑖 ∈ 𝐴 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑑

 8. n𝐴 = {
𝑎𝑖

𝑡
| 𝑎𝑖 ∈ 𝐴}𝑖=1

𝑑

 9. 𝑛𝑏 =
𝑏

𝑡

Output: 𝑛𝐴 and 𝑛𝑏.

The basic idea behind the second criterion is to avoid selecting new vertices that are very

close to the current convex hull, not contributing this way with new information. As the

convex hull generated by ApproxHull grows iteratively, the 𝑑𝑐 has a descending trend over

 76

iterations. Hence when the difference between the maximum and minimum of 𝑑𝑐 over the 𝑤

last iterations is small, meaning the new found vertices are very close to the current convex

hull, they can be ignored and ApproxHull can be terminated.

In the ApproxHull algorithm the facets population size, the sliding window width, and the

user-defined threshold 𝛽, can be tuned to manage the number of vertices of the approximated

convex hull. As an example, in the experimental part of this work we are interested in having

at most half of the training set points from the convex hull and the remaining points selected

randomly from the complete data set. The value 𝛽 = 0.1, which was obtained by trial and

error, satisfies our expectation for a facet population size <1000 and a sliding window width

<10, in cases where the data was uniformly or normally sampled. In other applications where

the data size (number of samples and dimensions) is high and the data distribution is

unknown, the value of 𝛽 can be tuned differently to meet the user-defined specification of the

maximum percentage of approximated convex hull vertices in the training set.

Since computing the distance from a point to the current convex hull by solving the quadratic

optimization problem defined in Eq. (4.11) is complex and time consuming in high

dimensions, in ApproxHull the approximated distance of a newly found vertex to the current

convex hull is computed based on 2 ∗ 𝑑 vertices, where 𝑑 denotes dimension, which are the

nearest neighbors to the newly found vertex in the current convex hull.

In Step 3 of ApproxHull, in order to generate a population of facets based on the vertices of

the current convex hull, two policies were tested: 1- a stochastic policy; 2- a GA based policy.

In the first policy, 𝑘 facets are generated in such a way that each vertex of a specific facet is

generated by random selection among the vertices of the current convex hull. The stochastic

policy algorithm is summarized in Algorithm 4.2.

In the GA-based policy, 𝑘 facets are generated by a GA so that 𝑘 = 𝑝 ∗ 𝑛𝑔, where 𝑝 and 𝑛𝑔

denote the population size and the number of generations of the GA, respectively. In each

generation of the GA execution, a new population of 𝑝𝑠 facets is created after employing

crossover and mutation operators. In this policy, the population of each generation is

appended to the total population so that, in the end, there is a total population of facets with

size 𝑝 ∗ 𝑛𝑔. The GA-based algorithm is summarized in Algorithm 4.3.

Since the idea behind ApproxHull is generating many different facets to help finding new

vertices of the real convex hull, the diversity of generated facets is an important issue in the

algorithm. In other words, more diversity in facets population provides a higher chance of

detecting new vertices. Hence, the fitness value of a facet can be defined in terms of the

 77

inverse of occurrence ratio of its vertices over the current population. The fitness value of a

specific facet is high if, in average, the occurrence ratio of its vertices over the current

population is low. In ApproxHull with GA-based Policy, the fitness value of a facet in the

population is measured by (4.13):

𝑝 ∗ 𝑑

∑ 𝑁𝑖
𝑑
𝑖=1

(4.13)

where 𝑝, 𝑑 and 𝑁𝑖 are the population size, dimension and number of facets in the current

population which share the 𝑖th vertex of the facet, respectively.

In each iteration of the GA, parents are selected for mating using the Roulette Wheel method.

Uniform crossover [114] is applied with a swapping probability of 0.5. The crossover

probability is set to 0.7. For mutation, a vertex of a facet is selected randomly and replaced

with another random vertex which has not been seen in the current population. The mutation

probability is set to 0.05. Fig. 4.2 illustrates a simplified flowchart of the operations involved

in ApproxHull.

 78

Algorithm 4.2: ApproxHull with Stochastic Policy

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples obtained

after the preprocessing of the original data, 𝑝 denotes

the population size of facets in d-dimensional space , 𝑤

is an integer value as width of the sliding window and 𝛽

as a user-defined threshold.

1. Scaling each dimension of 𝐷𝑆 to the range [−1, 1].

2. Let 𝑉 denotes the maximum and minimum

 samples with respect to each dimension in

 𝐷𝑆.

3. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝐹𝑎𝑙𝑠𝑒

4. 𝐷𝑖𝑓𝑓 = 𝐹𝑎𝑙𝑠𝑒

5. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

6. 𝐷𝐶 = {}

7. While (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 and not 𝐷𝑖𝑓𝑓) do

8. Let 𝑃 be an empty population.

9. For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do

10. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝐹𝑎𝑙𝑠𝑒

11. While (not 𝑖𝑠𝑉𝑎𝑙𝑖𝑑) do

12. 𝑗 = 1

13. Let 𝐹 be an empty facet.

14. While(𝑗 ≤ 𝑑) do

15. Select randomly a vertex 𝑣 from 𝑉

16. If (𝑣 is not in 𝐹) then

17. 𝐹 = 𝐹 ∪ {𝑣}

18. 𝑗 = 𝑗 + 1

19. End If

20. End While

21. If (det(𝐹) ≠ 0) then

22. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝑇𝑟𝑢𝑒

23. End If

24. End While

25. 𝑃 = 𝑃 ∪ {𝐹}

26. End For

27. 𝑛𝑒𝑤𝑉 = {}

28. For each facet 𝐹 in 𝑃 do

29.

Let 𝐻 be the corresponding hyperplane

 equation of facet 𝐹 which is obtained

 by Algorithm 4.1.

30. 𝑚𝑑𝑠 = 𝑚𝑎𝑥𝑥𝑖∈𝐷𝑆𝑑𝑠(𝑥𝑖 , 𝐻)

31. 𝐹𝑃 = {𝑥|𝑥 ∈ 𝐷𝑆 𝑎𝑛𝑑 𝑑𝑠(𝑥, 𝐻) =
𝑚𝑑𝑠}

32. For each point 𝑓𝑝 in 𝐹𝑃 do

33. If (𝑓𝑝 is not in 𝑉) do

34. 𝑛𝑒𝑤𝑉 = 𝑛𝑒𝑤𝑉 ∪ {𝑓𝑝}

35. End If

36. End For

37. End For

38. If (𝑛𝑒𝑤𝑉 = {}) then

39. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝑇𝑟𝑢𝑒

40. End If

41. If (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑) then

42. 𝐷 = ∅

43. For (𝑖 = 1; 𝑖 ≤ |𝑛𝑒𝑤𝑉|; 𝑖 + +) do

44. 𝑁𝑖 = ∅, 𝑇 = 𝑉

45. For (𝑘 = 1; 𝑘 ≤ 2 ∗ 𝑑; 𝑘 + +) do

46.
𝑛𝑛 = arg𝑚𝑖𝑛 ‖𝑧𝑖 − 𝑣𝑗‖2
𝑣𝑗 ∈ 𝑇, 𝑗 = 1,⋯ , |𝑇|

 where 𝑧𝑖 ∈ 𝑛𝑒𝑤𝑉

47. 𝑁𝑖 = 𝑁𝑖 ∪ {𝑛𝑛}

48. 𝑇 = 𝑇\{𝑛𝑛}

 79

49. End For

50. 𝐷 = 𝐷 ∪ {𝑑𝑐(𝑧𝑖, 𝑁𝑖)}

51. End For

52. 𝑑𝑐 = max𝐷

53. 𝐷𝐶 = 𝐷𝐶 ∪ {𝑑𝑐}

54. If (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑤) then

55. Let 𝑑𝑐𝑚𝑖𝑛 be the minimum of 𝑑𝑐 in

 𝐷𝐶 over 𝑤 last iterations.

56. Let 𝑑𝑐𝑚𝑎𝑥 be the maximum of 𝑑𝑐 in

 𝐷𝐶 over 𝑤 last iterations.

57. If ((𝑑𝑐𝑚𝑎𝑥 − 𝑑𝑐𝑚𝑖𝑛) < β) then

58. 𝐷𝑖𝑓𝑓 = 𝑇𝑟𝑢𝑒

59. Else

60. 𝑉 = 𝑉 ∪ {𝑛𝑒𝑤𝑉}

61. End If

62. End If

63. End If

64. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

65. End While

Output: V

 80

Algorithm 4.3: ApproxHull with GA-based Policy

Input: 𝐷𝑆 = {𝑥𝑖}𝑖=1
𝑛 ⊆ 𝑅𝑑 as a set of samples

obtained after the preprocessing of the original data,

𝑝 as population size, 𝑝𝑐 as crossover probability, 𝑝𝑚

as mutation probability, 𝑛𝑔 as number of generation

for GA, 𝑤 is an integer value as width of the sliding

window and 𝛽 as a user-defined threshold.

1. Scaling each dimension of 𝐷𝑆 to the range [-1, 1].

2. Let 𝑉 denotes the maximum and minimum

 samples with respect to each dimension in 𝐷𝑆.

3. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝐹𝑎𝑙𝑠𝑒

4. 𝐷𝑖𝑓𝑓 = 𝐹𝑎𝑙𝑠𝑒

5. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

6. 𝐷𝐶 = {}

7. While (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 and not 𝐷𝑖𝑓𝑓) do

8. Let 𝑃 be an empty population with maximum

 size 𝑝 ∗ 𝑛𝑔.

9. Let 𝐺 be an empty population with maximum

 size 𝑝.

10. For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do

11. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝐹𝑎𝑙𝑠𝑒

12. While (not 𝑖𝑠𝑉𝑎𝑙𝑖𝑑) do

13. 𝑗 = 1

14. Let 𝐹 be an empty facet.

15. While(𝑗 ≤ 𝑑) do

16. Select randomly a vertex 𝑣 from 𝑉

17. If (𝑣 is not in 𝐹) then

18. 𝐹 = 𝐹 ∪ {𝑣}

19. 𝑗 = 𝑗 + 1

20. End If

21. End While

22. If (det (𝐹) ≠ 0) then

23. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 = 𝑇𝑟𝑢𝑒

24. End If

25. End While

26. 𝐺 = 𝐺 ∪ {𝐹}

27. End For

28. 𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

29. While (𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑛𝑔) do

30. 𝑃 = 𝑃 ∪ 𝐺

31. 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = {}

32. For each 𝑖𝑛𝑑𝑣 in 𝐺 do

33. Compute the corresponding fitness value of

 𝑖𝑛𝑑𝑣.

34. End For

35. Let 𝑀𝑃𝑜𝑜𝑙 denotes an empty mating pool.

36. For (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do

37. Select one random parent 𝑃1 from 𝐺

 using Roulette Wheel method.

38. 𝑀𝑃𝑜𝑜𝑙 = 𝑀𝑃𝑜𝑜𝑙 ∪ {𝑃1}

39. End For

40. 𝑗 = 0

41. While (𝑗 < 𝑝) do

42. Select two random parents 𝑃1 and 𝑃2 from

 𝑀𝑃𝑜𝑜𝑙.

43. Let 𝑟𝑐 is a random number from range [0, 1].

44. If (𝑟𝑐 ≤ 𝑝𝑐)

45. Do uniform crossover on 𝑃1 and P2 and

 consider 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 for the result of crossover.

46. For each 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

 81

47. Let 𝑟𝑚 is a random number from

 range [0, 1]

48. If (𝑟𝑚 ≤ 𝑝𝑚)

49. Do mutation on 𝑐ℎ𝑖𝑙𝑑

50. End If

51. End For

52. For each 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

53. If (det (𝑐ℎ𝑖𝑙𝑑) ≠ 0) then

54. 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ∪ {𝑐ℎ𝑖𝑙𝑑}

55. End If

56. End For

57. 𝑗 = |𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠|

58. End If

59. End While

60. Let G includes the first 𝑝 individuals of

 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠.

61. 𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑎_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

62. End While

63. 𝑛𝑒𝑤𝑉 = {}

64. For each facet 𝐹 in 𝑃 do

65. Let 𝐻 be the corresponding hyperplane

 equation of facet 𝐹 which is obtained

 by Algorithm 4.1.

66. 𝑚𝑑𝑠 = 𝑚𝑎𝑥𝑥𝑖∈𝐷𝑆𝑑𝑠(𝑥𝑖, 𝐻)

67. 𝐹𝑃 = {𝑥|𝑥 ∈ 𝐷𝑆 𝑎𝑛𝑑 𝑑𝑠(𝑥, 𝐻) = 𝑚𝑑𝑠}

68. For each point 𝑓𝑝 in 𝐹𝑃 do

69. If (𝑓𝑝 is not in 𝑉) do

70. 𝑛𝑒𝑤𝑉 = 𝑛𝑒𝑤𝑉 ∪ {𝑓𝑝}

71. End If

72. End For

73. End For

74. If (𝑛𝑒𝑤𝑉 = {}) then

75. 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑 = 𝑇𝑟𝑢𝑒

76. End If

77. If (not 𝑁𝑜𝑡𝐹𝑜𝑢𝑛𝑑) then

78. 𝐷 = ∅

79. For (𝑖 = 1; 𝑖 ≤ |𝑛𝑒𝑤𝑉|; 𝑖 + +) do

80. 𝑁𝑖 = ∅, 𝑇 = 𝑉

81. For (𝑘 = 1; 𝑘 ≤ 2 ∗ 𝑑; 𝑘 + +) do

82.
𝑛𝑛 = arg𝑚𝑖𝑛 ‖𝑧𝑖 − 𝑣𝑗‖2
𝑣𝑗 ∈ 𝑇, 𝑗 = 1,⋯ , |𝑇|

 where 𝑧𝑖 ∈ 𝑛𝑒𝑤𝑉

83. 𝑁𝑖 = 𝑁𝑖 ∪ {𝑛𝑛}

84. 𝑇 = 𝑇\{𝑛𝑛}

85. End For

86. 𝐷 = 𝐷 ∪ {𝑑𝑐(𝑧𝑖, 𝑁𝑖)}

87. End For

88. 𝑑𝑐 = max𝐷

89. 𝐷𝐶 = 𝐷𝐶 ∪ {𝑑𝑐}

90. If (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑤) then

91. Let 𝑑𝑐𝑚𝑖𝑛 be the minimum of 𝑑𝑐 in 𝐷𝐶

 over 𝑤 last iterations.

92. Let 𝑑𝑐𝑚𝑎𝑥 be maximum of 𝑑𝑐 in 𝐷𝐶

 over 𝑤 last iterations.

93. If ((𝑑𝑐𝑚𝑎𝑥 − 𝑑𝑐𝑚𝑖𝑛) < β) then

94. 𝐷𝑖𝑓𝑓 = 𝑇𝑟𝑢𝑒

95. Else

96. 𝑉 = 𝑉 ∪ {𝑛𝑒𝑤𝑉}

97. End If

98. End If

 82

99. End If

100. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

101.End While

Output: V

 83

Fig. 4.2. Flow chart of ApproxHull.

Start

Scale each dimension of the input data set to the range [-1, 1].

Identify the minimum and maximum points with respect to each dimension.

Set 𝑽 to the minimum and maximum points as the initial vertices of the convex hull.

Set two flags 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 and 𝑫𝒊𝒇𝒇 to 𝐹𝑎𝑙𝑠𝑒 value. These two flags

correspond to the first and second criteria, respectively.

Generate a fixed-size population of valid facets based on the vertices of

the current convex hull using the stochastic or the GA based policy.

not 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 and not 𝑫𝒊𝒇𝒇

True

Set 𝒏𝒆𝒘𝑽 to the furthest points to the facets of the current population

that do not belong to the vertices of the current convex hull.

𝒏𝒆𝒘𝑽 == ∅

True

𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅 = 𝑇𝑟𝑢𝑒

False

Set 𝒅𝒄 to the maximum approximated convex hull distance among the

points in 𝒏𝒆𝒘𝑽.

not 𝑵𝒐𝒕𝑭𝒐𝒖𝒏𝒅

True

False

Set 𝒅𝒄𝒎𝒊𝒏 and 𝒅𝒄𝒎𝒂𝒙 to the maximum and minimum of 𝒅𝒄 over 𝒘 last

iterations, respectively.

(𝒅𝒄𝒎𝒂𝒙 − 𝒅𝒄𝒎𝒊𝒏) < threshold

𝑽 = 𝑽 ∪ 𝒏𝒆𝒘𝑽 𝑫𝒊𝒇𝒇 = 𝑇𝑟𝑢𝑒

= 𝑉 ∪ 𝑛𝑒𝑤𝑉

False True

End

False

 84

4.4. Simulation results

Three experiments were executed to evaluate ApproxHull performance and its effect on the

accuracy in classification and approximation tasks. The algorithm has been implemented in

Python and C languages, and was executed in a computer with Ubuntu Linux OS, Intel Core

i5 processor and 4 Gigabytes of RAM.

4.4.1. Experiment 1

ApproxHull was applied on four artificial datasets named UDS1, UDS2, UDS3 and UDS4.

All datasets are composed of uniformly distributed random samples which were generated by

the built-in MATLAB function rand. The description of the datasets is given in Table 4.1.

TABLE 4.1. DESCRIPTION OF ARTIFICIAL DATASETS CONSISTING OF

UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE

NUMBER OF DIMENSIONS AND SAMPLES, RESPECTIVELY.

Dataset Name dim #S

UDS1 3 4000

UDS2 4 4000

UDS3 5 4000

UDS4 6 4000

Since Quickhull is a deterministic algorithm, in this experiment it is considered as a baseline

to which ApproxHull and Wang’s algorithm [68], both being approximation convex hull

algorithms, are compared. We use two criteria for comparison: 𝑃 and 𝑅 defined in Eq. (4.14)

and Eq. (4.15).

𝑃 =
#(𝑉𝑅 ∩ 𝑉𝑃)

#𝑉𝑃
∗ 100

(4.14)

𝑅 =
#(𝑉𝑅 ∩ 𝑉𝑃)

#𝑉𝑅
∗ 100

(4.15)

𝑉𝑅 is the set of vertices obtained by employing the Quickhull algorithm and 𝑉𝑃 is the set of

vertices obtained by applying one of the other algorithms. Basically, criterion 𝑃 shows the

precision of an algorithm in approximating the Quickhull results, while criterion 𝑅 denotes

how much the results obtained by an algorithm are similar to those obtained by Quickhull.

 85

In this experiment, ApproxHull considering the two facet generation policies and Wang’s

algorithm were executed for ten runs. For the latter, L was set to 0.01n for all datasets, and M

was set as M>=0.02n, M>=0.07n, M>=0.1n and M>=0.14n, for UDS1, UDS2, UDS3 and

UDS4, respectively, 𝑛 being the number of samples.

For ApproxHull with Stochastic Policy the sliding window size, 𝑤, was set to 10 for all

datasets and 𝑝 (population size) was set to 4000, 5000, 6000, and 7000 for datasets UDS1,

UDS2, UDS3 and UDS4, respectively. For ApproxHull with GA-based Policy, 𝑤 was also set

to 10 for all datasets and the number of generations, 𝑛𝑔, was set to 50. 𝑝 (population size) was

set to 80, 100, 120 and 140 for datasets UDS1, UDS2, UDS3 and UDS4, respectively.

Figs. 4.3 and 4.4 show the average values of 𝑃 and 𝑅 for the results obtained on datasets

UDS1 to UDS4 by ApproxHull (with both policies) and by Wang’s algorithm. By analyzing

Fig. 4.3 it may be concluded that ApproxHull identifies only vertices that belong to the real

convex hull, while Wang’s algorithm selects some vertices which are not in the real convex

hull. Moreover, according to Fig. 4.4, ApproxHull, using either the Stochastic Policy or GA-

based Policy, detects more vertices of the real convex hull than Wang’s algorithm. Fig. 4.4

also shows that ApproxHull with Stochastic Policy could identify more vertices of the real

convex hull in comparison to ApproxHull employing the GA-based policy.

Fig. 4.3. Average value of criterion P for ApproxHull with both policies and Wang’s

algorithm on UDS1 to UDS4.

 86

Fig. 4.4. Average value of criterion R for ApproxHull with both policies and the Wang’s

algorithm on UDS1 to UDS4.

Another experiment was conducted using normally distributed random samples which were

generated by built-in MATLAB function normrnd, where the mean and the standard deviation

were set to 0 and 1, respectively. In this experiment, ApproxHull with both policies was

applied on four normally distributed artificial datasets for ten runs. The experiments were

executed in the same conditions as described before.

Fig. 4.5 shows the average value of 𝑅 for the results obtained by ApproxHull using both

policies on datasets NDS1 to NDS4. The results in terms of criterion P were 100%, as in the

previous case. Tables 4.2 and 4.3 also show the run time of ApproxHull using both policies

on datasets in both cases.

Fig. 4.5. Average value of criterion R for ApproxHull using both policies on NDS1 to NDS4.

 87

TABLE 4.2. RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC

POLICY AND GA-BASED POLICY ON DATASETS UDS1-4.

 UDS1 UDS2 UDS3 UDS4

Stochastic Policy 11.50 25.86 55.44 115.59

GA-based Policy 17.11 58.66 208.03 323.68

TABLE 4.3. RUN TIME (IN SECONDS) OF APPROXHULL WITH STOCHASTIC

POLICY AND GA-BASED POLICY ON DATASETS NDS1-4.

 NDS1 NDS2 NDS3 NDS4

Stochastic Policy 6.30 11.86 30.33 50.20

GA-based Policy 10.06 19.24 90.06 156.78

Analyzing Fig. 4.4 and Fig. 4.5, ApproxHull with Stochastic Policy on both groups of

artificial datasets has a better performance than the version employing the GA-based policy.

In addition, according to Tables 4.2 and 4.3, the former is faster than the latter for all cases

considered. For this reason, the Stochastic Policy will be used subsequently.

4.4.2. Experiment 2

In this experiment, ApproxHull was applied as a method for data selection in classification

tasks. In order to evaluate the accuracy of the classification model, two cases were considered.

In the first, ten training datasets were generated by random selection of samples from the

whole dataset. In the second case, ten training datasets were generated, each one of them

incorporating vertices of the approximated convex hull (which were obtained by ApproxHull)

as well as random samples from the remaining dataset. The algorithm was applied separately

for positive and negative classes. The datasets employed for classification were taken from

[115]. The MATLAB SVM tool with Gaussian RBF (Radial Basis Function) kernel was used

to design classifiers in both scenarios. The description of each dataset along with their

corresponding hyper-parameters’ values for the SVM classifiers is given in Table 4.4. In this

experiment, the CR criterion stated in Section 2.5 was used. Table 4.5 shows the results

obtained in the two cases for the datasets described in Table 4.4.

 88

TABLE 4.4. DESCRIPTION OF THE DATASETS USED IN CLASSIFICATION. #F, #DS,

#TR, #TE ARE THE NUMBER OF FEATURES, TOTAL NUMBER OF SAMPLES,

NUMBER OF TRAINING SAMPLES AND TEST SAMPLES, RESPECTIVELY. C AND 𝛄

ARE THE SVM HYPER-PARAMETERS.

Dataset Class1 / Class2 #F #DS #TR #TE C γ

Breast Cancer
“Malignant” /

”Benign”
30 569 376 193 1 0.05

Parkinson “Yes” / ”No” 26 1040 686 354 200 0.1

Satellite
“Red Soil” / ”Grey

Soil”
36 2033 1342 691 500 0.1142

Letter “A” / ”B” 16 1555 1026 529 1 0.6576

Cover Type
“Douglasfir” /

”Krummholz”
54 37877 24999 12878 1 0.5

TABLE 4.5. AVERAGE CLASSIFICATION RATE FOR TEST DATASET IN TWO

CASES FOR ALL DATASETS IN TABLE IV. 𝑪𝑹𝑻𝒆(𝟏) AND 𝑪𝑹𝑻𝒆(𝟐) DENOTE THE

CLASSIFICATION RATES FOR THE TEST DATASET USING RANDOM SELECTION

AND USING APPROXHULL, RESPECTIVELY.

Dataset 𝐶𝑅𝑇𝑒(1) 𝐶𝑅𝑇𝑒(2) 𝐶𝑅𝑇𝑒(2) − 𝐶𝑅𝑇𝑒(1)

Breast Cancer 0.963 0.981 0.018

Parkinson 0.656 0.667 0.011

Satellite 0.990 1.000 0.010

Letter 0.993 1.000 0.007

Cover Type 1.000 1.000 0.000

According to the fourth column of Table 4.5, for all datasets the data selection mechanism

employing ApproxHull has improved the accuracy of the corresponding classifiers, in

comparison with the random data selection method. For the Breast Cancer and the Letter

datasets, the highest and lowest improvements were achieved, respectively. For the Cover

Type, both algorithms achieved perfect classification. The average classification rate for

datasets Satellite, Letter and Cover Type, in the second case is equal to 1 which means that

perfect classification is obtained for these datasets.

Additionally, as the previous datasets were balanced data sets, the same procedure, using the

same SVM tool, was employed to a problem of automatic diagnosis of CVAs, from CT

images. The application is described in, for instance, [116, 117] and, for the point of view of

this paper, is a binary classification problem, using 51 features, with the aim of classifying

each pixel in the intracranial area of each CT slice as normal, or abnormal (corresponding to a

lesion). Using 150 CT slices corresponding to 7 exams, we had 1,867,602 pixels, from which

 89

64,786 (around 3.5%) were abnormal. This is clearly a very bad-balanced problem.

Approxhull has been applied for this large data set, and training and test datasets with the

sizes of 20,000 and 14,000 were constructed. The average values of the classification rate

obtained for the test sets, over 10 experiments, for random selection and using Approxhull

were 0.972 and 0.983, respectively. This example demonstrates that, for a completely

unbalanced problem, the use of ApproxHull again achieved better results than random

selection, and that ApproxHull is applicable to large datasets.

In order to assess the statistical significance of the last results, as well as the ones presented in

Table 4.5, we used the Wilcoxon signed-ranks test discussed in Section 2.9.2. Since in this

case, 𝐿, the number of data sets, is equal to 60, the corresponding value of statistic 𝑧 is equal

to -5.35 which clearly indicates that the improvements obtained with ApproxHull are

statistically significant.

4.4.3. Experiment 3

Experiment 3 was conducted to find out how much improvement can be obtained for

regression models by employing ApproxHull for data selection.

As in Experiment 2, two approaches were analyzed for comparison: 1) generating ten training

datasets by random selection; 2) generating ten training datasets by applying ApproxHull,

together with random selection. The datasets which are used for regression were taken from

[115, 118]. The description of each dataset is given in Table 4.6.

TABLE 4.6. DESCRIPTION OF THE DATASETS USED IN REGRESSION. #F, #DS,

#TR, #TE AND #VAL ARE THE NUMBER OF FEATURES, TOTAL SAMPLES,

TRAINING SAMPLES, TEST SAMPLES AND VALIDATION SAMPLES,

RESPECTIVELY.

Dataset #F #DS #TR #TE #VAL

Puma 32 8192 4915 1638 1639

Bank 32 8192 4915 1638 1639

CompAct 21 8192 4915 1638 1639

Concrete 8 1030 618 206 206

Skillcraft 18 3338 2003 667 668

The MLP implemented in MATLAB was employed with two hidden layers and the output

layer with one linear neuron. For all datasets except the Concrete dataset, both hidden layers

had ten sigmoidal neurons. For the Concrete dataset, both hidden layers employed five

 90

sigmoidal neurons. The Levenberg-Marquardt method (Please see Section 2.4.1.5) is

employed to train the model, terminating if one of the following conditions is met: early-

stopping, the number of training iterations exceeds 100 iterations, or the three criteria

described in Section 2.4.1.7, where 𝜏𝑓 = 10−3.

The RMSE criterion is employed to evaluate the accuracy of the models. Tables 4.7 and 4.8

show the results obtained in the test and validation for the datasets described in Table 4.6.

Table 4.7 shows the average RMSE for the test datasets (i.e., data used for early stopping) in

the two mentioned cases. As it may be seen in the sixth column, the regression models which

resulted from the data selected by ApproxHull have a lower approximation error. Table 4.8

shows the average RMSE for the validation sets (i.e., data not used in the model design).

Again, it may be concluded that the use of ApproxHull in the data selection phase, decreases

the error for all datasets except for Skillcraft, which has an identical value.

TABLE 4.7. AVERAGE RMSE FOR THE TEST DATASETS IN TWO CASES FOR ALL

DATASETS IN TABLE VI. 𝑬𝑻𝒆(𝟏) AND 𝑬𝑻𝒆(𝟐) DENOTE RMSE FOR TEST DATASET

IN FIRST CASE (RANDOM SELECTION) AND SECOND CASE (DATA SELECTION

USING APPROXHULL) RESPECTIVELY.

Dataset
Initial

𝐸𝑇𝑒(1)
𝐸𝑇𝑒(1)

Initial

𝐸𝑇𝑒(2)
𝐸𝑇𝑒(2)

𝐸𝑇𝑒(1) − 𝐸𝑇𝑒(2)

Puma 0.336 0.076 0.326 0.073 0.003

Bank 0.293 0.209 0.260 0.195 0.014

CompAct 0.193 0.082 0.166 0.049 0.033

Concrete 0.374 0.161 0.329 0.143 0.018

Skillcraft 0.428 0.404 0.382 0.337 0.067

TABLE 4.8. AVERAGE RMSE FOR THE VALIDATION DATASETS IN TWO CASES

FOR ALL DATASETS IN TABLE VI. 𝑬𝑽𝒂𝒍(𝟏) AND 𝑬𝑽𝒂𝒍(𝟐) DENOTE RMSE FOR

VALIDATION DATASET IN FIRST CASE (RANDOM SELECTION) AND SECOND

CASE (DATA SELECTION USING APPROXHULL) RESPECTIVELY.

Dataset
Initial

𝐸𝑉𝑎𝑙(1)
𝐸𝑉𝑎𝑙(1)

Initial

𝐸𝑉𝑎𝑙(2)
𝐸𝑉𝑎𝑙(2)

𝐸𝑉𝑎𝑙(1) − 𝐸𝑉𝑎𝑙(2)

Puma 0.339 0.076 0.324 0.073 0.003

Bank 0.296 0.209 0.259 0.194 0.015

CompAct 0.194 0.061 0.169 0.048 0.013

Concrete 0.359 0.162 0.329 0.147 0.015

Skillcraft 0.406 0.334 0.382 0.334 0.000

 91

For completeness, the second and the fourth columns in the last two tables illustrate the

average initial values (before training was performed) of the RMSEs, for both approaches, for

the test and validation datasets.

Performing the Wilcoxon signed-ranks test on the RMSEs of the test and validation data sets,

with 𝐿 = 50, the 𝑧 values obtained are -4.73 and -4.18, respectively. In the same way as in the

classification problems, the improvements obtained with Approxhull were considered to be

statistically significant.

To summarize the results, among the 15 performance values presented in Tables 4.5, 4.7 and

4.8, as well as for the CVA problem, the use of ApproxHull for data selection achieves better

results than those obtained by using random data selection in 14 cases, and achieves equal

performance in 2 cases.

4.5. Run time analysis

The ApproxHull run time with Stochastic Policy depends on five factors including the size of

the involved dataset (i.e., the number of samples and features), population size (input

parameter 𝑝), number of iterations, number of vertices of convex hull found, and on the

distribution of samples in the dataset. In order to analyze the dependency of the run time with

these factors, two experiments were conducted. First, the algorithm was applied to all the

datasets described in Tables 4.4 and 4.6 for ten times. For all datasets, 𝑝 (population size) and

𝑤 (width of sliding window) were set to 1000 and 5, respectively. Fig. 4.6 shows the average

percentage of total samples identified as vertices of convex hull for each dataset described in

Tables 4.4 and 4.6.

Fig. 4.6. Average percentage of total samples identified as vertices of convex hull for each

dataset described in Tables 4.4 and 4.6.

 92

Fig. 4.7 illustrates the average number of iterations that were used to terminate the algorithm

for each dataset. The corresponding average run time for each dataset is given in Table 4.9.

As it can be seen in this table, the highest and lowest average run times are related to datasets

Cover Type and Concrete, respectively. Cover Type is the largest dataset in terms of number

of samples and features while Concrete has the smallest number of features and is the second

smallest dataset with respect to the number of samples. Although datasets Bank and Puma

have the same size, the average run time for Bank is larger than that for Puma, because the

average number of iterations for Bank is larger than that for Puma. This specific result related

to datasets Puma and Bank reveals the fact that the distribution of samples can influence the

run time.

Fig. 4.7. Average number of iterations in ApproxHull for each dataset described in Tables

4.4 and 4.6.

TABLE 4.9. AVERAGE RUN TIME OF APPROXHULL ON DATASETS DESCRIBED IN

TABLES 4.4 AND 4.6.

Dataset Average Run Time (in seconds)

Concrete 11.78

Letter 19.13

Skillcraft 37.70

ComAct 37.39

Breast Cancer 8.10

Bank 257.34

Puma 174.24

Satellite 62.80

Cover Type 1280.16

 93

Another experiment based on two groups of artificial datasets was conducted to clarify further

the relationship between the run time of ApproxHull and the above mentioned factors.

The first group included thirty datasets which were composed of uniformly distributed

random samples. The number of samples and the dimensions are in ranges [1000, 5000] and

[4, 30] respectively. The second group employed the same number of datasets, in the same

conditions, but using normally distributed random samples.

Figs. 4.8 and 4.9 show the effect of dataset size (i.e., number of samples and dimensions) on

the run time of ApproxHull on five datasets with different number of samples and

dimensions. For all datasets of both groups, population size (i.e., input parameter 𝑝) is set to

2000. It can be seen that in both groups of datasets, for a constant number of samples, by

increasing the dimension, the run time of ApproxHull rises; for a constant dimension, by

raising the number of samples, the run time also increases. It can also be observed that an

increase in dimension is translated into a larger increase of the run time than an increase of the

number of samples.

Fig. 4.8. Relationship between the size of five datasets containing uniformly distributed

random samples and the run time of ApproxHull.

 94

Fig. 4.9. Relationship between the size of five datasets containing normally distributed

random samples and the run time of ApproxHull.

Figs. 4.10 and 4.11 illustrate the influence of population size (i.e., input parameter 𝑝) on the

run time of ApproxHull for both groups of datasets. For each group, six datasets with 5000

samples are considered, with varying dimension. As it can be seen, on the one hand the

population size has less influence on the run time in comparison with the effect of dataset

size; on the other hand, if we enlarge the population size, this is not always translated into a

run time increase (although this usually happens).

Fig. 4.10. Relationship between the population size (input parameter 𝒑) and the run time of

ApproxHull on six datasets containing uniformly distributed random samples.

 95

Fig. 4.11. Relationship between the population size (input parameter 𝒑) and the run time of

ApproxHull on six datasets containing normally distributed random samples.

As an example, in Fig 4.10 for the 25-dimensional dataset, by increasing population size from

1500 to 2000, the run time decreases. This happened because the number of iterations is

equal to 44 in the case where the population size is set to 1500, whereas it is equal to 19 in the

case where the population size is set to 2000. The corresponding number of iterations for

different population sizes shown in Figs. 4.10 and 4.11 are given in Fig. 4.12 and 4.13.

Fig. 4.12. Number of iterations in ApproxHull with six values for population sizes on six

datasets containing 5000 uniformly distributed random samples.

Fig. 4.13. Number of iterations in ApproxHull with six values for population sizes on six

datasets containing 5000 normally distributed random samples.

 96

Similarly, for the second group of datasets, increasing the population size does not always

lead to a longer run time. For example, in Fig. 4.11, for the 20-dimensional dataset, by

increasing population size from 1000 to 1500, the run time decreases because the

corresponding number of iterations for population size 1000 is equal to 13, while it is equal to

9 for population size 1500.

From Fig. 4.14 and 4.15, it may be seen that in both group of datasets, an increase in

population size does not always lead to an increase in percentage of samples identified as

vertices of the convex hull.

Fig. 4.14. Percentage of samples identified as vertices of convex hull by employing

ApproxHull with six values for population sizes on six datasets containing 5000 uniformly

distributed random samples.

Fig. 4.15. Percentage of samples identified as vertices of convex hull by employing

ApproxHull with six values for population sizes on six datasets containing 5000 normally

distributed random samples.

From a data distribution point of view, Table 4.10 shows that the minimum and maximum run

times of ApproxHull on datasets containing normally distributed random samples (i.e., the

first group of datasets) are smaller than those on datasets containing uniformly distributed

random samples (i.e., the second group of datasets). Correspondingly, Table 4.11 illustrates

 97

that the minimum and the maximum percentages of samples identified as vertices of convex

hull from datasets involving normally distributed random samples are less than those from

datasets involving uniformly distributed random samples.

TABLE 4.10. CORRESPONDING MINIMUM AND MAXIMUM RUN TIME OF

APPROXHULL ON DATASETS USED IN FIG. 4.8 AND 4.9. RTMIN_1 AND RTMIN_2

DENOTE THE MINIMUM RUN TIME IN THE FIRST AND THE SECOND GROUP OF

DATASETS RESPECTIVELY. RTMAX_1 AND RTMAX_2 DENOTE THE MAXIMUM

RUN TIME IN THE FIRST AND THE SECOND GROUP OF DATASETS,

RESPECTIVELY.

Cases RTMIN_1 RTMIN_2 RTMAX_1 RTMAX_2

Datasets with 1000 samples 7.81 6.31 70.16 46.83

Datasets with 2000 samples 15.82 8.96 128.98 84.73

Datasets with 3000 samples 20.42 9.26 178.17 99.28

Datasets with 4000 samples 13.92 7.64 213.69 117.64

Datasets with 5000 samples 24.87 9.09 295.9 134.82

TABLE 4.11. CORRESPONDING MINIMUM AND MAXIMUM PERCENTAGE OF

SAMPLES IDENTIFIED AS VERTICES OF CONVEX HULL FROM DATASETS USED

IN FIG. 4.14 AND 4.15 PMIN_1 AND PMIN_2 DENOTE THE MINIMUM PERCENTAGE

IN FIRST AND SECOND GROUP OF DATASETS. PMAX_1 AND PMAX_2 DENOTE

THE MAXIMUM PERCENTAGE IN FIRST AND SECOND GROUP OF DATASETS.

Dataset PMIN_1 PMIN_2 PMAX_1 PMAX_2

5-dimensional dataset 7 4 9 4

10-dimensional dataset 26 13 36 19

15-dimensional dataset 47 22 60 34

20-dimensional dataset 45 28 73 43

25-dimensional dataset 65 34 86 55

30-dimensional dataset 51 40 88 63

In order to extract an approximate mathematical model specifying the relationship between

the run time of ApproxHull as a function of the dataset size, population size, number of

iteration and number of convex hull vertices, we employed the ASMOD algorithm [25] on the

data obtained in the last experiment described above. The ASMOD algorithm is, as discussed

in Section 2.2.3, a design technique for B-spline neural networks.

For each group of datasets, we collected 360 records of data by running ApproxHull on the

corresponding datasets. According to the mathematical model which was obtained for each

group of datasets, the time complexity of ApproxHull for both group of datasets can be

approximated as 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) where 𝑛, 𝑑, 𝑣, 𝑖 and 𝑝 denote the number of samples,

 98

dimension, number of convex hull vertices found, number of iterations and population size,

respectively. In order to assess the accuracy of the model obtained for the run time of

ApproxHull, Fig. 4.16 presents the run time of ApproxHull (data scaled in a range [-1, 1[) and

the error obtained by the model in two groups of datasets. As it can be seen, for both groups

of datasets, a good accuracy for the model has been obtained.

(a)

(b)

Fig. 4.16. Run time of ApproxHull and the error obtained by the model on two groups of

datasets. (a) First group: uniformly distributed random samples; (b) Second group: normally

distributed random samples.

 99

4.6. Memory requirements analysis

As mentioned in Section 3.3.3, Quickhull as a standard convex hull algorithm suffers from

insufficient memory in high dimensions. In this section, to compare empirically ApproxHull

with Quickhull in terms of memory requirements, both algorithms were applied to four

artificial datasets described in Table 4.12. All datasets are composed of uniformly distributed

random samples.

TABLE 4.12. DESCRIPTION OF THE ARTIFICIAL DATASETS CONSISTING OF

UNIFORMLY DISTRIBUTED RANDOM SAMPLES. DIM AND #S DENOTE THE

NUMBER OF DIMENSIONS AND SAMPLES RESPECTIVELY.

Dataset Name dim #S

DS1 5 4000

DS2 6 4000

DS3 7 4000

DS4 8 3500

Since facets in both ApproxHull and Quickhull are the principal objects to which a

considerable amount of memory is allocated, this section addresses memory requirements for

the generated facets in each iteration for both algorithms. For datasets DS1 to DS3, the sliding

window size, 𝑤, was set to 10 and for DS4 it was set to 15. The population size, 𝑝, was set to

6000, 7000, 8000 and 9000 for datasets DS1, DS2, DS3 and DS4, respectively.

Figs. 4.17 to 4.20 show the trend of memory consumption over all iterations in both

algorithms on datasets DS1 to DS4. An analysis of these figures shows that memory

allocation in Quickhull for all generated facets in each iteration is much larger than that in

ApproxHull. As it can be seen in the figures, the trend of memory consumption for all

generated facets in ApproxHull is approximately constant in the last iterations. By increasing

the dimension, the trend of memory consumption in Quickhull is linearly increasing,

translating into a large amount of memory. In Quickhull, in each iteration, only the furthest

point to current convex hull is added to the list of vertices and new necessary facets are

generated to keep convexity in each iteration. Unlike Quickhull, in each iteration of

ApproxHull, a large number of vertices are added into list of vertices of the current convex

hull, and that is why the number of iterations of ApproxHull is lower than that of Quickhull.

Moreover, in Quickhull, the current convex hull is described in terms of facets and the

corresponding vertices so that, in high dimensions, the number of facets which reflect the

whole current convex hull is huge. In contrast, the facets in the fixed size population in

 100

ApproxHull are only used to detect the furthest point as vertices of real convex hull and they

do not describe the whole current convex hull.

According to the explanation above, the amount of memory allocated to the facets for

Quickhull is much larger, comparing to ApproxHull. The number of facets and the

corresponding amount of memory allocated in both algorithms for the last iteration on

datasets DS1 to DS4 are given in Table 4.13.

(a)

(b)

Fig. 4.17. Trend of memory consumption over iterations on DS1. (a) Quickhull; (b)

ApproxHull

 101

(a)

(b)

Fig. 4.18. Trend of memory consumption over iterations on DS2. (a) Quickhull; (b)

ApproxHull

 102

(a)

(b)

Fig. 4.19. Trend of memory consumption over iterations on DS3. (a) Quickhull; (b)

ApproxHull

 103

(a)

(b)

Fig. 4.20. Trend of memory consumption over iterations on DS4. (a) Quickhull; (b)

ApproxHull

TABLE 4.13. NUMBER OF FACETS, TOTAL AND AVERAGE MEMORY SIZE FOR

BOTH ALGORITHMS ON DS1 TO DS4 IN THE LAST ITERATION.

 Quikhull ApproxHull

No. of

facets

Total

memory

size

(MB)

Average

memory

size (B)

No. of

facets

Total

memory

size

(MB)

Average

memory

size (B)

Dataset

DS1 12062 2.222557 193 6000 0.556335 97

DS2 98801 19.62438 208 7000 0.760101 113

DS3 712234 152.1882 224 8000 0.993637 130

DS4 4396390 1006.301 240 9000 1.257355 146

 104

4.7. Conclusions

This chapter describes a novel randomized approximation convex hull algorithm for high-

dimensional data, to overcome the limiting memory requirements and time complexity

problems found in conventional algorithms. ApproxHull is presented with two policies:

stochastic policy and GA-based policy. Simulation results indicate that ApproxHull with

Stochastic Policy is faster and its performance is better in comparison to the case where GA-

based Policy is applied.

According to the simulation results, ApproxHull can find significantly more vertices of the

real convex hull in comparison to Wang’s algorithm [68]. Moreover, the obtained results in

classification and regression problems show that the use of ApproxHull as a data selection

method improves the accuracy of the designed models.

Based on the results obtained from employing ApproxHull with stochastic policy on two

groups of datasets, it is revealed that dataset size, population size, number of iterations,

number of vertices found as vertices of convex hull and the distribution of samples have

influence on the run time. Based on a mathematical model obtained by using b-spline

networks, the approximated time complexity of ApproxHull is 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) where 𝑛,

𝑑, 𝑣, 𝑖 and 𝑝 denote number of samples, dimension, number of convex hull vertices found,

number of iterations and population size, respectively.

From a memory requirements point of view, simulation results reveal that the memory

consumption in ApproxHull is much lower than the Quickhull algorithm, allowing the

proposed algorithm to be applied in high-dimensional problems.

 105

5. Applying ApproxHull in MOGA

5.1. Introduction

This chapter addresses the application of ApproxHull, introduced in Section 4.3 as a data

selection method, in the model design process carried out by MOGA. In this chapter, the

application of ApproxHull in MOGA is analyzed from two points of view. Firstly, the

performance of ApproxHull is compared with random data selection method for MOGA.

Secondly, the usage of ApproxHull in MOGA is addressed in the two following situations: In

the first situation (i.e., hereinafter called common convex hull based data selection method), a

common training, testing and validation sets (i.e., which are constructed using ApproxHull)

are used to fit the parameters of all models that are generated by MOGA; whereas, in the

second situation (i.e., hereinafter called distinct convex hull based data selection method),

ApproxHull is used to construct a customized training, testing and validation sets for each

generated model. The rest of the chapter is organized as follows: In Section 5.2, two

experiments applying ApproxHull and random based data selection methods in MOGA are

explained and analyzed. Two alternatives of applying ApproxHull in MOGA are discussed in

Section 5.3 and finally some conclusions are given in Section 5.4.

5.2. Comparison of using random and convex hull based data selection

methods for MOGA

In order to evaluate the performance of ApproxHull as a data selection method for MOGA,

the problem of designing predictive time series models for Inside Air Temperature (IAT) was

considered. To address this problem, a non-dominated set of Nonlinear AutoRegressive with

eXogenous (NARX) models was designed by MOGA to predict the evolution of IAT over a

Prediction Horizon (PH), for rooms in a building at University of Algarve. The data

considered to design these models were the subsets of those that used to build the similar

models proposed in [3, 119]. The input variables were IAT, Inside Air Humidity (IAH),

Outside Air Temperature (OAT), Outside Solar Radiation (OSR), Reference Temperature

(RT) and Movement signal (MOV). The corresponding data was collected with a sample rate

of 5 minutes. For each variable 12 lags (i.e., one hour before) were considered to design the

models. As a result, a data set containing 5062 samples with 73 features was provided.

 106

Two MOGA experiments were carried out to design the models. For both experiments, a

common training, testing and validation sets were applied to all models generated by MOGA

and throughout MOGA generations, each model is trained and evaluated using a reduced

version of the common data sets whose features corresponds to the model’s inputs. In the first

experiment, the common training, testing and validation sets were generated using common

random based data selection method. In this method, the common sets were created by

applying random data selection method on the whole data set (i.e., 5062 samples) and then

presented to the MOGA. In the second experiment, the common sets were generated using

common convex hull based data selection method in such a way that the common sets were

produced by employing ApproxHull on the whole data set and presented to the MOGA. In

this experiment, 1441 convex hull points were identified from the whole data set and included

in the training set. 1596 randomly selected samples from the whole data set were also added

to the training set. The size of the data sets is given in Table 5.1. Regarding MOGA

parameters, for both experiments, the early stopping method with maximum 100 iterations

was applied. The number of generations and the population size were both set to 100. The

ranges of number of neurons and features were set to [2, 30] and [0, 30], respectively. For

both experiments, the design objectives were typically the RMSE obtained in the training and

test data sets, and the model complexity. In both experiments, no restriction on objectives was

considered. The number of models in the non-dominated set of first and second experiments

was equal to 101 and 173, respectively. The results obtained by the evaluation of models in

the non-dominated set of both MOGA experiments are given in Table 5.2. The results are in

terms of RMSE (𝜌) on the training (𝑡𝑟), testing (𝑡𝑒), validation (𝑣𝑎) and whole data set (𝐷).

𝑟𝑛𝑑 and ℎ𝑢𝑙𝑙 in Table 5.2 denote the first and second MOGA experiment, respectively.

TABLE 5.1. THE SIZE OF TRAINING, TESTING AND VALIDATION SETS.

 Training set Testing set Validation set

Size 3037 × 73 1012 × 73 1013 × 73

TABLE 5.2. RESULTS OBTAINED FROM THE MOGA EXPERIMENTS.

 𝜌𝑡𝑟
𝑟𝑛𝑑 𝜌𝑡𝑟

ℎ𝑢𝑙𝑙 𝜌𝑡𝑒
𝑟𝑛𝑑 𝜌𝑡𝑒

ℎ𝑢𝑙𝑙 𝜌𝑣𝑎
𝑟𝑛𝑑 𝜌𝑣𝑎

ℎ𝑢𝑙𝑙 𝜌𝐷
𝑟𝑛𝑑 𝜌𝐷

ℎ𝑢𝑙𝑙

Min 0.0065 0.0066 0.0085 0.0081 0.0090 0.0085 0.0081 0.0079

Avg 0.0082 0.0085 0.0091 0.0088 0.0231 0.0106 0.0144 0.0092

Max 0.0108 0.0112 0.0107 0.0109 0.5392 0.0669 0.2413 0.0308

 107

As it can be seen in Table 5.2, the performance in the training set using the random approach

is slightly better than the convex hull approach. This is expected as the latter includes the

convex hull points, using therefore a larger range than the former. This situation changes for

the testing set and regarding the validation set, as unseen data, and also the whole data set, the

performance of models obtained by applying ApproxHull (the second MOGA experiment) is

significantly better than those achieved by using the random selection method (the first

MOGA experiment).

5.3. Comparison of the use of the common and distinct convex hull based

data selection methods for MOGA

Simulation results obtained in Section 5.2 showed that the performance of the obtained

models by convex hull based data selection method is better than that of those achieved by

random data selection method.

Another question which remains to be answered is whether or not using the common convex

hull based data selection method (i.e., which was applied in the second experiment stated in

Section 5.2) brings us a better performance comparing to the situation where distinct convex

hull based data selection methods are used in MOGA (i.e., in which ApproxHull is used to

construct a customized training, testing and validation sets for each model generated by

MOGA). In the case of using distinct convex hull based data selection method, for each

model generated by MOGA, ApproxHull is applied on a reduced version of the whole data set

whose features corresponds to the model’s inputs. Afterwards, the corresponding training,

testing and validation sets are generated to train and evaluate the model.

In order to compare these two strategies, we focused on the first generation of MOGA, where

a number of models are randomly generated satisfying the restrictions imposed on the number

neurons and features (i.e., unlike other generations in which models are generated based on

the previous generation by using the crossover and mutation genetic operators).

Like Section 5.2, we considered the IAT models to compare the above two methods. The

evaluation results obtained from the two methods are given in Table 5.3. 𝑐𝑜𝑚 and 𝑑𝑖𝑠 in

Table 5.3 denote the common and distinct convex hull based data selection methods,

respectively. 𝜌𝐷 denotes the RMSE on the whole data set. 𝑛𝑐ℎ𝑣 and 𝑡𝑐ℎ𝑣 indicate the number

of convex hull points and ApproxHull run time, respectively.

Table 5.4 shows the total time spent to design all models in the first generation. In Table 5.4,

𝑇𝑐ℎ𝑣 denotes the summation of ApproxHull run time over all models. Since in common

 108

convex hull based data selection method, ApproxHull is applied only once on the whole data

set, 𝑇𝑐ℎ𝑣 is equal to 𝑡𝑐ℎ𝑣
𝑐𝑜𝑚 in Table 5.3. 𝑇𝑡𝑟 denotes the summation of training times over all

models in the common and distinct convex hull based data selection methods, respectively. In

Table 5.4, 𝑇 denotes the total time including ApproxHull run time and training time over all

models in common and distinct convex hull based data selection methods.

TABLE 5.3. EVALUATION RESULTS OBTAINED FROM TWO METHODS.

 𝜌𝐷
𝑐𝑜𝑚 𝜌𝐷

𝑑𝑖𝑠 𝑛𝑐ℎ𝑣
𝑐𝑜𝑚 𝑛𝑐ℎ𝑣

𝑑𝑖𝑠 𝑡𝑐ℎ𝑣
𝑐𝑜𝑚 (sec) 𝑡𝑐ℎ𝑣

𝑑𝑖𝑠 (sec)

Min 0.0152 0.0152 1434 108 283.25 1.70

Avg 0.0294 0.0294 1434 889 283.25 19.21

Max 0.0652 0.0647 1434 1829 283.25 72.16

TABLE 5.4. TOTAL TIME TO DESIGN ALL MODELS IN THE TWO METHODS.

 𝑇𝑐ℎ𝑣 (sec) 𝑇𝑡𝑟 (sec) 𝑇 (sec)

Common data sets

based strategy

283.25 1550.00 1833.25

Distinct data sets

based strategy

1421.32 1544.96 2966.28

According to the first two columns of Table 5.3, there is no significant difference between the

performance of models in two cases. Based on the third and fourth columns of Table 5.3, the

number of convex hull points obtained using the common convex hull based data selection

method is much larger than that of those achieved from the distinct convex hull based data

selection method. This result stems from the fact that, in the former, ApproxHull is applied on

the whole data set containing 5062 samples with 73 features while in the latter, ApproxHull is

employed on reduced data sets containing the same number of samples with at most 30

features (due to forcing MOGA to generate models with at most 30 input features). As it can

be seen in Table 5.4, the total time spent to design all models in the common convex hull

based data selection method is much less than that in the other method. It comes from the fact

that in the former, ApproxHull is applied only once whereas in the latter, it is independently

employed for each model.

 109

5.4. Conclusions

This chapter was aimed to evaluate the ApproxHull performance in MOGA. Two groups of

MOGA experiments were carried out to design time series models based on RBFNN to

predict one-step-ahead IAT for a building at the University of Algarve. The results obtained

from the first group of experiments showed that applying ApproxHull as a data selection

method can improve the performance of models in comparison with random selection

method. Moreover, we were motivated to study applying ApproxHull in MOGA based on two

methods; 1- common convex hull based data selection method 2- distinct convex hull based

data selection method. The results achieved from the second group of experiments showed

that not only the latter is not superior to the former, but also it takes more time in model

design, in comparison with the former.

 110

 111

6. Case Studies

6.1. Introduction

To show the feasibility of applying ApproxHull in real applications, this chapter addresses

three case studies in which ApproxHull has been employed as a data selection method to

create training, testing and validation sets.

The first case study is linked to design a group of predictive RBFNN models, as well as a

basic MLP model, which were aimed to forecast the energy consumption of a building at

University of Almeria, Spain [120].

The second case study was intended to present an intelligent weather station which not only

measures climate variables but also provides a prediction over a predefined prediction horizon

[14, 15]. The intelligent weather station was applied to implement a predictive control of

HVAC systems [3, 121]. In this case study, a series of predictive RBFNN models were

designed to forecast climate variables.

In the third case study, ApproxHull was applied to build a classification model based on

RBFNN, as an intelligent support system for automatic diagnosis for CVA, where the model

was designed based on the data extracted from CT images of several patients [117].

The rest of this chapter is organized as follows: Section 6.2 details the first case study since it

was carried out as a part of this PhD. Section 6.3 and 6.4 present a brief explanation of the

second and third case studies, respectively as ApproxHull was used by different researchers

involved in other projects. Finally some conclusions are given in Section 6.5.

6.2. Case Study 1: Energy consumption

Due to fast economic development affected by industrialization and globalization, energy

consumption has been steadily increasing over the last years [122, 123]. Industry,

transportation and buildings are the three main economic sectors which consume a significant

amount of energy, with buildings having the biggest proportion. For example in European

Union countries, energy consumption in buildings represents about 40% of the total energy

consumption [124]. In USA, more than 44% of domestic energy consumption belongs to

HVAC systems in buildings [125]. Studies have shown that by following the current energy

consumption pattern, the world energy consumption may increase more than 50% before

2030 [126], while most of the energy resources are not renewable in nature. Moreover, the

usage of energy causes environmental degradation [123]. Therefore, energy consumption

 112

management is a very significant problem not only to tackle the loss resulting from increasing

consumption patterns but also to improve the performance of building energy systems. With

respect to energy management, a variety of policies have been considered. In recent years,

bioclimatic architectures for buildings have been focused to reduce the indoor consumption of

energy. In this kind of architecture, buildings are designed based on the local climate

conditions. These include wind speed and direction, daily exterior temperature and relative

humidity, as well as diverse passive solar technologies where heating and cooling techniques

passively absorb solar radiation or protect from it without containing mobile elements [127-

129]. Besides environmental variables, physical properties of buildings are considered in

bioclimatic architectures, such as shape, buildings' orientation related to the sun and wind,

wall thickness and roof construction [127, 130].

Utilizing renewable energy sources such as biomass, hydropower, geothermal, solar, wind

and marine energies have been considered as alternatives for conventional energy resources in

most developed and developing countries [131, 132]. In the European Union, the use of

renewable energies share is 20% of the total energy consumption and 10% of renewable

energies will be used in transportation by 2020 [133]. Using renewable energies not only

helps keeping the security of non-renewable energy supply in future, but also minimizes

environmental degradation [132].

Prediction of energy use in buildings has received a remarkable amount of attention from

researchers [122, 124, 134, 135], as an approach to reduce energy consumption, which is

intended to conserve energy and reduce environmental impacts [124]. The prediction of

energy usage in buildings and modeling the behavior of the corresponding energy system, are

complicated tasks due to influential factors such as weather variables, building construction,

thermal properties of the physical materials and occupants’ activities [124]. Furthermore,

there are several nonlinear inter-relationships among the involved variables, often in a noisy

environment, which amplify the difficulty in identifying the precise interaction among them

[136].

The methods aiming to predict building energy consumption can be categorized mainly into

statistical, engineering and artificial intelligence ones. A review on prediction methods can be

found in [124, 137].

Engineering methods, which are detailed comprehensive methods, use the structural

properties of buildings in the form of physical principles and thermal dynamics equations, as

well as environmental information such as climate conditions, occupants, their activities and

HVAC equipment parameters. On the one hand, these methods need a high level of details

 113

about the structural and thermal parameters of buildings that are not always available and, on

the other hand, since engineering methods depend on complex physical principles, a high

level of expertise is needed to elaborately develop the corresponding models [54, 124]. To

reduce the complexity of the detailed comprehensive engineering methods, simplified

methods have been proposed, which can be seen in [138, 139].

Statistical methods use historical data to correlate energy consumption as target with most

influential variables as inputs. Hence, the quality and quantity of historical data has a crucial

role in developing statistical models [54, 140]. Unlike engineering methods, statistical

methods provide models with a smaller number of variables and much less physical

understanding. Regression models, CDA (Conditional Demand Analysis), ARMA (Auto

Regressive Moving Average), ARIMA (Auto Regressive Integrated Moving Average) and

GMM (Gaussian Mixture Models) are some instances of statistical models [140-143].

In recent years, artificial intelligence methods such as neural networks, support vector

machines and fuzzy logic have been widely considered in applications of energy

consumption. Like statistical methods, artificial intelligence methods use historical data

reflecting the behavior of the process to be modeled. Neural networks have shown a high

capability to capture complex nonlinear relationships between inputs and outputs. Since the

energy consumption process has a nonlinear behavior, neural networks are mostly applied in

this domain. In addition, they are quicker and easier to develop than engineering and

statistical methods, while being accurate estimators. Some instances of neural network based

models may be found in [54, 136, 144-148].

Recently, support vector machines have received much attention as quick methods to build

predictive models in applications of energy consumption. They can provide models with a

high level of generalization based on number of data. Their application on the prediction of

energy utilization can be viewed, for instance, in [149-151].

Besides neural network and support vector machine based models, another kind of models

have been considered, which benefit from fuzzy logic. Fuzzy logic deals with imprecise

reality and handles the concept of truth value ranging between completely true and completely

false (1–0) [152]. Some models of this type can be seen in [153, 154].

As mentioned earlier, both statistical and artificial intelligence methods need sufficient

historical data to provide accurate models. In cases where limited amounts of data are

available and the information about the process to be modeled is partially known, grey models

are suitable alternatives to the prediction of time series associated with processes [155-157].

 114

The objective of this case study is to compare an MLP model obtained in [54] with the

RBFNN models obtained by MOGA, to predict the electric power demand of the CIESOL

building located at University of Almeria, Spain. Authors in [54] determined the structure and

the order of the model by statistical and analytical methods while in this article a non-

dominated set of models is generated by a MOGA considering a set of objectives to be

optimized. For the sake of completion, the performance of MOGA models is also compared

with the results obtained by a Naive Autoregressive Baseline (NAB) approach, introduced in

[158].

The following briefly describes the structural properties and power demand profile of

CIESOL building. Afterwards the model proposed in [54] and the models generated by

MOGA are widely described and finally, experimental results are shown.

6.2.1. Experimental setup: The CIESOL building

The CIESOL building, see Fig. 6.1(a), is a mixed solar energy research center between

CIEMAT (Centre for Energy, Environment and Technology – Centro de Investigaciones

Energéticas, MedioAmbientales y Tecnológicas (in Spanish)) and the University of Almería,

situated in the south-east of Spain. This geographical location is characterized by having a

typical semi-desert Mediterranean climate [159]. This building is divided into two floors with

a total surface approximately equal to 1100 m2. More specifically, the upper floor is

composed by four laboratories, the director's office and a meeting–room. In the lower floor,

five offices, four laboratories, two bathrooms and a kitchen are located. Besides these, the

machinery of the solar cooling installation is placed into an environment which occupies two

floors.

This building has been designed and built within a research project named PSE-ARFRISOL

[160], following bioclimatic architecture criteria. Therefore, it makes a beneficial use of

natural ventilation and solar energy in order to reduce energy consumption and CO2

emissions. To do that, it employs a HVAC system based on solar cooling installation, which

can be observed in Fig. 6.1(b), composed by a solar collector field, a hot water storage

system, a boiler and an absorption machine with its refrigeration tower [160], and a

photovoltaic power plant with a peak power of 9 kW which provides electricity to the

building (see Fig. 6.1(c) and (d)). Furthermore, a wide network of sensors has been installed

in order to monitor the most representative enclosures of the building. Concretely, this

network of sensors includes, among others, air temperature, relative humidity, CO2

 115

concentration, solar radiation, wind velocity and power consumption sensors. Moreover, these

sensors are connected to different Compact FieldPoint modules from National Instruments

that are distributed by means of an Industrial Ethernet network all around the building [160].

Data provided by the network of sensors are being stored through a SCADA (Supervisory

Control And Data Acquisition) system developed with LabVIEW
®
 [160]. Finally, it is

necessary to take into account that this building is a research center which includes chemical,

environmental analysis and modeling and control research groups. Hence, the machinery,

other electrical devices and experiments performed by these research groups alter the energy

use profile of the building in comparison with more common ones, such as residential

buildings.

Fig. 6.1. The CIESOL building: (a) Exterior of the CIESOL building; (b) Solar cooling

installation; (c) Photovoltaic power plant: PV panels; (d) Photovoltaic power plant: PV

inverters.

 116

6.2.1.1. Power demand profiles of the CIESOL building

From a power demand point of view, the CIESOL building has some special characteristics

mainly derived from the research tasks which are being developed inside it. Therefore, it is

necessary to perform an exhaustive analysis of the different energy demand profiles which

can be found at the CIESOL building. Specifically, a statistical characterization involving

certain parameters like arithmetic mean (�̅�), standard deviation (𝜎), and minimum and

maximum values of the power demand (min and max respectively) under several conditions

(different seasons and types of days), has been performed (see Table 6.1).

TABLE 6.1. STATISTICAL ANALYSIS OF THE POWER DEMAND PROFILES (IN

KW).

 x min max

Working day 24.36 6.39 17.39 44.17

Non-working day 19.45 1.83 12.72 23.86

Winter 26.45 4.55 18.93 39.48

Spring 23.91 6.76 12.56 42.79

Autumn 24.23 4.58 15.85 48.14

Summer 28.74 8.67 16.28 63.48

To predict the power demand within a building, it is necessary to consider numerous energy

consuming elements, such as illumination, electrical devices, HVAC systems, etc. At the

CIESOL building, the element which has the greatest energy consumption is the solar cooling

installation. Furthermore, to calculate the total energy demand of the CIESOL building it is

necessary to consider both the energy supplied by the electricity company and the energy

produced by the photovoltaic power plant which is directly consumed by the building, that is,

at this moment it is not possible to store the energy from the photovoltaic power plant.

Firstly, the main differences according to typical power demand profiles between working

and non-working days have been studied, as presented in Fig. 6.2. To do that, a typical day for

each demand profile, considering working and non-working days, and each season, has been

selected as a function of several environmental variables: mean, maximum and minimum

temperature, temperature ranges and solar radiation. The methodology consists of selecting

the day with the minimum value obtained from the sum of the weighted absolute difference

between each parameter (daily) and the mean value of this parameter along the analyzed

period. A detailed description of the procedure which has been followed can be found in

[161]. It can be observed that power demand in a working day begins to increase around

 117

08:00 am and starts to decrease at 05:00 pm, reaching a stationary value around 8 pm,

whereas, in a non-working day it has a stationary value approximately equal to 20 kW, mainly

due to the machinery and experimental tests performed inside this building. From the

perspective of the statistical analysis shown in Table 6.1, it can be inferred that the mean

power demand for a working day is equal to 24.36 kW with a standard deviation of 6.39 kW.

On the contrary, for a non-working day, a mean power demand of 19.45 kW and a standard

deviation equal to 1.83 kW have been obtained. In addition, working days also present a

higher peak power demand, in comparison with non-working days.

Fig. 6.2. Energy demand profiles for working and non-working days.

Secondly, a detailed examination of the power demand of the CIESOL building through a

typical week (from Monday to Sunday), along different environmental conditions has been

performed, as shown in Fig. 6.3. The main objectives of this analysis were to determine if

there were representative differences among the different seasons of the year and also to

identify if there was any characteristic element of the building able to considerably influence

its power demand. More specifically, as it can be deduced from Fig. 6.3, the different seasons

of the year follow an analogous pattern among working and non-working days. In addition, it

can also be inferred that spring and summer seasons present a higher power demand in

comparison with winter and autumn. Besides, along the summer season there are several

power demand peaks that do not follow any specific pattern associated with the type of day.

Therefore, in order to clarify this issue, a detailed analysis of this fact has been performed,

and the main conclusions derived from it were that these peaks were associated with the use

of a heating pump (for research purposes) and the solar cooling installation. Hence, as the use

of both elements is directly associated with the users of the building, it has been decided to

take into account the state variables representing these elements within the preliminary list of

 118

variables (see Table 6.2). Finally, according to the statistical analysis, it can be concluded that

the highest peak power demand and variance is associated with the summer season mainly

due to the use the HVAC system for cooling purposes [160].

Fig. 6.3. Weekly energy demand profiles for each season.

TABLE 6.2. PRELIMINARY LIST OF VARIABLES [54].

Variable Unit Measurement range

Type of the day (Working day/Non-working day) – {0, 1}

Hour of the day h [0, 23]

Outdoor temperature [ºC] [-5, 50]

Outdoor humidity [%] [0, ..., 100]

Outdoor solar radiation [W/m
2
] [0, 1440]

Outdoor wind speed m/s [0, 22]

Outdoor wind direction º [0, 360]

State of the pump B1.1 (Off/On) – {0, 1}

State of the pump B1.2 (Off/On) – {0, 1}

State of the pump B2.1 (Off/On) – {0, 1}

State of the pump B2.2 (Off/On) – {0, 1}

State of the pump B3.1 (Off/On) – {0, 1}

State of the pump B3.2 (Off/On) – {0, 1}

State of the pump B7 (Off/On) – {0, 1}

State of the boiler (Off/On) – {0, 1}

State of the absorption machine (Off/On) – {0, 1}

State of the refrigeration tower (Off/On) – {0, 1}

State of the heat pump (Off/On) – {0, 1}

Electric power demand [kW] [0, 85]

Electric power injected by the PV plant [kW] [0, 9]

Finally, the principal conclusions which have been reached after this precise analysis can be

summarized in: a) there is a clear power demand profile within a week and also, the

differences among working and non-working days power demand profiles can be undoubtedly

established; b) the power demand for summer is higher mainly due to the typical semi-desert

 119

Mediterranean climate of Almería; and c) the use of the solar cooling installation has a

considerable influence on the final energy consumption.

6.2.1.2. Data acquisition

As mentioned previously, in this case study, several energy consumption prediction models

based on RBFNNs were designed and compared with the corresponding MLP model

proposed in [54]. These models were obtained by means of different methodologies. More

specifically, groups of non-dominated sets of RBFNN models were designed by MOGA.

Afterwards, these groups of models were compared with a basic MLP model presented in

[54]. To do that, a historic data set acquired at the CIESOL building was used. Concretely,

this data set comprises data from 01/09/2010 to 29/02/2012 with a sample time of 1 minute

and it includes a preliminary list of variables which can be observed in Table 6.2. These

variables are related with the environmental conditions and the state of the main energy

consuming elements of the solar cooling installation.

Subsequently a whole data set containing 514762 samples was obtained. To design the basic

MLP model proposed in [54], the whole data set was split into three sub-data sets training,

testing and validation involving 318340, 107264 and 89158 samples, respectively. This

division has been performed by hand since there were some discontinuities in time series.

More information about the methodology followed to obtain these data subsets can be found

in [54]. On the other hand, to design a group of non-dominated sets of RBFNN models by

MOGA, the original whole data set was resampled from 1 minute to 15 minutes to reduce the

size of the whole data set due to the presence of limitations in MOGA against large size data

sets. Afterwards, along each week period, the corresponding data of three random days were

selected. Consequently, a reduced data set consisting of 8640 samples was achieved. To

generate the corresponding training, testing and validation sets, ApproxHull algorithm

proposed in Section 4.3 was applied as a data selection method. As a result, for all MOGA

experiments, the training, testing and validation set including 2592, 864 and 864 samples

were generated, respectively. The detailed explanation of the data preparation process for

MOGA is given in Section 6.2.3.1.

 120

6.2.2. A Non-linear AutoRegressive with eXogenous inputs Multi-Layer Perceptron

Neural Network model

In [54] a prediction model based on MLP for the energy consumption of the CIESOL building

was proposed. To do that, the Neural Network Toolbox
TM

 provided by MATLAB
®
 was used.

Concretely, the proposed model had a Non-linear AutoRegressive with eXogenous inputs

(NARX) architecture, see Eq. (6.1), typified by having a tapped delay line for the input

signals set and another one for the output signal, that is, the power demand prediction of the

CIESOL building. Moreover, this model was trained using a gradient-descent based

algorithm, more specifically the Levenberg-Marquardt algorithm [33].

 1 , 1 , , 1 ; , 1 , , 1u yy k f u k u k u k d y k y k y k d (6.1)

In Eq. (6.1), u k and y k represent the input and output signals at time instant k , 1ud ,

1yd (subjected to uy dd) are the memory orders for the input and output tapped delay

lines, respectively, and f represents a non-linear mapping function which, in this case, was

approximated by an MLP network.

The structure of an MLP network is completely defined by indicating: a) the number of

hidden layers and the number of neurons in each layer; b) the number of neurons in the output

layer; and c) the activation function used in each neuron of the hidden and output layers.

More specifically, in the model presented in [54], an MLP with only one hidden layer

composed by 10 neurons with tangent hyperbolic activation functions and one neuron with

linear activation function at the output layer was considered, since it is a universal

approximator [162].

Afterwards, the selection of input variables from the preliminary variables list, see Table 6.2,

was performed through analytical methods, since they allow to establish the existing linear

and non-linear dependencies. Besides, the scatter-plots and the model tests were used in order

to complete the information provided by analytical methods. A detailed description of these

methods can be found in [54]. Therefore, after the application of the methods mentioned

above, the preliminary variables list was reduced to the following ones: type of the day; hour

of the day; outdoor temperature and solar radiation; state variables related to the solar cooling

installation; and the total power demand of the CIESOL building.

 121

Finally, it was necessary to select the order of the signal inputs, that is, the embedding delay

 and the embedding dimension d [54]. The former was determined by means of the average

mutual information [163], whereas for the latter, optimal values were calculated by the False

Neighbors Method [164]. The list of final input variables and their order can be observed in

Table 6.3.

TABLE 6.3. FINAL LIST OF VARIABLES WITH THEIR ORDER (EMBEDDING

DELAY AND DIMENSION).

Variable Unit
Measurement

range
 d

Type of the day (Working day/Non-working day) – {0, 1} 1 1

Hour of the day – [0, 23] 1 1

Outdoor temperature [ºC] [-5, 50] 1 4

Outdoor solar radiation [W/m
2
] [0, 1440] 1 4

State of the pump B1.1 (Off/On) – {0, 1} 1 5

State of the pump B1.2 (Off/On) – {0, 1} 1 5

State of the pump B2.1 (Off/On) – {0, 1} 1 5

State of the pump B2.2 (Off/On) – {0, 1} 1 5

State of the pump B3.1 (Off/On) – {0, 1} 1 5

State of the pump B3.2 (Off/On) – {0, 1} 1 5

State of the pump B7 (Off/On) – {0, 1} 1 5

State of the boiler (Off/On) – {0, 1} 1 5

State of the absorption machine (Off/On) – {0, 1} 1 5

State of the refrigeration tower (Off/On) – {0, 1} 1 5

State of the heat pump (Off/On) – {0, 1} 1 5

Electric power demand [kW] [0, 100] 1 3

6.2.3. Radial Basis Function Neural Network based models generated by MOGA

MOGA is a design framework which can be applied to determine both the structure and the

parameters of ANN based models (i.e., please see Sections 2.6 and 2.7). The models used in

this case have a NARX structure as shown in (6.1), with the difference that f(.) is now a

RBFNN, instead of a MLP. In this approach, instead of one model, a non-dominated set of

models are generated. From this set, one solution must be selected. In this section, data

preparation for MOGA and related experiments are described.

 122

6.2.3.1. Data preparation

After an analysis of the original data, a new code was considered for the feature “day type”.

The new code refers to “special days”. By comparing the amount of energy consumption for

working and non-working days, it has been revealed that for some days over the years 2010

and 2011, the amount of energy consumption has an average value between working and non-

working days. By comparing these special days with the Spanish calendar for both years, it

was found that those days occurred in the early days of the year, or in working days which

were located between national/regional holidays and weekends. Based on that, these special

days received the code 0.5. Fig. 6.4 shows the distribution of whole data samples in terms of

“day type”. Since the original data was obtained with a sampling interval of 1 minute, its size

was too large (514762 samples) to be handled by the MOGA framework, and was reduced in

several stages. Due to presence of gaps in the data, there were 51 consecutive periods over the

whole data. In the first stage, each period was divided into one week length segments. Based

on these divisions, those durations whose length was less than two weeks were ignored in this

work. This stage resulted into 13 periods containing at least two weeks of data. Table 6.4

shows the periods selected in the first stage.

In the second stage, the data for all periods was reduced by a factor of 15 by averaging every

15 consecutive samples inside each segment. The sampling interval was then increased to 15

minutes.

In the third stage, by starting from the second week within each period, 3 random days along

with the last 7 consecutive days were selected as lags for each variable. This way, a data set 𝑫

with 8640 samples was obtained. Fig. 6.5 shows the distribution of samples of data set 𝑫 in

terms of “day type”.

 123

Fig. 6.4. Distribution of original data samples in terms of day type from 01/09/2010 to

29/02/2012.

TABLE 6.4. THE PERIODS SELECTED IN THE FIRST STAGE.

Period number Start End

1 02-Sep-2010 00:00:00 15-Sep-2010 23:59:00

2 24-Sep-2010 00:00:00 14-Oct-2010 23:59:00

3 09-Nov-2010 00:00:00 22-Nov-2010 23:59:00

4 27-Dec-2010 00:00:00 09-Jan-2011 23:59:00

5 11-Jan-2011 00:00:00 31-Jan-2011 23:59:00

6 09-Feb-2011 00:00:00 01-Mar-2011 23:59:00

7 11-Mar-2011 00:00:00 31-Mar-2011 23:59:00

8 02-Jun-2011 00:00:00 22-Jun-2011 23:59:00

9 08-Jul-2011 00:00:00 01-Sep-2011 23:59:00

10 14-Oct-2011 00:00:00 27-Oct-2011 23:59:00

11 05-Nov-2011 00:00:00 23-Dec-2011 23:59:00

12 29-Dec-2011 00:00:00 11-Jan-2012 23:59:00

13 19-Jan-2012 00:00:00 08-Feb-2012 23:59:00

 124

Fig. 6.5. Distribution of samples in data set 𝑫 in terms of day type.

6.2.3.2. Design Experiments

Based on the model design cycle described in Section 2.7.4, several designs were conducted

in such a way that their results led to the definition of a new design, by redefining variables

and their corresponding lag terms, as well as imposing restrictions on objectives.

In a first step, we conducted designs with features requiring lag terms spread over at most 7

days.

After analyzing and comparing the results with those obtained in [54], the spread of lags was

reduced to cover at most 2 days, and finally to cover at most one day. Based on that, 4 new

designs were carried out.

For all designs, data set 𝑫, stated in section 6.2.3.1, containing 8640 samples was used. Since

a sampling interval of 15 minutes was used, and the objective was to obtain forecasts of

electric power 1 hour-ahead, a prediction horizon of 4 steps was employed. In this work, as in

[17], two groups of RBFNN models were considered. The first group contains simple models

where only weather variables are used as exogenous variables. The second group considers

complete models involving both weather and solar cooling operation variables. The list of

candidate variables used and the range of lags for the design experiments are given in Table

6.5 and 6.6, respectively.

 125

TABLE 6.5. LIST OF VARIABLES USED.

Variable Notation Unit Range in D

Electric power demand added up with the

electric power supplied by the PV plant

𝑥1 𝑘𝑊 [11.73,74.65]

Day type (working day/non-working

day/semi-holidays)
𝑥2 - {0, 0.5, 1}

Outdoor temperature 𝑥3 ℃ [2.73,43.79]
Outdoor solar radiation 𝑥4 𝑊/𝑚2 [0, 1127.81]

State of pump B1.1 (Off/On) 𝑥5 - {0,1}
State of Pump B1.2 (Off/On) 𝑥6 - {0,1}
State of Pump B2.1 (Off/On) 𝑥7 - {0,1}
State of Pump B2.2 (Off/On) 𝑥8 - {0,1}
State of Pump B7 (Off/On) 𝑥9 - {0,1}
State of the boiler (Off/On) 𝑥10 - {0,1}

State of the absorption machine (Off/On) 𝑥11 - {0,1}
State of the cooling tower (Off/On) 𝑥12 - {0,1}

State of the heat pump (Off/On) 𝑥13 - {0,1}

TABLE 6.6. DESCRIPTION OF THE LAGS USED.

Variable Experiment I Experiment II Experiment III Experiment IV

𝑥1 20 lags over 1 day

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day

𝑥2 0 lags

0 lags 0 lags 0 lags

𝑥3 20 lags over 1 day

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day

𝑥4 20 lags over 1 day

20 lags over 1 day 20 lags over 1 day 20 lags over 1 day

𝑥5 - - 1 lag 1 lag

𝑥6 - - 1 lag 1 lag

𝑥7 - - 1 lag 1 lag

𝑥8 - - 1 lag 1 lag

𝑥9 - - 1 lag 1 lag

𝑥10 - - 1 lag 1 lag

𝑥11 - - 1 lag 1 lag

𝑥12 - - 1 lag 1 lag

𝑥13 - - 1 lag 1 lag

As it can be seen in Table 6.6, Experiments I and II correspond to simple models in which

only weather variables have been used; Experiments III and IV consider complete models. In

Table 6.6, “lag 0” for variable “day type” (𝑥2) is translated into the day type of instant 𝑘 + 1

 126

for which the electric power demand is predicted. In fact, weather and electric power demand

variables are strongly related to their most recent values and also, to a certain extent, to their

values 24 h before. As a result, for 𝑥1, 𝑥3 and 𝑥4 a heuristic, proposed in [24], was used to

select 20 lags over one full day, in such a way that more recent values predominate in the set

of searchable lags for these variables. Hence, based on this heuristic, the 20 lags used are

[1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 29, 36, 43, 53, 65, 79, 96]. In this list, and as an

example, lags 1 and 2 denote delays of 15 and 30 minutes, respectively. The objectives and

the corresponding goals are given in Table 6.7. 𝑫𝑡, 𝑫𝑔 and 𝑫𝑠 denote the training, testing and

simulation sets, respectively. 휀(𝑫𝑡) and 휀(𝑫𝑔) refer to the RMSE of 𝑫𝑡 and 𝑫𝑔, respectively.

휀(𝑫𝑠, 16) is a vector of RMSEs of 𝑫𝑠 over a prediction horizon with 16 steps (i.e., one hour)

so that the first element of the vector corresponds to the RMSE of 1-step-ahead prediction and

the last one corresponds to the RMSE of 16-steps-ahead prediction. 𝑂(𝜇) denotes the model

complexity, which is equal to the number of input features + 1, multiplied by the number of

hidden neurons (i.e., for further information about the objectives, please refer to Section

2.7.2.1).

TABLE 6.7. OBJECTIVES AND THEIR CORRESPONDING RESTRICTION OF

EXPERIMENTS.

 Experiment I Experiment II Experiment III Experiment IV

휀(𝑫𝑡) Minimize < 0.059 Minimize < 0.054

휀(𝑫𝑔) Minimize < 0.061 Minimize < 0.052

휀(𝑫𝑠, 16) Minimize Minimize Minimize Minimize

𝑂(𝜇) Minimize < 317 Minimize < 444

Regarding MOGA’s parameters specification, for experiments I and III, the range [𝑑𝑚, 𝑑𝑀],

where 𝑑𝑚 and 𝑑𝑀 are the minimum and maximum number of features, was set to [1, 30]

while for experiments II and IV they were set to [1, 15] and [1, 21], respectively. Similarly,

for experiments I and III, the range [𝑛𝑚, 𝑛𝑀], where 𝑛𝑚 and 𝑛𝑀 are the minimum and

maximum number of neurons, was set to [2, 30] while for experiments II and IV, these ranges

were set to [1, 18] and [1, 21], repectively. For all designs, the population size and the

number of generations were set to 100.

For each experiment, a proper sub dataset 𝑫𝑊 was derived from data set 𝑫 whose features are

those columns of 𝑫 which correspond to the lags defined in the corresponding experiment.

In order to generate training, testing and validation sets for each experiment, firstly the

ApproxHull algorithm proposed in Section 4.3 was applied on corresponding 𝑫𝑊 to obtain

 127

convex points reflecting the whole input-output range in which the model is supposed to be

used. Secondly, 50% of whole samples in 𝑫𝑊 were used to generate training (𝑫𝑡), testing

(𝑫𝑔) and validation (𝑫𝑣) sets with proportions of 60%, 20% and 20%, respectively. In this

step all convex points were incorporated in the training set. Afterwards, the remaining

samples were shared randomly into the rest of the training set, and the testing and validation

sets. Regarding the simulation dataset 𝑫𝑠, 1344 consecutive samples from 01-Oct-2010

00:00:00 to 14-Oct-2010 23:59:00 were considered. In this set, the rows correspond to the

variables used, whose samples are in each column while, for the other sets, the number of

rows correspond to the patterns, and the number of columns to the features. The size of

training, testing and validation datasets as well as the simulation dataset of each experiment is

given in Table 6.8.

TABLE 6.8. SIZE OF TRAINING, TESTING AND VALIDATION SETS.

 Experiment I Experiment II Experiment III Experiment IV

𝑫𝑡 2592 x 62 2592 x 62 2592 x 71 2592 x 71

𝑫𝑔 864 x 62 864 x 62 864 x 71 864 x 71

𝑫𝑣 864 x 62 864 x 62 864 x 71 864 x 71

𝑫𝑠 4 x 1344 4 x 1344 13 x 1344 13 x 1344

After one run of the MOGA for each experiment, the non-dominated and preferred sets of

models were generated. In the case that no restriction is considered on objectives, the non-

dominated set is the same as preferred set; otherwise, the preferred set is a subset of the non-

dominated set whose solutions satisfy the goals. Please refer to [47] for further information

about how the preferred set can be obtained from the non-dominated set by applying the

preferably criterion. The number of models in non-dominated and preferred sets for each

experiment is given in Table 6.9.

TABLE 6.9. SIZE OF NON-DOMINATED AND PREFERRED SETS.

 Non-dominated set Preferred set

Experiment I 346 346

Experiment II 238 88

Experiment III 289 289

Experiment IV 366 182

 128

6.2.4. Results and discussion

The models presented in this case study were tested and compared by means of real data

acquired at the CIESOL building. To do that, a battery of tests was selected according to

certain representative characteristics, such as, the type of day (working and non-working

days), the season of the year and the quantity of solar radiation (sunny and cloudy days). A

complete description of the battery of tests is shown in Table 6.10. Furthermore, a prediction

horizon over 1 hour was set mainly due to the energy price changes and the dynamic

behaviour of indoor temperature [54].

Since in MOGA related experiments, the data was used with a sampling interval of 15

minutes, each test in Table 6.10 contains 96 samples. Moreover, the corresponding prediction

horizon over 1 hour is equal to 4 steps. For the model proposed in [54], each test includes

1440 samples due to the 1 minute sampling rate. Hence, the corresponding prediction horizon

over 1 hour is equal to 60 steps. For convenience, the complete model proposed in [54] and

the models obtained by MOGA will be denoted as PREVIOUS and MOGA models,

respectively. In order to compare the MOGA models obtained from each experiment with the

PREVIOUS model, one model was selected from the non-dominated/preferred set, with a

good compromise between performance and complexity.

TABLE 6.10. BATTERY OF TESTS PERFORMED.

Test Day Temperature Radiation
Date

(mm/dd/yyyy)

(A) Working day Summer Sunny 06/29/2011

(B) Non-working day Summer Sunny 09/19/2010

(C) Working day Winter Cloudy 02/15/2011

(D) Non-working day Winter Sunny 02/20/2011

(E) Non-working day Winter Cloudy 02/28/2011

(F) Non-working day Summer Cloudy 07/02/2011

In our work, models I, II, III and IV were the selected MOGA models from experiments I, II,

III and IV, respectively. Information about the selected MOGA models as well as the

PREVIOUS is given in Table 6.11. Using the notation of Table 6.6, the formal description of

models I to IV is given by Eqs. (6.2) to (6.5), respectively.

 129

TABLE 6.11. SELECTED MOGA MODELS AND PREVIOUS MODEL.

 Number of features Number of neurons Complexity

Model I 18 13 247

Model II 14 18 270

Model III 29 11 330

Model IV 18 20 380

NARX-MLP 67 10 680

�̂�(𝑘 + 1) = 𝑓1(𝑥1(𝑘), … , 𝑥1(𝑘 − 6), 𝑥1(𝑘 − 8), 𝑥1(𝑘 − 11), 𝑥1(𝑘 − 12), 𝑥1(𝑘 − 19) ,

 𝑥2(𝑘 + 1),

 𝑥3(𝑘 − 2), 𝑥3(𝑘 − 7), 𝑥3(𝑘 − 10),

 𝑥4(𝑘 − 4), 𝑥4(𝑘 − 10), 𝑥4(𝑘 − 17))

(6.2)

�̂�(𝑘 + 1) = 𝑓2(𝑥1(𝑘),… , 𝑥1(𝑘 − 4), 𝑥1(𝑘 − 6), 𝑥1(𝑘 − 9), 𝑥1(𝑘 − 10), 𝑥1(𝑘 − 15) , 𝑥1(𝑘
− 18),

 𝑥3(𝑘 − 9),

 𝑥4(𝑘), 𝑥4(𝑘 − 8), 𝑥4(𝑘 − 18))

(6.3)

�̂�(𝑘 + 1) = 𝑓3(𝑥1(𝑘 − 1), 𝑥1(𝑘 − 3), 𝑥1(𝑘 − 4), 𝑥1(𝑘 − 5), 𝑥1(𝑘 − 7), 𝑥1(𝑘 − 10),

 𝑥1(𝑘 − 11), 𝑥1(𝑘 − 12), 𝑥1(𝑘 − 14), 𝑥1(𝑘 − 15), 𝑥1(𝑘 − 16),

 𝑥2(𝑘 + 1),

 𝑥3(𝑘), 𝑥3(𝑘 − 2), 𝑥3(𝑘 − 3), 𝑥3(𝑘 − 4), 𝑥3(𝑘 − 8), 𝑥3(𝑘 − 12), 𝑥3(𝑘 − 13),

 𝑥3(𝑘 − 15), 𝑥3(𝑘 − 16),

 𝑥4(𝑘 − 2), 𝑥4(𝑘 − 3), 𝑥4(𝑘 − 5), 𝑥4(𝑘 − 7), 𝑥4(𝑘 − 12),

 𝑥7(𝑘), 𝑥11(𝑘), 𝑥13(𝑘))

(6.4)

�̂�(𝑘 + 1) = 𝑓4(𝑥1(𝑘), 𝑥1(𝑘 − 1), 𝑥1(𝑘 − 2), 𝑥1(𝑘 − 3), 𝑥1(𝑘 − 5), 𝑥1(𝑘 − 17),

 𝑥2(𝑘 + 1),

 𝑥3(𝑘 − 18),

 𝑥4(𝑘 − 3), 𝑥4(𝑘 − 5), 𝑥4(𝑘 − 10), 𝑥4(𝑘 − 14), 𝑥4(𝑘 − 15), 𝑥4(𝑘 − 18),

 𝑥9(𝑘), 𝑥10(𝑘), 𝑥11(𝑘), 𝑥13(𝑘))

(6.5)

 130

�̂�(𝑘 + 1) in Eqs. (6.2) to (6.5) is the output of the corresponding RBFNN model. Each

function 𝑓𝑗 , {𝑗 = 1,2,3,4} has its own set of input terms. These input terms, all together,

constitute the input data sample at instant 𝑘.

To compare MOGA models with the PREVIOUS model over the battery of tests stated in

Table 6.10, five statistical criteria were considered: MAE, MRE, MAPE, MaxAE and 𝜎

(introduced in Section 2.5). The evaluations of MOGA and PREVIOUS models over the

battery of tests for a prediction horizon of 1 hour are given in Tables 6.12 to 6.17. The best

values for each criterion are identified in bold.

TABLE 6.12. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST A, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 1.92 2.14 2.28 3.55 1.96

MRE(kW) 0.06 0.08 0.07 0.12 0.06

MAPE(%) 6.29 8.11 7.66 12.39 6.38

MaxAE(kW) 12.36 14.22 10.21 13.82 10.99

𝜎 (kW) 8.92 7.86 8.91 6.99 7.17

TABLE 6.13. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST B, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 0.95 1.22 1.29 0.93 0.84

MRE(kW) 0.05 0.07 0.07 0.05 0.05

MAPE(%) 5.60 7.21 7.86 5.80 5.13

MaxAE(kW) 3.60 3.15 4.83 3.38 3.59

𝜎 (kW) 2.01 2.48 1.78 1.75 1.52

TABLE 6.14. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST C, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 1.99 3.46 1.75 1.95 1.86

MRE(kW) 0.06 0.1 0.06 0.06 0.06

MAPE(%) 6.62 10.55 6.25 6.40 6.26

MaxAE(kW) 8.82 16.56 5.69 7.04 8.15

𝜎 (kW) 6.04 6.94 6.78 7.75 6.70

 131

TABLE 6.15 RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER TEST

D, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 0.94 1.12 0.82 0.88 1.08

MRE(kW) 0.04 0.05 0.03 0.04 0.05

MAPE(%) 4.21 5.34 3.81 4.17 4.86

MaxAE(kW) 4.65 6.35 5.20 5.45 6.28

𝜎 (kW) 1.95 1.64 1.08 1.72 1.52

TABLE 6.16. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST E, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 1.38 1.45 1.16 1.30 1.49

MRE(kW) 0.06 0.06 0.05 0.05 0.06

MAPE(%) 6.00 6.30 5.06 5.77 6.38

MaxAE(kW) 4.44 5.59 4.81 4.49 6.89

𝜎 (kW) 1.80 1.39 1.28 1.65 1.43

TABLE 6.17. RESULTS OBTAINED BY MOGA AND PREVIOUS MODELS OVER

TEST F, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS

MAE(kW) 1.02 0.80 1.35 0.89 0.95

MRE(kW) 0.04 0.03 0.06 0.04 0.04

MAPE(%) 4.87 3.70 6.53 4.28 4.31

MaxAE(kW) 3.43 2.63 5.68 3.73 3.75

𝜎 (kW) 1.95 1.99 1.44 1.97 1.88

Regarding test A, a working sunny day in summer, Model I, as a simple model, not only has

minimum values in terms of MAE, MRE and MAPE among other MOGA models but also

has a better performance than PREVIOUS in terms of these criteria. In this test, in overall,

simple models I and II have better performance in comparison with complete models III and

IV.

With respect to test B, a non-working sunny day in summer, Model IV, as a complete model,

has minimum values of MAE, MRE and 𝜎 in comparison with other MOGA models; with

respect to MaxAE, it has a compromise performance between Model II and PREVIOUS.

In test C, a working cloudy day in winter, and in test D, a non-working sunny day in winter,

the complete model III has minimum values in terms of MAE, MAPE and MaxAE among all

 132

models. Model I, a simple model, has also a good performance; actually better in four criteria

than the complete PREVIOUS model, in test D.

In test E, a non-working cloudy day in winter, both simple and complete MOGA models have

lower values in terms of MAE, MAPE and MaxAE than the PREVIOUS model. Model III

has better performance in all criteria.

Regarding test F, a non-working cloudy day in summer, simple model II and complete model

IV have better performance in terms of MAE, MAPE and MaxAE than PREVIOUS model. In

this comparison, model II has minimum values in all criteria, except 𝜎.

According to Tables 6.12 to 6.17, in the group of simple models, model I, in most cases, has

better performance than model II. In the group of complete models, model III, in most cases,

is better than model IV. Figs. 6.6 to 6.8 show the comparison between measured and

predicted value of electric power demand in CIESOL building, over tests A-F for a prediction

horizon of 1 hour, for the PREVIOUS model, model I and III, respectively.

Comparing the performance of all MOGA models over the battery of tests, in general

complete models III and IV have a better performance in winter than in summer, while simple

model I has a compromise performance between summer and winter.

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 6.6. Prediction results for tests A-F using the PREVIOUS model.

 133

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 6.7. Prediction results for tests A-F using model I.

 134

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 6.8. Prediction results for tests A-F using model III.

6.2.4.1. Comparison of MOGA models with NAB approach

The performance of MOGA models was also compared with a Naive Autoregressive Baseline

model, introduced in [158]. The NAB approach considers, as estimate of the electric power

demand at instant k, the measured value of consumption at the correspond instant of time, in

the same day of the previous week. It is therefore a simple model which does not need any

computation to predict electric power demand at each time instant 𝑘. To apply the NAB

approach to tests A-F, consecutive data corresponding to the previous week would be needed.

Since there were several gaps in the whole dataset among tests A-F, only for tests D and E,

corresponding to special days in winter, consecutive data exist to implement this method. In

order to evaluate the NAB model in summer, we considered another special day in summer,

corresponding to 06-Aug-2011, hereinafter called test G. For convenience, the description of

the tests D, E and G is given in Table 6.18.

 135

TABLE 6.18. BATTERY OF TESTS PERFORMED TO COMPARE THE NAB MODEL

WITH THE NEURAL NETWORKS MODELS.

Test Day Temperature Radiation Date (mm/dd/yyyy)

(D) Non-working day Winter Sunny 02/20/2011

(E) Non-working day Winter Cloudy 02/28/2011

(G) Non-working day Summer Sunny 08/06/2011

In order to compare the performance of NAB model with MOGA models and PREVIOUS

model, the three models were evaluated over the battery of tests stated in Table 6.18. The

results obtained over tests D, E and G are given in Tables 6.19 to 6.21. Please note that the

results of MOGA models and PREVIOUS model, for tests D and E, are obtained from Tables

6.15 and 6.16, respectively, and are reproduced here for easy of comparison with the NAB

approach.

TABLE 6.19. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST D, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS NAB

MAE (kW) 0.94 1.12 0.82 0.88 1.08 1.9439

MRE (kW) 0.04 0.05 0.03 0.04 0.05 0.0856

MAPE (%) 4.21 5.34 3.81 4.17 4.86 8.5575

MaxAE (kW) 4.65 6.35 5.20 5.45 6.28 6.8341

𝜎 (kW) 1.95 1.64 1.08 1.72 1.52 1.8933

TABLE 6.20. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST E, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS NAB

MAE (kW) 1.38 1.45 1.16 1.30 1.49 4.8314

MRE (kW) 0.06 0.06 0.05 0.05 0.06 0.2086

MAPE (%) 6.00 6.30 5.06 5.77 6.38 20.8610

MaxAE (kW) 4.44 5.59 4.81 4.49 6.89 13.0946

𝜎 (kW) 1.80 1.39 1.28 1.65 1.43 5.6539

TABLE 6.21. RESULTS OBTAINED BY NEURAL NETWORK AND NAB MODELS

OVER TEST G, FOR A PH OF 1 HOUR.

 Model I Model II Model III Model IV PREVIOUS NAB

MAE (kW) 0.8297 1.2684 0.8089 0.7598 0.7787 3.2966

MRE (kW) 0.0472 0.0745 0.0465 0.0434 0.0432 0.1909

MAPE (%) 4.7154 7.4521 4.648 4.3363 4.3154 19.0867

MaxAE (kW) 3.7347 7.4701 4.7188 3.8647 2.9473 13.6549

𝜎 (kW) 2.08 2.216 1.5135 1.2575 1.822 3.8805

 136

Regarding these tests, the NAB model has the worst performance (by a large difference) in

comparison to MOGA and PREVIOUS models, in terms of all criteria.

Regarding test G, a new test corresponding to a non-working sunny day in summer, Model

IV, a complete model, has minimum values in terms of MAE and 𝜎. In terms of MRE and

MAPE, Model IV has approximately the same performance as PREVIOUS model. In the

same way as in tests D and E, the NAB model has the worst performance.

To sum up, comparing the performance of MOGA models and the PREVIOUS, despite the

fact that MOGA models were trained with a small training set of 2592 samples compared to

the 318340 samples used to train the PREVIOUS model, they have obtained better results,

except in Test B. Moreover, as it can be seen in Table 6.11, the complexity of models

obtained from MOGA is lower than the PREVIOUS model.

According to tests D, E and G reflecting special days in winter and summer, both MOGA and

PREVIOUS models have much better performance than the NAB model in terms of all

criteria.

6.3. Case Study 2: An Intelligent Weather Station

Since accurate measurements of global solar radiation, atmospheric temperature and relative

humidity as well as the ability of evaluating their predictions over time, are important for

different areas of applications, an intelligent weather station was developed by the University

of Algarve. For implementing the predictions, two groups of models were proposed. The first

group involved predictive models based on nearest-neighbors (NEN) algorithm whereas the

second group included NAR RBFNN models designed by MOGA.

The NEN models use pattern matching to compute the predictions. They need two parameters

𝑑 and 𝑘 where 𝑑 denotes the number of full days used to search the best matching patterns

and 𝑛 corresponds to the number of closest neighbors that are be averaged to compute one-

step-ahead prediction. To design the models, data was collected by sampling 5 minutes

between 22-Feb-2015 and 7-Apr-2015. Totally, 12,800 samples were obtained. The first 35

days were used to compute predictions by NEN models over prediction horizon with 48 steps

(4 hours). For each climate variable, the first 10,000 samples were considered to design the

corresponding RBFNN models by MOGA. In this case, firstly, ApproxHull was applied on

the whole data set and then training set containing convex hull points and random samples as

well as testing and validation sets were generated. The size of training, testing and validation

set for each climate variable is given in Table 6.22.

 137

The last 1350 samples were considered to evaluate both groups of models over prediction

horizon with 48 steps. The evaluation results of predictive models of each climate variable are

given in Tables 6.23 to 6.25.

TABLE 6.22. SIZE OF TRAINING, TESTING AND VALIDATION SETS FOR THE

ATMOSPHERIC CLIMATE MODELS.

 Training Testing Validation Convex hull

points

Atmospheric Air temperature 2888 x 74 962 x 74 964 x 74 696 x 74

Atmospheric Relative Humidity 2888 x 74 962 x 74 964 x 74 696 x 74

Global Solar Radiation 2895 x 74 965 x 74 966 x 74 659 x 74

TABLE 6.23. ATMOSPHERIC TEMPERATURE.

 𝑅𝑀𝑆𝐸1
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

NEN(2,2) 2.17 111.06

NEN(7,4) 1.93 101.52

NEN(35,4) 1.39 84.79

RBFNN 0.30 65.46

TABLE 6.24. ATMOSPHERIC RELATIVE HUMIDITY.

 𝑅𝑀𝑆𝐸1
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

NEN(2,2) 14.34 742.17

NEN(7,4) 11.32 632.72

NEN(21,4) 8.52 497.36

RBFNN 0.99 409.43

TABLE 6.25. GLOBAL SOLAR RADIATION.

 𝑅𝑀𝑆𝐸1
∑𝑅𝑀𝑆𝐸𝑖

48

𝑖=1

NEN(2,2) 132.22 12109

NEN(7,4) 122.26 12173

NEN(14,4) 154.67 11951

RBFNN 29.49 7850

 138

As it can be seen in Tables 6.23 to 6.25, for all climate variables, RBFNN model is superior to

its corresponding NEN models in terms of one-step-ahead RMSE and of the summation of

RMSE over the prediction horizon (48 steps).

Correspondingly, Figs. 6.9-6.11 show the one-step-ahead predictions of climate variables

obtained by the NEN algorithm and the RBFNN for the last 1350 samples, as well as the

evolution of the RMSE along the prediction horizon with 48 steps. As it can be seen in Figs

6.9-6.11, it is clear that the best performance is obtained by the RBFNN model.

Fig. 6.9. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48

steps for atmospheric temperature.

 139

Fig. 6.10. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48

steps for atmospheric relative humidity.

 140

Fig. 6.11. One-step-ahead prediction for the NEN algorithm and the RBFNN over the last

1350 samples as well as the evolution of the RMSE along the prediction horizon with 48

steps for global solar radiation.

 141

6.4. Case Study 3: An Intelligent Support System for Automatic Diagnosis

of Cerebral Vascular Accidents from Brain CT Images

In this case study, a RBFNN based diagnosis system for automatic identification of CVA

through analysis of CT images was considered. Totally 1,867,602 samples with 52 features

were extracted from 150 CT images, for which a collaborating Neuroradialogist registered his

opinions. To design RBFNN models, MOGA was applied. Two experiments, Exp.1 and

Exp.2, were carried out. In Exp.1 no restriction was imposed on MOGA objectives , while in

Exp.2, restrictions on two objectives, FP (False Positive) and FN (False Negative) labels on

the training set were imposed based on the results obtained from Exp.1. To design both

experiments, ApproxHull was employed on the whole set (i.e., 1,867,602 samples) and

resulted in 13,023 convex hull points. Afterwards a training set with 20,000 samples was

created so that it included the convex hull points and 6,977 random samples. For testing and

validation sets, each of them involved 6,666 random samples.

Exp.1 resulted in a non-dominated set of 406 RBFNN models whereas from Exp.2 a non-

dominated set of 281 RBFNN models was obtained, from where 69 models were in the

preferred set. To compare Exp.1 and Exp.2, the best model from each of them was selected,

using a threshold on FP and FN in the whole set (i.e., 1,867,602 samples). Exp.1 and Exp.2

were additionally compared with an ensemble of Exp.2 preferable models, where the

classification output was obtained based on the majority of models outputs in the preferred set

of Exp.2.

Table 6.26 shows the evaluation results of Exp.1 and Exp2 as well as the ensemble of Exp.2

in terms of specificity and sensitivity (Please refer to Section 2.5) on the whole set. As it can

be observed in Table 6.26, Exp.2 has better performance in comparison with Exp.1. The

ensemble of Exp.2 resulted in the best performance in comparison with Exp.1 and Exp.2.

TABLE 6.26. EVALUATION RESULTS

 Specificity Sensitivity

Best model in EXP.1 97.04 97.12

Best model in EXP.2 97.60 97.66

Ensemble of EXP.2 98.01 98.22

 142

6.5. Conclusions

The experimental results obtained from these case studies demonstrated the applicability of

ApproxHull, as a data selection method, on real data in high dimensions where for the first,

second and third case studies, Approxhull was applied on the corresponding whole data sets

with the maximum of 71, 145 and 52 features, respectively. In all cases, MOGA was used for

model design, employing the data partitions given by ApproxHull. According to the results

obtained from the first case study, MOGA models achieved better performance than MLP

models, designed using a much larger training set. The results achieved from the second case

study showed that MOGA achieved an excellent predictive performance, much better, for the

weather models, than the NEN approach. The third case study proved that the ApproxHull can

be applied successfully on very large size data sets (nearly 2 million samples).

 143

7. Comparing four data selection methods for off-line model

design

7.1. Introduction

This chapter aims to compare four data selection methods including the Random Data

Selection (RDS) method, the Convex hull Based Data Selection (CBDS) method, the Entropy

Based Data Selection (EBDS) method and the Hybrid Data Selection (HDA) method. In this

study, the ApproxHull method introduced in Section 4.3 was considered as the CBDS

method. Regarding the EBDS method, the method proposed in [13] was applied which is one

of the latest efforts of using information theory in data selection. The methods were applied

on eight benchmarks: four binary class classification problems and, the other four related to

regression problems. The experiments were organized in three groups.

In the first group, for one classification problem (named Breast Cancer) and one regression

problem (named Bank), five runs of the MOGA were executed for each of the data selection

methods. Each MOGA execution resulted in a non-dominated set of RBFNN models. In this

case the MOGA selects the number of neurons and the inputs of the models in order to

minimize the objectives described in (please see Sections 2.7.1 and 2.7.2)

In the second and third groups of experiments MLPs were considered for all regression

problems and SVMs for all classification problems, respectively. In these cases, for each

benchmark problem the four data selection methods were applied, repeating the execution 10

times in each case. In this case the structure of the models was fixed beforehand and was the

same for the 10 executions.

The rest of this chapter is organized as follows: In Section 7.2, the entropy based data

selection method is briefly introduced. The procedure for constructing the training, testing and

validation sets for experiments is described in Section 7.3. Regarding the MOGA

experiments, the performance of the methods was analyzed based on two scenarios; the best

model scenario and the ensemble scenario. The experiments are detailed in Section 7.4. The

simulation results obtained from the evaluation of the methods in all experiments are

discussed in Section 7.5. Finally, some conclusions are given in Section 7.6.

 144

7.2. An entropy based unsupervised data selection method

The main idea behind the EBDS method proposed in [13] is selecting 𝑘 samples of a given

data set 𝑫 for training set so that the information content and the diversity of data in the

training set used to adjust the model parameters is maximized. This method benefits from the

information entropy of any random variable 𝑿 given in Eq. (7.1).

𝐻(𝑿) =∑𝑝(𝑥𝑖)𝐼(𝑥𝑖)

𝑁

𝑖=1

(7.1)

where 𝑁 is the number of all possible observations of 𝑿. 𝑝(𝑥𝑖) denotes the probability that 𝑿

takes value 𝑥𝑖 and 𝐼(𝑥𝑖) denotes the information content (also called self-information or

surprisal) that 𝑿 represents when it takes value 𝑥𝑖. 𝐼(𝑥) is defined as:

𝐼(𝑥) = −𝑙𝑜𝑔2 𝑝(𝑥) (7.2)

Suppose data set 𝑫 = [𝑿|𝒚] consists of an input pattern matrix 𝑿 of size 𝑁 × 𝑑 and a target

vector 𝒚 of size 𝑁 × 1. Each row of 𝑫 is a point of dimension (1 × (𝑑 + 1)), and assume

that 𝒛𝑖 refers to the i
th

 point in 𝑫. Since data set 𝑫 represents a set of values of a

multidimensional random variable 𝒁, 𝑃(𝒛𝑖) is translated into the probability that 𝒁 takes 𝒛𝑖. In

this method, 𝑃(𝒛𝑖) is estimated by Eq. (7.3) [165].

�̂�(𝒛𝑖) =
1

𝑁
∑[∏𝑘ℎ𝑙(𝒛𝑖[𝑙] − 𝒛𝑗[𝑙])

𝑑+1

𝑙=1

]

𝑁

𝑗=1

(7.3)

where 𝑘ℎ𝑙(.) is a Gaussian kernel function whose bandwidth is ℎ𝑙 which is obtained by [165]:

ℎ𝑙 = 𝜎�̂�𝑁
−1

(𝑑+1+4)
(7.4)

where 𝜎�̂� is the sample standard deviation along dimension 𝑙 of the data.

By using Eq. (7.3) for each point in 𝑫, vector �̂� is obtained as (7.5).

�̂� = [�̂�(𝒛1), �̂�(𝒛2),⋯ �̂�(𝒛𝑁)] (7.5)

Using Eq. (7.2) for each point in 𝑫, vector �̂� is obtained as,

 145

�̂� = [𝐼(𝒛1), 𝐼(𝒛2),⋯ 𝐼(𝒛𝑁)] (7.6)

where 𝐼(𝒛𝑖) denotes the self-information estimate which is presented by point 𝒛𝑖.

Having �̂� and �̂� at hand, vector �̂� is obtained as (7.7) by taking the Hadamard product of �̂� by

�̂�.

�̂� = [�̂�(𝒛1)𝐼(𝒛1), �̂�(𝒛2)𝐼(𝒛2),⋯ �̂�(𝒛𝑁)𝐼(𝒛𝑁)] (7.7)

where �̂�(𝒛𝑖)𝐼(𝒛𝑖) is considered as the information based fitness of point 𝒛𝑖 reflecting the

contribution of point 𝒛𝑖 to the entropy obtained by Eq. (7.1).

Once vector �̂� is obtained, 𝑘 points are selected from 𝑫 proportionally to their information

fitness, by means of the Stochastic Universal Sampling (SUS) method. For the additional

details please consult [13].

7.3. Construction of data sets for the experiments

To fairly compare the data selection methods, the existence of a common validation data set,

𝑽, which does not have any contribution in model design, is needed. Notice, however, that in

a practical case, each data selection method should be applied to the whole data set, 𝑫. This is

particularly relevant for the methods relying in convex hull (CBDS and HDS methods), as

their rational is incorporating in the training set the convex hull points obtained from the

whole data set.

In this chapter, as we aim to compare the performance of the data selection models in a

common validation set, the procedure for constructing the data sets for all groups of

experiments of each model type is as follows. First, for each group of experiments, a common

validation set 𝑽 containing 𝑁𝑣 samples is randomly extracted from the whole data set 𝑫; the

remaining samples will constitute the set 𝑫𝑺𝑮, from where in a second step training set 𝑻 and

testing set 𝑮 containing 𝑁𝑡 and 𝑁𝑔samples, respectively, will be extracted.

In RDS method, firstly, Nt samples are extracted randomly from 𝑫𝑺𝑮 (i.e., resulting in a

reduced set 𝑫′) to construct 𝑻. Subsequently, 𝑁𝑔 samples are randomly extracted from 𝑫′ to

form 𝑮.

Regarding the CBDS method, first ApproxHull is applied on the data set 𝑫𝑺𝑮 to obtain the

convex hull points. Afterwards, the convex hull points as well as some random samples are

 146

extracted from 𝑫𝑺𝑮 (i.e., resulting in a reduced set 𝑫′) to form 𝑻 so that 𝑁𝑡 = 𝑁𝑐ℎ𝑣 + 𝑁𝑟𝑛𝑑

where 𝑁𝑐ℎ𝑣 and 𝑁𝑟𝑛𝑑 denote the number of convex hull points and random samples,

respectively. Subsequently, as in the RDS method, 𝑁𝑔 samples are randomly extracted from

𝑫′ to form 𝑮.

In the EBDS method, 𝑁𝑡 samples are selected from 𝑫𝑺𝑮 using the entropy based method

mentioned in Section 4.2 to form 𝑻. Then 𝑻 is extracted from 𝑫𝑺𝑮 resulting in a reduced set

𝑫′ and set 𝑮 is constructed in the same way as in the RDS method.

Finally, the idea behind the HDS method is combining the two previous data selection

methods, CBDS and EBDS. In the first step of the HDS method, ApproxHull is applied on

𝑫𝑺𝑮 to obtain the convex hull points which are extracted from 𝑫𝑺𝑮 (i.e, resulting in a

reduced set 𝑫′) and included in 𝑻. In the next step, 𝑁𝑡 − 𝑁𝑐ℎ𝑣 samples are extracted from 𝑫′

using the EBDS method and included in 𝑻. 𝑮 is obtained from the rest of the samples in the

same way as in the RDS method.

7.4. Experiments

In the first group of experiments, for the RBFNN models designed by the MOGA, two

scenarios are considered: the best model and ensemble scenarios. As in the end of each

MOGA run we have access to a set of non-dominated models, typically one model is selected

out of this set. This scenario will be called best model.

The criterion for selecting the best model out of the non-dominated set for the regression

problem is the minimum RMSE on the common validation set 𝑽. In the case of classification

problems the best model is selected on the basis of the Classification Rate (please see Section

2.5) in a procedure composed of the following three steps: first, the model which has the

maximum 𝐶𝑅(𝑽) is selected. In case of tie, the one with the maximum 𝐶𝑅(𝑮) is chosen.

Similarly, in case of tie, the one with the maximum 𝐶𝑅(𝑻) is selected. Finally if more than

one model is remained, one of them is randomly selected as the best model.

The second scenario, called ensemble, involves using all non-dominated solutions. In this

scenario, for the regression problem, the output of the ensemble scheme is the average of all

non-dominated models' outputs, whereas for the classification, the output of the ensemble

scheme is determined based on the majority of all models' outputs in the non-dominated set.

In this case, the class of an input pattern is the one in which the majority of the models in the

non-dominated set are unanimous.

 147

The second and third groups of experiments do not involve the MOGA and employ different

kinds of models, MLPs for the four regression problems and SVMs for the four classification

problems, respectively. From the second group, the MLP models obtained in the regression

problem named Bank, trained with the modified LM algorithm introduced in [34, 166], are

compared to the RBFNN MOGA generated models from the first group of experiments.

Similarly, from the third group of experiments, the SVM models in the classification problem

named Breast Cancer, trained using the Matlab implementation, are compared to the RBFNN

MOGA generated models from the first group of experiments. For all models and

experiments, the four data selection methods were used. The datasets were taken from the

UCI repository [115]. Their names, number of samples (N) and inputs (d) are given in Table

7.1.

TABLE 7.1. DETAILS OF THE DATA SETS.

 Problem N d

Bank Regression 8192 32

Puma Regression 8192 32

Concrete Regression 1030 8

Wine Quality Regression 4898 11

Breast Cancer Classification 569 30

Parkinson Classification 1040 26

Satellite Classification 2033 36

Letter Classification 1555 16

The number of samples of 𝑻, 𝑮, and 𝑽 sets, and the average number of convex hull points

(�̅�chv) obtained over all executions in the experiments of each problem, are given in Table 7.2.

TABLE 7.2. NUMBER OF SAMPLES OF T, G AND V AND THE AVERAGE NUMBER

OF CONVEX HULL POINTS.

 Nt Ng Nv �̅�chv

Regression

problems

Bank 4195 1638 1639 3437

Concrete 618 206 206 307

Puma 4915 1638 1639 3686

Wine Quality 3134 784 980 599

Classification

problems

Breast Cancer 300 76 193 183

Parkinson 550 136 354 280

Satellite 1074 268 691 711

Letter 822 204 529 564

Regarding the MOGA experiments parameterization, the same parameters were used in all

experiments. The number of generations and the population size were both set to 100 and no

 148

restriction on objectives was considered. The range of the number of neurons was set to [2,

30] and the range of the number of features for Bank and Breast Cancer was set to [1, 32] and

[1, 30], respectively. The early-stopping termination criteria within a maximum of 100

iterations were considered.

In terms of model structure, the MLP models in the second group of experiments had 2

hidden layers and used all features in the data sets as inputs. The number of neurons for each

hidden layer for Bank and Puma problems was 10, while for the other problems was 5. For all

MLP models, a maximum of 100 training iterations with early stopping method was

considered. Regarding the SVM models for the binary class classification problems, all input

features were used. The SVM hyper-parameters 𝛾 and C were set as stated in [68]. These are

shown in Table 7.3.

TABLE 7.3. HYPER PARAMETERS OF SVM MODELS FOR THE CLASSIFICATION

PROBLEMS.

 𝛾 C

Breast Cancer 0.05 1

Parkinson 0.1 200

Satellite 0.1142 500

Letter 0.6576 1

7.5. Experimental results

Considering the regression problem Bank in the first and second groups of experiments, the

average of the RMSEs obtained on the common dataset 𝑽 over the experiments, for the two

MOGA result scenarios and for the MLP model, are given in Table 7.4.

TABLE 7.4. AVERAGE RMSES OBTAINED FOR DATASET BANK.

 RDS CBDS EBDS HDS

Best model 0.1908 0.1901 0.1907 0.1903

Ensemble 0.1870 0.1872 0.1869 0.1878

MLP 0.1969 0.1963 0.1979 0.1963

As shown in Table 7.4, independently of the data selection method, MOGA optimized models

are always better than MLP models, despite the latter being much more complex. In fact,

MLPs have a model complexity (number of nonlinear parameters) of 440 while the MOGA

generated RBFNNs have on average 100 (using the average number of input features and

 149

neurons shown in Table 7.5). Another conclusion that can be taken from Table 7.4 is that the

ensemble scenario provides better performance than the best model.

TABLE 7.5. AVERAGE NUMBER OF FEATURES AND NEURONS OF THE BEST

MOGA MODELS FOR DATASET BANK.

Method Number of features Number of neurons

RDS 24 4

CBDS 20 5

EBDS 25 4

HDS 25 4

Regarding all regression problems in the second group of experiments, where MLP models

were considered, Table 7.6 shows the average RMSE obtained over the 10 executions.

TABLE 7.6. AVERAGE RMSE FOR THE REGRESSION PROBLEMS.

 RDS CBDS EBDS HDS

Bank 0.1969 0.1963 0.1979 0.1963

Concrete 0.1408 0.1417 0.1458 0.1408

Puma 0.0687 0.0671 0.0676 0.0687

Wine Quality 0.2361 0.2349 0.2370 0.2370

Regarding the best data selection method, the bold values in Tables 7.4 and 7.6 denote the

best performance, for each model type/problem. Although it seems to indicate that CBDS and

HDS should be chosen as best, with a slightly advantage of the former, the average RMSEs

might not be the only criterion for that selection.

To analyze the statistical validity of the results, two tests are used: a sign test, and a Wilcoxon

signed-ranks test [59] (as presented in Sections 2.9.1 and 2.9.2). For the former, we counted,

for each problem or group of problems, the number of times (𝐶) that a data selection method

(say 𝑗) had a better performance than another method (𝑖), for each model type. For the latter

test, the test value 𝑇 is obtained using a rank based approach and then it is compared with its

corresponding critical value (please see Section 2.9.2).

Tables 7.7 shows the 𝐶(𝑖, 𝑗) and 𝑇 values, considering the Best and the Ensemble RBFNN

models, for dataset Bank.

 150

TABLE 7.7. C(I,J) /T FOR BANK – BEST AND ENSEMBLE MODELS.

C(i,j)/T RDS CBDS EBDS HDS

RDS 8/19 4/26.5 6/27

CBDS 2/19 4/21 4/20

EBDS 5/26.5 6/21 4/23

HDS 4/27 6/20 6/23

Analyzing the results of Tables 7.4 and 7.7 shows the CBDS method is the best one.

Statistically, however, according to the Wilcoxon test, no method can be considered better

than the others, while according to the sign test (weaker than the Wilcoxon test), we can only

say CBDS outperforms RDS method, with a level of significance of 10%.

Table 7.8 shows the 𝐶(𝑖, 𝑗) and 𝑇 values for the 40 MLP regression experiments in the second

group.

TABLE 7.8. C(I,J) /T FOR ALL MLP MODELS

C(i,j)/T RDS CBDS EBDS HDS

RDS 25/307 17/308.5 22/386.5

CBDS 13/307 12/238.5 16/306

EBDS 23/308.5 27/238.5 24/305.5

HDS 18/386.5 23/306 15/305.5

Analyzing this table, CBDS should also be the chosen data selection method, which has,

according to both tests, statistical validity, with a level of significance of 5%.

Considering now the classification problems, the average CR values for dataset Breast Cancer

are shown in Table 7.9.

TABLE 7.9. AVERAGE CRS FOR BREAST CANCER.

 RDS CBDS EBDS HDS

Best model 0.9762 0.9803 0.9762 0.9783

Ensemble 0.9689 0.9689 0.9700 0.9679

SVM models 0.9601 0.9668 0.9611 0.9653

As it can be seen, MOGA models achieve better performance than SVM models, despite the

huge difference in complexity. The average number of features (#F) and neurons for the

MOGA models (#N) as well as the average number of support vectors for SVMs (#S) are

 151

given in Table 7.10. We can say that the largest complexity of RBFNN MOGA models is 42,

while the smallest complexity of SVMs is 4691.

TABLE 7.10. AVERAGE NUMBER OF FEATURES, NEURONS OF THE BEST MOGA

MODELS, AND SUPPORT VECTORS, FOR BREAST CANCER.

Method #F #N #S

RDS 8 3 159

CBDS 10 3 160

EBDS 13 3 156

HDS 6 3 159

In contrast with the results found for Bank, here the performance of the ensemble is inferior to

the best model.

Analyzing the performance of the four data selection models in Table 7.9, CBDS seems again

to be the method to apply. Regarding all classification problems with SVM models, Table

7.11 shows the averages CRs.

TABLE 7.11. AVERAGE CRS FOR THE CLASSIFICATION PROBLEMS.

 RDS CBDS EBDS HDS

Breast Cancer 0.9600 0.9668 0.9611 0.9653

Parkinson 0.6588 0.6692 0.6732 0.6689

Satellite 0.9900 0.9903 0.9881 0.9903

Letter 0.9968 0.9985 0.9964 0.9985

The bold values denote the best performance for each data selection/problem combination. As

it can be seen, for all classification problems except Parkinson, CBDS is superior to the

others. For Satellite and Letter problems, HDS has the same performance as CBDS.

In the same way as in the regression cases, Table 7.12 illustrates the 𝐶(𝑖, 𝑗) and 𝑇 values for

the MOGA models, and Table 7.13 for all the 40 SVM models.

TABLE 7.12. C(I,J) /T FOR BREAST CANCER – BEST AND ENSEMBLE.

C(i,j)/T RDS CBDS EBDS HDS

RDS 4/14.5 3/25 3/19.5

CBDS 2/14.5 3/22.5 3/23

EBDS 4/25 4/22.5 5/25

HDS 3/19.5 5/23 4/25

 152

TABLE 7.13. C(I,J) /T FOR ALL SVM MODELS.

C(i,j)/T RDS CBDS EBDS HDS

RDS 20/222.5 16/399.5 20/215

CBDS 8/222.5 9/251.5 9/391

EBDS 16/339.5 23/251.5 21/292

HDS 9/215 10/391.5 9/292

In the case of MOGA models, the indication found in Table 7.9 seems to be confirmed,

although without statistical validity. For the SVM models, we can say that, with a level of

significance of 5%, CBDS is better than RDS and EBDS, and HDS is better than EBDS,

according to the sign test.; based on the Wilcoxon test, HDS and CBDS are better than RDS,

and HDS is better than EBDS.

7.6. Conclusions

In this chapter we have compared the performance obtained by RBFNN models designed by a

MOGA to that obtained by MLPs (for regression) and by SVMs (for classification). It was

shown that the former obtain much better performance, despite the much smaller complexity

of MOGA models. Another conclusion that can be taken is that the naïve versions of the

ensemble of non-dominated MOGA models proposed here, in some cases perform better,

while in other cases worse than the selected best model. In relation with the best data

selection methods, we can say that the CBDS and HDS should be used for SVM and MLP

models. For the RBFNN MOGA models, the same conclusion can be taken although without

any statistical validity. This can be explained by the small number of experiments conducted,

which was due to the high computational time, and also to the much better performance

obtained by these models, compared with MLPs and SVMs, which reduces the range of

differences between the data selection methods.

 153

8. A Convex hull, sliding-window based online adaptation method

8.1. Introduction

Principally, the online adaptation process is considered in two situations in the domain of

data-driven models. The first case is when only a small number of training samples is

available offline and it is impossible to collect additional informative data samples reflecting

the whole operating region(s) of the process to be modeled. The second case is when the

behavior of the process is time-varying (i.e., its dynamics and operating regions change over

time). In both cases, data-driven models need to be updated to cover new dynamics and

operating regions of the underlying process.

Specifically, for Feedforward Neural Networks such as RBFNN models, online adaptation

process can be considered from the structure, parameter and data points of view. In the

structure aspect, the number of hidden nodes may be changed or kept constant over the online

adaptation process. As pointed out earlier, the RBFNNs have two groups of parameters; 1-

linear parameters 2- nonlinear parameters. In online adaptation either only the former group

or both are updated online. Regarding the data, a specific RBFNN model can be adapted in

several ways. Based on how much data is available/used and how to manage those data, a

variety of online learning methods have been proposed.

This chapter is organized as follows: Section 8.2 gives an overview of related works in online

adaptation. A new online adaptation method based on convex hull and sliding-window is

introduced in Section 8.3. Experimental results are given in Section 8.4. In this section, two

case studies are considered to evaluate the proposed method. The comparison between the

performances of both case studies is given in Section 8.5. The proposed method is compared

with others in Section 8.6. Finally, conclusions are given in Section 8.7.

8.2. A brief overview of online adaptation methods

In order to update models online, sequential learning methods, also called online learning

methods, are applied. Regarding the model structure, the online learning methods are

categorized into two main classes. In the first class, the structure of the model, translated into

the number of hidden neurons is constant over the adaptation process and only the parameters

are adjusted; In the second class, the hidden neurons are inserted or removed from the model

structure using specific growing and pruning criteria, respectively.

 154

From a parameter point of view, online learning methods can be categorized into two groups.

The first group only updates the linear parameters while the nonlinear parameters are kept

unchanged, while in the second group both linear and nonlinear parameters are updated.

Online learning methods can also be categorized according to the amount of data that they use

[167, 168]. The first class uses the information of the new observation at each time instant.

Regarding only linear parameters, in case that nonlinear parameters have been determined

offline and are kept unchanged throughout online adaptation process, first order methods such

as Least Means Square (LMS) [169] and Normalized Least Means Square (NLMS), and

second order methods such as Recursive Least Squares (RLS) [170] and Kalman Filter and its

variants [171] can be used to update only linear parameters. Regarding all parameters,

recursive version of offline algorithms such as Stochastic Gradient Descent Back Propagation

(SGBP) [172] as the first order method, and Recursive Least Squares (RLS) [170] and

recursive Levenberg-Marquardt [173, 174] as the second order methods can be applied to

update both linear and nonlinear parameters.

 The second class of online learning method from data point of data uses a sliding-window of

past observations to update the parameters. Moving average of LMS/NLMS search directions

[175], maximum error method and Gram-Schmidt orthogonalization [176] are methods used

to updated only linear parameters while any gradient descent based methods mentioned in

Section 2.4.1 with a window management policy can be employed to update both linear and

nonlinear parameters.

Fig 8.1 briefly illustrate the classification of online methods from the three different points of

view.

In the following sections, we summarize important contributions on RBFNN online model

adaptation, regarding models with a fixed structure and models with an adaptive structure,

whose structure varies through time.

 155

(a)

(b)

(c)

Fig. 8.1. Classification of online learning methods. (a) From the model structure point of

view; (b) From the model’s parameters point of view; (c) From the data point of view.

8.2.1. Online learning methods for RBFNNs with fixed structure

As mentioned earlier, from the model structure point of view, there is a group of methods

which keep the structure fixed throughout the online adaptation process and only updates the

model parameters. Authors in [1] presented an online adaptation method to update a fixed-

structure RBFNN model, designed offline by MOGA [44, 45, 47]. Subsequently, both linear

and nonlinear parameter are updated using the Levenberg-Marquardt method [32, 33],

working on a sliding-window of the past observations, employing a FIFO management policy.

 156

The same authors in [168] improved their method, using the Akaike information criterion

[177] for off-line model design. In this method, a new sliding-window management policy,

based on a dissimilarity measure, was proposed to overcome the problem of gradually

forgetting previous mappings over the online adaption process, typically found using a FIFO

policy.

Authors in [178] presented a new method to tune a fixed-structure RBFNN model.In this

method, the contribution of each hidden neuron to the overall network performance is

measured based on the increment of the error variance. The neuron with the smallest

increment of is considered as an insignificant neuron and is replaced with the information of

the new arriving sample. The linear weights are updated using the Multi-Innovative Recursive

Least Square (MRLS) method over a sliding-window of 𝑝 past observations, while the

nonlinear parameters (centers and spreads) of the new node are adjusted using Quantum

Particle Swarm Optimization method (QPSO).

An efficient sequential algorithm was proposed in [179] as well as an online version of the

Extreme Learning Machine (ELM) method. In this method, the centers and spreads are

arbitrarily chosen and only the weights, as linear parameters, are updated. The update is done

using the proposed online version of ELM based on the new observation or a chunk of new

observations over the online adaptation process.

8.2.2. Online learning methods for RBFNNs with adaptive structure

Regarding RBFNNs with adaptive structure, the first approach known as Resource

Allocation Network (RAN) was proposed by Platt [180]. This method starts with a RBFNN

with no hidden neurons. For each new observation at time instant 𝑘, if a new arriving sample

has enough novelty, a new hidden neuron containing the information of the sample is added to

the existing network, so that the updated network not only preserves the accuracy of the

mapping for the previous samples which have been received so far, but also reflects a new

mapping for the new sample. The novelty of the new sample is computed based on a

prediction error and a distance criteria which are compared with user-defined thresholds. In

the case that the new observation does not reflect a desired level of novelty, the model

structure is kept unchanged and only the model parameters are updated. Both weights as

linear parameters and, centers and spreads as nonlinear parameters of the existing network are

updated by LMS method. This update is only done based on the new observation. An

enhanced version of RAN known as RAN-EKF was subsequently proposed by

 157

Kadirkamanathan and Niranjan [171], where the Extended Kalman Filter (EKF) as a

sequential method was applied in place of the LMS method to improve the convergence rate

of RAN.

For both RAN and RAN-EKF, no pruning strategy is considered. Thus, a large size network is

obtained which is not suitable to be applied in real time applications, due to the high

computational run time. To deal with this drawback of both RAN methods, a considerable

improvement to RAN-EKF was made by Lu Yingwei et al. [181]. This version of RAN,

which is known as M-RAN, presents a pruning strategy to remove insignificant hidden

neurons with the aim of making the underlying network parsimonious and compact. In other

words, the hidden neurons for which the relative contribution to the overall network output is

less than a user-defined threshold are removed.

In the method proposed in [182], a new hidden neuron is added using a growing criterion

based on the normalized error reduction. Beside the proposed growing strategy, a pruning

strategy was also proposed to remove those hidden neurons which have had small

contribution to the model output over 𝑙 consecutive observations. Both linear and nonlinear

parameters are updated using pseudo-inverse method based on a fixed-size sliding-window

with FIFO management policy.

In [183], a criterion called “Active Firing Rate” is used to present new neurons to the hidden

layers. In this method, the hidden neurons whose Active Firing is larger than the user-defined

threshold 𝐴𝐹𝑜 (i.e., 0.05 < 𝐴𝐹𝑜 < 0.3) are divided into 𝑁𝑛𝑒𝑤 (i.e., 𝑁𝑛𝑒𝑤 < 10) new neurons

where 𝑁𝑛𝑒𝑤 is determined based on the Active Firing Rate of the neuron. This criterion

reflects the contribution of the neuron to the overall model output. Moreover, a pruning

criterion based on the mutual information between hidden neurons and the output neuron is

used to remove those hidden neurons which have a low connectivity strength with the output

neuron. Both linear and nonlinear parameters are updated using a gradient based method

based on the new observation.

The method proposed in [184] applies three criteria to add a new hidden neuron centered with

the new sample. Those criteria are: the distance of the new sample to the nearest center, the

output error of the new sample and the neuron’s significance. Only the parameters (i.e., linear

and nonlinear) of the new neuron are determined using the EKF method based on the new

sample. If after update, the new hidden neuron is identified as an insignificant one, it will be

removed from the model structure.

The authors in [185] proposed a method called EOS-ELM. The proposed method applies the

growing and pruning criteria introduced in MRAN to adapt the structure. The weights, as

 158

linear parameters, are updated using an online version of ELM) method proposed in [179]

where the linear parameters can be updated based on either the new observation or a chunk of

new observations. On the other hand, the centers and spreads, as nonlinear parameters, are

updated using EKF based on the new observation. Other efforts in online adaptation of

RBFNNs with a flexible structure can be seen in [186-190].

8.3. A convex hull, sliding-window-based online adaptation method

In this section, we introduce a new online adaptation method based on convex hull and a

sliding-window technique to update RBFNN models. This method starts with a RBFNN

model which has been offline designed by MOGA based on a limited number of training,

testing and validation datasets corresponding to an earlier period of time. In this method, the

structure of the underlying model (i.e., hidden neurons) kept unchanged through the online

adaptation process and only the parameters (both linear and nonlinear) are updated. As it can

be realized from the title, the proposed method relies on two concepts; convex hull and

sliding-window. The basic idea behind the proposed method is updating the model if a new

arriving sample reflects a new range of input-output spaces. As we mentioned in Section

4.2.2.4, it is very important that the model is trained based on a set of data covering the whole

range of input-output space in which the process is intended to be modeled. Moreover, convex

hull algorithms can help us to select data samples reflecting the whole range of all existing

data samples. Since at the beginning of online adaptation process there exists a model which

is trained offline based on a limited number of samples and the corresponding convex hull

vertices may only reflect a local range of the existing data, the initial convex hull might need

to be updated with new samples changing the samples ranges. After updating the current

convex hull at each time instant, the model should be trained based on the updated convex

hull vertices as well as some inner points so that it can cover the whole range of the input-

output space over time.

In this method, the model is updated by the LM training method operating on a fixed-size

sliding-window. As mentioned in Section 8.2.2, applying sliding-window with FIFO policy

leads to parameter interference phenomenon reflecting the situation in which the model

forgets the mappings which have been constructed by the previous samples over time. Hence,

in this method, two management policies are applied. One is a management policy proposed

in [168] and the other is a convex hull based policy.

 159

Mainly, the proposed method consists of three phases; evaluation of the arriving sample,

sliding-window update and parameters update. In the following we will describe these phases.

8.3.1. Evaluation of the arriving sample

At each time instant, a new arriving sample is evaluated to see whether it leads to a new range

of input-output space, or not. The new sample is compared with the current convex hull. The

new sample is considered as an informative sample when it is located outside the current

convex hull, meaning that a new range of input-output space must be determined, including

the new point. To determine whether the new sample is located outside the current convex

hull or not, a convex hull algorithm is applied on a set containing the vertices of current

convex hull and the new sample. If the new sample is marked as a new vertex of the convex

hull, it is definitely located outside the current convex hull; otherwise, it is considered as an

inner point. Since, in practice, the input space of the underlying model can have high

dimensions and standard real convex hull algorithms in high dimensions suffer from high

time complexity and memory requirements (i.e., please see Section 3.4), it is not feasible to

apply standard real convex hull algorithms in the online adaptation process.

To deal with this challenge, a heuristic is used to identify the location of a new sample with

respect to the current convex hull. The idea behind the heuristic stems from the basic property

of convex hull vertices. A point of a given set is a vertex of the corresponding convex hull if

and only if there is a hyperplane passing through the point and all remaining points are

located in the same side of the hyperplane. Figs. 8.2 and 8.3 illustrate a difference between a

vertex of convex hull and an inner point in terms of the hyperplanes passing through them.

If a point is a vertex of the convex hull, there is an infinite number of hyperplanes passing

through the point, so that all remaining points are located in the same side of each hyperplane.

Hence examining all possible hyperplanes passing through the point is not possible. In our

work, only the hyperplane whose direction of its normal vector is the same as that of the

vector from the center of the current convex hull to the new point is formed. After forming the

hyperplane, all vertices of the current convex hull are examined. If all vertices are located

below the hyperplane, the new arriving point is definitely an outer point; otherwise, if the

maximum distance to the hyperplane among those vertices which are located above the

hyperplane is very small, it can be interpreted as follows:

 160

 Either the new point is located outside the convex hull but very close to the convex

hull

 Or the new point is an inner point which is very close to the convex hull.

If the maximum distance is large, it is very likely that the new point is located inside the

convex hull. Figs. 8.4 and 8.5 illustrate how intuitively the heuristic works.

Fig. 8.2. A vertex of the convex hull. Black and blue circles are convex hull vertices and inner

points, respectively.

Fig. 8.3. A point is located inside the convex hull. Black and blue circles are convex hull

vertices and inner points, respectively.

 161

Fig. 8.4. A new point is located outside the convex hull. Black and red circles denote the

convex hull vertices and the new point, respectively.

Fig. 8.5. A new point is located outside the convex hull but very close to the convex hull.

Black and red circles denote the convex hull vertices and the new point, respectively.

Since there is uncertainty in classifying the new point in the case that some vertices are

located above the hyperplane (i.e., the new point can be an outer or an inner point), we use a

threshold for the maximum distance to the hyperplane for those vertices. If the maximum

distance exceeds the threshold, the new point is marked as an inner point and rejected for

inserting into the sliding-window; otherwise, the new point is examined in the next step by

applying ApproxHull (i.e., please see Section 4.3) on all vertices of the current convex hull,

including the new point. If the new point is identified as a vertex of the convex hull, it is

accepted to be inserted into the sliding-window. In the following, we will explain how to

compute a hyperplane and the distance of a point to the hyperplane.

 162

8.3.1.1. Hyperplane computation

Let 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑑) be the center of the current convex hull and 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑑) a new

arriving sample in a 𝑑-dimensional Euclidean space. The vector from 𝒄 to 𝒑 is defined as Eq.

(8.1).

𝒄𝒑⃗⃗ ⃗⃗ =< 𝑝1 − 𝑐1, 𝑝2 − 𝑐2, … , 𝑝𝑑 − 𝑐𝑑 > (8.1)

The normal vector whose direction is the same as that of 𝒄𝒑⃗⃗ ⃗⃗ can be obtained as Eq. (8.2).

�⃗⃗� =
𝒄𝒑⃗⃗ ⃗⃗

|𝒄𝒑⃗⃗ ⃗⃗ |

(8.2)

where �⃗⃗� =< 𝑎1, 𝑎2, … , 𝑎𝑑 > is the normal vector and |𝒄𝒑⃗⃗ ⃗⃗ | denotes the length of vector 𝒄𝒑⃗⃗ ⃗⃗ .

The general form of hyperplane equation in 𝑑-dimensional Euclidean space is given as Eq.

(8.3).

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑𝑥𝑑 = 𝑏 (8.3)

where 𝑏 is the offset of hyperplane denoting the distance of hyperplane from the origin.

Since based on the heuristic, we are interested to have a hyperplane with a normal vector �⃗⃗�

passing through point 𝒑, the offset 𝑏 is computed as Eq. (8.4).

𝑏 = 𝑎1𝑝1 + 𝑎2𝑝2 +⋯+ 𝑎𝑑𝑝𝑑 (8.4)

Having the equation of hyperplane 𝐻 in hand, the distance of any point 𝒒 to 𝐻 is computed as

Eq. (8.5).

𝑑𝑖𝑠𝑡(𝐻, 𝒒) = 𝑎1𝑞1 + 𝑎2𝑞2 +⋯+ 𝑎𝑑𝑞𝑑 − 𝑏 (8.5)

�⃗⃗� and 𝑏, as the normal vector and the offset, are computed with time complexity 𝑂(𝑑). The

distance of a point to the hyperplane is also computed with time complexity 𝑂(𝑑).

Assuming that the current convex hull contains 𝑣 vertices at time instant 𝑘, the time

complexity of the heuristic is 𝑂(𝑣𝑑).

 163

8.3.2. Sliding-windows update

In the proposed online adaptation method, two sliding-windows are considered; training

sliding-window and an additional sliding-window (described later in Section 8.3.2.2) which

can be updated using two proposed management policies, rather than FIFO policy: one is the

policy proposed in [168], hereinafter called 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 and the other is a convex hull based

policy. The following describes each of these two policies.

8.3.2.1. 𝑭 − 𝑹 𝒑𝒐𝒍𝒊𝒄𝒚

The 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 was introduced in [168] and for the sake of completion, is summarized

hereThe idea behind 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is updating the sliding-window with the new point;

hopefully it can bring new information to the sliding-window and keep the sliding-window in

a desirable level of diversity. To achieve this goal, a dissimilarity measure based on Euclidean

distance is used in such a way that, in each iteration, a similarity vector rather than a

similarity matrix is updated in an efficient way. In the case of the similarity matrix, in each

iteration, (𝑁(𝑁 − 2))/2 similarities should be computed while in the case of similarity

vectors only 𝑁 − 1 elements are removed from the vector and 𝑁 − 1 new elements are

appended into it, where 𝑁 is the size of the involving sliding-window.

Suppose 𝑿 = [𝒙(1), 𝒙(2),⋯ , 𝒙(𝑁)]𝑇 is the input matrix and 𝒚 is the corresponding output

vector for a NARX model as �̂� = 𝑓(𝑿) where the regressor vector 𝒙(𝑘) is given as Eq. (8.6).

𝒙(𝑘) = [𝒖(𝑘), 𝒗1(𝑘),⋯ , 𝒗𝑚(𝑘)]
𝑇 (8.6)

Vector 𝒖(𝑘) consists of 𝑛𝑢 lags of 𝒚 and each vector 𝒗𝑖 denoting the 𝑖th exogenous variable

includes 𝑛𝑣𝑖 lags for 𝑖 = 1,2,⋯𝑚. Examples of 𝒖 and 𝒗𝑖 in the time instant 𝑘 are shown in

Eqs. (8.7) and (8.8).

𝒖(𝑘) = [𝑦(𝑘 − 𝑙1
𝑢), 𝑦(𝑘 − 𝑙2

𝑢),⋯ , 𝑦(𝑘 − 𝑙𝑛𝑢
𝑢)] (8.7)

𝒗𝑖(𝑘) = [𝑣𝑖(𝑘 − 𝑙1
𝑣𝑖), 𝑣𝑖(𝑘 − 𝑙2

𝑣𝑖),⋯ , 𝑣𝑖(𝑘 − 𝑙𝑛𝑣𝑖
𝑣𝑖)] (8.8)

where vectors 𝒍𝑢 and 𝒍𝑣𝑖 denote the order of lags for output variable 𝒚 and the input variable

𝒗𝑖, respectively. The number of elements in 𝒙(𝑘) is 𝑑 where 𝑑 = 𝑛𝑢 + ∑ 𝑛𝑣𝑖
𝑚
𝑖=1 . In the case

of Nonlinear AutoRegressive (NAR) model where only the lags of output variable 𝒚 are

considered, 𝑑 = 𝑛𝑢. Hence 𝑿 is a matrix 𝑁 × 𝑑. Since in our problem, we suppose that a

 164

NAR or NARX model will compute a one-step-ahead prediction, the output vector 𝒚

corresponding to the input matrix 𝑿 is:

𝒚 = [𝑦(2), 𝑦(3),⋯ , 𝑦(𝑁 + 1)]𝑇 (8.9)

The underlying sliding-window 𝑻 is defined as Eq. (8.10).

𝑻 = {𝑿, 𝒚} (8.10)

where 𝑻(𝑖) = {𝑿(𝑖), 𝒚(𝑖)} denotes the 𝑖th input-output pattern of 𝑻. When a new point

𝒑 = {𝑿(𝑘 − 1), 𝒚(𝑘)} is presented to the model, two steps should be performed to update the

sliding-window. The first one is whether 𝒑 can be inserted into the sliding window. If so, the

second one is which sample of 𝑻 should be replaced with 𝒑 ,since the size of sliding-window

is assumed to be constant throughout the online adaptation process. For the first and second

point, two criteria called Include and Exclude are considered, respectively. The following

describes the criteria.

 Include criterion

This criterion checks whether 𝒑 has enough dissimilarity to all points of 𝑻. To do this, the

Euclidean distances between 𝒑 and all points in 𝑻 are considered. If all distances are greater

than a user-defined threshold, point 𝒑 is inserted into 𝑻. Let 𝛿(𝑛,𝑚) be the Euclidean

distance between the 𝑛th
 and 𝑚th

 points of 𝑿 (the 𝑛th
and 𝑚th

 points will be called origin and

destination points, respectively). For any two points 𝑿(𝑚1) and 𝑿(𝑚2), we say point 𝑿(𝑛) is

more similar to 𝑿(𝑚1) than 𝑿(𝑚2) if 𝛿(𝑛,𝑚1) < 𝛿(𝑛,𝑚2). For any point 𝑿(𝑛) in 𝑻, a

vector of distances between 𝑿(𝑛) and its predecessors denoted by 𝚫(𝑛) is defined as Eq.

(8.11).

𝚫(𝑛) = [𝛿(1, 𝑛), 𝛿(2, 𝑛),⋯ , 𝛿(𝑛 − 1, 𝑛)] (8.11)

The vector of distances between each pair of points in 𝑿 is defined as Eq. (8.12).

𝐃 = [𝚫(2), 𝚫(3),⋯ , 𝚫(𝑁)]𝑇 (8.12)

Suppose that new point 𝒑 is the 𝑛th
 arriving point. Based on the definitions above, 𝒑 is

inserted into 𝑻 if all distances in 𝚫(𝑛) is greater than a user-defined threshold 𝜂. Each pattern

in 𝑿 is organized into several components so that each component corresponds to the number

 165

of lags of a particular variable. Since the scales and dynamics may be different from variable

to variable, it motivates us to consider a separate analysis of the distance between 𝒑 and all

points in 𝑿. Based on this idea, 𝚫(𝑛)can be divided into several vectors as Eqs. (8.13) and

(8.14).

𝚫𝑢(𝑛) = [𝛿𝑢(1, 𝑛), 𝛿𝑢(2, 𝑛),⋯ , 𝛿𝑢(𝑛 − 1, 𝑛)] (8.13)

{𝚫𝑣𝑖(𝑛) = [𝛿𝑣𝑖(1, 𝑛), 𝛿𝑣𝑖(2, 𝑛),⋯ , 𝛿𝑣𝑖(𝑛 − 1, 𝑛)]}𝑖=1
𝑚 (8.14)

According to this idea, instead of considering one user-defined threshold 𝜂, a set of thresholds

should be considered as Eq. (8.15).

𝜼 = {𝜂𝑢, {𝜂𝑣𝑖}𝑖=1
𝑚 } (8.15)

Therefore, point 𝒑 is inserted into 𝑻 if there is at least a distance vector in 𝚫(𝑛) so that all

distances in 𝚫(𝑛) are greater than the corresponding threshold. The 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

denoted by 𝐼 is defined as Eq. (8.16).

𝐼 ({𝜂, 𝜂𝑢, {𝜂𝑣𝑖}𝑖=1
𝑚
} , {𝚫(𝑛), 𝚫𝑢(𝑛), {𝚫𝑣𝑖(𝑛)}𝑖=1

𝑚
}) = (𝚫(𝑛) > 𝜂) 𝑜𝑟 (𝚫𝑢(𝑛) > 𝜂𝑢) 𝑜𝑟 (8.16)

(∃ 𝑖 ∈ [1,2,⋯ ,𝑚]: 𝚫𝑣𝑖(𝑛) > 𝜂𝑣𝑖)

 Exclude criterion

If Include criterion is True for the new point 𝒑, to keep the size of 𝑻 fixed, first one point is

removed from 𝑻 and then 𝒑 is inserted. The main idea behind the Exclude criterion is to

randomly remove one of two points in 𝑻 which have the largest similarity (i.e., the minimum

Euclidean distance) between each other. As in each iteration, there is a correspondence

between 𝑻 and 𝑫, by updating 𝑻, D should be updated. For each point 𝑿(𝑛) in 𝑿, there are

exactly 𝑁 − 1 occurrences in 𝑫 so that for 𝑛 − 1 consecutive occurrences, 𝑿(𝑛) is a

destination point whereas for 𝑁 − 𝑛 nonconsecutive occurrences, it is an origin point, where

𝑁 is the size of 𝑻. Suppose 𝑿(𝑛) is a point that should be removed from 𝑻. To do this, their

corresponding occurrences in 𝑫 should be identified and then discarded from 𝑫. To

efficiently find the index of the corresponding occurrences of 𝑿(𝑛) in 𝑫, a sequence of

functions is needed. The following introduces such functions.

Given 𝚫(𝑛) and 𝑫, function 𝑠𝑖(𝑛) defined in Eq. (8.17) computes the starting index of 𝚫(𝑛)

in 𝑫.

 166

𝑠𝑖(𝑛) = 1 +∑(𝑖 − 1)

𝑛−1

𝑖=2

=
𝑛2 − 3𝑛 + 4

2
, 𝑛 ≥ 1

(8.17)

Suppose 𝑖 is an arbitrary index on 𝑫. By the solutions obtained from 𝑠𝑖(𝑛) = 𝑖, function

𝑝𝑛(𝑖) defined in Eq. (8.18) computes the index of the point in 𝑿 which is the destination point

in the 𝑖th position of vector 𝑫.

𝑝𝑛(𝑖) = ⌊
3 + √−7 + 8𝑖

2
⌋ , 𝑖 ≥ 1

(8.18)

where ⌊𝑎⌋ is the largest integer smaller than 𝑎. Using Eqs. (8.17) and (8.18), the function

𝑝𝑚(𝑖) is defined in Eq. (8.19) which computes the index of the point in 𝑿 that is the origin

point in the 𝑖th position of vector 𝑫.

𝑝𝑚(𝑖) = 𝑖 − 𝑠𝑖(𝑝𝑛(𝑖)) + 1, 𝑖 ≥ 1 (8.19)

The indices in 𝑫 where 𝑿(𝒏) is a destination point are obtained by the function 𝑑𝑝(𝑛, 𝑗)

defined in Eq. (8.20).

𝑑𝑝(𝑛, 𝑗) = 𝑠𝑖(𝑛) + (𝑗 − 1) =
𝑛2 − 3𝑛 + 2(𝑗 + 1)

2
, 1 ≤ 𝑗 ≤ 𝑛 − 1

(8.20)

The indices in 𝑫 where 𝑿(𝒏) is an origin point are obtained by the function 𝑜𝑝(𝑛, 𝑗) defined

in Eq. (8.21).

𝑜𝑝(𝑛, 𝑗) = 𝑠𝑖(𝑛) + 2(𝑛 − 1) + 𝑛(𝑗 − 𝑛) + 𝑆(𝑗 − 𝑛)

=
−𝑛2 + 𝑛(2𝑗 + 1) + 2𝑆(𝑗 − 𝑛)

2
, 𝑛 − 1 < 𝑗 ≤ 𝑁 − 1

(8.21)

where

𝑆(𝑣) = {

0, 𝑣 < 2

∑𝑖

𝑣−1

𝑖=1

, 𝑣 ≥ 2

By means of Eqs. (8.20) and (8.21), the index of 𝑗th occurrence of a distance in 𝑫 involving

point 𝑿(𝑛) is obtained by the function 𝑛𝑖(𝑛, 𝑗) defined in Eq. (8.22).

𝑛𝑖(𝑛, 𝑗) = {
𝑑𝑝(𝑛, 𝑗), 1 ≤ 𝑗 ≤ 𝑛 − 1

𝑜𝑝(𝑛, 𝑗), 𝑛 − 1 < 𝑗 ≤ 𝑁 − 1

(8.22)

In terms of 𝑛𝑖(𝑛, 𝑗), the index vector of the occurrences of the distances in 𝑫 involving point

𝑿(𝑛) is as:

 167

𝑶𝒏𝑫 = [𝑛𝑖(𝑛, 1), 𝑛𝑖(𝑛, 2),⋯ , 𝑛𝑖(𝑛, 𝑁 − 1)]𝑇 (8.23)

Assume the notation < 𝑎, 𝑺 > denotes the index of element 𝑎 in vector 𝑺 and suppose also

that function 𝜚(…) randomly returns one of its arguments. Hence by means of Eqs. (8.18) and

(8.19), the Exclude criterion denoted by 𝑂 is defined as Eq. (8.24).

𝑂(𝑫) = 𝜚(𝑝𝑚(< min(𝑫) ,𝑫 >), 𝑝𝑛(< min(𝑫) ,𝑫 >)) (8.24)

After the index of the point that should be removed from 𝑻 is determined by the Exclude

criterion, the point is removed from 𝑻 and then all its corresponding indices in 𝑫 given by

(8.23) are discarded from 𝑫. Afterwards, the new point is inserted into 𝑻 and then its

corresponding 𝚫(𝑛) is appended into 𝑫.

8.3.2.2. A proposed convex hull based policy

In the proposed online adaptation method, both the training and the additional sliding-window

are updated based on 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 as well as a convex hull based policy. If the new arriving

sample is accepted as an outer point with respect to the current convex hull, the current

convex hull is updated considering the new sample as a new vertex of the convex hull. In this

step, if some vertices of the current convex hull are marked as inner points by ApproxHull,

they are replaced with points from the additional sliding-window. Since the training sliding-

window should contain the vertices of convex hull as well as some inner points, these points

are selected from the additional set in such a way that those selected are located inside the

convex hull and are dissimilar enough from the convex hull vertices. To do this, 𝑟 points

which have the largest minimum distance to all convex hull vertices are selected from the

additional sliding-window where 𝑟 denotes the number of inner points.

To compute the largest minimum distances to the convex hull vertices, a distance matrix

denoted by 𝑫𝑰𝑺 of size 𝑠 × 𝑣 is employed, where 𝑠 and 𝑣 refer to the size of the additional

sliding-window and the number of convex hull vertices, respectively. Finally, the selected

points and inner points are swapped between the training and the additional sliding-window.

Throughout this process, 𝑫𝑰𝑺 is updated by removing 𝑟 rows corresponding to the 𝑟 selected

points from the additional sliding-window and appending 𝑟 new rows into 𝑫𝑰𝑺 where each

new row corresponds to a distance vector including the distances between an inner point to all

convex hull vertices. Besides 𝑫𝑰𝑺, two other vectors are updated, 𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑 denoting the

distance vector used in the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 for managing the training and the additional sliding-

 168

window, respectively. Afterwards, the new sample is inserted into the training-sliding window

by 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 but with the difference that the 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 criterion of 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is not

needed to be checked (i.e., the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦 is forced to insert the new point into the training

sliding-window) since the new point has been accepted as an outer point with the current

convex hull. If the new arriving sample is rejected from the convex-hull approach, it is tried to

be inserted into the additional sliding-window using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

8.3.3. Parameters update

The idea behind the procedure of parameters update in this work is the same as that

mentioned in [168]. As explained before, we assume that the change of dynamics of most

processes is gradual over a period of time. Hence, the underlying model does not need to be

updated whenever a new sample arrives and is inserted into the training sliding-window.

Additionally, frequently updating parameters over a period of time not only imposes an extra

computational cost but also may cause overfitting. In order to avoid unnecessary parameter

updates, two standard termination criteria (8.25) and (8.26) of the Levenberg-Marquardt

method are evaluated at time instant 𝑘, when a new sample is accepted and inserted into the

training sliding-window.

Φ𝑘𝑢 −Φ𝑘 < 𝜃𝑘 (8.25)

‖𝒈𝑘‖ ≤ √𝜏𝑓
3 (1 + |Φ𝑘|) (8.26)

𝜃𝑘 = 𝜏𝑓(1 + Φ𝑘) (8.27)

where Φ𝑘𝑢 and Φ𝑘 denote the value of the cost function obtained based on the current

parameters update and the previous parameters in time instant 𝑘, respectively. 𝒈𝑘 is the

gradient vector of the cost function and 𝜏𝑓 as the resolution parameter denoting a measure of

the desired correct number of digits in the cost function. ‖. ‖ and |. | denote the 2-norm and

absolute operators.

When both criteria (8.25) and (8.26) are met, the model parameters are updated. The LM

method starts with the parameters found in the last update. In order to prevent overfitting, the

early-stopping method can be applied in the learning process using the additional sliding-

window as the test set.

 169

8.3.4. Analysis of the proposed method

In this section, we address the analysis of time complexity of the new sample evaluation and

the sliding-window update. In this analysis, we consider the worst case scenario in terms of

run time, which is where a new arriving sample is determined as an outer point, inserted into

the training sliding-window, and additionally some inner points are identified due to the

updating the current convex hull by the new sample. In the following, we detail the analysis

of each phase.

As mentioned in Section 8.3.1, a new sample is accepted to be inserted into the training-

sliding window, if it meets two conditions. Firstly, the maximum distance of those vertices

located the positive half space to the corresponding hyperplane is less than or equal to a user-

defined threshold and secondly, ApproxHull marks the new sample as a new convex hull

vertex. As stated in Section 8.3.1.1, the time complexity for computing the maximum distance

is 𝑂(𝑣𝑑). According to Section 4.5, the time complexity of ApproxHull is 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3)

where 𝑛, 𝑑, 𝑣, 𝑖 and 𝑝 denote the number of total data samples, dimension, the number of

convex hull vertices, the number of iterations and the population size, respectively. In this

case, the number of samples on which the ApproxHull is applied, is equal to 𝑣 + 1. Therefore,

the time complexity of ApproxHull in this situation takes 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3) where 𝑢 denotes

the number of vertices of updated convex hull.

The parameters update phase consists of 8 steps. As stated before, for both training and

additional sliding-windows, the F_R policy is applied. Per the F_R policy, a vector of

distances between each two points of the sliding-window is formed and it is updated

whenever the sliding-window is updated. The time complexity of inserting a sample into the

sliding-window is 𝑂(𝑁𝑑) due to computing the distances between the new sample and its

predecessors where 𝑁 denotes the sliding-window size. Removing a sample from the sliding

window takes 𝑂(𝑁) due to the computation of the indices of the distance vector, where the

sample is a either destination or origin point. Here we suppose that 𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑 denote the

distance vector of the training and the additional sliding-window, respectively. In the

proposed method, matrix 𝑫𝑰𝑺 with size 𝑠 × 𝑣 of distances between each point of the

additional sliding-window and the vertices of current convex hull is formed, where 𝑠 is the

size of additional sliding-window.

Step 1 involves computing the distances between the new arriving sample and all points of the

additional sliding-window and appending the distances as a new column into 𝑫𝑰𝑺. The time

complexity of Step 1 is 𝑂(𝑠𝑑).

 170

In Step 2, the vertices marked as inner points during the convex hull update are removed from

the training-sliding window. Step 2 takes 𝑂(𝑟𝑚) operations due to updating 𝑫𝑡𝑟 where 𝑟 and

𝑚 denote the number of inner points and the training-sliding-window size, respectively.

In Step 3, matrix 𝑫𝑰𝑺 is updated by removing the corresponding columns of inner points.

Step 3 takes 𝑂(𝑟) operations.

In Step 4, 𝑟 points which have the largest minimum distance to all vertices of the updated

convex hull are selected from the additional sliding-window. Based on the matrix 𝑫𝑰𝑺,

computing the minimum distance for each point of the additional sliding-window takes 𝑂(𝑠𝑢)

operations. Selecting 𝑟 samples from the additional sliding-window which have the largest

minimum distance needs sorting these distances in descending order, and choosing the first 𝑟

corresponding points. Hence, sorting takes 𝑂(𝑠 log 𝑠) operations. In practice 𝑢 is larger than

log 𝑠. Therefore, the maximum time complexity of Step 4 is 𝑂(𝑠𝑢).

Step 5 involves removing the selected points from the additional sliding-window. This step

leads to update both 𝑫𝑰𝑺 and 𝑫𝑎𝑑𝑑. The time complexity for updating 𝑫𝑎𝑑𝑑 is 𝑂(𝑟𝑠) while

updating 𝑫𝑰𝑺 takes 𝑂(𝑟) operations. Hence the time complexity of Step 5 is 𝑂(𝑟𝑠).

Step 6 corresponds to adding 𝑟 selected points from the additional sliding-window into the

training sliding-window. This step leads to update 𝑫𝑡𝑟 which takes 𝑂(𝑟𝑚𝑑) operations.

Step 7 corresponds to add the inner points into the additional sliding-window which leads to

update 𝑫𝑰𝑺 and 𝑫𝑎𝑑𝑑. Updating 𝑫𝑰𝑺 due to adding rows takes 𝑂(𝑟𝑢𝑑) operations. The time

complexity of updating 𝑫𝑎𝑑𝑑 is 𝑂(𝑟𝑠𝑑). Therefore, the time complexity of Step 7 is 𝑂(𝑟𝑢𝑑 +

𝑟𝑠𝑑).

Finally, In Step 8, the new arriving sample is added into the training sliding-window and 𝑫𝑡𝑟

is updated. In this step, if the point which has been replaced with the new sample using the F-

R policy is a vertex of the convex hull, it will be removed from the vertices of convex hull and

𝑫𝑰𝑺 will also be updated. The time complexity of Step 8 is therefore 𝑂(𝑚 +𝑚𝑑) = 𝑂(𝑚𝑑).

The total time complexity of the proposed method, in the worst case scenario at time 𝑘 is

equal to 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑑 + 𝑟𝑚 + 𝑟 + 𝑠𝑢 + 𝑟𝑠 + 𝑟𝑚𝑑 + 𝑟𝑢𝑑 + 𝑟𝑠𝑑 + 𝑚𝑑) =

𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑢 + 𝑟𝑚𝑑 + 𝑟𝑢𝑑 + 𝑟𝑠𝑑) = 𝑂(𝑣2𝑑3𝑢3 + 𝑖3𝑝3 + 𝑠𝑢 + 𝑟𝑚𝑑).

Concisely, the sliding-window update algorithm is presented in Algorithm 8.1.

 171

Algorithm 8.1: Sliding-windows update

Inputs: 𝑻 as the training sliding-window, 𝑫𝑡𝑟 as the distance vector obtained from 𝑻 using the

𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑨 as the additional sliding-window, 𝑫𝑎𝑑𝑑 as the distance vector obtained from 𝑨 using

the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑽 as the vertices of current convex hull where 𝑽 ⊂ 𝑻, 𝑫𝑰𝑺 as a matrix of distances

between each point of 𝑨 to all points of 𝑽, 𝛽 as a user-defined threshold, 𝒑 = (𝒙𝑘 , 𝑦𝑘) as the new

arriving sample at time instant 𝑘 where 𝑥𝑘 and 𝑦𝑘 denote the input and output pattern.

1: Let 𝒄 be the center of the current convex hull.

2: Let 𝐻 be the hyperplane passing by the new arriving sample so that the direction of its normal

vector is the same as that of the vector from 𝒄 to 𝒑.

3: Let 𝑚𝑑 be the maximum positive distance of points in 𝑽 to 𝐻.

4: Let 𝑓𝑙𝑎𝑔 = 𝑻𝒓𝒖𝒆

5: If (𝑚𝑑 ≤ 𝛽) then

6: Let 𝑺 = 𝑽 ∪ {𝒑}

7: Let 𝑼 be the vertices of convex hull obtained by Apply ApproxHull on 𝑺.

8: If (𝑚𝑑 = 0 and 𝒑 not in 𝑼) then

9: Let 𝑼 = 𝑼 ∪ {𝒑}

10: If (𝒑 in 𝑼) then

11: Let 𝑰 = 𝑽 − 𝑼 be the set of inner points

12: Let 𝑽 = 𝑼

13: Add the corresponding column of 𝒑 into 𝑫𝑰𝑺.

14: If (𝑰 ≠ ∅) then

15: Remove the inner points from 𝑻 and update 𝑫𝑡𝑟 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

16: Remove the corresponding columns of inner points from 𝑫𝑰𝑺.

17: Let 𝑟 = |𝑰|

18: Let 𝑾 contains 𝑟 points of 𝑨 which have the largest minimum distance

to all vertices of 𝑽.

19: Let 𝑨 = 𝑨\𝑾 and removing the corresponding elements of the points in

𝑾 from 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

20: Remove the corresponding rows of points in 𝑾 from 𝑫𝑰𝑺.

21: Let 𝑻 = 𝑻 ∪𝑾 and update 𝑫𝑡𝑟 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

22: Let 𝑨 = 𝑨 ∪ 𝑰 and update 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

 172

23: Add the corresponding row of each point in 𝑰 into 𝑫𝑰𝑺.

24: Add 𝒑 into 𝑻 and update 𝑫𝑡𝑟 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

25: Let 𝒒 be the point which has been replaced with 𝒑 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

26: If (𝒒 in 𝑽) then

27: Let 𝑽 = 𝑽\𝒒

28: Remove the corresponding column of 𝒒 from 𝑫𝑰𝑺.

29: else

30: Let 𝑓𝑙𝑎𝑔 = 𝑭𝒂𝒍𝒔𝒆

31: else

32: Let 𝑓𝑙𝑎𝑔 = 𝑭𝒂𝒍𝒔𝒆

33: If (not 𝑓𝑙𝑎𝑔) then

34: Add 𝒑 into 𝑨 and update 𝑫𝑎𝑑𝑑 using the 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

35: Let 𝒛 be the point which has been replaced with 𝒑 using 𝐹 − 𝑅 𝑝𝑜𝑙𝑖𝑐𝑦.

36: Remove the corresponding row of 𝒛 from 𝑫𝑰𝑺.

37: Add the corresponding row of 𝒑 into 𝑫𝑰𝑺.

Outputs: 𝑻, 𝑨, 𝑽, 𝑫𝑰𝑺, 𝑫𝑡𝑟 and 𝑫𝑎𝑑𝑑.

8.4. Experimental results

To evaluate the performance of the proposed online adaptation method, two case studies were

considered. In both case studies, a time series NAR model was chosen to compute the one-

step ahead value of Outside Air Temperature. The first case study explained in Section 8.4.1

uses the data collected at the University of Algarve, Portugal while the second one discussed

in Section 8.4.2 is linked to the data collected at the University of Almeria, Spain. For both

case studies, the corresponding models were designed offline using one run of MOGA. The

design objectives were the RMSE obtained in the training and test data sets as well as the

summation of RMSE over the prediction horizon with 48 steps obtained in the simulation data

set, and the model complexity. On the objectives, no restriction was considered (please refer

to Section 2.7.2.1). Regarding MOGA’s parameters, both the maximum number of generation

and the population size were set to 100. The early-stopping method was applied with a

maximum of 100 iterations. After one complete run of MOGA, one model was selected from

 173

the non-dominated set for the case study. The following explains each case study along with

the analysis of the corresponding evaluation results.

8.4.1. Case Study 1: OAT model for the University of Algarve

The data provided by the University of Algarve has been collected over the years 2015 and

2016. In the design process, the data in the range 12-Nov2015 to 28-Nov-2015 (i.e.,

approximately 17 days) with a sample rate of 5 minutes was used to create the training,

testing and validation sets with 2538, 846 and 846 points, respectively. Data in the range 29-

Nov-2015 to 30-Nov-2015 (i.e, 2 days) was used as the simulation set, to evaluate the offline

models over 48-steps-ahead prediction (i.e., a 4 hours ahead prediction). ApproxHull was

applied on the whole data which resulted in 1356 convex hull points, that were included in the

training set. In this process, the range of features considered by MOGA comprised the first 48

lags (i.e., corresponding to the first 4 previous hours), together 25 lags centered on the sample

corresponding to one day before (1 hour before and 1 hour after). Therefore, 73 features were

considered by MOGA, and the formal description of the selected OAT model is given in Eq.

(8.28).

𝑇�̂�(𝑘 + 1) = 𝑓(𝑇𝑜(𝑘), 𝑇𝑜(𝑘 − 1), 𝑇𝑜(𝑘 − 2), 𝑇𝑜(𝑘 − 8), 𝑇𝑜(𝑘 − 10), 𝑇𝑜(𝑘 − 27), 𝑇𝑜(𝑘

− 32), 𝑇𝑜(𝑘 − 42), 𝑇𝑜(𝑘 − 44), 𝑇𝑜(𝑘 − 277), 𝑇𝑜(𝑘 − 280), 𝑇𝑜(𝑘

− 282), 𝑇𝑜(𝑘 − 284), 𝑇𝑜(𝑘 − 298))

(8.28)

According to Eq. (8.28), the selected model has 14 inputs which are all lags of OAT. The

corresponding RBFNN model has 3 hidden neurons and one output neuron. To simulate the

online adaptation process, 17 periods were considered. The periods are given in Table 8.1.

The simulation samples of each period were normalized in the range [−1,1]. Since the model

has only used 14 lags out of 73 lags in the design process, the initial convex hull of the model

should be obtained from the reduced version of the whole data which was supplied to MOGA.

ApproxHull was hence applied to the reduced dataset with 15 dimensions (inputs and target

pattern), which resulted in 875 convex hull points that were included in the initial training-

sliding window.

For all experiments, the online adaptation process starts with the parameters’ values obtained

in the offline training in the design process. The model is subsequently updated over the

periods based on the order stated in Table 8.1. In this procedure, at the beginning of each

period, the online adaptation process continues with the last update of the model over the

 174

previous period. After each model update within a period, the model is evaluated based on its

48-steps-ahead prediction (i.e., 4 hours ahead prediction) over the period.

TABLE 8.1. PERIODS OVER THE YEARS 2015 AND 2016 IN CASE 1.

Period Name Range

01-Dec-2015 01-Dec-2015 00:00:00 to 13-Dec-2015 06:20:00

16-Dec-2015 16-Dec-2015 09:29:00 to 20-Dec-2015 09:39:00

20-Dec-2015 20-Dec-2015 10:22:00 to 29-Dec-2015 05:42:00

01-Jan-2016 01-Jan-2016 00:00:00 to 15-Jan-2016 09:45:00

21-Jan-2016 21-Jan-2016 19:07:00 to 31-Jan-2016 23:57:00

01-Feb-2016 01-Feb-2016 00:00:00 to 29-Feb-2016 23:55:00

01-Mar-2016 01-Mar-2016 00:00:00 to 31-Mar-2016 23:55:00

01-Apr-2016 01-Apr-2016 00:00:00 to 30-Apr-2016 23:55:00

01-May-2016 01-May-2016 00:00:00 to 11-May-2016 08:20:00

11-May-2016 11-May-2016 09:26:00 to 31-May 2016 23:56:00

01-Jun-2016 01-Jun-2016 00:00:00 to 30-Jun-2016 23:55:00

01-Jul-2016 01-Jul-2016 00:00:00 to 06-Jul-2016 02:45:00

04-Aug-2016 04-Aug-2016 22:26:00 to 31-Aug-2016 23:56:00

01-Sep-2016 01-Sep-2016 00:00:00 to 30-Sep-2016 23:55:00

01-Oct-2016 01-Oct-2016 00:00:00 to 31-Oct-2016 23:55:00

01-Nov-2016 01-Nov-2016 00:00:00 to 19-Nov-2016 17:05:00

19-Nov-2016 19-Nov-2016 18:01:00 to 26-Nov-2016 19:26:00

In this study, 6 different experiments were carried out. For all experiments, the training and

the additional sliding-window size were set to 2538 and 846, respectively. The maximum

number of iterations of the Levenberg-Marquardt method was set to 100 for all experiments.

Moreover, two user-defined thresholds 𝛽 (the hyperplane distance threshold which is used in

the sliding-window management policy) and 𝝉𝒇 (the desired resolution in the LM termination

criteria) were considered as parameters. 𝜂 (the dissimilarity threshold which is used in the F-R

policy) had a fixed value of 0.005.

The experiments’ specification is given in Table 8.2. As we can see in Table 8.2, two groups

of experiments were carried out. For the first group 𝝉𝒇 was set to 0.001 while for the second

one it was set to 0.0001. The aim was to see if an increase of the number of iterations in each

update process, could result in a better performance. For both groups, 𝛽 was set to the

constant value 0.005 while 𝜂 varies from 0.0 to 0.5.

 175

TABLE 8.2. EXPERIMENT’S SPECIFICATION IN CASE 1.

 𝝉𝒇 𝜷 𝜼

First group of experiments

Exp.1 0.001 0.0 0.005

Exp.2 0.001 0.1 0.005

Exp.3 0.001 0.5 0.005

Second group of experiments

Exp.4 0.0001 0.0 0.005

Exp.5 0.0001 0.1 0.005

Exp.6 0.0001 0.5 0.005

In order to compare the experiments, the criteria stated in Table 8.3 were considered. Please

note that the number of samples in each period is obtained as 12*24=288*number of days.

TABLE 8.3. LIST OF CRITERIA USED TO COMPARE THE EXPERIMENTS IN CASE 1.

𝒏𝑻 Number of samples which have been inserted into the training sliding-window over

all periods.

𝒏𝑨 Number of samples which have been inserted into the additional sliding-window

over all periods.

𝒏𝑹 Number of samples which have been rejected from inserting into both training and

additional sliding-window over all periods.

𝒏𝑼 Number of parameter updates over all periods.

𝒏𝑰 Average number of iterations of training process per each update over all periods.

𝒏𝑪𝑯 Number of convex hull points at end of the last period.

𝝆𝟏
𝒊 Scaled one-step-ahead 𝑅𝑀𝑆𝐸 associated with the initial model.

𝝆𝟏
𝒖 Scaled one-step-ahead 𝑅𝑀𝑆𝐸 associated with the updated model at end of the

period.

𝝆𝟒𝟖
𝒊 Scaled 48-steps-ahead 𝑅𝑀𝑆𝐸 associated with the initial model.

𝝆𝟒𝟖
𝒖 Scaled 48-steps-ahead 𝑅𝑀𝑆𝐸 associated with the updated model at the end of the

period.

𝑺𝒊 Summation of scaled 𝑅𝑀𝑆𝐸s over the 48 steps of prediction associated with the

initial model.

𝑺𝒖 Summation of scaled 𝑅𝑀𝑆𝐸s over the 48 steps of prediction associated with the

updated model at end of the period.

 176

The statistical results obtained from the three groups of experiments are given in Table 8.4.

TABLE 8.4. STATISTICAL RESULTS OF THE EXPERIMENTS IN CASE 1.

 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰 𝒏𝑪𝑯

First group of experiments

Exp.1 456 86422 73 63 2.16 253

Exp.2 1232 85645 74 142 2.11 243

Exp.3 3304 83574 73 289 2 162

Second group of experiments

Exp.4 464 86414 73 241 2.23 256

Exp.5 1212 85666 73 606 2.14 225

Exp.6 3282 83597 72 1516 2.04 158

According to this Table for each group of experiments, increasing 𝛽 causes an increase in 𝑛𝑇

due to the fact that the new arriving samples have more chance to be inserted into the training

sliding-window. This, in turn, causes an increase in 𝑛𝑈 due to an increase of training sliding-

window updates. Moreover, we can see that in all experiments, 𝑛𝑈 is much smaller than 𝑛𝑇.

This result reveals the fact that, the proposed method can prevent unnecessary parameter

updates whenever the training sliding-window is updated due to the insertion of the new

arriving sample.

Fig. 8.6 shows the number of samples of each period in the last training sliding window at the

end of the online adaptation process for both groups of experiments. As it can be seen in Fig.

8.6, each pair of experiments for which the same 𝛽 has been used, (Exp.1, Exp.4), (Exp.2,

Exp.5) and (Exp.3, Exp.6), the pattern of training sliding window update is the same resulting

in somehow the same sliding window at the end of online adaptation process. The presence of

small variations between two experiments in each pair stems from the stochastic behavior of

ApproxHull. Furthermore, as it can be observed in Fig. 8.6, by increasing 𝛽, the update rate of

the initial training sliding window containing samples of Nov-2015 is raising where

gradually, the samples of Nov-2015 are being replaced with the new arriving samples of the

other periods.

 177

(a)

(b)

(c)

(d)

(e)

(f)

Fig.8.6. Number of samples of each period in the last training sliding window. (a), (c) and (e)

correspond to the Exps.1-3 of the first group of experiments of the case study 1, respectively.

(b), (d) and (f) denote Exps.4-6 of the second group of experiments of case study 1,

respectively.

For all experiments, the model has been evaluated in terms of the RMSE over each period in

two different situations: In the former, the initial model which was trained offline has been

evaluated over each period, while in the second one, in each period, after each update at time

instant 𝑘, the updated model has been evaluated over the corresponding period. The

evaluation results of three groups of experiments are given in Tables 8.5 to 8.7. In these

tables, the bold values indicate the best results over each period.

 178

TABLE 8.5. ONE-STEP-AHEAD PREDICTION IN CASE 1.

 𝝆𝟏
𝒖

 First group of experiments Second group of experiments

 𝝆𝟏
𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6

01-Dec-2015 0.008 0.008 0.008 0.008 0.008 0.008 0.008

16-Dec-2015 0.007 0.007 0.007 0.007 0.007 0.007 0.007

20-Dec-2015 0.007 0.007 0.007 0.007 0.007 0.007 0.007

01-Jan-2016 0.007 0.007 0.007 0.007 0.007 0.007 0.007

21-Jan-2016 0.008 0.008 0.008 0.008 0.008 0.008 0.008

01-Feb-2016 0.010 0.009 0.008 0.009 0.008 0.008 0.008

01-Mar-2016 0.010 0.010 0.010 0.010 0.010 0.010 0.010

01-Apr-2016 0.010 0.010 0.010 0.010 0.010 0.010 0.010

01-May-2016 0.011 0.011 0.011 0.011 0.010 0.010 0.010

11-May-2016 0.014 0.012 0.012 0.012 0.011 0.011 0.011

01-Jun-2016 0.050 0.019 0.015 0.015 0.013 0.012 0.013

01-Jul-2016 0.041 0.020 0.015 0.014 0.013 0.012 0.013

04-Aug-2016 0.073 0.022 0.015 0.014 0.012 0.012 0.012

01-Sep-2016 0.069 0.019 0.013 0.013 0.012 0.011 0.011

01-Oct-2016 0.011 0.009 0.009 0.008 0.008 0.008 0.008

01-Nov-2016 0.009 0.009 0.009 0.009 0.009 0.009 0.009

19-Nov-2016 0.009 0.008 0.009 0.009 0.008 0.008 0.008

As it can be inferred from Table 8.5, the performance of the updated models in terms of the

one-step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the

periods Dec-2015 to May-2016 and Oct-2016 to Nov-2016 is, to some extent, similar to the

initial model (i.e., the offline model). In contrast, the updated models for all experiments

outperform significantly the initial model in the periods Jun-216 to Sep-2016. The updated

models for the second group of experiments have a slightly better performance than their

correspondents in the first group.

 179

TABLE 8.6. 48-STEPS-AHEAD PREDICTION IN CASE 1.

 𝝆𝟒𝟖
𝒖

 First group of experiments Second group of experiments

 𝝆𝟒𝟖
𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6

01-Dec-2015 0.082 0.082 0.086 0.079 0.082 0.081 0.080

16-Dec-2015 0.102 0.102 0.104 0.099 0.102 0.099 0.101

20-Dec-2015 0.087 0.087 0.090 0.085 0.087 0.085 0.087

01-Jan-2016 0.129 0.123 0.124 0.131 0.120 0.120 0.127

21-Jan-2016 0.076 0.081 0.080 0.071 0.078 0.076 0.076

01-Feb-2016 0.104 0.131 0.130 0.108 0.091 0.087 0.096

01-Mar-2016 0.080 0.100 0.099 0.085 0.087 0.077 0.092

01-Apr-2016 0.094 0.123 0.099 0.103 0.092 0.088 0.096

01-May-2016 0.104 0.144 0.123 0.121 0.111 0.114 0.119

11-May-2016 0.108 0.139 0.128 0.129 0.111 0.110 0.116

01-Jun-2016 0.160 0.238 0.169 0.191 0.137 0.137 0.178

01-Jul-2016 0.157 0.228 0.175 0.198 0.155 0.162 0.214

04-Aug-2016 0.184 0.195 0.149 0.154 0.112 0.125 0.127

01-Sep-2016 0.159 0.206 0.138 0.156 0.121 0.132 0.129

01-Oct-2016 0.098 0.149 0.133 0.109 0.091 0.090 0.095

01-Nov-2016 0.088 0.209 0.320 0.115 0.079 0.086 0.093

19-Nov-2016 0.123 0.281 0.410 0.142 0.105 0.112 0.127

As it can be concluded from Table 8.6, in terms of the 48-steps-ahead prediction, the

performance of the updated model for all experiments over the periods 01-Dec-2015, 16-Dec-

2015, 20-Dec-2015, 01-Jan-2016 and 21-Jan-2016 is somehow the same as that of the initial

model.

The updated model in Exps.4 and 5 is slightly superior to the initial model. Regarding the

period 01-Feb-2016, the updated model in the second group of experiments is superior to the

initial model while that in the first group has worse performance in comparison with the

initial model. With respect to the period 01-Mar-2016, only the updated model in Exp.5 has

better performance than the initial model whereas that in Exp.1 has the worst performance.

Regarding the period 01-Apr-2016, the updated model in both Exp.4 and Exp.5 performs

better than the initial model. With respect to the periods 01-Jun-2016 to 19-Nov-2016, for the

 180

most cases, the updated model in both Exp.4 and Exp.5 is significantly superior to the initial

model while the updated model in Exp.1 has the worst performance.

Over the periods 01-May-2016 and 11-May-2016, the initial model has slightly better

performance in comparison with the others.

TABLE 8.7. SUMMATION OVER PH IN CASE 1.

 𝑺𝒖

 First group of experiments Second group of experiments

 𝑺𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6

01-Dec-2015 2.703 2.703 2.785 2.621 2.703 2.668 2.623

16-Dec-2015 3.239 3.239 3.250 3.157 3.239 3.143 3.173

20-Dec-2015 2.744 2.744 2.824 2.693 2.744 2.671 2.646

01-Jan-2016 3.824 3.617 3.694 3.894 3.542 3.571 3.745

21-Jan-2016 2.426 2.528 2.528 2.342 2.464 2.420 2.436

01-Feb-2016 3.699 3.980 3.851 3.456 2.800 2.703 3.022

01-Mar-2016 2.887 3.250 3.174 2.858 2.853 2.632 3.008

01-Apr-2016 3.111 3.834 3.306 3.330 3.008 2.942 3.132

01-May-2016 3.561 4.373 3.973 3.906 3.583 3.538 3.687

11-May-2016 3.639 4.198 3.892 3.818 3.504 3.383 3.465

01-Jun-2016 6.480 6.333 4.917 5.373 4.414 4.519 4.915

01-Jul-2016 6.361 6.778 5.172 5.617 5.096 4.993 5.492

04-Aug-2016 8.021 6.129 4.599 4.664 3.813 4.148 3.834

01-Sep-2016 6.795 6.196 4.317 4.675 3.934 4.256 3.898

01-Oct-2016 3.312 4.142 3.787 3.311 2.880 2.879 2.937

01-Nov-2016 2.911 6.040 8.919 3.767 2.667 2.892 3.002

19-Nov-2016 3.854 9.682 14.027 4.680 3.282 3.609 3.867

As it can be seen in Table 8.7, in terms of the summation of RMSE over the prediction

horizon of 48 steps, the updated models in the second group of experiments significantly

outperform the initial model over the periods 01-Jun-2016 to 01-Oct-2016; over the other

periods, no considerable difference can be seen between the performance of the updated

model in the second group of experiments and that of the initial model. To conclude, we can

say that the updated model in the second group of experiment has better performance than

 181

that of the first one and is superior to the initial model. In relation with the parameter Beta, the

value of 0.1 seems to be the best one.

In order to graphically compare the performance of the updated model throughout every

period, with the initial model, the corresponding updated model of Exp.5 was selected as an

alternative for the initial model since according to the Tables 8.5 to 8.7, the updated model in

Exp.5 is superior to the others. Figs. 8.7 to 8.23 illustrate the real values of OAT (blue line),

the one-step-ahead predictions over each period for the initial (red) and the updated model

(green) of Exp.5.

Fig. 8.7. One-step-ahead prediction over the 01-Dec-2015 period in case 1.

 182

Fig. 8.8. One-step-ahead prediction over the 16-Dec-2015 period in case 1.

Fig. 8.9. One-step-ahead prediction over the 20-Dec-2015 period in case 1.

 183

Fig. 8.10. One-step-ahead prediction over the 01-Jan-2016 period in case 1.

Fig. 8.11. One-step-ahead prediction over the 21-Jan-2016 period in case 1.

 184

Fig. 8.12. One-step-ahead prediction over the 01-Feb-2016 period in case 1.

Fig. 8.13. One-step-ahead prediction over the 01-Mar-2016 period in case 1.

 185

Fig. 8.14. One-step-ahead prediction over the 01-Apr-2016 period in case 1.

Fig. 8.15. One-step-ahead prediction over the 01-May-2016 period in case 1.

 186

Fig. 8.16. One-step-ahead prediction over the 11-May-2016 period in case 1.

Fig. 8.17. One-step-ahead prediction over the 01-Jun-2016 period in case 1.

 187

Fig. 8.18. One-step-ahead prediction over the 01-Jul-2016 period in case 1.

Fig. 8.19. One-step-ahead prediction over the 04-Aug-2016 period in case 1.

 188

Fig. 8.20. One-step-ahead prediction over the 01-Sep-2016 period in case 1.

Fig. 8.21. One-step-ahead prediction over the 01-Oct-2016 period in case 1.

 189

Fig. 8.22. One-step-ahead prediction over the 01-Nov-2016 period in case 1.

Fig. 8.23. One-step-ahead prediction over the 19-Nov-2016 period in case 1.

 190

8.4.2. Case Study 2: OAT model for the University of Almeria

The data provided by the University of Almeria has been collected over the years 2010 to

2012, including climate variables such as outside air temperature, outside air humidity,

outside solar radiation, etc. In the design process, the data in range 02-Sep-2010 to 11-Sep-

2010 (i.e., 10 days) with a sample rate of 5 minutes was used to create the training, testing and

validation sets with 1548, 516 and 516 points, respectively. ApproxHull was applied on the

whole data which resulted in 880 convex hull points, that were included in the training set.

Like the previous case study in Section 8.4.1, 73 lags out of the available 300 lags (i.e.,

corresponding to one day and one hour) were considered by MOGA.. The formal description

of the selected OAT model is given in Eq. (8.29).

𝑇�̂�(𝑘 + 1) = 𝑓(𝑇𝑜(𝑘), 𝑇𝑜(𝑘 − 1), 𝑇𝑜(𝑘 − 10), 𝑇𝑜(𝑘 − 25), 𝑇𝑜(𝑘 − 30), 𝑇𝑜(𝑘 − 38), 𝑇𝑜(𝑘

− 44), 𝑇𝑜(𝑘 − 276), 𝑇𝑜(𝑘 − 296))

(8.29)

According to Eq. (8.29), the selected model has 9 inputs which are lags of OAT. The

corresponding RBFNN model has 14 hidden neurons. To simulate the online adaptation

process, 12 periods over the years 2010 and 2011 were considered, shown in Table 8.8. The

samples of each period were normalized in the range [−1,1]. Since the model has only used 9

lags out of the 73 lags in the design process, the initial convex hull of the model should be

obtained from the reduced version of the whole data which was supplied to MOGA.

ApproxHull was hence applied to the reduced dataset with 10 dimensions (i.e., 9 inputs and

the target pattern) which resulted in 544 convex hull points that were included in the initial

training-sliding window.

For all experiments, the scenario of model update throughout the online adaptation process is

the same as that for the previous case study. In this case study, 9 different experiments

corresponding to 9 different combinations of 𝜏𝑓, 𝛽 and 𝜂 values were carried out. For all

experiments, the sizes of the training and the additional sliding-window size were set to 1548

and 500, respectively. The maximum number of iterations of the Levenberg-Marquardt

method was set to 100 for all experiments.

The experiments’ specification is given in Table 8.9. “ES” in Table 8.9 stands for Early-

Stopping method, using the additional sliding window as a test set. As we can see in Table

8.9, three groups of experiments were carried out. For the first group of experiments, the

model is updated without applying the early-stopping method. In this case, for each update,

 191

the training process ends when the three standard termination criteria are met, without

considering the early stopping method. For the second and third groups of experiments, the

early-stopping method was applied. In this situation, for the first five iterations of the training

process, only the three standard termination criteria are checked. After the initial five

iterations, training stops when the three termination criteria (2.40 – 2.42), or early-stopping is

met. Early stopping method uses the last 4 iterations.

TABLE 8.8. PERIODS OVER THE YEARS 2010 AND 2011 IN CASE 2.

Period name Range

Oct 01-Oct-2010 to 19-Oct-2010 (19 days)

Nov 09-Nov-2010 to 28-Nov-2010 (20 days)

Dec 04-Dec-2010 to 15-Dec-2010 (12 days)

Jan 11-Jan-2011 to 31-Jan-2011 (21 days)

Feb 09-Feb-2011 to 28-Feb-2011 (21 days)

Mar 11-Mar-2011 to 31-Mar-2011 (21 days)

Apr 07-Apr-2011 to 12-Apr-2011 (6 days)

May 20-May-2011 to 31-May-2011 (12 days)

Jun 02-Jun-2011 to 23-Jun-2011(22 days)

Jul 08-Jul-2011 to 31-Jul-2011 (24 days)

Aug 01-Aug-2011 to 31-Aug-2011 (31 days)

Sept 02-Sept-2010 to 11-Sept-2010 (10 days)

TABLE 8.9. EXPERIMENT’S SPECIFICATION IN CASE 2.

 𝝉𝒇 𝜷 𝜼 ES

First group of experiments

Exp.1 0.001 0.0 0.005 No

Exp.2 0.001 0.1 0.005 No

Exp.3 0.001 0.5 0.005 No

Second group of experiments

Exp.4 0.001 0.0 0.005 Yes

Exp.5 0.001 0.1 0.005 Yes

Exp.6 0.001 0.5 0.005 Yes

Third group of experiments

Exp.7 0.0001 0.0 0.005 Yes

Exp.8 0.0001 0.1 0.005 Yes

Exp.9 0.0001 0.5 0.005 Yes

 192

Similarly, to compare the experiments, the criteria stated in Table 8.3 were used. Since in this

case study, as in the previous one, a sample rate of 5 minutes were considered, the number of

samples in each period is obtained as 12*24=288*number of days. The statistical results

obtained from the three groups of experiments are given in Table 8.10.

TABLE 8.10. STATISTICAL RESULTS OF EXPERIMENTS IN CASE 2.

 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰 𝒏𝑪𝑯

First group of experiments

Exp.1 414 58393 377 24 4.25 184

Exp.2 2134 56684 366 38 3.68 128

Exp.3 7376 51447 361 61 3.11 191

Second group of experiments

Exp.4 419 58390 375 23 4.35 176

Exp.5 2103 56712 369 37 3.57 130

Exp.6 7214 51611 359 72 3 180

Third group of experiments

Exp.7 420 58385 379 23 10.65 182

Exp.8 2088 56727 369 46 6.52 127

Exp.9 7404 51419 361 106 4.65 164

According to this Table for each group of experiments, increasing 𝛽 causes an increase in 𝑛𝑇 ,

due to the fact that the new arriving sampls has more chance to be inserted into the training

sliding-window. This, in turn, causes an increase in 𝑛𝑈 due to an increase of training sliding-

window updates. Moreover, we can see that in all experiments, 𝑛𝑈 is much smaller than 𝑛𝑇.

This result reveals the fact that, the proposed method can prevent unnecessary parameter

updates whenever the training sliding-window is updated due to the insertion of the new

arriving sample.

For all experiments, the initial and updated models have been evaluated over each period in

the same way used in Section 8.4.1. The evaluation results of the three groups of experiments

are given in Tables 8.11 to 8.13.

 193

TABLE 8.11. ONE-STEP-AHEAD PREDICTION IN CASE 2.

 𝝆𝟏
𝒖

 First group of

experiments

Second group of

experiments

Third group of

experiments

 𝝆𝟏
𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9

Oct 0.075 0.007 0.007 0.006 0.007 0.007 0.006 0.007 0.006 0.006

Nov 0.387 0.008 0.008 0.007 0.009 0.009 0.007 0.008 0.008 0.007

Dec 0.290 0.008 0.008 0.007 0.009 0.007 0.008 0.007 0.007 0.007

Jan 0.480 0.009 0.005 0.005 0.009 0.006 0.005 0.006 0.005 0.005

Feb 0.409 0.009 0.007 0.008 0.009 0.009 0.007 0.007 0.007 0.007

Mar 0.293 0.008 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.006

Apr 0.152 0.007 0.006 0.006 0.006 0.006 0.008 0.006 0.006 0.006

May 0.046 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008

Jun 0.024 0.006 0.006 0.006 0.006 0.006 0.007 0.010 0.007 0.006

Jul 0.007 0.006 0.006 0.006 0.006 0.006 0.007 0.417 0.039 0.008

Aug 0.017 0.007 0.006 0.006 0.007 0.006 0.006 2.271 0.022 0.008

Sept 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.006

As it can be concluded from Table 8.11, the performance of the updated model for the one-

step-ahead prediction (i.e., 5 minutes ahead prediction) for all experiments over the periods

Oct to Jun is much better than that of the initial model. Regarding the period Aug, the

performance of the updated model for all experiments except Exps.7 and 8 is also better than

that of the initial model. Moreover, for all experiments except Exps.7 and 8, the performance

of the updated model over the period Jul is somehow the same as that of the initial model.

Furthermore, over the period Sept, for all experiments, similar performances of the updated

model and the initial model can be observed, which is due to the fact that the range of data, in

those months, is similar to the range used in the offline design (12 days in September of the

last year).

 194

TABLE 8.12. 48-STEPS-AHEAD PREDICTION IN CASE 2.

 𝝆𝟒𝟖
𝒖

 First group of

experiments

Second group of

experiments

Third group of

experiments

 𝝆𝟒𝟖
𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9

Oct 0.161 0.119 0.124 0.098 0.122 0.120 0.106 0.134 0.125 0.085

Nov 0.387 0.126 0.158 0.107 0.159 0.159 0.137 0.307 0.112 0.134

Dec 0.314 0.140 0.150 0.148 0.173 0.149 0.162 0.202 0.146 0.160

Jan 0.469 0.117 0.113 0.181 0.168 0.180 0.147 0.212 0.151 0.146

Feb 0.407 0.147 0.138 0.165 0.150 0.166 0.148 0.212 0.135 0.144

Mar 0.307 0.149 0.159 0.127 0.156 0.126 0.150 0.193 0.127 0.158

Apr 0.216 0.144 0.192 0.110 0.148 0.116 0.134 0.139 0.143 0.127

May 0.115 0.135 0.136 0.115 0.135 0.099 0.119 0.112 0.141 0.165

Jun 0.103 0.116 0.133 0.087 0.115 0.072 0.105 0.083 0.108 0.936

Jul 0.079 0.084 0.120 0.135 0.084 0.090 0.117 0.099 0.095 0.127

Aug 0.081 0.097 0.109 0.108 0.080 0.097 0.100 0.102 0.101 0.120

Sept 0.051 0.068 0.087 0.098 0.063 0.083 0.083 0.070 0.107 0.102

With respect to the 48-steps-ahead prediction (i.e., 4 hours ahead prediction), in all

experiments, the updated model considerably outperforms the initial model over the periods

Nov to Apr. Regarding the periods May and Jun, for Exp.5, the updated model has the best

performance and is superior to the initial model. For Exp.4, the updated model has the best

performance over the period Aug in comparison with the others and has the same

performance as the initial model. Moreover, the initial model over the periods Jul and Sept

has the best performance, in comparison with the corresponding updated model of each

experiment.

 195

TABLE 8.13. SUMMATION OVER PH IN CASE 2.

 𝑺𝒖

 First group of

experiments

Second group of

experiments

Third group of

experiments

 𝑺𝒊 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9

Oct 7.442 4.077 4.990 3.740 4.423 4.373 3.869 4.092 4.033 2.916

Nov 19.98 5.640 6.124 4.283 5.528 6.475 4.736 8.756 4.532 4.543

Dec 16.15 5.853 6.004 5.225 6.156 5.280 5.019 6.662 5.306 4.877

Jan 23.79 5.245 4.117 5.456 5.346 5.457 4.343 6.294 4.396 4.672

Feb 20.77 7.208 5.021 5.645 5.503 5.782 4.853 6.732 4.481 4.973

Mar 16.17 7.880 5.745 4.252 6.130 5.017 4.598 6.453 4.218 5.292

Apr 10.80 5.639 5.533 4.073 4.883 4.255 4.308 4.827 3.893 3.955

May 5.119 4.267 4.298 4.299 4.291 3.349 3.963 3.709 4.222 4.739

Jun 4.239 3.629 4.008 3.033 3.790 2.540 3.646 2.785 3.341 7.373

Jul 2.716 2.733 3.855 3.939 2.699 3.009 4.139 6.107 3.831 4.147

Aug 3.026 3.179 3.444 3.730 2.718 3.325 3.495 9.037 3.501 3.836

Sept 1.684 2.210 2.765 3.300 2.082 2.889 3.130 2.482 3.202 3.297

In order to analyze the performance of the initial and updated model over the whole prediction

horizon within each period, we compared the initial model with the updated model in terms of

the summation of RMSEs over the prediction horizon of 48 steps, within each period.

Similarly, the bold values in Table 8.13 denote the best result over each period. In all

experiments, the updated model performs much better than the initial model over the

prediction horizon for the periods Oct to Apr. For the remaining periods, in all experiments

except in Exp.7 for the periods Jul and Aug and in Exp.9 for the period Jun, the behavior of

the updated model over the prediction horizon is, to some extent, similar with that of the

initial model.

To sum up, based on the evaluation results shown in Tables 8.11 to 8.13, we can say that in

all experiments, the performance of the updated model within the periods of autumn and

winter is much better than that of the initial model, which has been trained based on

September data. On the other hand, in all experiments except Exp.7 and Exp.9, the updated

model within the periods of spring and summer can keep the mappings which have been

obtained for the previous periods. Hence, the behavior of the updated models, for all periods,

 196

is better or similar to that of the initial model, the latter obtained when the range of the

considered period is similar to the one used for off-line model design.

In order to graphically compare the performance of the updated model with the initial model,

the updated model of Exp.1 was selected. Figs. 8.24 to 8.35 illustrate the one-step-ahead

prediction over each period for both initial and updated model of Exp.1.

Fig. 8.24. One-step-ahead prediction over the Oct period in case 2.

Fig. 8.25. One-step-ahead prediction over the Nov period in case 2.

 197

Fig. 8.26. One-step-ahead prediction over the Dec period in case 2.

Fig. 8.27. One-step-ahead prediction over the Jan period in case 2.

 198

Fig. 8.28. One-step-ahead prediction over the Feb period in case 2.

Fig. 8.29. One-step-ahead prediction over the Mar period in case 2.

 199

Fig. 8.30. One-step-ahead prediction over the Apr period in case 2.

Fig. 8.31. One-step-ahead prediction over the May period in case 2.

 200

Fig. 8.32. One-step-ahead prediction over the Jun period in case 2.

Fig. 8.33. One-step-ahead prediction over the Jul period in case 2.

 201

Fig. 8.34. One-step-ahead prediction over the Aug period in case 2.

Fig. 8.35. One-step-ahead prediction over the Sept period in case 2.

As we can see in Figs. 8.24 to 8.35, there is a significant difference between the initial and the

updated models at the end of Oct to May periods. For these periods, comparing the predicted

value (the green curve) with the corresponding real value (the black curve), the updated model

has a much higher level of accuracy at the end of each period. As it can be seen, in those

 202

months, the output range of the initial model is similar to the one obtained in September,

where the off-line design was done Moving to summer months, we can see that the difference

between the updated model and the initial model is decreasing, but with the former

performing better. It reflects the fact that the updated model not only keeps the mappings

which have been constructed over the periods of winter but also adapts itself with new

samples arriving during the summer periods.

8.5. Comparison between the two case studies

In order to compare the first case study (i.e., OAT model of the University of Algarve) with

the second one (i.e., OAT model of the University of Almeria), Exp.4 from the first case

study and Exp.1 from the second one were selected (i.e., the corresponding graphs of Exp.4

and Exp.1 over each period were shown in Section 8.4.1 and 8.4.2, respectively.). Fig 8.36

shows the comparison of the updated models at the end of each period in Exp.4 and Exp.1

with their corresponding initial model in terms of RMSE for the 48-steps-ahead prediction.

As it can be seen in Fig. 8.36, the difference between the performance of the updated model in

Exp.1 (i.e., Fig 8.36(b)) and that of its corresponding initial model is significantly larger than

that in Exp.4 (i.e., 8.36(a)). Regarding the initial model of case study 1, we can say that the

initial model could somehow cover the operating regions of all periods except 1-Aug-2016

and 1-Sep-2016, where model update was necessary. This stems from the fact that the range

of data used to design the initial model (i.e., November data) covers, to some extent, the range

of most periods.

In contrast, in case 2, the initial model has a considerably worse performance than the updated

model, for the majority of the periods. As it can be seen in Fig. 8.36(b), the performance

difference between over periods Nov to Apr is considerable. This is explained by the

observation that in September the temperature ranges from 20º to 34º, roughly (please see Fig.

8.35), and in several months the minimum temperature is much lower, while in Summer

months the maximum is higher than 34º.

 203

(a)

(b)

Fig. 8.36. Comparison of the updated model with its corresponding initial model. (a) Exp.4 in

case study 1; (b) Exp.1 in case study 2.

8.6. Comparison with other methods

This section addresses the comparison of the proposed online adaptation method, herein after

called CHSWNLM, with others.

As it has been referred, in [168] two methods using a sliding window strategy, called

SWNLM and SAWNLM were proposed, and served as the basis of the method introduced in

this thesis. Recalling, in SWNLM, the sliding window is managed using FIFO policy, while

 204

in the SAWNLM, the sliding-window management policy is based on a dissimilarity measure.

In order to compare the CHSWNLM with the SWNLM and SAWNLM methods, data from

case study 2 (i.e., the OAT model for the University of Almeria) was used with the same

scenario mentioned in Section 8.4.2. The statistical and evaluation results are shown in Table

8.14 and 8.15, respectively. In Table 8.14, 𝒏 denotes the number of new arriving samples over

all periods. The other statistics in this table are ones used in Table 8.3. In Table 8.15, 𝝆𝟏 and

𝝆𝟒𝟖 denote the scaled one-step-ahead and the 48-steps-ahead 𝑅𝑀𝑆𝐸𝑠 associated with the

updated model at the end of each period, respectively. The bold values in these tables refer to

the best results.

TABLE 8.14. COMPARISON OF STATISTICAL RESULTS OBTAINED BY EXP.1,

SWNLM AND SAWNLM.

 𝒏 𝒏𝑻 𝒏𝑨 𝒏𝑹 𝒏𝑼 𝒏𝑰
CHSWNLM 59184 414 58393 377 24 4.25

SWNLM 59184 59184 - 0 270 2.77

SAWNLM 59184 58794 - 390 52 3.21

 As it can be seen in Table 8.14, the total number of new arriving samples which have been

inserted into the training sliding window (𝒏𝑻), the total number of updates (𝒏𝑼) and the total

number of iterations (𝒏𝑼 × 𝒏𝑰) in CHSWNLM are much smaller than in the other methods.

TABLE 8.15. COMPARISON OF CHSWNLM WITH SWNLM AND SAWNLM.

 𝝆𝟏 𝝆𝟒𝟖

CHSWNLM SWNLM SAWNLM CHSWNLM SWLNM SAWNLM

Oct 0.030 0.015 0.022 0.115 0.115 0.114

Nov 0.045 0.042 0.040 0.148 0.854 0.144

Dec 0.008 6.977 0.008 0.140 2.855 0.162

Jan 0.009 143.44 0.007 0.118 1.278 0.133

Feb 0.010 8.353 0.007 0.149 1.006 0.158

Mar 0.008 0.024 0.007 0.150 0.104 0.168

Apr 0.007 0.150 0.007 0.145 0.160 0.142

May 0.007 0.017 0.007 0.136 0.112 0.131

Jun 0.006 0.554 0.006 0.116 0.149 0.112

Jul 0.007 0.010 0.007 0.084 0.111 0.096

Aug 0.008 0.013 0.008 0.094 0.089 0.127

Sept 0.006 0.013 0.006 0.068 0.067 0.120

According to Table 8.14, SWNLM is clearly the worst method. Regarding CHSWNLM and

SAWNLM the mean values of 𝝆𝟏 are 0.0126 and 0.0110, respectively, while the

 205

corresponding values for 𝝆𝟒𝟖 are 0.1219 and 0.1339. Therefore, for this data, SAWNLM is

better than CHSWNLM for small prediction horizons, but worse for large ones.

As stated in Section 8.2.2, the method proposed in [179] is an efficient online version of

offline method ELM [191, 192]. In this method, called OS-ELM, the centers and spreads are

arbitrarily chosen and only the weights as linear parameters are updated. This method was

evaluated in several benchmarks in classification, regression and time series problems. It was

also evaluated using two types of feedforward networks: MLPs and RBFNNs. Moreover in

[179], the proposed method was compared with other online methods including RAN [180],

RAN-EKF [171], MRAN [181] and GGAP-RBF [193]. In this study, the CHSWNLM was

applied on Mackey-Glass time series stated in [179] where a RBFNN model was considered.

The time series problem is generated from the following delay differential equation as (8.30).

𝑑𝑥(𝑡)

𝑑(𝑡)
=

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 𝑏𝑥(𝑡)

(8.30)

By integrating Eq. (8.30) over the time interval [𝑡, 𝑡 + 1], the equation for one-step-ahead

prediction is obtained as Eq. (8.31).

𝑥(𝑡 + 1) =
2 − 𝑏

3
𝑥(𝑡) +

𝑎

2 + 𝑏
[

𝑥(𝑡 + 1 − 𝜏)

1 + 𝑥10(𝑡 + 1 − 𝜏)
+

𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
]

(8.31)

The time series used is generated under the condition 𝑥(𝑡 − 𝜏) = 0.3 for 0 ≤ 𝑡 ≤ 𝜏 , 𝑎 = 0.2,

𝑏 = 0.1 and 𝜏 = 17 and predicted using the four past samples 𝑠𝑘−50, 𝑠𝑘−44, 𝑠𝑘−38 and 𝑠𝑘−32

for each time instant 𝑘. Therefore, the time series predictive model can be described as Eq.

(8.32).

𝑦(𝑘) = 𝐹(𝑠𝑘−50, 𝑠𝑘−56, 𝑠𝑘−62, 𝑠𝑘−68) (8.32)

In the phase of performance evaluation in [179], the weights as linear parameters of the

corresponding RBFNN model are adjusted using the proposed online adaptation method

based on the training set of size 4000 samples; then the model is evaluated based on the one-

step-ahead prediction RMSE in the training and in a testing set of size 500 samples. All

samples were scaled in the range [0, 1]. In our work, in order to compare the CHSWNLM

with the others in [179], a fixed-structure RBFNN model with 120 hidden neurons was used

 206

as the one that was selected in the OS-ELM method. To keep further consistency, in our

study, an initial sliding window of the first 1620 samples (i.e., number of hidden neurons +

1500) was considered. Moreover, the next 650 samples were selected to initialize the

additional sliding window and then the next 1730 samples were considered as new arriving

samples throughout online adaptation process. Finally, the last 500 samples were constituted

the testing set. In this study, 𝝉𝒇, 𝜼 and 𝜷 were set to 0.001, 0.005 and 0.5, respectively.

The comparison of evaluation results obtained by CHSWNLM and those achieved by the

others methods in [179] is given in Table 8.16. In this Table, 𝜌𝑡𝑟 and 𝜌𝑡𝑒 denote the average

of RMSE on the training and testing sets over 50 trials, respectively. In addition, 𝑛𝑛 refers to

the number of hidden neurons in the corresponding RBFNN model.

As it can be observed in Table 8.16, CHSWNLM is much superior to the other methods.

TABLE 8.16. COMPARISON BETWEEN THE CHSWNLM METHOD AND OTHER

METHODS DESCRIBED IN [179].

 𝜌𝑡𝑟 𝜌𝑡𝑒 𝑛𝑛

OS-ELM 0.0184 0.0186 120

GGAP-RBF 0.0700 0.0368 13

MRAN 0.1101 0.0337 16

RAN-EKF 0.0726 0.0240 23

RAN 0.1006 0.0466 39

CHSWNLM 0.0016 0.0016 120

8.7. Conclusions

In this chapter, a sliding-window based online adaptation method was proposed to update a

RBFNN model, previously designed offline. The proposed method is an extension of the ones

proposed in [168], where the convex hull concept is employed, incorporating the current

sample in the training sliding window if it lies outside the current convex hull.

Experimental results showed that the proposed method can considerably improve the

performance of offline designed models for time-varying processes. In addition, it presents a

performance similar to SAWNLM, and much better performance than other methods.

 207

9. Conclusions and future work

9.1. Conclusions

This PhD was intended to address two important problems in the model design process which

are very important for an HVAC MPC application: data selection and online model

adaptation.

In a first step, a sequence of predictive RBFNN models were designed offline with the aim of

intelligently control HVAC systems to save energy and provide thermal comfort. Since

RBFNN models are data-driven models, data has a critical role in the model’s performance.

Inclusion of the input range boundary data samples in the training set is vital as they indicate

the input-output range of system/process. To identify such samples, convex hull algorithms

are applied. Due to the inefficiency of standard convex hull algorithms in terms of time and

space in high dimensions (they take 𝑂(𝑛⌊
𝑑

2
⌋) time and space where 𝑛 and 𝑑 denote the number

of samples and dimensions, respectively), as the first phase of this PhD thesis a new

randomized approximation convex hull algorithm in high dimensions called ApproxHull was

proposed, to cope with the limitations of standard convex hull algorithms in high dimensions.

ApproxHull takes 𝑂(𝑛2𝑑3𝑣3 + 𝑖3𝑝3) time where 𝑣 denotes the number of convex hull

vertices found, and 𝑖 and 𝑝 denote the number of iterations and population size, respectively.

ApproxHull was evaluated (Chapter 4) by comparing it to Quickhull [8], a known efficient

standard real convex hull algorithm, and also to Wang’s algorithm [68], a known

approximation algorithm in high dimensions, where the Quickhull algorithm was considered a

baseline for the comparisons. The simulation results obtained by applying them on a number

of artificial data sets showed that all vertices identified by ApproxHull belong to the set of

vertices of the real convex hull obtained by Quickhull, indicating a 100% precision, and also

demonstrated that ApproxHull could identify a higher percentage of vertices of the real

convex hull in comparison to the percentage identified by Wang’s algorithm, indicating a

higher recall. The ApproxHull’s performance was also evaluated in classification and

regression problems by applying it as a data selection method to create a proper training set

for designing models. For classification problems, SVM models were used while for

regression problems, MLP models were employed. In this evaluation, ApproxHull was

compared to a common random data selection method. The simulation results showed that

ApproxHull had better performance than random selection method for all classification and

 208

regression problems except for one classification and one regression problem in which both

selection methods presented the same results.

As in this work the MOGA was used to design RBFNN models, the influence of applying

ApproxHull in the MOGA model design framework was studied (Chapter 5) by comparing it

to the random selection method. The results demonstrated that ApproxHull had better

performance than random selection method in the context of the MOGA model design

framework. Two strategies were followed to design the models by the MOGA. In the first,

ApproxHull was employed on the whole data set to select fixed training, testing and

validation data sets to fit the parameters of all models in all generations of the MOGA. In the

second strategy, ApproxHull was independently applied for each single model to create

distinct training, testing and validation sets. The results showed that not only, the fixed and

distinct data sets strategies presented the same performance, but also that the run time of the

first strategy was much smaller than that of the second one.

To demonstrate the use of ApproxHull in real applications, three case studies were introduced

(Chapter 6). The two first corresponded to the estimation of the electricity consumption of a

building and to the application of MPC to the HVAC system in several rooms in order to save

energy and maintain thermal comfort. They demonstrated that the models designed by

benefiting from ApproxHull and the MOGA framework are comparable to those obtained by

other methods, but with much less complexity. In the third case study, which was intended to

develop an intelligent support system for automatic diagnosis of CVAs, a set of RBFNN

classification models were designed using ApproxHull and MOGA. This case study proved

the capability of ApproxHull to be applied on large size data sets in high dimensions. To

provide a more in-depth analysis of ApproxHull’s performance, it was compared (Chapter 7)

to other three methods, including random data selection, an entropy based unsupervised data

selection method proposed in [13] and a hybrid method involving ApproxHull and the

entropy based data selection method. Based on the experimental results, in most cases, the

ApproxHull and the hybrid method were superior to the others.

In the second phase of the work (Chapter 8), a convex-hull-based sliding window online

adaptation method was proposed. The goal was to update the models training data by

capturing newly arrived points that are out of the known input-output range, and hence being

able to adapt the models over time. The basic idea behind the method consists in comparing

newly arrived points to the known convex hull obtained by ApproxHull. If the new point is

outside the known convex hull (and sufficiently far) it is considered to update the model. To

evaluate the proposed method, two case studies were considered so that in both cases, a

 209

RBFNN predictive model was considered to forecast the one-step-ahead outside air

temperature, where the corresponding model was gradually updated over a number of periods

in one year. The results showed that the proposed method could prevent unnecessary updates

while keeping the model in an acceptable level of accuracy, and also comparable to, or better

than to other online adaptation methods.

9.2. Future works

Experimental results showed that the hybrid data selection method involving ApproxHull and

the entropy based data selection method proposed in [13], in most cases was comparable to

ApproxHull and superior to the other methods. This means that the combination of

ApproxHull to other filtering methods (e.g., unsupervised methods) should be studied. For

example, a clustering based method could be a proper alternative for random data selection

method. Based on such studies, a data selection tool could be provided allowing the user to

create training, testing and validation sets using different methods to hybridize with

ApproxHull.

Regarding the ApproxHull method, one of the termination criteria is the maximum

approximation distance of the furthest points to the current convex hull. The evaluation of this

criterion needs finding 2 × 𝑑 nearest neighbors of each furthest point and then solving a

quadratic optimization problem. Replacing this criterion with the heuristic applied in the new

proposed online adaptation method could be studied in terms of the run time and the

performance. In this work the proposed online adaptation method was evaluated based on

only one time series problem (i.e., the outside air temperature model). Applying the method

for a variety of case studies in different situations and comparing it with other online

adaptation methods could be considered.

 210

 211

References

[1] A. E. Ruano, E. M. Crispim, E. Z. E. Conceicao, and M. Lucio, "Prediction of

building's temperature using neural networks models," Energy and Buildings, vol. 38,

no. 6, pp. 682-694, Jun 2006.

[2] P. M. Ferreira, A. E. Ruano, S. Silva, and E. Z. E. Conceicao, "Neural Networks based

predictive control for thermal comfort and energy savings in public buildings," Energy

and Buildings, vol. 55, pp. 238-251, 2012.

[3] A. E. Ruano et al., "The IMBPC HVAC system: A complete MBPC solution for

existing HVAC systems," Energy and Buildings, vol. 120, pp. 145-158, May 2016.

[4] P. M. Ferreira and A. E. Ruano, "Evolutionary multiobjective neural network models

identification: evolving task-optimised models," New Advances in Intelligent Signal

Processing, vol. 372, pp. 21-53, 2011 2011.

[5] V. Bayer, "Survey of algorithms for the convex hull problem," Department of

Computer Science; Oregon State University, 1999.

[6] R. L. Graham, "An efficient algorithm for determining the convex hull of a finite

planar set," Inf. Process. Lett., vol. 1, no. 4, p. 2, 1972.

[7] R. A. Jarvis, "On the identification of the convex hull of a finite set of points in the

plane," Information Processing Letters, vol. 2, no. 1, pp. 18-21, 1973/03/01 1973.

[8] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The Quickhull algorithm for convex

hulls," ACM Transactions on Mathematical Software, vol. 22, no. 4, pp. 469-483, Dec

1996.

[9] F. P. Preparata and S. J. Hong, "Convex hulls of finite sets of points in two and three

dimensions," Commun. ACM, vol. 20, no. 2, pp. 87-93, 1977.

[10] J. L. Bentley, F. P. Preparata, and M. G. Faust, "Approximation algorithms for convex

hulls," Commun. ACM, vol. 25, no. 1, pp. 64-68, 1982.

[11] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction. Springer-

Verlag New York, Inc., 1985, p. 390.

[12] K. L. Clarkson and P. W. Shor, "Applications of random sampling in computational

geometry," Discrete & Computational Geometry, vol. 4, no. 5, pp. 387-421, 1989

1989.

[13] P. M. Ferreira, "Entropy based unsupervised selection of data sets for improved model

fitting," in Proceedings of the 2016 International Joint Conference on Neural

Networks (World Congress on Computational Intelligence), Vancouver, Canada,

2016: IEEE.

[14] G. Mestre et al., "An intelligent weather station," Sensors, vol. 15, no. 12, p. 29841,

2015.

[15] A. E. Ruano et al., "A neural-network based intelligent weather station," in Intelligent

Signal Processing (WISP), 2015 IEEE 9th International Symposium on, 2015, pp. 1-6.

[16] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous

activity," The bulletin of mathematical biophysics, journal article vol. 5, no. 4, pp.

115-133, 1943.

[17] S. Haykin, Neural networks: A comprehensive foundation, 2nd ed. Prentice Hall,

1999.

[18] A. Ruano, Artificial neural networks. Faro, Portugal: University of Algarve, Centre for

Intelligent Systems.

[19] M. W. Gardner and S. R. Dorling, "Artificial neural networks (the multilayer

perceptron) - A review of applications in the atmospheric sciences," Atmospheric

Environment, vol. 32, no. 14-15, pp. 2627-2636, Aug 1998.

 212

[20] D. S. Broomhead and D. Lowe, "Multivariable Functional Interpolation and Adaptive

Networks," Complex Systems, vol. 2, pp. 321--355, 1988.

[21] O. Kaynak, "Artificial neural networks and neural information processing," in Joint

International Conference Icann/Icinip, Istanbul, Turkey, 2003: Springer Berlin

Heidelberg.

[22] A. E. Ruano, C. Cabrita, J. V. Oliveira, and L. T. Koczy, "Supervised training

algorithms for B-Spline neural networks and neuro-fuzzy systems," International

Journal of Systems Science, vol. 33, no. 8, pp. 689-711, Jun 2002.

[23] A. E. Ruano, P. J. Fleming, C. Teixeira, K. Rodriguez-Vazquez, and C. M. Fonseca,

"Nonlinear identification of aircraft gas-turbine dynamics," Neurocomputing, vol. 55,

no. 3-4, pp. 551-579, Oct 2003.

[24] A. E. Ruano, P. M. Ferreira, and C. M. Fonseca, "An overview of nonlinear

identification and control with neural networks," in Intelligent Control Systems using

Computational Intelligence Techniques, A. E. Ruano, Ed. (IEEE Control Engineering

Series, no. 70): Institution of Electrical Engineers, 2005, pp. 37-87.

[25] T. Kavli and E. Weyer, "ASMOD (Adaptive Spline Modelling of Observation Data):

some theoretical and experimental results," presented at the Advances in Neural

Networks for Control and Systems, IEEE Colloquium on, Berlin, 1994.

[26] T. Kavli, "ASMOD - An algorithm for adaptive spline modeling of observation data,"

International Journal of Control, vol. 58, no. 4, pp. 947-967, Oct 1993.

[27] V. Vapnik, The nature of statistical learning theory, 2 ed. (Information Science and

Statistics). Springer-Verlag New York, 2000, p. 314.

[28] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no.

3, pp. 273-297, Sep 1995.

[29] T. Thomas Frie, N. Cristianini, and C. Campbell, "The kernel-adatron algorithm: A

fast and simple learning procedure for support vector machines," presented at the

Proceedings of the Fifteenth International Conference on Machine Learning, 1998.

[30] W. Sun, Ya-Xiang, Optimization Theory and Methods, 1 ed. Springer US, 2006.

[31] D. Tsegay and A. Mebrahtu, "Multidimensional and multi-parameter fortran-based

curve fitting tools," MEJS, vol. 1, no. 1, p. 20, 2009.

[32] K. Levenberg, "A method for the solution of certain problems in least squares," Quart.

Applied Math., vol. 2, pp. 164-168, 1944.

[33] D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear

parameters," Journal of the Society for Industrial and Applied Mathematics, vol. 11,

no. 2, pp. 431-441, 1963.

[34] A. E. B. Ruano, D. I. Jones, and P. J. Fleming, "A new formulation of the learning

problem for a neural network controller," in 30th IEEE Conference on Decision and

Control, Brighton, UK, 1991, vol. 1, pp. 865-866.

[35] Y. Wang, M. Chang, H. Chen, and M. Q. Wang, "Application of RBF neural network

in intelligent fault diagnosis system," in International Conference on Soft Computing

Techniques and Engineering Application, Icsctea, 2013, vol. 250, pp. 561-566.

[36] K. B. Kim and C. K. Kim, "Performance improvement of RBF network using ART2

algorithm and fuzzy logic system," in Advances in Artificial Intelligence, 2004, vol.

3339, pp. 853-860.

[37] S. Papadimitriou, S. Mavroudi, L. Vladutu, and A. Bezerianos, "Generalized radial

basis function networks trained with instance based learning for data mining of

symbolic data," Applied Intelligence, vol. 16, no. 3, pp. 223-234, May-Jun 2002.

[38] J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing

units," Neural Comput., vol. 1, no. 2, pp. 281-294, 1989.

 213

[39] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least-squares learning

algorithm for radial basis function networks," Ieee Transactions on Neural Networks,

vol. 2, no. 2, pp. 302-309, Mar 1991.

[40] S. Chen, P. M. Grant, and C. F. N. Cowan, "Orthogonal least-squares algorithm for

training multioutput radial basis function networks," Iee Proceedings-F Radar and

Signal Processing, vol. 139, no. 6, pp. 378-384, Dec 1992.

[41] C.-M. Huang and F.-L. Wang, "An RBF network with OLS and EPSO algorithms for

real-time power dispatch," Ieee Transactions on Power Systems, vol. 22, no. 1, pp. 96-

104, Feb 2007.

[42] D. Whitley, "A genetic algorithm tutorial," Statistics and Computing, vol. 4, no. 2, pp.

65-85, Jun 1994.

[43] C. M. M. d. Fonseca, "Multiobjective genetic algorithms with application to control

engineering problems," PhD, Department of Automatic Control and Systems

Engineering, University of Sheffield, 1995.

[44] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, "Multiobjective

evolutionary algorithms: A survey of the state of the art," Swarm and Evolutionary

Computation, vol. 1, no. 1, pp. 32-49, Mar 2011.

[45] E. Zitzler, K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary

algorithms: Empirical results," Evolutionary Computation, vol. 8, no. 2, pp. 173-195,

2000.

[46] C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in

multiobjective optimization," Evolutionary Computation, vol. 3, no. 1, pp. 1-16, 1995.

[47] C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and multiple constraint

handling with evolutionary algorithms. I. A unified formulation," Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 28, no. 1, pp.

26-37, 1998.

[48] C. M. Fonseca and P. J. Fleming, "Multiobjective genetic algorithms made easy:

Selection, sharing and mating restriction," presented at the Genetic Algorithms in

Engineering Systems: Innovations and Applications, UK, 1995.

[49] C. A. Teixeira, M. G. Ruano, A. E. Ruano, and W. C. A. Pereira, "A soft-computing

methodology for noninvasive time-spatial temperature estimation," IEEE Transactions

on Biomedical Engineering, vol. 55, no. 2, pp. 572-580, Feb 2008.

[50] P. M. Ferreira, E. A. Faria, and A. E. Ruano, "Neural network models in greenhouse

air temperature prediction," Neurocomputing, vol. 43, pp. 51-75, Mar 2002.

[51] C. E. Shannon, "A Mathematical Theory of Communication," The Bell System

Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

[52] W. Li, "Mutual information functions versus correlation functions," Journal of

Statistical Physics, journal article vol. 60, no. 5, pp. 823-837, 1990.

[53] M. B. Stojanovic, M. M. Bozic, M. M. Stankovic, and Z. P. Stajic, "A methodology

for training set instance selection using mutual information in time series prediction,"

Neurocomputing, vol. 141, pp. 236-245, Oct 2 2014.

[54] R. Mena, F. Rodríguez, M. Castilla, and M. R. Arahal, "A prediction model based on

neural networks for the energy consumption of a bioclimatic building," Energy and

Buildings, vol. 82, pp. 142-155, 10// 2014.

[55] M. Rosenblatt, "Remarks on some nonparametric estimates of a density function " in

The Annals of Mathematical Statistics, 1956, vol. 27, pp. 832-837: Institute of

Mathematical Statistics.

[56] E. Parzen, "On estimation of a probability density function and mode," The Annals of

Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

 214

[57] R. Moddemeijer, "On estimation of entropy and mutual information of continuous

distributions," Signal Processing, vol. 16, no. 3, pp. 233-248, 1989/03/01 1989.

[58] Y.-I. Moon, B. Rajagopalan, and U. Lall, "Estimation of mutual information using

kernel density estimators," Physical Review E, vol. 52, no. 3, pp. 2318-2321, 09/01/

1995.

[59] F. Wilcoxon, "Individual comparisons by ranking methods," in Breakthroughs in

Statistics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New York,

NY: Springer-Verlag New York, 1992, pp. 196-202.

[60] J. Demsar, "Statistical comparisons of classifiers over multiple data sets," Journal of

Machine Learning Research, vol. 7, pp. 1-30, Jan 2006.

[61] O. R. Joseph, Computational geometry in C, 2 ed. Cambridge University Press, 1998.

[62] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational geometry:

Algorithms and applications, 3rd ed. Berlin Heidelberg: Springer-Verlag 2008, p. 386.

[63] H. Edelsbrunner, W. Brauer, G. Rozenberg, and A. Salomaa, Eds. Algorithms in

combinatorial geometry (EATCS Monographs in Theoretical Computer Science, no.

10). Springer Berlin Heidelberg, 1987, p. 423.

[64] H. R. Khosravani, A. E. Ruano, and P. M. Ferreira, "A simple algorithm for convex

hull determination in high dimensions," in Intelligent Signal Processing (WISP), 2013

IEEE 8th International Symposium on, 2013, pp. 109-114.

[65] B. Grünbaum, G. M. Ziegler, Ed. Convex polytopes, 2 ed. (Graduate Texts in

Mathematics, no. 221). New York: Springer-Verlag, 2003.

[66] R. Seidel, "Constructing higher-dimensional convex hulls at logarithmic cost per

face," presented at the Proceedings of the eighteenth annual ACM symposium on

theory of computing, Berkeley, California, USA, 1986.

[67] B. Chazelle, "An optimal convex hull algorithm in any fixed dimension," Discrete &

Computational Geometry, journal article vol. 10, no. 4, pp. 377-409, 1993.

[68] D. Wang, H. Qiao, B. Zhang, and M. Wang, "Online support vector machine based on

convex hull vertices selection," IEEE Transactions on Neural Networks and Learning

Systems, vol. 24, no. 4, pp. 593-609, Apr 2013.

[69] J. Arturo Olvera-Lopez, J. Ariel Carrasco-Ochoa, J. Francisco Martinez-Trinidad, and

J. Kittler, "A review of instance selection methods," Artificial Intelligence Review,

vol. 34, no. 2, pp. 133-143, Aug 2010.

[70] D. R. Wilson and T. R. Martinez, "Reduction techniques for instance-based learning

algorithms," Machine Learning, vol. 38, no. 3, pp. 257-286, Mar 2000.

[71] T. M. Cover and P. E. Hart, "Nearest neighbor pattern classification," IEEE

Transactions on Information Theory, vol. 13, no. 1, pp. 21-+, 1967 1967.

[72] P. Hart, "The condensed nearest neighbor rule (Corresp.)," IEEE Transactions on

Information Theory, vol. 14, no. 3, pp. 515-516, 1968.

[73] H. Liu and H. Motoda, Instance selection and construction for data mining. Springer

US, 2013.

[74] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour, "An algorithm for a selective

nearest neighbor decision rule (Corresp.)," IEEE Transactions on Information Theory,

vol. 21, no. 6, pp. 665-669, 1975.

[75] K. Gowda and G. Krishna, "The condensed nearest neighbor rule using the concept of

mutual nearest neighborhood (Corresp.)," IEEE Transactions on Information Theory,

vol. 25, no. 4, pp. 488-490, 1979.

[76] C.-H. Chou, B.-H. Kuo, and F. Chang, "The generalized condensed nearest neighbor

rule as a data reduction method," in 18th International Conference on Pattern

Recognition (ICPR 2006), Hong Kong, PEOPLES R CHINA, 2006, pp. 556-559,

2006.

 215

[77] D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data,"

IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-2, no. 3, pp. 408-

421, 1972.

[78] I. Tomek, "An experiment with the edited nearest-neighbor rule," IEEE Transactions

on Systems, Man, and Cybernetics, vol. SMC-6, no. 6, pp. 448-452, 1976.

[79] H. Brighton and C. Mellish, "Advances in instance selection for instance-based

learning algorithms," Data Mining and Knowledge Discovery, vol. 6, no. 2, pp. 153-

172, Apr 2002.

[80] J. R. Cano, F. Herrera, and M. Lozano, "Using evolutionary algorithms as instance

selection for data reduction in KDD: An experimental study," IEEE Transactions on

Evolutionary Computation, vol. 7, no. 6, pp. 561-575, Dec 2003.

[81] P.-Y. Yin, Modeling, analysis, and applications in metaheuristic computing:

Advancements and trends. IGI Publishing, 2012, p. 463.

[82] L. I. Kuncheva, "Editing for the k-nearest neighbors rule by a genetic algorithm,"

Pattern Recognition Letters, vol. 16, no. 8, pp. 809-814, 8// 1995.

[83] L. I. Kuncheva, "Fitness functions in editing k-NN reference set by genetic

algorithms," Pattern Recognition, vol. 30, no. 6, pp. 1041-1049, 6// 1997.

[84] L. I. Kuncheva and J. C. Bezdek, "Nearest prototype classification: Clustering, genetic

algorithms, or random search?," IEEE Transactions on Systems Man and Cybernetics

Part C-Applications and Reviews, vol. 28, no. 1, pp. 160-164, Feb 1998.

[85] V. Cerveron and F. J. Ferri, "Another move toward the minimum consistent subset: A

tabu search approach to the condensed nearest neighbor rule," IEEE Transactions on

Systems Man and Cybernetics Part B-Cybernetics, vol. 31, no. 3, pp. 408-413, Jun

2001.

[86] H. B. Zhang and G. Y. Sun, "Optimal reference subset selection for nearest neighbor

classification by tabu search," Pattern Recognition, vol. 35, no. 7, pp. 1481-1490, Jul

2002, Art. no. Pii s0031-3203(01)00137-6.

[87] F. Glover and M. Laguna, "Tabu Search∗," in Handbook of Combinatorial

Optimization, M. P. Pardalos, D.-Z. Du, and L. R. Graham, Eds. New York, NY:

Springer New York, 2013, pp. 3261-3362.

[88] J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and J. F. Martinez-Trinidad, "Sequential

search for decremental edition," Intelligent Data Engineering and Automated

Learning Ideal 2005, Proceedings, vol. 3578, pp. 280-285, 2005 2005.

[89] J. Kittler, "Feature selection and extraction," in Handbook of pattern recognition and

image processing, T. Young and K. Fu, Eds. New York: Academic Press, 1986, pp.

203-217.

[90] J. A. Olvera-Lopez, J. F. Martinez-Trinidad, and J. A. Carrasco-Ochoa, "Restricted

sequential floating search applied to object selection," Machine Learning and Data

Mining in Pattern Recognition, Proceedings, vol. 4571, pp. 694-702, 2007 2007.

[91] P. Pudil, F. Ferri, J. Novovicová, and K. J, "Floating search methods for feature

selection with nonmonotonic criterion functions," in Proceedings of the 12th

international conference on pattern recognition, 1994, pp. 279-283: IEEE Computer

Society Press.

[92] Y. G. Li, Z. H. Hu, Y. Z. Cai, and W. D. Zhang, "Support vector based prototype

selection method for nearest neighbor rules," Advances in Natural Computation, Pt 1,

Proceedings, vol. 3610, pp. 528-535, 2005 2005.

[93] A. Srisawat, T. Phienthrakul, and B. Kijsirikul, "SV-kNNC: An algorithm for

improving the efficiency of k-nearest neighbor," Pricai 2006: Trends in Artificial

Intelligence, Proceedings, vol. 4099, pp. 975-979, 2006 2006.

 216

[94] R. A. Mollineda, F. J. Ferri, and E. Vidal, "An efficient prototype merging strategy for

the condensed 1-NN rule through class-conditional hierarchical clustering," Pattern

Recognition, vol. 35, no. 12, pp. 2771-2782, Dec 2002, Art. no. Pii s0031-

3203(01)00208-4.

[95] C. J. Veenman and M. J. T. Reinders, "The nearest subclass classifier: A compromise

between the nearest mean and nearest neighbor classifier," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1417-1429, Sep 2005.

[96] C. J. Veenman, M. J. T. Reinders, and E. Backer, "A maximum variance cluster

algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 9, pp. 1273-1280, Sep 2002.

[97] J. Arturo Olvera-López, J. Ariel Carrasco-Ochoa, and J. Francisco Martínez-Trinidad,

"Object selection based on clustering and border objects," in Computer Recognition

Systems 2, M. Kurzynski, E. Puchala, M. Wozniak, and A. Zolnierek, Eds. Berlin,

Heidelberg: Springer, 2007, pp. 27-34.

[98] R. Paredes and E. Vidal, "Weighting prototypes. A new editing approach," in 15th

International Conference on Pattern Recognition (ICPR-2000), Barcelona, Spain,

2000, pp. 25-28, 2000.

[99] J. A. Olvera-Lopez, J. A. Carrasco-Ochoa, and J. F. Martinez-Trinidad, "Prototype

selection via prototype relevance," Progress in Pattern Recognition, Image Analysis

and Applications, Proceedings, vol. 5197, pp. 153-160, 2008 2008.

[100] D. R. Wilson and T. R. Martinez, "Improved heterogeneous distance functions,"

Journal of Artificial Intelligence Research, vol. 6, pp. 1-34, 1997 1997.

[101] A. Guillen, L. J. Herrera, G. Rubio, H. Pomares, A. Lendasse, and I. Rojas, "New

method for instance or prototype selection using mutual information in time series

prediction," Neurocomputing, vol. 73, no. 10–12, pp. 2030-2038, 6// 2010.

[102] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,

2012.

[103] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," in

Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp.

14-21.

[104] J. C. Riquelme, J. S. Aguilar-Ruiz, and M. Toro, "Finding representative patterns with

ordered projections," Pattern Recognition, vol. 36, no. 4, pp. 1009-1018, Apr 2003,

Art. no. Pii s0031-3203(02)00119-x.

[105] B. L. Narayan, C. A. Murthy, and S. K. Pal, "Maxdiff kd-trees for data condensation,"

Pattern Recognition Letters, vol. 27, no. 3, pp. 187-200, Feb 2006.

[106] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best

matches in logarithmic expected time," ACM Trans. Math. Softw., vol. 3, no. 3, pp.

209-226, 1977.

[107] P. Malosek and V. Stopjakova, "PCA data preprocessing for neural network-based

detection of parametric defects in analog IC," in IEEE Workshop on Design and

Diagnostics of Electronic Circuits and Systems, 2006, pp. 131-135.

[108] A. Lopez-Chau, L. L. Garcia, J. Cervantes, X. Li, and W. Yu, "Data selection using

decision tree for SVM classification," presented at the 24th International Conference

on Tools with Artificial Intelligence (ICTAI), 2012.

[109] J. Nalepa and M. Kawulok, "A memetic algorithm to select training data for support

vector machines," presented at the Proceedings of the 2014 conference on genetic and

evolutionary computation, Vancouver, BC, Canada, 2014.

[110] A. Lopez Chau, X. Li, and W. Yu, "Large data sets classification using convex-

concave hull and support vector machine," Soft Computing, vol. 17, no. 5, pp. 793-

804, May 2013.

 217

[111] E. W. Weisstein. (2014). Plane. Available: http://mathworld.wolfram.com/Plane.html

[112] E. W. Weisstein. (2014). Point-Plane Distance. Available:

http://mathworld.wolfram.com/Point-PlaneDistance.html

[113] C. B. Barber. (1995). Imprecision in Qhull. Available: http://www.qhull.org/html/qh-

impre.htm

[114] K. Sastry and D. Goldberg, "Search methodologies," in Introductory Tutorials in

Optimization and Decision Support Techniques, E. K. K. Burke, Graham, Ed.:

Springer US, 2005.

[115] A. Frank and A. Asuncion, "UCI machine learning repository," ed, 2013.

[116] E. Hajimani, M. G. Ruano, and A. E. Ruano, "MOGA design for neural networks

based system for automatic diagnosis of cerebral vascular accidents," in Intelligent

Signal Processing (WISP), 2015 IEEE 9th International Symposium on, 2015, pp. 1-6.

[117] M. G. Ruano, E. Hajimani, and A. E. Ruano, "A radial basis function classifier for the

automatic diagnosis of cerebral vascular accidents," presented at the GMEPE/PAHCE,

Madrid, Spain, 2016.

[118] C. E. Rasmussen et al. (1996). Delve datasets. Available:

http://www.cs.toronto.edu/~delve/data/datasets.html

[119] A. E. Ruano et al., "Improving a neural networks based HVAC predictive control

approach," in Intelligent Signal Processing (WISP), 2015 IEEE 9th International

Symposium on, 2015, pp. 1-6.

[120] H. Khosravani, M. Castilla, M. Berenguel, A. Ruano, and P. Ferreira, "A comparison

of energy consumption prediction models based on neural networks of a bioclimatic

building," Energies, vol. 9, no. 1, p. 57, 2016.

[121] A. Ruano et al., "PVM-based intelligent predictive control of HVAC systems," IFAC-

PapersOnLine, vol. 49, no. 5, pp. 371-376, 2016.

[122] L. Perez-Lombard, J. Ortiz, and C. Pout, "A review on buildings energy consumption

information," Energy and Buildings, vol. 40, no. 3, pp. 394-398, 2008 2008.

[123] P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Abd. Majid, "A global

review of energy consumption, CO2 emissions and policy in the residential sector

(with an overview of the top ten CO2 emitting countries)," Renewable & Sustainable

Energy Reviews, vol. 43, pp. 843-862, Mar 2015.

[124] H.-x. Zhao and F. Magoules, "A review on the prediction of building energy

consumption," Renewable & Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586-

3592, Aug 2012.

[125] J. Liang and R. Du, "Model-based fault detection and diagnosis of HVAC systems

using support vector machine method," International Journal of Refrigeration-Revue

Internationale Du Froid, vol. 30, no. 6, pp. 1104-1114, Sep 2007.

[126] L. Suganthi and A. A. Samuel, "Energy models for demand forecasting-A review,"

Renewable & Sustainable Energy Reviews, vol. 16, no. 2, pp. 1223-1240, Feb 2012.

[127] F. Manzano-Agugliaro, F. G. Montoya, A. Sabio-Ortega, and A. Garcia-Cruz,

"Review of bioclimatic architecture strategies for achieving thermal comfort,"

Renewable & Sustainable Energy Reviews, vol. 49, pp. 736-755, Sep 2015.

[128] C. Gallo, "Bioclimatic architecture," Renewable Energy, vol. 5, no. 5-8, pp. 1021-

1027, Aug 1994.

[129] A. F. Tzikopoulos, M. C. Karatza, and J. A. Paravantis, "Modeling energy efficiency

of bioclimatic buildings," Energy and Buildings, vol. 37, no. 5, pp. 529-544, May

2005.

[130] R. Albatici and F. Passerini, "Bioclimatic design of buildings considering heating

requirements in Italian climatic conditions. A simplified approach," Building and

Environment, vol. 46, no. 8, pp. 1624-1631, Aug 2011.

http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/Point-PlaneDistance.html
http://www.qhull.org/html/qh-impre.htm
http://www.qhull.org/html/qh-impre.htm
http://www.cs.toronto.edu/~delve/data/datasets.html

 218

[131] N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in

environmental protection: A review," Renewable & Sustainable Energy Reviews, vol.

15, no. 3, pp. 1513-1524, Apr 2011.

[132] Y. Hua, M. Oliphant, and E. Jing Hu, "Development of renewable energy in Australia

and China: A comparison of policies and status," Renewable Energy, vol. 85, pp. 1044

- 1051, 2016.

[133] N. Scarlat, J.-F. Dallemand, F. Monforti-Ferrario, M. Banja, and V. Motola,

"Renewable energy policy framework and bioenergy contribution in the European

Union – An overview from national renewable energy action plans and progress

reports," Renewable and Sustainable Energy Reviews, vol. 51, pp. 969 - 985, 2015.

[134] A. S. Ahmad et al., "A review on applications of ANN and SVM for building

electrical energy consumption forecasting," Renewable & Sustainable Energy

Reviews, vol. 33, pp. 102-109, May 2014.

[135] N. Fumo, "A review on the basics of building energy estimation," Renewable &

Sustainable Energy Reviews, vol. 31, pp. 53-60, Mar 2014.

[136] S. A. Kalogirou, "Artificial neural networks in energy applications in buildings,"

International Journal of Low Carbon Technologies, vol. 1, no. 3, p. 15, 2006.

[137] A. Foucquier, S. Robert, F. Suard, L. Stephan, and A. Jay, "State of the art in building

modelling and energy performances prediction: A review," Renewable & Sustainable

Energy Reviews, vol. 23, pp. 272-288, Jul 2013.

[138] M. S. Al-Homoud, "Computer-aided building energy analysis techniques," Building

and Environment, vol. 36, no. 4, pp. 421-433, May 2001.

[139] S. W. Wang and X. H. Xu, "Simplified building model for transient thermal

performance estimation using GA-based parameter identification," International

Journal of Thermal Sciences, vol. 45, no. 4, pp. 419-432, Apr 2006.

[140] X. Lu, T. Lu, C. J. Kibert, and M. Viljanen, "Modeling and forecasting energy

consumption for heterogeneous buildings using a physical-statistical approach,"

Applied Energy, vol. 144, pp. 261-275, Apr 15 2015.

[141] A. Lomet, F. Suard, and D. Cheze, "Statistical modeling for real domestic hot water

consumption forecasting," International Conference on Solar Heating and Cooling for

Buildings and Industry, Shc 2014, vol. 70, pp. 379-387, 2015 2015.

[142] Z. Ma, H. Li, Q. Sun, C. Wang, A. Yan, and F. Starfelt, "Statistical analysis of energy

consumption patterns on the heat demand of buildings in district heating systems,"

Energy and Buildings, vol. 85, pp. 464-472, Dec 2014.

[143] N. Fumo and M. A. R. Biswas, "Regression analysis for prediction of residential

energy consumption," Renewable & Sustainable Energy Reviews, vol. 47, pp. 332-

343, Jul 2015.

[144] A. Hernandez Neto and F. A. Sanzovo Fiorelli, "Comparison between detailed model

simulation and artificial neural network for forecasting building energy consumption,"

Energy and Buildings, vol. 40, no. 12, pp. 2169-2176, 2008 2008.

[145] M. Aydinalp-Koksal and V. I. Ugursal, "Comparison of neural network, conditional

demand analysis, and engineering approaches for modeling end-use energy

consumption in the residential sector," Applied Energy, vol. 85, no. 4, pp. 271-296,

Apr 2008.

[146] P. M. Ferreira, A. E. Ruano, R. Pestana, and L. T. Kóczy, "Evolving RBF predictive

models to forecast the Portuguese electricity consumption " presented at the 2nd IFAC

International Conference on Intelligent Control Systems and Signal Processing,

Turkey, 2009.

 219

[147] K. Li, H. Su, and J. Chu, "Forecasting building energy consumption using neural

networks and hybrid neuro-fuzzy system: A comparative study," Energy and

Buildings, vol. 43, no. 10, pp. 2893-2899, Oct 2011.

[148] S. Karatasou, M. Santamouris, and V. Geros, "Modeling and predicting building's

energy use with artificial neural networks: Methods and results," Energy and

Buildings, vol. 38, no. 8, pp. 949-958, Aug 2006.

[149] F. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, "Forecasting electricity

consumption: A comparison of regression analysis, neural networks and least squares

support vector machines," International Journal of Electrical Power & Energy

Systems, vol. 67, pp. 431-438, May 2015.

[150] B. Dong, C. Cao, and S. E. Lee, "Applying support vector machines to predict

building energy consumption in tropical region," Energy and Buildings, vol. 37, no. 5,

pp. 545-553, May 2005.

[151] H. C. Jung, J. S. Kim, and H. Heo, "Prediction of building energy consumption using

an improved real coded genetic algorithm based least squares support vector machine

approach," Energy and Buildings, vol. 90, pp. 76-84, Mar 1 2015.

[152] L. Suganthi, S. Iniyan, and A. A. Samuel, "Applications of fuzzy logic in renewable

energy systems - A review," Renewable & Sustainable Energy Reviews, vol. 48, pp.

585-607, Aug 2015.

[153] L. Ciabattoni, M. Grisostomi, G. Ippoliti, and S. Longhi, "Fuzzy logic home energy

consumption modeling for residential photovoltaic plant sizing in the new Italian

scenario," Energy, vol. 74, pp. 359-367, Sep 1 2014.

[154] K. Li and H. Su, "Forecasting building energy consumption with hybrid genetic

algorithm-hierarchical adaptive network-based fuzzy inference system," Energy and

Buildings, vol. 42, no. 11, pp. 2070-2076, Nov 2010.

[155] C. Hamzacebi and H. A. Es, "Forecasting the annual electricity consumption of

Turkey using an optimized grey model," Energy, vol. 70, pp. 165-171, Jun 1 2014.

[156] Y.-S. Lee and L.-I. Tong, "Forecasting energy consumption using a grey model

improved by incorporating genetic programming," Energy Conversion and

Management, vol. 52, no. 1, pp. 147-152, Jan 2011.

[157] J. J. Guo, J. Y. Wu, and R. Z. Wang, "A new approach to energy consumption

prediction of domestic heat pump water heater based on grey system theory," Energy

and Buildings, vol. 43, no. 6, pp. 1273-1279, Jun 2011.

[158] P. Dagnely, T. Ruette, and T. Tourwe, "Predicting hourly energy consumption. Can

you beat an autoregressive model?," in 24th Annual Machine Learning Conference of

Belgium and the Netherlands, Benelearn, 2015.

[159] Estación Experimental "Las Palmerillas", C. R. d. Almería, Ed. Datos meteorológicos.

Campañas agrícolas 76/77 - 94/95. 1997, p. 54.

[160] M. Á. Castilla, José Domingo Rodriguez, Francisco de Asis Berenguel, Manuel,

Comfort control in buildings, 1 ed. (Advances in Industrial Control). London,

England: Springer London, 2014, pp. XXIV, 237.

[161] M. R. Heras, M. J. Jimenez, M. J. San Isidro, L. F. Zarzalejo, and M. Perez, "Energetic

analysis of a passive solar design, incorporated in a courtyard after refurbishment,

using an innovative cover component based in a sawtooth roof concept," Solar

Energy, vol. 78, no. 1, pp. 85-96, 2005 2005.

[162] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are

universal approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989 1989.

[163] A. M. Fraser and H. L. Swinney, "Independent coordinates for strange attractors from

mutual information," Physical Review A, vol. 33, no. 2, pp. 1134-1140, Feb 1986.

 220

[164] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, "Determining embedding dimension

for phase-spece reconstruction using a geometrical construction," Physical Review A,

vol. 45, no. 6, pp. 3403-3411, Mar 15 1992.

[165] D. W. Scott and S. R. Sain, "Multidimensional density estimation," in Handbook of

Statistics: Data Mining and Data Visualization: Elsevier, 2005.

[166] P. M. Ferreira, A. E. Ruano, and I. Ieee, "Exploiting the separability of linear and

nonlinear parameters in radial basis function networks," in Adaptive Systems for

Signal Processing, Communications and Control Symposium, 2000, pp. 321-326:

IEEE.

[167] P. M. Ferreira and A. E. Ruano, "On-line sliding-window Levenberg-Marquardt

methods for neural network models," in International Symposium on Intelligent Signal

Processing, 2007, pp. 163-168: IEEE.

[168] P. M. Ferreira and A. E. Ruano, "Online sliding-window methods for process model

adaptation," IEEE Transactions on Instrumentation and Measurement, vol. 58, pp.

3012-3020, 2009.

[169] B. Widrow and M. A. Lehr, "30 years of adaptive neural networks - perceptron,

madaline and backpropagation," 1990, vol. 78, no. 9, pp. 1415-1442: IEEE.

[170] O. Nelles, Nonlinear system identification, 1 ed. Springer-Verlag Berlin Heidelberg,

2001, p. 786.

[171] V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential

learning with neural networks," Neural Computation, vol. 5, no. 6, pp. 954-975, Nov

1993.

[172] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Muller, "Efficient backprop," Neural

Networks: Tricks of the Trade, vol. 1524, pp. 9-50, 1998 1998.

[173] L. S. H. Ngia, J. Sjoberg, and M. Viberg, "Adaptive neural nets filter using a recursive

Levenberg-Marquardt search direction," in 32nd Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, Ca, 1998, pp. 697-701, 1998.

[174] V. S. Asirvadam, S. F. McLoone, and G. W. Irwin, "Parallel and separable recursive

Levenberg-Marquardt training algorithm," Neural Networks for Signal Processing Xii,

Proceedings, pp. 129-138, 2002 2002.

[175] J. Nagumo and A. Noda, "A learning method for system identification," IEEE

Transactions on Automatic Control, vol. 12, no. 3, pp. 282-287, 1967.

[176] P. C. Parks and J. Militzer, "A comparison of five algorithms for the training of

CMAC memories for learning control systems," Automatica, vol. 28, no. 5, pp. 1027-

1035, 1992.

[177] H. Akaike, "A new look at the statistical model identification," IEEE Transactions on

Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

[178] H. Chen, Y. Gong, and X. Hong, "Online modeling with tunable RBF network," IEEE

Transactions on Cybernetics, vol. 43, no. 3, pp. 935-947, Jun 2013.

[179] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and

accurate online sequential learning algorithm for feedforward networks," IEEE

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, Nov 2006.

[180] J. Platt, "A resource-allocating network for function interpolation," Unsupervised

Learning: Foundations of Neural Computation, pp. 341-353, 1999 1999.

[181] Y. W. Lu, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for

function approximation using minimal radial basis function neural networks," Neural

Computation, vol. 9, no. 2, pp. 461-478, Feb 15 1997.

[182] J.-c. Yin, Z.-j. Zou, and F. Xu, "Sequential learning radial basis function network for

real-time tidal level predictions," Ocean Engineering, vol. 57, pp. 49-55, Jan 1 2013.

 221

[183] H.-G. Han, Q.-l. Chen, and J.-F. Qiao, "An efficient self-organizing RBF neural

network for water quality prediction," Neural Networks, vol. 24, no. 7, pp. 717-725,

Sep 2011.

[184] G. B. Huang, P. Saratchandran, and N. Sundararajan, "An efficient sequential learning

algorithm for growing and pruning RBF (GAP-RBF) networks," IEEE Transactions

on Systems Man and Cybernetics Part B-Cybernetics, vol. 34, no. 6, pp. 2284-2292,

Dec 2004.

[185] Y. Jun and M. J. Er, "An enhanced online sequential extreme learning machine

algorithm," in Chinese Control and Decision Conference, 2008, vol. 1-11, pp. 2902-

2907.

[186] D. K. S. Tok, D.-L. Yu, C. Mathews, D.-Y. Zhao, and Q.-M. Zhu, "Adaptive structure

radial basis function network model for processes with operating region migration,"

Neurocomputing, vol. 155, pp. 186-193, May 1 2015.

[187] A. Alexandridis, H. Sarimveis, and G. Bafas, "A new algorithm for online structure

and parameter adaptation of RBF networks," Neural Networks, vol. 16, no. 7, pp.

1003-1017, Sep 2003.

[188] A. Alexandridis, "Evolving RBF neural networks for adaptive soft-sensor design,"

International Journal of Neural Systems, vol. 23, no. 6, Dec 2013, Art. no. 1350029.

[189] X. P. Lai and B. Li, "An efficient learning algorithm generating small RBF neural

networks," Neural Network World, vol. 15, no. 6, pp. 525-533, 2005 2005.

[190] V. S. Asirvadam, S. F. McLoone, and R. Palaniappan, "Bio-signal identification using

simple growing RBF-network (OLACA)," in International Conference on Intelligent

& Advanced Systems, 2007, vol. 1-3, pp. 263-267.

[191] G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning

scheme of feedforward neural networks," in IEEE International Joint Conference on

Neural Networks (IJCNN), Budapest, HUNGARY, 2004, pp. 985-990, 2004.

[192] G. B. Huang and C. K. Siew, "Extreme learning machine: RBF network case," in 8th

International Conference on Control, Automation, Robotics and Vision, 2004, vol. 1-

3, pp. 1029-1036.

[193] G. B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and

pruning RBF (GGAP-RBF) neural network for function approximation," IEEE

Transactions on Neural Networks, vol. 16, no. 1, pp. 57-67, Jan 2005.

