4 research outputs found

    A Supervised STDP-based Training Algorithm for Living Neural Networks

    Full text link
    Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform machine learning tasks on digital computers. The proposed work explores the possibilities of using living neural networks in vitro as basic computational elements for machine learning applications. A new supervised STDP-based learning algorithm is proposed in this work, which considers neuron engineering constrains. A 74.7% accuracy is achieved on the MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201

    Design and development of opto-neural processors for simulation of neural networks trained in image detection for potential implementation in hybrid robotics

    Full text link
    Neural networks have been employed for a wide range of processing applications like image processing, motor control, object detection and many others. Living neural networks offer advantages of lower power consumption, faster processing, and biological realism. Optogenetics offers high spatial and temporal control over biological neurons and presents potential in training live neural networks. This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics achieving accuracy comparable to traditional neural network training algorithms

    Modeling Pitch Perception With an Active Auditory Model Extended by Octopus Cells

    Get PDF
    Pitch is an essential category for musical sensations. Models of pitch perception are vividly discussed up to date. Most of them rely on definitions of mathematical methods in the spectral or temporal domain. Our proposed pitch perception model is composed of an active auditory model extended by octopus cells. The active auditory model is the same as used in the Stimulation based on Auditory Modeling (SAM), a successful cochlear implant sound processing strategy extended here by modeling the functional behavior of the octopus cells in the ventral cochlear nucleus and by modeling their connections to the auditory nerve fibers (ANFs). The neurophysiological parameterization of the extended model is fully described in the time domain. The model is based on latency-phase en- and decoding as octopus cells are latency-phase rectifiers in their local receptive fields. Pitch is ubiquitously represented by cascaded firing sweeps of octopus cells. Based on the firing patterns of octopus cells, inter-spike interval histograms can be aggregated, in which the place of the global maximum is assumed to encode the pitch
    corecore