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Chapter 1

Introduction

In the last 200 years neuroscience made great advances in uncovering the function of
the brain. Milestones include the discovery that electric currents applied to nerves
can make muscles twitch by Galvani and Volta, the description of the morphology of
neurons in the brain by Golgi and Ramon Y Cajal [1], and finding a set of equations
that describe the electrical behavior of neurons in great detail by Hodgkin and Hux-
ley [2]. These and other discoveries elucidated the function of neurons, especially
their crucial contribution to the computations performed by the brain. Neurons are
distinct from other cells in their morphology; they have very long appendages called
neurites reaching several millimeters in length that allow neurons to make contact
to thousands of other neurons in the brain. In contrast, other cells of the body
make only contact to cells directly neighboring them. At the site of contact between
neurites of different neurons a physical structure called “synapse” forms. A synapse
transmit information from one neuron to the next. The flow of information is uni-
directional: The sending neuron is called the “presynaptic neuron”, the receiving
neuron is called the “postsynaptic neuron”.
Apart from the morphology, neurons also differ from other cells in that they are elec-
trically active. A neuron in the brain at rest sustains a gradient of electrical charge
across its cellular membrane, which can be measured as a voltage (often called the
“membrane potential”) between the inside and outside of a neuron. When this
equilibrium is tipped sufficiently, instead of relaxing back the perturbation enables
a rapid feedback process which leads to a reversement of the voltage. After around
one millisecond the neuronal membrane reverses the voltage again back into a state
close to the resting state. Because of its short duration and its sharp deviation from
the equilibrium state, this event is called a spike. Perturbations of the membrane
potential propagate with finite speed. Therefore, a spike is localized within a neuron
and from the cell body travels down its neurites, activating synapses to other neu-
rons in the process. An activated synapse perturbs the voltage of the downstream
neuron and thereby potentially causes additional spikes there. Because spikes are
the basic unit of neuronal activity in the brain, synaptic transmission is equivalent
to transmission of information between neurons.
The electrical dynamics of neurons including synaptic transmission and spike timing
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CHAPTER 1. INTRODUCTION

can be modelled with high precision by using compact mathematical models with
only few parameters. There are competitions held where the goal is to predict the
electrical behavior of neuron, and these models reach a very high accuracy in the
prediction of neuronal spike times [3]. With modern supercomputer clusters, it is
possible to simulate neuronal networks of spiking neurons of enormous size, with
the number of neurons in the billions [4]. The human brain is estimated to have be-
tween 10 and 100 billion neurons, with each neuron making between 1000 and 10000
connections to other neurons, while a rat brain has around 200 million neurons [5].
Given these numbers, one might wonder why there are no simulations of animal
brains yet. To illustrate the problems, let us consider an animal that in principle is
perfectly suited for this endeavor: The nematode C. elegans. Its anatomy down to
the cellular level is almost invariant amongst individuals. Modern techniques allow
to slice the nematode in order to digitally reconstruct it [6, 7]. In its far more com-
mon hermaphrodite form it is made up of exactly 959 cells, of which 302 are neurons.
The 302 neurons make 6393 connections to other neurons via chemical synapses and
890 via gap junctions (electrical synapses). The animal contains an additional 1410
neuromuscular junctions to drive muscle activity. The whole set of connections (the
“connectome”) is known and in principle it can be simulated in a computer model.
There is a project with several dozens participants devoted to construct a simula-
tion of the whole worm with focus on the nervous system1. However, until today
only strongly simplified models simulating isolated aspects of C. elegans exist [8].
What are the reasons for this? The problem is not the computational cost. The
full set of 302 neurons and the synapses in principle can easily be simulated with
sufficient detail on modern computers. The problem preventing the construction of
the nematode model in a computer is the incomplete knowledge about the synaptic
connections. Neurons can be seen as the “hardware”, while the synapses express the
“software” of the brain. They are characterised by their “synaptic weight”, which
is the degree of influence an active presynaptic neuron exerts on an efferent post-
synaptic neuron. Synaptic weights can take on a vast range of values, therefore it
is not enough to simply determine the physical locations of synapses. The output
of a specific neuron downstream of a neuronal population crucially depends on the
joint afferent synaptic weights. In other words, the synapses determine the time
of activity and consequentially the computation performed by this neuron. There-
fore, although synapses are structures orders of magnitude smaller than neurons,
they are in fact extremely important for the function of the brain. To determine
the parameters of a single synapse, the neurons it connects need to be manipulated
individually, preferrably in the living animal. This is still prohibitively difficult and
costly to do for all synapses of any animal. Another problem turns up in the fact
that synapses are by no means constant over the animals’ life time. The simple
fact that most behaving animals can (and will) change their behavior over time
shows that. Even an organism as simplistic as C. elegans was shown to be capable
of learning [9]. Because the synaptic weights can be thought of as the software of
the brain, the source of altered behavior likely is the change of synaptic weights,

1As of this writing, the project webpage can be found under http://www.openworm.org/
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leading to different neuronal output firing patterns and muscle activations when the
animal is presented the same stimulus. Thus, even if the synaptic state of a living
organism was determined at some point in time, it will be different in the future.
All these problems currently prohibit the construction of a model of C. elegans and
more complex organsisms at the cellular level.
While these crucial details seem to worsen the situation, synaptic plasticity actu-
ally opens a window to gain insight into the function of a brain. Synapses do not
change their weights randomly. In fact, the picture of synapses as the “software”
of the brain is at least incomplete. Experiments performed on pairwise connected
neurons showed that there are “synaptic plasticity rules” in effect. They express
“meta-software” that sets the rules of computations performed by the brain. The
joint activity patterns of a pair of neurons shape the synapse, which in turn will
shape activity patterns in the future. Therefore, a neuronal network can be thought
of as a self-organizing system that is driven to some working point depending on
the external stimuli and synaptic plasticity rules. An astonishing example was pro-
vided by Anna Roe and colleagues in the ferret brain [10]: Research has shown that
the mammalian brain is divided into areas with distinct tasks. Visual input is pre-
processed and then routed to the so-called visual cortex, which consists of several
consecutive stages of processing that extract relevant features of the input. Visual
cortex areas are functionally distinct from auditory cortical areas that receive inputs
from the ears. Neurons of both areas usually also differ in their intrinsic properties.
Roe and colleagues rewired ferret brains by routing visual input into the auditory
cortex of ferrets before birth. Despite the physiological differences of neurons in
both areas, the ferrets were able to see and the response properties of single neurons
in the auditory cortex showed that they were sensitive to visual input similar to neu-
rons in the visual cortex of unaltered animals. If we understand how these response
properties come about from synaptic plasticity, we will likely have an opportunity
to understand the computations performed by the visual area on the cellular level
without the need to completely map the synaptic connections and their weights.
Historically, our understanding of synaptic plasticity was driven by the interplay of
theoretical considerations and experimental research. One of the most influential
hypotheses on brain function was posited by Donald Hebb in his 1949 book “The
organization of behavior” [11,12]:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

The key to understand this hypothesis is to know that Donald Hebb assumed that
the concerted firing of neurons in “cell assemblies” is the neuronal correlate of a
thought or memory item. His “Hebbian plasticity” is the way memories are formed,
by linking neurons into assemblies corresponding to a mental item. If due to some
stimulus a set of neurons is excited repeatedly at the same time, then the synapses
that interconnect these neurons will get stronger (potentiate). This makes it more
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likely that they will fire together in the future, even if only a subset of the cell
assembly gets excited by an incomplete stimulus. For example, if we observe a bird
singing a characteristic song, we will later be able to identify the type of bird if we
only hear its song. Around 20 years after Hebbs original proposal, Bliss and Lomo
found Hebbian plasticity in the mammalian brain [13]. In their experiment, they
identified two neurons connected by a synapse and measured the average response
in the postsynaptic neuron to a spike in the presynaptic neuron. Next, they excited
the presynaptic neuron to fire at a high rate for an extended time, and afterwards
measured the average response of the postsynaptic neuron again. They found that
this response was boosted, which is equivalent to an increase (or potentiation) in
synaptic weight. This was an excellent validation of Hebbian plasticity. However,
from theoretical considerations it is clear that Hebbs hypothesis is incomplete. If
synapses can only potentiate and potentiation occurs in response to elevated firing
rates this leads to runaway activity. Therefore, it is necessary that synapses undergo
weakening (also called depression). A specific proposal for bidirectional plasticity
was given by Bienenstock, Cooper and Munro in 1982 with the theoretically moti-
vated BCM rule [14]. In this rule, for a plastic neuron a sliding threshold equivalent
to the average postsynaptic firing rate is introduced. If the neuron is active at a
rate below the threshold, its synapses will depress, if it is active above, they will
potentiate; in each case the weight change is also proportional to the presynaptic
firing rate. Similar to Hebbs hypothesis, the BCM hypothesis is dual. It posits a
concrete target for synaptic plasticity, namely the formation of selectivity only for
specific inputs, and also a plasticity mechanism to achieve this end. Later, bidirec-
tional plasticity in the vein of the BCM rule was found in experiments by Dudek
and Bear [15].
In the mid 90’s new experimental techniques became available to control the activ-
ity of neurons on a millisecond scale. This prompted the discovery of timing-based
plasticity rules [12,16], which have been hypothesized before [17,18]. Concretely, it
was found that firing rates are not the most important determinant for synapses to
change, but the precise relative timing of spikes in pre- and postsynaptic neurons.
Henry Markram and colleagues induced pairs of spikes in connected excitatory neu-
rons of the mammalian cortex. They found that if a presynaptic spike preceded
a postsynaptic spike by a few milliseconds, the synapse potentiates. If the order
was reversed, i.e. the presynaptic spike followed the postsynaptic spike by a few
milliseconds, the synapse depresses [16]. In contrast to previous experiments, the
average firing rate was the same in both cases. This was a spectacular finding at the
time and since then has been replicated by many groups in many different neuronal
systems on many species, like mammalian hippocampal neurons [19], inhibitory neu-
rons [20], living tadpoles [21], locusts [22], or human cortex [23]. An important side
effect of these results was that the notion of temporal coding became more popu-
lar. The sensitivity of synaptic plasticity to the precise time of spikes was named
“Spike Timing Dependent Plasticity” (STDP) by Song and colleagues [24]. STDP
is often subsumed in the so-called “STDP curve”; see figure 2.2 in chapter 2 for
two examples. Song and colleagues also provided a simple computational model to
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capture the experimental findings up to this point. To differentiate the model from
the biological phenomenon, I will call the model “spike pair STDP” or spSTDP in
short.
spSTDP was later tested in experiments using complex spike patterns, and it was
found that the predictions of this model very often were wrong. Particularily il-
luminating tests of spSTDP have been conducted by Froemke and Dan [25] and
Wang and colleagues [26]. They used spike triplets consisting of either a pre-, then
a post-, then again a presynaptic spike with equal time difference, or with reversed
location of the spikes. spSTDP predicts the same synaptic change for both different
triplets. However, both experiments showed that different triplets led to different
weight changes. Despite the fact that it is a poor description of experimental results,
spSTDP is used very widely in modelling and network simulations. The reason is its
simplicity. Artificial neuronal networks with spSTDP can be analyzed analytically
and simulated on computers with low computational cost. The underlying assump-
tion is that the model is a sufficiently good approximation to the behavior to real
synapses. However, the known shortcomings of spSTDP have led to the development
of many alternative models. Similar to spSTDP, some models are kept as simple as
possible while capturing more phenomena. The reason is to retain analytical accessi-
bility and low computational cost in network implementations. In some sense, these
models are higher order approximations to biological synaptic plasticity. A prime
example for this kind of model is the Triplet model of Pfister and Gerstner [27],
which introduces higher-order interactions between spikes by using spike pairs and
triplets as the basic motif the synapse is sensitive to. Other models start from bio-
physical considerations. They include knowledge about physical synapses like the
kinetics of receptors and intracellular molecules determining synaptic strength. Ex-
amples are the calcium-based models of Shouval and colleagues [28] and Graupner
and Brunel [29]. If probed with spike pairs, many of these models reproduce the
characteristic STDP curve found in early experiments. The motivation for these
models usually is to find out more about the underlying processes governing synap-
tic plasticity. If a biophysical model describes observations well, the assumptions
going into the model are likely correct. The common drawback is that they usually
are quite complex, which makes analysis difficult and implementation in network
simulations costly.
The connection between synaptic plasticity and learning is at this time still a hypoth-
esis. It has not been shown convincingly yet in living animals that altered synaptic
weigths are the cause of altered behavior, due to experimental difficulties to prove
this. What was found instead is a link between large-scale brain oscillations and
learning performance. It is possible to measure neuronal electrical activity on top
of the scull via electroencephalography (EEG, [30]) or intracranially via Local Field
Potential measurements (LFP, [31]). Often, the recorded time series of activities
reveal oscillatory activity of the neuronal populations. A very curious observation
is that the presence of oscillations in the so-called theta range (4 to 10 hertz) is a
good predictor of learning success. In conditioning experiments with animals the
oscillatory state of the brain can be monitored via EEG or LFP. It was shown that
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there is a correlation between the presence of theta oscillations and the speed of
learning, i.e. a brain in theta state learns faster [32, 33]. A similar observation was
also made in humans, where high theta power during learning of items predicted
correct retrieval of items afterwards [34]. These results lead to the question, if there
is a general principle at work that connects large-scale oscillations to synaptic plas-
ticity?
Publication I entitled “Theta-specific susceptibility in a model of adaptive synaptic
plasticity” (section 2.5) included in this thesis sets out to provide an answer. In
this publication, a new phenomenological model for Spike Timing Dependent Plas-
ticity is developed. It is formulated as a set of differential equations describing a
dynamical system, hence it is called the Contribution Dynamics model (CD model)
of STDP. The model parameters are fit to four different experimental data sets, and
the fit error is superior to the one of the Triplet model [27] and a calcium model
devised by Uramoto and Torikai [35]. Additionally, an investigation of the response
properties of synaptic plasticity rules (spSTDP, the CD model, and others) to pe-
riodic neuronal activity is performed. It is shown that spSTDP and the CD model
with physiological parameters are inherently sensitive to oscillatory activity in the
theta range. This provides an explanation for the improved memory performance
in the presence of large scale theta oscillations in mammalian brains.
Despite the best efforts of experimental biology, our knowledge about synaptic plas-
ticity is still quite incomplete. There are processes on a vast range of time scales,
including short term synaptic plasticity which changes synaptic transmission within
milliseconds seconds and relaxes back in seconds [36], or homeostatic processes like
synaptic scaling that keep the neuronal network at a sensible working point [37].
For many of these processes it is hard to gather data suitable for quantitative mod-
elling, which makes it hard to investigate the role and purpose of these plasticity
processes, since many details are not known. Therefore, in theoretical studies of-
ten an alternative approach is taken. Rather than starting from known plasticity
rules, the modeller assumes a desired objective the model system should fulfil. This
objective usually is formulated as an input-output relation of a neuronal network.
The joint synaptic weights needed for the task are not known a priori. Instead,
they have to be learned. Appropriate synaptic plasticity rules can be derived from
the objective based on the comparison of target and actual network activity. Tech-
nically, this comparison involves an instance or entity which has full knowledge of
both and which is seperate from the network. This entity is referred to as the su-
pervisor, which is why the respective learning rules are called “supervised learning
rules”. While they are derived from first principles, sometimes it can be shown that
they are compatible with experimentally established plasticity rules like STDP (see
e.g. [38]). Also, because often supervised learning rules can be shown to be optimal
in some sense, like having maximal capacity, they are useful to explore the capabil-
ities of neuronal systems [39]. However, until today there is no hint of supervisory
signals similar to those necessary in many of the existing models and supervised
learning rules.
In publication II entitled “Perfect Associative Learning with Spike-Timing-Dependent
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Plasticity” (chapter 3) and chapter 4 a solution for the biological implementation
of supervised learning rules is presented. The main idea is the combination of Anti-
Hebbian STDP rules with spike after-hyperpolarization (SAHP). The neuronal mem-
brane potential after a spike typically is slightly below the resting potential, which
results in a unresponsive neuronal state for a limited time. In the learning schemes
developed, a teacher induces spikes at desired times causing SAHP, which allows the
neuron to sum up input without undesired spurious spiking. This allows the com-
parison of the total input with a target by its synapses through synaptic plasticity
rules that are sensitive to subthreshold voltages. In publication II it is shown how
perceptrons and tempotrons, basic neuronal models of memory, can be trained using
Anti-Hebbian STDP sensitive to subthreshold events. In the case of the perceptron,
the plasticity rule with SAHP can be mapped exactly to the Perceptron Learning
Rule, which has favorable properties. In chapter 4, a plasticity rule that is only
dependent on the membrane potential is developed. It is used to imprint precisely
timed spikes into a neuronal network. Also, the plasticity rule is compatible with
inhibitory STDP, and it therefore provides a biologically plausible mechanism for
this learning task. A quantitative analysis shows that the memory capacity with
this rule is roughly half of the attainable maximum, which is a good result given that
the maximal capacity is achieved by highly technical and artificial learning rules.

Organization of the thesis

The body of work presented in this thesis consists of two peer-reviewed articles, re-
ferred to as publication I and II, and a manuscript. The content of this manuscript
represents a major conceptual step forward over the content of publication II2. To
prepare the reader for publication I, the next chapter (chapter 2) gives an introduc-
tion to the basic biology involved. It provides qualitative information on the typical
neuron, synapses and synaptic plasticity. Additionally, common quantitative mod-
els of neurons are introduced. They are necessary to understand all publications
and the manuscript. Publication I performs a broad comparative analysis of models
for synaptic plasticity, therefore the models used are presented in chapter 2. The
end of chapter 2 is the publication I with the title “Theta-specific susceptibility in
a model of adaptive synaptic plasticity”. Publication II and the manuscript require
an introduction to supervised learning algorithms, which is provided in chapter 3.
Since in the manuscript in chapter 4 a quantitative analysis of the properties of a
range of different learning rules is performed, they are presented in chapter 3 as
well. Publication II with the title “Perfect Associative Learning with Spike Timing
Dependent Plasticity” follows at the end of chapter 3. Chapter 4 contains the (yet)
unpublished manuscript with the title “Learning of Precise Spike Times with Home-
ostatic Membrane Potential Dependent Plasticity”. The last chapter ummarises the
presented results and provides the discussion and outlook on future work.

2As of this writing, this manuscript is under review
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Chapter 2

Biological background and basic
models

In this chapter I give an overview of the biological background necessary to un-
derstand the content of publications I and II and chapter 4. Alternating with the
biological description I present common basic models for neurons. The description
of the biology is purely qualitative, while the models provide a quantitative way of
describing the behavior of neurons and synapses. After that, I present a range of
contemporary models for synaptic plasticity. They are used for a comparison of fit
quality to data and response properties to periodic neuronal activity in publication
I. Additionally, the reader gets an overview over the current state of modelling of
synaptic plasticity and the problems faced today.
The phenomenology of neurons and synapses is extremely diverse. It is not even
known how to categorize the different neuron types in a mammalian brain, but it is
likely that there are several hundreds distinct types of neurons, with at least as many
different types of synapses. Out of necessity any general description of biological
neurons has to restrict itself to a prototypical neuron. In this thesis the prototypical
neurons is an excitatory pyramidal neuron, the most common type of neuron in the
mammalian cortex.
The biological description of a neuron follows the book from Mark Bear and col-
leagues [1]. The mathematical modelling of neurons follows the books by Dayan
and Abbott [40] and Gerstner and Kistler [41]. The Leaky Integrate-and-Fire neu-
ron model is a standard dynamical model for the behavior of neurons and is widely
used. In contrast, models for synaptic plasticity are more diverse, since the details
of synaptic plasticity are more disputed than those of neuronal activity. Therefore,
except the model for spike pair STDP the models of synaptic plasticity presented
can not be considered to be standard models. Additional information on them can
be read up in the referenced articles.
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CHAPTER 2. BIOLOGICAL BACKGROUND 2.1. THE NEURON

2.1 The neuron

2.1.1 Biological description of neurons

Neurons are cells found predominantly in brain tissue of animals. They make up
about 10% of the functionally important cells in the brain. The other 90 % are glia
cells, which are assumed to be important for maintenance of the brain, but less so
for immediate computations. Neurons are set apart from most other cells by their
morphology. They feature long appendices that reach lengths up to hundred to
thousand times the diameter of the cell body and that grow far into the surrounding
tissue. These neuronal appendices (called neurites) are anatomically and function-
ally divided into two distinct types, the axons and the dendrites. Dendrites have
earned their name because of their resemblance to trees; they branch out exten-
sively. Axons are more smooth with few branches. A typical neuron has one axon
and several dendrites. Whenever an axon and a dendrite from two different neurons
come close, they may form a “synapse”, a specialised structure identifiable under
the microscope, which is used to transmit information from one neuron to the next1.
The axon is the sender, and the dendrite the receiver of a neuron; the respective
parts of the physically divided synapse are called pre- and postsynapse. Alterna-
tively they are named after their physical appearance as bouton for the presynaptic
structure and spine for the postsynaptic one. Each neuron makes up to ten thousand
connections to other neurons. This high degree of connectivity enables the brain to
perform its computations. Figure 2.1 shows the morphology of typical neurons and
synapses of the mammalian cortex.
The basis for the electrical function of a single neuron is its membrane. It separates
the intra- and extracellular fluids. The functionally important difference between
the two are the concentrations of calcium, potassium and sodium ions inside and
outside the cell. Concentrations of calcium and sodium are higher outside, and the
potassium concentration is higher inside the cell. These differences of concentrations
result from the action of the so-called ion pumps. They are large proteines embed-
ded in the neuronal membrane which use metabolic energy to remove calcium and
sodium ions from the intracellular fluid and ingest potassium ions into the neuron.
The gradient in ion species concentrations results in a gradient of charge, which is
equivalent to a voltage across the membrane. In equilibrium the voltage or mem-
brane potential is typically around -70 mV. The equlibrium state can be perturbed
by the action of ion channels, proteines similar to ion pumps. They also reside in
the membrane; a functional difference is that ion channels are selective to a specific
ion species. Also, they open and close depending on a specific trigger. A subclass
of channels opens when particular molecules called neurotransmitters bind to their
ligands outside the cell, which is why they are called “receptors”. They are mostly
located at postsynapses facing the bouton; see section 2.2 for more information on
the synapse. Others open and close depending on the current voltage across the
membrane. In general, the opening of channels leads to an electric current across

1There are also “autapses”, synapses of a neuron onto itself.
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2.1. THE NEURON CHAPTER 2. BIOLOGICAL BACKGROUND

the membrane due to the flow of ions. In the living brain a neuron constantly
receives synaptic input through activated receptors perturbing its membrane poten-
tial. From its source in the dendritic tree the charge quickly flows into the rest of
the neuron, in particular towards the soma where the incoming charges from the
dendrites are summed up. The direction of the perturbance depends on the type
of ion channel involved. Because sodium is more concentrated on the outside, the
opening of sodium selective channels leads to a flow of positive charges into the neu-
ron. The membrane potential changes towards less negative values, which is called
depolarisation. Upon opening, channels selective for potassium have the opposite
effect and move the membrane potential towards more negative values (hyperpolar-
ization). The terminology changes if the ion channels in question are receptors. In
this case, receptors permeable for sodium are also called excitating, those perme-
able for potassium are called inhibiting receptors. These terms reflect the effect the
receptors have on the activity of the neuron, i.e. they either excite or inhibit the
neuron. Calcium channels are also depolarising, but because the concentration of
calcium is comparatively low, their effect on the voltage is negligible. Instead, an
elevated calcium concentration inside the cell triggers processes which can change
neuronal and synaptic properties on a longer time scale.
Voltage dependent ion channels are always closed when the neuron is in or close to
equilibrium, and small perturbations do not activate them. Small pertubation of the
membrane potential, caused by externally triggered receptors or by manipulation by
an experimentator, will relax back to the equlibrium state on the time scale of tens
of milliseconds. However, if the neuronal soma is depolarized sufficiently (typically
to around -50 mV), a fast feed-back process is initated at the axon hillock, the origin
of the axon at the soma. First, voltage dependent sodium channels open and close
in quick succession, which leads to a rapid and strong influx of sodium. Within less
than a millisecond, the neuron is depolarized close to 0 mV. Slightly lagging behind
the sodium channels potassium channels open, which leads to a hyperpolarization
of the neuron. After around one millisecond, the channels are closed again and the
neuron is at its “reset potential”, which is usually below the equilibrium potential.
From there it relaxes back to resting state. This process is called action potential
(AP) or “spike”. Because of their quickness APs are localized, which means that at
a given time the region of strong depolarization is restricted to only a part of the
neuron. However, APs travel through the neuron from the axon hillock down the
axon, and also from the soma down the dendrites. The latter AP has a different
function than the one going down the axon; therefore, it is referred to as backprop-
agating action potential (bAP).
Recording the time course of the voltage during APs reveals that they are very
stereotypic with little change over different occurances2. Furthermore, when an AP
going down an axon reaches a presynapse, the strong depolarization invades the
presynaptic bouton. This leads to the release of neurotransmitters into the extracel-
lular space, which then can open postsynaptic receptors leading to a perturbation
of the postsynaptic membrane potential. This perturbation is called the “postsy-

2This fact is used to identify specific neurons in extracellular recordings.
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naptic potential” (PSP), or depending on the type of the synapse “excitatory PSP”
(EPSP) or “inhibitory PSP” (IPSP). In the living brain, neurons add up synaptic
inputs until the firing threshold is crossed, at which time they generate their own
signal (spike) that is transmitted to other neurons.

Figure 2.1: Schematic drawing of typical pyramidal neurons and a single synapse
of the mammalian cortex. The left picture shows two neighboring neurons. The
axon and a dendrite come close enough to form a synapse, shown in detail on
the right. The axonal structure is called the bouton, the dendritic structure is
called the spine. If a spike arrives in the bouton, the vesicles can fuse with the cell
membrane and release the stored neurotransmitters into the synaptic cleft, where
they activate AMPA and NMDA receptors. Both structures also contain voltage
dependent calcium channels (VDCCs). See sections 2.1.1 and 2.2 for more details.

2.1.2 Point neuron models

Neurons are modelled on a vast range of detail, from the maximally reduced thresh-
old units with only one parameter to point neuron models capturing the essence
of membrane potential dynamics to models that recreate neuronal morphology and
the function of single ion channels and pumps. Choosing the neuron model always
includes a trade-off. Complex models potentially capture the biological neuron bet-
ter, while simple models have better analytical tractability and allow large-scale
simulations at a moderate computational cost. However, all models incorporate the
defining dynamical property of a neuron: its ability to spike. Spiking is a strongly
nonlinear process. As long as the voltage is below the firing threshold, summation
of inputs is mostly linear. Crossing the threshold leads to the action potential which
resets the current neuronal state.
Most often the spatial structure of neurons is explicitly omitted from modelling,
which allows to describe the state of a neuron using only one variable, namely its

15



2.1. THE NEURON CHAPTER 2. BIOLOGICAL BACKGROUND

somatic membrane potential or any surrogate value. Therefore, this kind of model
is called “point neuron”. In the following I will describe the neuron models used in
the publications I and II and chapter 4. More in-depth explanations of the models
can be found in [40–42].

Rate neurons

The term “rate neuron” encompasses many different models, since there are many
ways the implementation can be tweaked. However, the common trait is that a rate
neuron receives input from its presynaptic neurons and converts it to an output.
Input and output are mathematically described as real numbers. The most general
way to write down the activation of a rate neuron is

yi = g(hi) = g

(∑
j

wijxj + hext
i

)
. (2.1)

wij ∈ IR is the synaptic weight from presynaptic neuron j to postsynaptic neuron
i, xj is the activity (or output) of presynaptic neuron j, hext

i is the external (non-
synaptic) input to neuron i, and g(s) is the activation function that converts the
total input into the neurons’ output. Common choices are the logistic function for
real-valued bounded output, the rectifying bracket [s]+ = s if s > 0 and 0 otherwise,
or the Heaviside function Θ(s) = 1 if s ≥ 0 and 0 otherwise. A rate neuron with the
Heaviside function represents the simplest possible neuron model and the strongest
abstraction which still captures the nonlinear nature of neuronal activity.
Explicit dependence on time can be included or excluded in rate neuron models.
Biological neurons are time dependent, but sometimes neuronal network states can
be considered as constant for some limited duration. Therefore, networks models
are often used explicitely without time dependence of the neurons. Instead, the
activity propagates through several layers of the network. On the other hand, it
is possible to use time dependent rate neurons. In this case, the state of a neuron
is a function of time dependent synaptic and external input, and depeding on the
network structure its output might be fed back into the network.

The leaky integrate-and-fire neuron

The leaky integrate-and-fire neuron (LIF) is the simplest dynamical model for the
neuronal membrane potential. Its origin is the insight that the behavior of a neuron
is well approximated by an electrical capacitor in an electric circuit and it therefore
can be described by a simple differential equation for the voltage V (t) across the
membrane:

τmV̇ = (Veq − V ) + Rm(Isyn + Iext) . (2.2)

Rm is the membrane resistance and τm is the so-called membrane time constant,
which is the product of the membranes’ capacitence and resistance, τm = Cm · Rm.
For simplicity of notation, in the following I assume Rm = 13. The first term on the

3The resistance can always be absorbed in the synaptic weights.
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right hand side is the leak current across the membrane, coming from the fact that
the membrane is not a perfect insulator. In the absence of any other currents the
membrane potential will settle into the equilibrium potential Veq. For simplicity, in
this thesis I set Veq = 0. Setting Veq to realistic values is a simple transformation that
does not change the behavior of the neuron, as long as the respective thresholds (see
below) are transformed as well. The input currents are separated into synaptic cur-
rents Isyn and external currents Iext. Synaptic currents are induced by the activity
of presynaptic neurons. External currents are the analogue for manipulations per-
formed by an experimentator in a biological experiment and in network simulations
allow to induce spikes in the neuron at desired times. For the spiking mechanism a
threshold potential Vthr is introduced. Whenever the voltage reaches the threshold,
a spike is registered and relayed to all postsynaptic neurons. Also, the membrane
potential undergoes an instantaneous reset to Vreset. Commonly, Vreset < Veq, i.e.
the reset brings the neuron to a hyperpolarized state.
There are several possible choices for the shape of synaptic currents. The opening
of receptors is a very fast process, and the closing can be modelled to be equally
fast. Therefore the synaptic current is the sum of weighted delta pulses at the times
of presynaptic spikes:

Isyn(t) = τm

∑
i

∑
k

wiδ(t − tik − τa − τd) , (2.3)

where wi is the synaptic strength of presynaptic neuron i, and tik is the time of the
kth spike in neuron i. For completeness, I here include the delays of transmission,
τa for the delay resulting from the transmission of the AP through the axon of the
presynaptic neuron until it reaches the bouton and τd for the time the charge needs
to travel through the dendrite to the soma. For simplicitely they are dropped in
the rest of this chapter, but it is important to keep in mind that the signals are not
transmitted instantaneously along axons and dendrites, but take a finite amount of
time to reach the postsynaptic neuron.
If synaptic currents are modelled as delta pulses, the resulting PSPs in the membrane
potential are an instantaneous rise and an exponential decay with time constant τm.
The time course of the membrane potential in response to a single presynaptic spike
at time t = 0 with unit synaptic weight (w = 1) is given by

Vδ(t) = Θ(t) exp

(
− t

τm

)
. (2.4)

We write Vδ to emphasize that this time course results from delta-shaped synaptic
currents. However, it is more realistic to assume that synaptic receptors close in
finite time. To model this, another differential equation is introduced for Isyn:

τsİsyn = −Isyn + τs

∑
i

wi

∑
k

δ(t − tik) . (2.5)

The resulting isolated PSP is a difference of two exponential functions, as can be
shown by computing the solution of equation (2.2) in conjunction with synaptic
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currents given by equation (2.5) in response to a single presynaptic spike at time
t = 0 with unit weight:

Vfinite(t) =
1

τm − τs

(
exp

(
− t

τm

)
− exp

(
− t

τs

))
Θ (t) . (2.6)

We write Vfinite to distinguish this time course from the one resulting from delta-
shaped synaptic currents.
A general consequence of the formulation of the LIF neuron is that because of the
linearity of the differential equation the synaptic input can be written as the sum of
weighted PSP kernels. The responses of the membrane potential to a single input
spike is equal to the respective kernel, which is depending on the shape of the input
currents

εδ(s) = Θ(s) exp

(
− s

τm

)
, (2.7)

or

εfinite(s) =
1

τm − τs

(
exp

(
− s

τm

)
− exp

(
− s

τs

))
Θ (s) . (2.8)

Furthermore, the neuronal reset after a spike can also be written as a kernel, which
is simply added to V (t) after each spike. Lastly, for external currents the neuron
acts as a low-pass filter. This allows us to rewrite the LIF neuron as

V (t) =
∑

i

wi

∑
k

ε
(
t − tik

)
+

∑
tpost

R (t − tpost) +

t∫
−∞

κ(t − s)Iext(s)ds . (2.9)

Here, tpost are the times of postsynaptic spikes, R(s) is the reset kernel, and ε(s) is
the PSP kernel, either given by equation (2.7) or (2.8) depending on the shape of
synaptic currents. κ(s) = exp(−s/τm) is the passive response kernel for the low-pass
filtering of the input currents. For the simple LIF neuron, the reset kernel is defined
as

R(s) = Θ(s) (Vreset − Vthr) exp

(−s

τm

)
. (2.10)

This formulation ensures that immediately after each spike the voltage is equal to
Vreset. The formulation of the LIF neuron as equation (2.9) is also known as the
zero order Spike Response Model (SRM0, [41]). This formulation is often used, as
it makes the LIF neuron more amenable for analytical calculations.

The conductance based LIF neuron

The LIF neuron is a simple model for the dynamics of the membrane potential,
where inputs add up linearly. A better approximation of the actual dynamics can
be obtained by taking into account reversal potentials. The flow through ion channels
strongly depends on concentration of ion species inside and outside, as well as the
overall voltage. Every ion species has a distinct voltage where the flow is reduced to
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zero even if all channels are open. This distinct voltage is called the reversal poten-
tial. For excitatory sodium channels the reversal potential is usually around 0 mV,
for inhibitory potassium channels it is around -80 mV. In the conductance based
model the current across the membrane depends on the conductivity of the mem-
brane, determined by the number of open ion channels and the current membrane
potential. Inhibitory and excitatory channels are modelled seperately. A spike in a
presynaptic neuron leads to opening of postsynaptic receptors, which increases the
conductance of the membrane for the respective ion species. The temporal evolution
of each type of conductance is given by

gx(t) = −gx

τx

+
∑

j

Δgj
x

∑
k

δ
(
t − tjk

)
, (2.11)

where gx(t) with x ∈ {e, i} is the total conductance over the whole membrane for
excitatory and inhibitory channels, respectively, τx is the decay time constant for
unbinding of neurotransmitters from receptors, and Δgj

x is the increase of conduc-
tivity in response to a spike in presynaptic neuron with index j. Δgj

x is analogous
to the synaptic weight in the linear LIF neuron model. tjk denotes the time of the
k-th spike in presynaptic neuron j. According to this model, with each presynaptic
spike the respective conductivity increases and it relaxes back to zero with some
time constant. The evolution of the membrane potential is then given by

CmV̇ (t) = −gL(V (t) − VL) − ge(t)(V (t) − Ve) − gi(t)(V (t) − Vi) + Iex(t) , (2.12)

where Cm = τmem/gL is the membrane capacity, gL is the constant leak conductance
of the neuron with VL = Veq being the “reversal potential” for leak currents, and
Ve,i are the reversal potentials for excitatory and inhibitory conductances. As in the
basic LIF model, the neuron spikes when the voltage hits a threshold.
The main difference to the LIF model is that the amplitude of a PSP depends on
the current membrane potential. An inhibitory input exerts greater effect if the
neuron is depolarized. On the other hand, if it is already hyperpolarized close to
the reversal potential of potassium (inhibition), increasing the conductivity gi will
have only a minor effect on the voltage.

Stochastic poissonian spiking

Usually, patching neurons and injecting electrical currents leads to highly predictable
output spiking [43]. Despite this regularity, neuronal recordings in vivo show in
general highly irregular spiking [41,44]. The statistics of spike trains resemble pois-
sonian processes, i.e. the mean of spike count and its variance are equal [40, 45].
The source of this irregularity is not clear. Although complex neuronal networks of
deterministic neurons can display irregular spiking behavior [46], it is often simpler
to explicitely inject noise into the neuron model by assuming spike generation itself
is stochastic. In this case, the membrane potential gets converted into a time de-
pendent firing rate r(t). An example is the SRM0 model with exponential escape
noise [41]. In this model, the membrane potential is computed with equation (2.9),
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but spike generation is handled differently. At each point in time the instantaneous
firing rate r is given as a function of V (t):

r(V (t)) = r0 exp

(
V (t) − Vthr

ΔV

)
. (2.13)

r0 is the firing rate in the case that V (t) = Vthr, and ΔV is the slope parameter. If
ΔV is large, the firing rate is insensitive to the voltage and spiking is very stochastic.
In the limit of ΔV � 1 spiking becomes deterministic as in the normal LIF model. A
simpler way to model the underlying dynamics of the neuron is to take rate neurons,
equation (2.1), and set r(t) = g(h(t)).
Stochastic spike generation transforms the continuous firing rate into a set of discrete
events via

P (Spike between t and t + Δt) = r(t)Δt . (2.14)

The step size chosen in the simulation should be sufficiently small such that r(t)Δt �
1. This allows to neglect the probability of firing two spikes in one interval.

2.2 The synapse

Synapses may form where axons and dendrites get sufficiently close to each other.
Here, a physical structure grows on both neurites adjacent to each other. The gen-
eral shape is illustrated in figure 2.1. The axonal structure has the shape of a button
and is called (presynaptic) bouton or terminal. On the dendrite the outgrowth is
elongated, and forms a neck at the connection to the dendrite. Due to its shape,
it is called the (postsynaptic) spine. Bouton and spine are physically seperated by
the synaptic cleft, which is around 20-50 nm wide. The spinal membrane facing
the bouton is called the postsynaptic density (PSD), and the presynaptic bouton
membrane facing the PSD is called the active zone. The bouton in the active zone
contains vesicles, little bubbles formed by endocytical cell membrane. These vesicles
contain molecules called neurotransmitters. When a presynaptic spike arrives in the
bouton, the depolarization and inflow of calcium through voltage-dependent calcium
channels (VDCCs) causes vesicles to get pulled towards the cell membrane, where
they can fuse with it. In case of successful fusion neurotransmitters stored in the
vesicles are released into the synaptic cleft and they diffuse very quickly across it.
At the PSD they will bind to receptors, which in turn open ion channels. This re-
sults in a local perturbation of the membrane potential, which then travels from the
synapse to the soma where all synaptic inputs are summed up. Neurotransmitters
unbind stochastically from receptors, get removed from the cleft and subsequently
reuptaken into the presynapse.
This is the basic course of action for all chemical synapses4. Important to note is

4There are also electrical synapses which form a more direct and bidirectional connection be-
tween the membrane potentials of the connected neurons.
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that these synapses are uni-directional, as no signal can travel from the postsynap-
tic to the presynaptic neuron5. Also, synapses are not all alike. The most obvious
difference between synapses is the type of ion channels. Sodium channels depolarize
the postsynaptic neuron, while potassium channels hyperpolarize it. The receptors
for both channels react to different neurotransmitters. Also, the pre- and the post-
synaptic part of the synapse fit each other. The PSD contains only receptors that
are sensitive to a certain type of neurotransmitter, which is the only one stored
presynaptically. The majority of depolarizing (or excitatory) synapses in the brain
are glutamatergic synapses, i.e. synapses that use glutamate as the neurotrans-
mitter. The respective receptors are AMPA receptors which open sodium channels.
Also, glutamatergic synapses usually contain NMDA receptors, which are permeable
for calcium. They play a major role in synaptic plasticity (see next section). The
main type of hyperpolarizing (or inhibitory) synapses are GABAergic synapses. The
receptors are sensitive to γ-aminobutyric acid (GABA) and are permeable for potas-
sium. The type of synapse solely depends on the presynaptic neuron. Inhibitory
neurons only form inhibitory synapses onto their postsynaptic neurons, excitatory
neurons only form excitatory synapses. An important consequence is that because
of this restriction synapses keep their type. An excitatory synapse can not change
into an inhibitory one, and vice versa. This is also called “Dale’s law”6. However,
a neuron in the brain always receives excitatory and inhibitory input from (many)
different neurons.
In addition, even synapses of the same type are not alike, since they generally dif-
fer in strength. To measure the strength of a synapse, an experimentator searches
for a pair of connected neurons. Exciting the presynaptic neuron to fire a spike
causes the activation of its synapses. The deflection of the membrane potential of
the postsynaptic neuron can be measured as the PSP. Its average amplitude is dif-
ferent for different synapses. Because the amplitude determines the influence of the
afferent presynaptic neurons, it is also called the synaptic strength or weight. The
rise time of the PSP reflects the quick binding and unbinding of neurotransmitters
to receptors, while the decay depends on the postsynaptic membrane time constant.
The strength of a synapse, expressed as the amplitude of the PSP, depends on the
combined activity history of pre- and postsynaptic neuron, and can change over
different time scales. This process is called synaptic plasticity and is described in
more detail in the next section.

5This is not completely true. There are processes in synaptic plasticity which involve retro-
grade messengers from the PSD to the active zone which depend on postsynaptic spiking activity.
However, these messengers are only important for local synaptic plasticity processes.

6There are exceptions. During development of newborn rats, GABAergic synapses switch from
excitatory to inhibitory.
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2.3 Synaptic plasticity

2.3.1 Biological description of synaptic plasticity

The transmission properties of synapses are not only different between synapses
of the same type (even from the same presynaptic neuron), they also vary over
time for a single synapse. The change of transmission properties is referred to as
“synaptic plasticity”, although there are many different processes on many time
scales subsumed under this term. The fastest plasticity processes are called “short-
term plasticity”. This type of plasticity changes the synaptic strength immediately
after each presynaptic spike, but the synapse relaxes back to baseline strength af-
ter several seconds of inactivity. Synaptic transmission changes fast because the
amount of stored neurotransmitters is limited and the probabibility of vesicle fu-
sion is altered by spiking. Each spike leads to the fusion of some vesicles with the
cellular membrane, which reduces the number of available vesicles for subsequent
spikes. Typically, in a high-frequency burst the amplitude of PSPs decreases for
later spikes, since they can activate less vesicles than the earlier ones. It takes a few
seconds to refill the vesicles and bring back the synapse to inital strength. However,
in some synapses resource depletion is to some extent offset by the increase of the
probability of vesicle fusion. Vesicles do not release neurotransmitters deterministi-
cally. Each spike that invades the bouton has a certain probability to cause vesicle
fusion for each vesicle. This probability depends on the concentration of calcium
in the bouton. Calcium flows in through voltage dependent calcium channels that
open up during the depolarization caused by the action potential. Residual calcium
will usually be removed after around 100ms to a few seconds. But as long as the
concentration is increased, so is the probability of release. The exact behavior of the
synapse, i.e. whether it gets weaker (depresses) or stronger (potentiates) depends
on the exact specifics of both processes. A good review of short-term plasticity is
given in [36].
Another type of synaptic change is long-term plasticity, which depending on the
direction of synaptic change is called long-term depression (LTD) or long-term po-
tentiation (LTP) (weakening and strengthening, respectively). LTD and LTP can
be induced within a few seconds of activity, and stay long after. However, the
phenomenology of long-term plasticity is much more rich and diverse than for short-
term plasticity. As a consequence, the mechansims involved are less clear. Early
experiments found that presynaptic bursting can induce LTP [13] or LTD [15] de-
pending on the presynaptic firing rate. Low rates tend to depress the synapse, high
rates tend to potentiate it. With the availability of new experimental techniques, it
became clear that the postsynaptic activity is equally important in synaptic change.
Synapses can express strong changes in response to pairs of pre- and postsynaptic
spikes even if the average firing frequency is as low as 0.1 Hz, much lower than
in previous experiments [16, 19, 21]. This new line of experiments also revealed an
astonishing effect. Synaptic plasticity in response to spike pairs is very sensitive to
the order of spikes. In excitatory neurons it is generally found that if a postsynaptic
spike follows a presynaptic spike with a timing difference of a few milliseconds, the
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synapse will potentiate. If the order is reversed, i.e. the presynaptic spike is lagging
by a few milliseconds, the synapse will depress. These results were remarkable at
the time, first because very low-frequency activity unexpectedly can induce synaptic
changes, and second because shifting one spike by just a few milliseconds changes the
outcome drastically. Later, this phenomenon was dubbed “Spike-Timing-Dependent
Plasticity” (STDP, [24], and see figure 2.2), and subsumed in a simple computa-
tional model with 4 parameters (see next section). However, subsequent research
showed that the phenomenology is much more diverse. There are burst frequency
effects [16, 47], nonlinear interactions between spikes [25, 26, 48] (see publication I
for more details), and strong dependence on synapse type [20, 49]. All these obser-
vations make it hard to provide a description of “typical synaptic plasticity”, since
often the mechanisms and phenomenology are not completely clear. However, there
are some commonalities. Synaptic depression as well as potentiation require an el-
evation of postsynaptic calcium concentration, an observation which has given rise
to the “calcium control hypothesis” [50]. Often, moderate elevation leads to LTD,
and high elevation leads to LTP. Injecting calcium buffers into the spine which bind
calcium during acitivity protocols frequently abolishes synaptic plasticity [48].

Figure 2.2: Typical STDP curves as measured in experiments. The abscissa shows
the timing difference between the pre- and the postsynaptic spike. The ordinate
shows the change in amplitude of the EPSP. Both figures show the sudden shift from
potentiation to depression resulting from just a miniscule shift in relative timing of
both spikes, as well as the exponential drop of magnitude of synaptic change with
increasing timing difference. Left figure reprinted by permission from Macmillan
Publishers Ltd: Nature [21], copyright 1998. Right figure reprinted by permission
from the Society for Neuroscience: The Journal of Neuroscience [19], copyright 1998.

Since calcium is the most important messenger ion, the sources of calcium in
the postsynaptic spine are of importance for synaptic long-term plasticity. The
neuronal membrane at the postsynaptic spine usually contains voltage dependent
calcium channels (VDCCs), which are opened by depolarization. However, a more
important source is calcium inflow from NMDA receptors. They are quite unusual
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since they do not open unconditionally if glutamate binds. At resting potential the
ion channel is clogged by a magnesium ion. Depolarization of the membrane will
reversibly remove the ion from the channel. But only if glutamate binds at the
same time, the ion channel completely opens, allowing calcium to flow inside the
cell. This positions NMDA receptors as coincidence detectors in the PSD. Only if
presynaptic and postsynaptic activity coincide, the calcium level will be elevated
enough that the synapse potentiates. Otherwise, it will do remain unchanged or
depress; usually the calcium inflow resulting from active NMDA receptors is higher
than from open VDCCs. A successful model for STDP was constructed around
the peculiar dynamics of NMDA receptors [28]. However, the action of NMDARs
is not the only determinant for synaptic plasticity. Nevian and Sakman [48] found
that the magnitude of synaptic change correlates with peak calcium concentration,
but the sign was determined by the activation of metabotropic glutamate receptors
(mGluRs).
There are several candidate mechanisms for synaptic plasticity. Commonly, it is
believed that calcium adjusts the activity level of a protein called CaMKII, which in
turn regulates the responsiveness and amount of AMPA receptors in the membrane
of the PSD [51]. More AMPA receptors lead to higher inflow of sodium during
presynaptic neurotransmitter release and consequently to stronger depolarization in
response to a presynaptic spike. Another way to change synaptic properties is to
adjust the release probabilities of presynaptic vesicles. This usually involves nitric
oxide (NO) molecules or endocannabinoids as retrograde messengers, because coin-
cidence detection is still performed in the postsynapse [52,53].
Lastly, there are processes less well understood which regulate synaptic weights on
longer time scales. It is known that synapses regulate themselves over time scales
of hours and days. If a neuron embedded in a fully formed neuronal network is
artificially suppressed by constant hyperpolarization, its firing rate will be signifi-
cantly reduced compared to the network average. But after a few days, it will fire
on average just like before. The reason for this is that its afferent synapses will
increase their strength, so that the neuron will get stronger inputs to compensate
the reduced inherent excitability [54]. This phenomenon is called “synaptic scaling”
and it is assumed that neurons have a target firing rate, which is compared to their
current firing rate over a long time scales of hours and days. In case of mismatch
processes will be initiated to remedy the situation [37].
Although this thesis is concerned mainly with “classical” LTD and LTP as induced
by STDP, it is important to keep in mind the other plasticity processes.

2.3.2 Quantitative modelling of short-term synaptic plastic-
ity

Short-term synaptic plasticity can be modelled with high precision in a very simple
model. This model was originally conceived by Tsodyks and Markram, and ex-
tended in later work by Tsodyks and colleagues [55,56]. In this section I follow the
description by Morrison and colleagues [57].
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In this model, a synapse has a constant amount of resources that gets redistributed
between different states determined by the presynaptic activity. A “quantum of
resource” can be either in a recovered, active or inactive state. The amount of
resources in each state are given by x, y and z, respectively. Although resources
(vesicles) are discrete, in this model they are treated as continuous, since they de-
scribe the average of an statistical ensemble. The transfer of resources between
states is described by a set of differential equations:

ẋ =
z

τrec

− u+x(t − ε)
∑
tpre

δ(t − tpre)

ẏ = − y

τI

+ u+x(t − ε)
∑
tpre

δ(t − tpre)

ż =
y

τI

− z

τrec

.

(2.15)

u+ is the fraction of recovered resources used by each presynaptic spike, τrec is the
time constant with which resources replenish from the inactive to the recovered
state (re-uptake of neurotransmitters), and τI is the decay time constant of synaptic
currents. This time constant is analogous to τsyn in the LIF model, equation (2.5).
We write x(t − ε) to emphasize that in order to compute the update of x and y by
a presynaptic spike, one has to use the value of x shortly before that spike. With
this type of dynamical synapses, the synaptic current at synapse i is given by

I i
syn = wi · yi , (2.16)

i.e. the fraction of resources in the active state scaled by the synaptic weight.
This model so far describes only depressing synapses, where the efficacy of the
synapse decreases with each presynaptic spike. Synaptic short-term facilitation is
caused by the increase of probability of release by residual calcium. In the model,
the probability of release is given by the fraction of resource usage u+. Therefore,
to account for facilitating synapses the fraction of usage is converted to a time-
dependent function. Its dynamics is given by

u̇ =
u

τfac

+ U(1 − u(t − ε))
∑
tpre

δ(t − tpre) . (2.17)

U determines the increase of u with each spike, and τfac is the time constant with
which the probability of release relaxes back to baseline. To fully incooperate fa-
cilitation, in equations (2.15) u+ needs to be set equal to u(t + ε), reflecting that
first the change of fraction of usage has to be computed before it can be applied
correctly.
It is possible to simplify the full model for depressing synapses, equations (2.15),
by separation of time scales. Usually, it is found that the time constant for recov-
ery is much longer than the one for inactivation, τrec � τI . In this case, y decays
much quicker than z, which allows to approximate the conservation of resources
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x + y + z = 1 to x + z = 1. Using this, the equation for recovered resources can be
written as

ẋ =
1 − x

τrec

− u+x(t − ε)
∑
tpre

δ(t − tpre) . (2.18)

This latter formulation is important to keep in mind, as it is used in publication I
in a model of long-term synaptic plasticity.

2.3.3 Quantitative models of activity dependent long-term
synaptic plasticity

The Hebbian hypothesis puts forward long-term synaptic plasticity as the neuronal
correlate for the formation of memories and learning. The properties of long-term
plasticity, namely that changes are induced by activity and their longevity, make
this hypothesis very appealing. Because its flexibility and adaptability is one com-
ponent of the power of the brain, long-term synaptic plasticity has been the focus
of overwhelming attention from experimental and theoretic neuroscientists, as well
from machine learners, who use biologically inspired plasticity mechanisms in neural
networks to analyse data.
In experiments, synaptic strength is measured via the amplitudes of PSPs. Cur-
rent experimental technology allows to monitor only a few neurons at the same
time with sufficient detail to measure synaptic plasticity. Typically, experiments
are performed in brain slices or cultured neurons, although there have been a few
experiments performed in living animals (e.g. [58,59]). Therefore, experimental data
on synaptic plasticity is usually restricted to changes in response to pairwise activ-
ity, i.e. changes of synaptic strength induced by the activity of the pre- and the
postsynaptic neuron connected by the synapse of interest. This shapes the current
state of modelling. Common models for plasticity take as input the activity of both
neurons and compute the new synaptic state from it.
Activity dependent plasticity rules have been formulated for many purposes. Some
rules were devised to explain functional properties of the brain as found in ex-
periments. Examples are the Hebbian learning rule to train the Hopfield model
which seeks to explain memory formation and recall [60, 61], and the BCM rule
(Bienenstock, Cooper and Munro) [14, 62], that explains the formation of input se-
lective neurons. Usually these rules are not well constrained by experimental data
on synaptic plasticity. This is why researchers construct biophysical models, often
with the goal to reproduce the STDP window from biophysical principles [28, 29].
The purpose of these models is to gain insight into the mechanisms responsible for
synaptic change. Lastly, phenomenological models are constructed to give a close
fit on quantitative data. The problem faced by these models is that there are only
a few data sets which provide enough seperate data points to constrain quantitative
models. Common models have 8 to 12 parameters, and to prevent overfitting, it is
necessary to fit the model to much more data points than the number of param-
eters. Otherwise, they generalize badly. However, the biggest data sets available
have around 10 to 18 unique data points, since recording the data is time consum-
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ing and costly. Additionally, it is in general not possible to lump different data sets
together, since virtually all experiments are performed under different conditions.
Sometimes even the same experiment performed twice by the same group, in the
same system with the same protocol can lead to different results, as exemplified by
the discrepancies of the STDP window found by Bi and Poo in 1998 and Wang and
colleagues in 2005 [19, 26, 27]. As a consequence, there are only a few quantitative
models with the same scope as the CD model presented in publication I.
In this section, I present an overview over activity dependent plasticity rules. All of
them are inspired by various experimental results and are used to explain certain as-
pects of data or to investigate the properties of neuronal networks which implement
these rules. I picked a representative range of simple phenomenological and more
sophisticated biophysical models. For brevity, I will refer to the models as spSTDP,
Triplet model, Shouval model, Cai model, Graupner model and Uramoto model (in
order of appearance). The parameters used for each model can be found either in
publication I or in the referenced articles.

Spike pair STDP

The early experiments on STDP suggested that the basis for synaptic change is
the spike pair consisting of one presynaptic and one postsynaptic spike in close
proximity. In 2000, Song and colleagues proposed a simple model to account for the
observations. To distinguish the model from the experimental results, here it is called
spike pair STDP (spSTDP). For any given pair of one pre- and one postsynaptic
spike we have to first compute the timing difference Δt = tpost − tpre, where tpost is
the time of the postsynaptic and tpre the time of the presynaptic spike. The weight
change is a function of Δt:

Δw =

{
A+ exp (−Δt/τ+) if Δt > 0

A− exp (Δt/τ−) else ,
(2.19)

where A+, A−, τ+ and τ− are the parameters of the model. This simple model
recreates the famous STDP window (Figure 2.2), which is a good description of
early findings. In additive spSTDP, all weight changes computed with equation
(2.19) are added up for the resulting total weight change:

wafter = wbefore +
∑
Δt

Δw .

Multiplicative spSTDP has also been investigated, but for the sake of simplicity here
I consider only additive spSTDP. Figure 2.3 shows the weight change as a function
of timing difference for a single spike pair as computed using the spSTDP model.

The Triplet model

Although spSTDP captures spike pair experiments, it fails to account for experi-
mental results on spike triplets or more complex spike patterns (e.g. [25,26]). A big
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Figure 2.3: The STDP win-
dow resulting from the spike
pair STDP model. The
weight change as a func-
tion of the timing difference
shows the exponential decay
of weight change magnitude
as the experimental data, fig-
ure 2.2. Additionally, it is
shown how the parameters of
the model shape the STDP
window.

problem for spSTDP are experiments which find no synaptic change for pre-post
pairs induced at low repetition frequency, but if the repetition frequency is high
enough, the synapse potentiates [47, 48]; see publication I for a more detailed de-
scription of the experimental results. The only way to model no synaptic change for
pre-post pairs in spSTDP is if A+ = 0. But in this case, the model synapse never
potentiates for any spike pattern, which clearly contradicts the observations.
Pfister and Gerstner devised their Triplet model to remedy the problems of sp-
STDP [27]. The Triplet model is an extension of spSTDP which involves higher-
order interactions between spikes. First, they reformulate spSTDP with traces of
spiking activity in both neurons:

ṙ1(t) = −r1(t)

τ+

ȯ1(t) = −o1(t)

τ−
,

(2.20)

and

if t = tpre, then r1(t) → r1(t) + 1

if t = tpost, then o1(t) → o1(t) + 1 .
(2.21)

It is not specified which physiological quantities could be the neural correlate for
the traces r1 and o1. Spikes of either side read out the trace of the opposite side:

w(t) → w(t) +

{
−A−

2 · o1(t) if t = tpre

−A+
2 · r1(t) if t = tpost .

(2.22)

Up to this point the formulation is completely equal to spSTDP. To adjust the model
to experimental data not explicable with spSTDP, another set of traces is added to
the model:

ṙ2(t) = −r2(t)

τx

, if t = tpre, then r2(t) → r2(t) + 1

ȯ2(t) = −o2(t)

τy

, if t = tpost, then o2(t) → o2(t) + 1 .

(2.23)
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The weight change is set to

w(t) → w(t) +

{
−o1(t)

[
A−

2 + A−
3 r2(t − ε)

]
if t = tpre

−r1(t)
[
A−

2 + A−
3 o2(t − ε)

]
if t = tpost .

(2.24)

This latter equation is the full Triplet model with all-to-all interactions (A2A). It
got its name from the fact that whenever a trace is updated by a spike, the existing
state is not forgotten. Therefore all spikes of one synaptic side interact with all
spikes of the other side. However, for some experimental data sets it turns out that
limited interactions provide a better fit. A spike interacts only with the spike of the
opposite directly preceding it. This is called nearest neighbor interactions (NN).
The update rules for the traces get changed to

if t = tpre, then ri(t) → 1

if t = tpost, then oi(t) → 1 .
(2.25)

This means that each spike sets the respective traces to a constant value, and the
pre-existing state of the trace is forgotten accordingly.
In their study, Pfister and Gerstner showed that the Triplet rule can be fitted well
to two data sets otherwise unexplicable with spSTDP. They also showed that their
model could be mapped to the BCM rule. In this case, the parameters A+,−

2 need to
be functions of time proportional to the expectation of a power of the postsynaptic
firing rate.

The calcium model of Shouval and colleagues

Although spSTDP accurately captures the experimentally established STDP win-
dow, it is a purely phenomenolgical model which does not reveal insight about the
mechanisms of synaptic plasticity. Shouval and colleagues [28] conceived a mech-
anistic model using well known characteristics of neuronal dynamics and synaptic
receptors, especially of the NMDA receptor involved in regulating synaptic strength.
The main idea of this model is that the change of the synapse at each point in time
is mainly a function of the calcium concentration in the postsynaptic spine. This
concentration in turn is governed by postsynaptic depolarisation and presynaptic re-
lease of neurotransmitters which both trigger NMDA receptors. The model assumes
that the membrane potential in the spine is a linear sum of presynaptically induced
EPSPs and backpropagating action potentials (bAP) that signal postsynaptic spik-
ing:

V (t) =
∑
tpre

EPSP (t − tpre) +
∑
tpost

bAP (t − tpost) , with

EPSP(s) = Θ(s)AEPSP

(
exp

(
− s

τEPSP
s

)
− exp

(
− s

τEPSP
f

))

bAP(s) = Θ(s)AbAP

(
IbAP
s exp

(
− s

τ bAP
s

)
+ IbAP

f exp

(
− s

τ bAP
f

))
.

(2.26)
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tpre,post are the times of presynaptic and postsynaptic spikes, respectively. AEPSP

is the amplitude of the EPSP chosen such that the maximal depolarisation by one
isolated presynaptic spike is exactly 1 mV. Its actual value depends on the time
constants τEPSP

s,f = 5, 50ms of the EPSP kernel. AbAP = 100mV is the amplitude

of the bAP, which has time constants τ bAP
s,f = 3, 25ms. The relative amplitudes

IbAP
s,f = 3/4, 1/4 scale the slow and the fast component of the bAP relative to each

other.
The EPSP kernel is the same as in the LIF model, i.e. it is a difference of a slow
and a fast exponential decay, compare equation (2.8). The bAP is a sum of two
exponentials, one fast and one slow component. This is necessary to recreate the
STDP window in this model. Also, the model assumes that the rise time of a bAP
is much faster than all other processes.
The Shouval model assumes that there are two different types of NMDA receptors
with different decay time constants of glutamate unbinding. The fraction of open
receptors of the slow and fast type is given by

Ṅf = −Nf

τf

+ P0If

∑
tpre

(1 − NMDA(t − ε)) δ(t − tpre)

Ṅs = −Ns

τs

+ P0Is

∑
tpre

(1 − NMDA(t − ε)) δ(t − tpre)

NMDA(t) = Nf (t) + Ns(t)

(2.27)

If,s = 1/2, 1/2 are the relative amplitudes of the fast and the slow component which
decay back with time constants τf,s = 50, 200ms. Due to the voltage-dependent
magnesium block of NMDA receptors, the resulting calcium current is a function of
the fraction of open receptors as well as the membrane potential:

INMDA(t) = GNMDANMDA(t) (V (t) − Vr) B(V (t)) , with

B(V ) = (1 + 0.28 exp(−0.062V ))−1 ,
(2.28)

with the membrane potential V given in mV , Vr = 130mV and GNMDA = −0.02μM/(ms·
mV ). The calcium concentration is a low-pass filtered version of the current with
decay time constant τCa:

d[Ca](t)

dt
= INMDA(t) − [Ca](t)

τCa

. (2.29)

The central assumption of this model is that synaptic plasticity is completely deter-
mined by the concentration of calcium in the postsynaptic spine. This is the calcium
control hypothesis7. Low concentrations lead to LTD, high concentrations lead to
LTP. Also, the learning rate η is a monotonic function of the calcium concentration:

η([Ca]) =

(
0.1sec

[Ca]3 + 10−5
+ 1sec

)−1

Ω([Ca]) = 0.25 + sig ([Ca] − α2, β2) − 0.25 sig ([Ca] − α1, β1) ,

(2.30)

7One of the authors of this model is Leon Neil Cooper of the BCM rule.
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with sig(x, β) = exp(βx)/(1+exp(βx)). It should be noted that the calcium concen-
tration [Ca] here is measured in μM instead of mM as in equation (2.29). Finally,
the weight W as a function of time is computed via

Ẇ (t) = η([Ca]) (Ω([Ca]) − W (t)) . (2.31)

Unlike spSTDP and the Triplet model, this model has bounded weights, because
the driving function Ω([Ca]) is a bounded sigmoidal function.

The extension by Cai and colleagues

The original model by Shouval and colleagues was later modified by Cai and col-
leagues to include presynaptic short term plasticity and postsynaptic attenuation of
bAPs [63]. The model dynamics are for most parts similar to the Shouval model
described above, with some tweaks. The most important difference concerns the
impact of spikes on bAPs and EPSPs, as it is modulated by the recent history of
spiking of the respective synaptic side. Instead of having an EPSP be caused deter-
ministically by any presynaptic spike, a spike invading the bouton here stochastically
leads to the discharge of any of the stored vesicles. The number of vesicles is lim-
ited. Only an actual discharge leads to an EPSP. The EPSP is independent of the
number of vesicles which discharge upon a spike, as the model assumes that any dis-
charge saturates the postsynaptic receptors. Also, the synapse undergoes short-term
facilitation, therefore the probability of discharge pr develops according to

ṗr = −pdr0 − pr

τF

+ γpr

∑
tpre

δ(t − tpre) . (2.32)

pdr0 is the baseline probability of discharge, τF = 100ms is the time constant with
which pr relaxes back to baseline, and γpr is the fraction by which pr increases after
each presynaptic spike. Because this equation allows pr to exceed unity, it is capped
at pr ≤ 1. When a presynaptic spike arrives at time tpre, each of the N vesicles
in the bouton discharges with probability pr(tpre − ε). Formally, we introduce a
variable xrel(tpre) which is 1 if there was a neurotransmitter release (discharge) of
at least one vesicle at time tpre, and 0 otherwise. The resulting voltage deflections
by presynaptic spiking are given by

VEPSP (t) =
∑
tpre

EPSP(t − tpre)xrel(t − tpre) , with

EPSP(s) = Θ(s)AEPSP

(
exp

(
− s

τEPSP
s

)
− exp

(
− s

τEPSP
f

))
.

(2.33)

In this model, backpropagating action potentials do not always yield the same effi-
cacy, but are attenuated if there have been spikes previously. This is modelled by a
resource ubAP (t):

u̇bAP = −1 − ubAP

τ rec
bAP

− cbAP ubAP (t − ε)
∑
tpost

δ(t − tpost) . (2.34)
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cbAP is the use of resources with each postsynaptic spike, and the time constant
τ rec
bAP governs the relaxation of the resource. The available resources modulate the

membrane potential deflections of a bAP:

VbAP (t) =
t∑

tpost

ubAP ((t − ε) − tpost) bAP (t − tpost) δ(t − tpost) , with

bAP = Θ(s)AbAP

(
IbAP
s exp

(
− s

τ bAP
s

)
+ IbAP

f exp

(
− s

τ bAP
f

))
.

(2.35)

The resulting membrane potential in the postsynaptic spine is the sum of both
contributions:

V (t) = VbAP (t) + VEPSP (t) . (2.36)

Similarly to the AMPA receptors, the NMDA receptors saturate after each presy-
naptic discharge. Also, the total pool of NMDA receptors is split into one subset of
slow and one subset of fast receptors with different time constants for neurotrans-
mitter unbinding. The relative sizes are given by If and Is = 1 − If for the pool of
fast and slow receptors, respectively. Each discharge opens up all receptors, which
leads to the following dynamical equations for the fraction of open receptors:

Ṅf,s = −Nf,s

τf,s

+ (If,s − Nf,s)xrel(t)
∑
tpre

δ(t − tpre) . (2.37)

The current of calcium through NMDA receptors depends on the fraction of open
receptors and the voltage:

INMDA = GNMDA[Nf + Ns]B(V )(V − Vr) , (2.38)

where B(V ) is the same function as in equation (2.28), and GNMDA = −1.25mM/(s·
mV ) is the conductance of the calcium receptors. The rest of the model is given by
equations (2.29), (2.30) and (2.31).

The model of Graupner and Brunel

Graupner and Brunel conducted an in-depth analysis of the calcium binding behavior
of CaMKII, a protein that is assumed to be an important part of the molecular
cascade which changes the synaptic characteristics [51]. They identified key aspects
and abstracted their findings into a relatively simple model for synaptic plasticity
[29]. This model also incooperates the calcium control hypothesis put forward by the
BCM theory and Shouval and colleagues. Pre- and postsynaptic spikes contribute
linearly to the postsynaptic calcium concentration c(t):

ċ = − c

τCa

+ Cpre

∑
tpre

δ(t − tpre − D) + Cpost

∑
tpost

δ(t − tpost) . (2.39)

Cpre,post are the values the concentration increases by a pre- or postsynaptic spike,
respectively. D is a delay between the time of the presynaptic spike and the time
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the calcium transient becomes visible at the postsynaptic spine; this is analogous
to τa in the LIF model. τCa is the decay time constant of the calcium in the spine.
In the Graupner model, synapses are bistable. To model this, a synaptic efficacy
variable ρ is introduced evolving according to

τ ρ̇ = −ρ(1−ρ)(ρ�−ρ)+γp(1−ρ)Θ [c(t) − θp]−γdρΘ [c(t) − θd]+Noise(t) . (2.40)

τ is the time constant of the dynamics of ρ, and ρ� is the boundary between the
basins of attraction of the two stable points. In this formulation, ρ = 0, 1 are the
two stable points. Also, in this equation there are two thresholds, θd and θp. For
each of the thresholds, if the calcium concentration exceeds it, it causes a drift of
ρ towards zero for c(t) > θd or towards one if c(t) > θp, which magnitude γd and
γp, respectively. ρ = 0 corresponds to the depressed synaptic state (or down state)
with efficacy w0, and ρ = 1 corresponds to the potentiated state (or up state) with
efficacy w1 > w0. A noise term is introduced which also depends on the calcium
concentration:

Noise(t) = σ
√

τ
√

Θ (c(t) − θd) + Θ (c(t) − θp)η(t) . (2.41)

η(t) is a gaussian white noise process with unit variance density, and σ is the am-
plitude of the noise. Because of the condition given by the Heaviside function, noise
is only present if there is drift of ρ anyway. Having a noise term is justified, since
experimental data on synaptic plasticity shows a considerable jitter of measured
weight changes for any spike pattern.
The model was fitted to different experimental data sets, for which it was necessary
to introduce two more parameters related to assumptions about the initial synaptic
state and the actual weights. Experiments are done on a population of synapses
(i.e. several measurements per stimulation protocol), and the model introduces a
parameter β that describes the fraction of synapses initially in the down state. The
second parameter is the fraction of synaptic efficacies b = w1/w0. It is not necessary
to specify both w1 and w0, because the experimental results are always reported as
the fraction of PSP amplitudes after and before the inducton protocol.
In contrast to the Shouval model and Cai model, Graupner and Brunel explicitely
fitted their model to experimental data from [47], [64] and [26].

The calcium model of Uramoto and Torikai

The last model presented here is the one by Uramoto and Torikai [35]. It is also
a calcium based model, i.e. the synaptic change depends on the concentration of
calcium in the postsynaptic spine. The model introduces two state variables: x(t)
is the amount8 of open NMDA receptors, and y(t) is the calcium concentration in

8Here the original article is inconsistent. The authors claim that x is the fraction of open
receptors, and x ∈ [0, 1]. However, I can only reproduce their results if I keep x unbounded.
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the spine. They evolve according to

ẋ(t) = −x(t)

τx

+
∑
tpre

δ(t − tpre)

ẏ(t) = −y(t)

τy

+
∑
tpost

(f(y(t − ε))x(t) + b)δ(t − tpost) .

(2.42)

τx,y is the time constant of decay for NMDA receptors and calcium concentration,
respectively. Every presynaptic spike increases x by one, and every postsynaptic
spike increases y by an amount f(y)x+ b. b represents the influx of calcium through
voltage-dependent calcium channels, which is independent of presynaptic activity.
The function f is a sigmoidal function of the postsynaptic calcium, which assumes
that the influx of calcium through NMDA receptors reduces if calcium is already
present intracellularly:

f(y) = a
k

k + y
. (2.43)

Taken together, f(y)x represents the influx through NMDA receptors depending on
the number of receptors activated by neurotransmitters x and the bAP. The calcium
concentration drives LTD and LTP. For both, the model posits functions of y(t):

LTD function: M(y) =
αmy

y + βm

LTP function: K(y) =
αk

1 + exp(−(y − βk)/γk)

, (2.44)

which are read out by pre- or postsynaptic spikes for synaptic change:

ẇ(t) = −
∑
tpre

M(y(t + ε))δ(t − tpre) +
∑
tpost

K(y(t + ε))δ(t − tpost) . (2.45)

In contrast to the previous models, the state variable y has to be updated first at
the time of a postsynaptic spike, and only then the weight change is computed. This
is signified by writing y(t + ε).

2.4 Theta oscillations and memory performance

2.4.1 Measurement of large scale oscillations

Currently, single neurons in the living animal can be monitored by electrodes or
glass pipettes accessing the intracellular potential. This is the most fine-grained
method available at this time which provides information about the neuronal state,
but only very few neurons can be accessed at the same time. Recently, methods
became available which allow to record the activity of many neurons at the same
time by inserting voltage sensitive dyes or transfecting neurons such that they ex-
press these dyes themselves. These methods are usually subsumed under the term

34



CHAPTER 2. BIOLOGICAL BACKGROUND 2.4. THETA OSCILLATIONS

“optogenetics”. Nevertheless, they are not universally applicable, since they still
require physical access to the brain, which is not feasible in some situations. Also,
the voltage resolution is still rather low compared to direct electrical measurement.
Because of these problems, experimental neuroscience often relies on low-resolution
measurement of the activity of thousands of neurons. There are two different ways
to do this. A non-invasive technique is electroencephalography or “EEG” [30]. Here,
electrodes are attached to the skull of a test subject (humans or animals). They
measure the electric potential on the skulls surface against a reference potential.
Putting many electrodes on different locations on the skull allows to monitor the
activity of many regions in parallel. Another technique with similar scope is the mea-
surement of local field potentials (LFPs) [31]. These are obtained using intracranial
electrodes, which means this is an invasive technique in contrast to EEG. Its advan-
tage is the more precise placement of electrodes, which allows to better measure the
activity of the region of interest. The spatial resolution of both techniques is rather
low, because they average the activity of several thousands of neurons. Temporal
resolution is relatively high in the millisecond scale.
With EEG measurements it is possible to detect quite a few features of neuronal
computations. For example, novel visual stimuli will elecit a detectable deviation
from baseline potential after around 300 milliseconds in certain areas, commonly
known as the “P300 component”. An important discovery obtained with EEG is
that mammalian brain activity displays pronounced oscillations. Analysis of EEG
or LFP data using Fourier transform or wavelet analysis reveals that large groups
of neurons engage in synchronous periodic activity, which signifies different states
of the brain. For example, slow wave oscillations are tied to the sleeping state. The
oscillations are put in “bands”; for example, oscillations of 40 to 100 Hz are put into
the gamma band, while those around 4 to 10 Hz are put into the theta band.

2.4.2 Experimental evidence for improved learning under
theta oscillations

One of the more peculiar observations is the influence of the brains’ oscillatory state
during memory formation on recall performance later. This can be demonstrated
with a basic conditioning experiment. Blowing a puff of air into the eye of a rabbit
forces it to cover its eyes momentarily with its nictitating membrane. This is called
the nictitating membrane response (NMR), and this paradigm is often used in con-
ditioning experiments [65]. The NMR is a so-called unconditioned stimulus (US),
and it is paired with the presentation of a tone, which serves as the conditioned
stimulus (CS). After a sufficient number of presentations, presenting the CS alone
leads to the same response as if a puff of air was blown into the eye: The rabbit
shuts its nictitating membrane. In 1978, Berry and Thompson conducted this ex-
periments with rabbits which had an electrode implanted into the hippocampus [32].
They performed the experiment and afterwards analyzed the data from the brain
recordings. They found a correlation between the number of learning trials until the
conditioned response is aquired with the power of oscillatory activity in the theta
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range, between 3 and 8 Hz. Animals which consistently were in high theta states
during training needed fewer training trials until they showed a stable conditioned
response. Interestingly, in another experiment only presenting the CS-US pair when
hippocampal theta power is elevated also leads to faster learning compared to the
control group [66]. It is therefore beneficial to initiate a training trial if theta oscil-
lations are present even before the training trial. Similar results have been obtained
in human subjects [67]. This also means that theta oscillations are not task specific,
but rather represent a state with improved memory susceptibility. Lastly, theta os-
cillations are also beneficial even after training in the memory consolidation phase.
Reiner and colleagues trained human subjects in a finger-tapping task. Afterwards,
half of the subjects performed a bio-feedback task which trained them to generate
theta-band activity in EEG recordings. This led to better memory consolidation
than in the control group which did not generate theta activity [68].
It is a peculiar notion that the oscillatory state has impact on learning. Learning is
thought to be linked to synaptic plasticity, which depends on spike timing on a scale
of tens of milliseconds or even less. How can it be that theta oscillations, which hap-
pen on a time scale of hundreds of milliseconds, have such a huge impact on synaptic
plasticity? Different groups have dealt with this question before. John Larson and
colleagues have induced presynaptic high-frequency bursting with different intervals
between the bursts in hippocampal excitatory neurons [69]. They found that bursts
delivered at 5 Hz were the most effective in elicting LTP, while higher and lower rep-
etition frequencies led to less potentiation. This result was confirmed by Greenstein
and colleagues [70]. Another discovery was that the sign of weight change depends
on the phase of the theta oscillation. In anesthized rats theta oscillation was induced
artificially by stimulating the mid-brain. Next, in hippocampus presynaptic neurons
were stimulated to fire high-frequency spike bursts either at the peak or the trough
of the theta oscillation. It was found that presynaptic stimulation at the peak leads
to LTP, while stimulation at the trough in general depresses the synapse [71]. This
result was later obtained also in behaving rats [72].
Despite these findings, it is still unclear how theta oscillations promote learning. In
contrast, gamma oscillations (40-70 Hz) are also associated with improved learning
rate, but due to the short duration of a gamma cycle, spikes occur in a short time
window of around 10 ms and less to each other. This allows plasticity due to classi-
cal STDP. In a theta cycle, however, spikes are temporally much less confined and
STDP seems to be a more unlikely mechanism to be useful in learning [73].
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Learning and memory formation are processes which are still not fully understood. It
is widely believed that synaptic plasticity is the most important neural substrate for
both. However, it has been observed that large-scale theta band oscillations in the
mammalian brain are beneficial for learning, and it is not clear if and how this is linked to
synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been
completely uncovered yet, especially for non-linear interactions between multiple spikes.
Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates
novel contributions to synaptic plasticity including adaptation processes. We test its ability
to reproduce non-linear effects on four different data sets of complex spike patterns, and
show that the model can be tuned to reproduce the observed synaptic changes in great
detail. When subjected to periodically varying firing rates, already linear pair based spike
timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity
to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this
band-pass property, while for high firing rates in the non-linear regime it modifies the
specific phase relation required for depression and potentiation. For realistic parameters,
maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic
activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line
with experimental findings, providing a straightforward and mechanistic explanation for
the importance of theta oscillations for learning.

Keywords: synaptic plasticity, STDP, learning, memory, theta oscillation

1. INTRODUCTION
Synaptic plasticity likely is the key neural substrate underlying
learning and memory in the brain. Early ideas on the problem of
synaptic plasticity posited that positive correlations between neu-
ronal activities are the signal for the synapse to potentiate (see
e.g., review by Markram et al., 2011); later experiments showed
that the relevant signal is not just the average correlation of
activity, but rather the precise temporal order of single spikes at
the pre- and postsynaptic neuron (Markram et al., 1997; Bi and
Poo, 1998; Zhang et al., 1998; Feldman, 2000). This phenomenon
was termed Spike Timing Dependent Plasticity (STDP) and sub-
sumed in the well-known exponential spike pair STDP window
[Song et al. (2000), spSTDP in the following]. In many theoret-
ical studies, this window serves as a look-up table to compute
the weight change: Identify any pair of a pre- and a postsynap-
tic spike, locate the time difference between the two spikes in
the STDP window and add up the respective weight changes [see
Morrison et al. (2008) for a review of implementations]. While
this linear approach has its appeal, it is not sufficient, because the
contributions of spikes in sequences do not simply add up (Wang
et al., 2005). Some experiments find that a spike can suppress
the effect of later spikes of the same synaptic side (Froemke and
Dan, 2002; Froemke et al., 2006). Other experiments show that
contrary to expectation a single pre-post pair fails to potentiate
the synapse, but a pre-post-post triplet leads to strong long term

potentiation (LTP) (Sjöström et al., 2001; Nevian and Sakmann,
2006; Wittenberg and Wang, 2006). These findings highlight the
need for any accurate model of STDP to include non-linearities.
There are several different models available which attempt to
capture the experimental results. One class of models contains
phenomenologically motivated non-linear extensions of spSTDP
which are tailored to explain experimental data (Froemke et al.,
2006; Pfister and Gerstner, 2006; Schmiedt et al., 2010). A second
class are calcium-based models, which are grounded on biophys-
ical considerations. Most of these models invoke the calcium
control hypothesis, which states that a moderate increase of the
calcium concentration in the postsynaptic spine leads to long
term depression (LTD), while high concentrations lead to LTP.
The models then are concerned with the details of the calcium
dynamics (Shouval et al., 2002; Cai et al., 2007; Graupner and
Brunel, 2012; Uramoto and Torikai, 2013). A third class of mod-
els includes neuronal signals beyond spikes, most prominently the
postsynaptic membrane potential (Clopath et al., 2010). There are
few experimental studies which quantitatively examine the synap-
tic change in response to complex and versatile spike patterns
(Froemke and Dan, 2002; Wang et al., 2005; Froemke et al., 2006;
Nevian and Sakmann, 2006), however, none of the models cov-
ers all data sets [for the model of Uramoto and Torikai (2013),
see Discussion]. An attenuated synaptic response to repeated
high frequency spiking [Short term depression, (Tsodyks and
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Markram, 1997; Tsodyks et al., 1998; Zucker and Regehr, 2002)]
is explicitly included in several models (Froemke et al., 2006;
Cai et al., 2007; Schmiedt et al., 2010), which however, do not
explain the full range of experiments. In the following, we present
a minimal dynamical model which includes pre- and postsynap-
tic adaptation as well as an activating contribution, hence we call
it contribution dynamics model (CD model). Some of the ele-
ments of this model can be found in previous work (Schmiedt
et al., 2010). We evaluate the validity of the model by fitting it to
the four different data sets mentioned above, and compare its per-
formance with the Triplet model of Pfister and Gerstner (2006),
which is similar in scope and formulation, but lacks adaptation.

Another open question in neuroscience addresses the neural
substrate for the known importance of oscillatory brain states
for memory formation (Fell and Axmacher, 2011; Colgin, 2013).
Many studies find that the mere presence of oscillations of
increased theta power is enough to enhance the learning process,
even if the oscillations are present before (and during) the learning
trial (Seager et al., 2002; Nokia et al., 2008; Guderian et al., 2009).
Other studies find that not theta power, but global theta synchro-
nization promote good learning efficacy (Mölle et al., 2002; Burke
et al., 2013). It is likely that theta synchronization is imposed on
the affected brain areas by some higher area, which causes the
synchronization with a phase difference of around zero, such that
maxima of activity in synchronized areas occur at the same time
(Fell and Axmacher, 2011). It was suggested that the reason is
a specific phase dependence of synaptic plasticity in theta oscil-
lations: If activity maxima in the pre- and postsynaptic neurons
co-occur, the synapse potentiates, if the presynaptic neuron bursts
during the trough of the theta oscillation, the synapse depresses
(Pavlides et al., 1988; Hyman et al., 2003).

Can the combination of these findings be explained by a sin-
gle mechanism? We address this question with the hypothesis
that the reason lies in the filter properties of synaptic plastic-
ity, which can be investigated with models of synaptic plasticity.
To test this we assume that theta-band oscillations in large scale
signals like EEG or ECoG are caused by corresponding periodic
modulation of neuronal activity. For simplicity we neglect spike-
spike correlations and assume stochastic spiking. We investigate
the synaptic susceptibility to oscillations from the delta band to
the gamma band (1–80 Hz) in spSTDP and in the CD model.
For comparison, we did the same with a range of other models
(Shouval et al., 2002; Pfister and Gerstner, 2006; Cai et al., 2007;
Graupner and Brunel, 2012). We found that for spSTDP with
physiological parameters synapses are susceptible to oscillations
in the theta band (4–8 Hz). The same susceptibility is evident also
in the CD model, which however, shifts the phase dependence of
LTP close to zero phase difference, in accordance with experimen-
tal results. By removing single contributions from the CD model
and investigating the resulting changes of the susceptibility, we
find that presynaptic adaptation and a conditional activation are
the necessary prerequisites for phase zero susceptibility.

2. MATERIALS AND METHODS
In the following, we use a short hand notation to denote spike
patterns. “Pre” or “Post” refer to the origin of the spike, the pre-
or postsynaptic neuron. A string like “pre-post” denotes first a

presynaptic spike a postsynaptic spike, regardless of exact tim-
ing. “Post-pre-post-post” describes a postsynaptic spike, then a
presynaptic spike, followed by two postsynaptic spikes.

2.1. MODELING SPIKE PAIR STDP WITH DIFFERENTIAL HEBBIAN
LEARNING

The differential Hebbian learning rule is a rather simple algorithm
for weight changes (Kosko, 1986). The synapse changes propor-
tional to the product of the presynaptic activity and the temporal
derivative of the postsynaptic activity. For spiking neurons, how-
ever, this makes little sense, and one has to introduce some kind of
low pass filtering of neuronal activities to gain a signal suitable to
calculate synaptic change. As usual, we use delta pulses to model
neuronal spike trains:

xi(t) =
∑

k

δ(t − tk
i ), (1)

where i ∈ {pre, post} denotes the location of the spiking event.
Each spikes leaves an exponential trace yi on its synaptic side,
which can be described by the differential equation

ẏi = − yi

τi
+ xi. (2)

We use the dot notation to denote temporal derivatives. The
weight change is given by

ẇ ∝ ypre · ẏpost. (3)

This simple system of equations is equal to (balanced) spSTDP, as
we show now. Consider the solution of Equation (2) to a single
spike at time ti:

yi = �(t − ti)e
− t − ti

τi . (4)

Here, �(t) is the Heaviside function, i.e., �(t) = 0 for t < 0 and
�(t) = 1 everywhere else. The weight change is calculated via

�w = cw

+∞∫
−∞

ypre ẏpost dt, (5)

where we introduce the constant of proportionality cw. The
weight change resulting from a pair of one pre- and one post-
synaptic spike is given by

�w = cw

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

1 + τpost
τpre

)
exp

(
− tpost − tpre

τpre

)
for tpre < tpost

− 1
1 + τpost

τpre

exp
(
− tpre − tpost

τpost

)
for tpre > tpost.

(6)
This is the standard STDP window for balanced spSTDP, where
the areas under the LTP and LTD part of the curve are of exactly
equal size, and the decay time constants are given by τpre and τpost

for LTP and LTD, respectively. Due to the linearity of the equa-
tions, the learning rule is also completely linear, and every spike
pair in a given spike pattern is treated the same by the learning
rule.
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The STDP window in differential Hebbian learning is deter-
mined by three parameters. To scale the LTD and LTP parts of
the window relative to each other a fourth parameter is needed.
We split the weight change into a depression and a potentia-
tion part by inserting Equation (2) into (3) and introduce a scale
parameter q:

ẇ = cwypre

(
qxpost − ypost

τpost

)
. (7)

This manipulation changes the STDP window to:

�w = cw

⎧⎪⎪⎨
⎪⎪⎩

(
q − 1

1 + τpost
τpre

)
exp

(
− tpost − tpre

τpre

)
for tpre < tpost

− 1
1 + τpost

τpre

exp
(
− tpre − tpost

τpost

)
for tpre > tpost.

(8)
Adjusting q scales the LTP part of the STDP window as required.
For example, setting q = 1/(1 + τpost/τpre) cancels LTP for every
possible spike pattern. There are experiments which show that
for low frequencies of spike pair induction, pre-post pairs do not
change the synapse, while post-pre pairs still depress the synapse
(Sjöström et al., 2001; Nevian and Sakmann, 2006; Wittenberg
and Wang, 2006). However, other spike patterns in these studies
potentiate the synapse, which suggests that in order to generalize
this description of STDP, one has to turn q into a function of time.

2.2. THE CONTRIBUTION DYNAMICS MODEL
For the CD model we use the differential Hebbian learning rule
described above as basis, and extend it by several new equations.
First, we introduce an adaptation variable ui for each synaptic
side. This dynamics resemble those of the presynaptic resources in
models of synaptic short term depression (Tsodyks and Markram,
1997; Tsodyks et al., 1998). Its effect is the attenuation of the
impact of rapid spiking on the synapse, and we model it by

u̇i = 1 − ui

τrec
i

− ciui(t − 0)xi. (9)

The update of the trace Equation (2) is now changed to

ẏi = − yi

τi
+ ui(t − 0)xi, (10)

where we write ui(t − 0) to emphasize that in order to update
each variable in case of a spike, one has to use the value of ui

shortly before the spike.
If the learning rule Equation (3) was left unchanged, the effect

of the adaptation variables ui would be a rescaling (shrinking) of
the STDP window with consecutive spikes, and relaxation dur-
ing silence. This property removes the linearity of the original
STDP learning rule, as the influence of each spike on the synapse
depends on the history of spiking of the respective neuron. We
introduce an additional non-linearity, by allowing q (Equation 7)
to vary over time:

q̇ = qmin − q

τq
+ cq�(ypre − ϑq)xpost, (11)

where � is again the Heaviside function. q is a trace of the post-
synaptic activity conditional on the presynaptic trace: Only if
ypre > ϑq at the time of a postsynaptic spike, q increases. For all
other times, it relaxes back to qmin. The actual weight change is
finally given by

ẇ = cwypre

(
q(t − 0)upost(t − 0)xpost − ypost

τpost

)
. (12)

The specific formulation of q is motivated by its simplicity—
linear ordinary differential equation of first order for the decay
term—and several observations in the data of Nevian and
Sakmann (2006). In these experiments, a pre-post pair does
not change the synapse, but the pre-post-post triplet does. The
translation to an STDP framework is that the LTP part of the
STDP window needs to vanish when the synapse is relaxed (any
previous activity took place relatively long ago), but reappear
in reaction to certain activity patterns. In this example (pre-
post vs. pre-post-post), the desired outcome can be achieved
by Equation (11) without the Heaviside function: q̇ = (qmin −
q)/τq + cqxpost. However, in the case of a post-post-pre-post pat-
tern (Figure 2C third data point from left) this would lead to a
huge upscaling of the LTP part, which was not observed. This
prompted us to install the threshold such that recent presynap-
tic activity gates the increase of q. We chose the all-or-none
threshold to exclude any non-linear effects of q on the STDP win-
dow. Because of the upregulation of potentiation, we call q the
activation variable.

Figure 1 gives an overview over the components of the CD
model.

2.3. FITTING THE CD MODEL TO EXPERIMENTAL DATA
To evaluate the ability of the CD model to reproduce experimental
findings, we matched its parameters to the following four in vitro
data sets:

• Visual cortex of young rats, thick tufted cells in layer 5 [VC5,
Sjöström et al. (2001)].

• Hippocampal neurons of rat embryos in culture [HC, Wang
et al. (2005)].

• Somatosensory cortex of young rats, pyramidal cells in layer
2/3 [SC23, Nevian and Sakmann (2006)].

• Visual cortex of young rats, pyramidal cells in layer 2/3 [VC23,
Froemke et al. (2006)].

In these experimental studies, the change of synaptic efficacy
is given as the ratio of the isolated EPSP (which we assume
to be proportional to the synaptic weight) after and before the
induction protocol:

EPSP ratio = EPSPafter

EPSPbefore
= wafter

wbefore
= wbefore + �w

wbefore

= 1 + �w

wbefore
. (13)

We identify �w with the weight change in the CD model.
Additionally, we assume that the synaptic weight before the
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FIGURE 1 | Overview over the CD model and its constituents. Presynaptic (top) and postsynaptic (bottom) contributions to synaptic plasticity are shown.
Arrows indicate direction of influence according to model equations. On the right side example spike trains and resulting traces of the variables are shown.

induction has a fixed value. The goal of the fitting pro-
cess is to compare the experimental synaptic change with the
model prediction �wCD and find the set of parameters π =
{τrec

pre, cpre, τ
rec
post, . . . } which minimizes the error

E = 1

N

N∑
i = 1

(
�w

exp
i − �wCD

i (π)

SEMi

)2

, (14)

where N is the number of experiments in the data set, i the index
of the experiment and SEMi the published standard error of the
mean for experiment i. The minimization of the error was done
by a brute force search in the space of parameters. The bounds
we defined for the search are given in Table 1 (see Appendix
for additional remarks on the bounds). For each data set, some
parameters were set by hand to fixed values as follows: We set
qmin according to the outcome of the pre-post spike pair exper-
iment found in every data set. If the pre-post spike pair resulted
in no change of synaptic efficacy, qmin = 1/(1 + τpost/τpre), oth-
erwise qmin = 1. The time constants τpre and τpost turn up as the
decay constants of the STDP window (see Equation 8). For the
experiments in VC23 and HC these values were explicitly given,
so we did not change them. For the other two cortical data sets,
we used the values of the experiment in VC23. As each spike pat-
tern contained only one presynaptic spike, no information could
be obtained for presynaptic adaptation for the data from SC23.
This left for fitting here τrec

post, cpost, τq, cq, ϑq and cw. In all other
data sets, τrec

pre and cpre were additionally fitted.

2.4. FITTING THE TRIPLET MODEL TO EXPERIMENTAL DATA
The CD model is structurally similar to the Triplet model con-
ceived by Pfister and Gerstner (2006). The latter is a set of linear
differential equations of first order that describe traces of activity
at the synapse. Each spike leaves two traces at the synapse: r1, r2

for the presynapse and o1, o2 for the postsynapse, which interact

Table 1 | Bounds on parameters in the CD model.

Parameter Unit Min Max

τrec
pre s 0.001 3

cpre 0 1

τrec
post s 0.001 3

cpost 0 1

τq s 0.001 3

cq 0 10

ϑq 0 0.2

cw 0.001 0.1

to determine the weight change. For the update of the traces, there
are two possible choices. The first one is that each spike increases
its respective traces by one; this is equivalent to the yi dynam-
ics of Equation (2). Second, at the time of a spike the respective
traces always jump to unity. The equation of the traces changes
to ẏi = −yi/τi + (1 − yi(t − 0))xi. The first update rule is called
“all to all interactions,” the second “nearest neighbor interac-
tions.” The weight change in the Triplet model then consists of
a standard spike pair STDP rule plus the spike triplet interaction,
which is proportional the product r1 · o2 (o1 · r2) at the time of
a postsynaptic (presynaptic) spike for LTP (LTD). The main dif-
ferences between the two models are that in the CD model ypre

and ypost are subject to spike amplitude adaptation and that the
triplet interactions are replaced by the (conditional postsynaptic)
activation q. For comparison, we fitted the triplet model to the
data sets VC23, SC23, and VC5. The Triplet model has been fit-
ted to the HC data set, the parameters can be found in Pfister and
Gerstner (2006). It has also already been fitted to the VC5 data
set (same article). However, the spike induction protocol used for
fitting was uniformly 60 spike pairs with �t = ±10 ms delivered
at different frequencies (1–40 Hz). In the study of Sjöström et al.
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(2001), spike pairs for frequencies greater than 1 Hz were deliv-
ered in 15 bursts of 5 pairs with varying intra burst frequency,
with bursts being 10 s apart. We re-fitted the Triplet model to VC5
to better compare the two models. In contrast to the original arti-
cle, we furthermore allowed the triplet interaction parameters A+

3
and A−

3 to become negative to account for adaptation in the data.
The fitting procedure was similar to the fit of the CD model; in
particular, the STDP window time constants τ+ and τ− were not
fitted, but set to predetermined values. The bounds defined for
the parameters are given in Table 2.

2.5. MEAN WEIGHT CHANGES IN MODELS OF STDP
The formulation of spSTDP as differential Hebbian learning
allows for a simple analytical treatment of continuous firing rates
rather than spike events. Under the assumption of poissonian
spiking and vanishing correlations between pre- and postsynaptic
spikes, one can easily compute the mean of the traces yi:

〈
ẏi

〉 =
〈
− yi

τi
+ xi

〉
= −

〈
yi

〉
τi

+ ri(t), (15)

where ri(t) = 〈xi〉 is the continuous and time-dependent firing
rate of neuron i. Because of the vanishing spike-spike correlations,
both traces combine to give the weight change as

ẇ = ẇ+ + ẇ− = cwq
〈
ypre

〉
rpost −

〈
ypre

〉 〈
ypost

〉
τpost

, (16)

where
〈
yi

〉
is the solution of differential Equation (15) for a given

time course of the firing rates ri(t).
In the non-linear models of STDP [CD model, Triplet model,

the three Calcium models (Shouval et al., 2002; Cai et al., 2007;
Graupner and Brunel, 2012)], the numerous non-linearities in
each model did not allow to compute and solve the mean field
equations. We therefore computed the average weight change
for a given stimulation protocol and model by generating many
realizations of the same continuous and time dependent firing
rates from inhomogeneous poisson processes (Dayan and Abbott,
2005), which we fed into each model. As in the analytical calcu-
lations for spSTDP, we assumed poissonian firing with vanishing
spike-spike correlations from synaptic transmission. In this case
the probability of finding a spike in a time bin of width �t is
given by

p(spike in neuron i in �t|t) = ri(t)�t, (17)

where ri(t) is the firing rate of neuron i as a function of time.

Table 2 | Bounds on parameters in the Triplet model.

Parameter Unit Min Max

τx s 0.0001 5

τy s 0.0001 5

A+
2 0 0.1

A+
3 −0.1 0.1

A−
2 0 0.1

A−
3 −0.1 0.1

2.6. STDP AND THETA OSCILLATIONS
We hypothesize that the link between theta oscillations and learn-
ing lies in certain filter properties of the synapse, which likely
depend on the model of synaptic plasticity used. We investigate
synaptic filter properties in a variety of different models: spSTDP,
the CD model, the Triplet model, and three different calcium
models, with the aim to carve out prerequisites for a synaptic fil-
ter. We used a sinusoidal oscillation to model the firing rate. For
the case of spSTDP, the firing rate is given by:

ri(t) = 1 + ε cos(ωmodt − φi) . (18)

Here, ε ∈ [0, 1] is a parameter that controls the amplitude of the
oscillation, ωmod = 2πfmod is the modulation frequency, and φi is
the phase of the oscillation. Because only relative phase is impor-
tant for the weight change, we set φpre = 0 and φpost = �ϕ. We
do not specify an absolute baseline firing rate for spSTDP, because
it is just a scale factor and does not qualitatively change the results.
The value we report is the weight change per time averaged over
one period of oscillation. This is constant after transients from the
onset of neuronal activity died out:

�w = 1

T

t′ + T∫
t′

ypre ẏpostdt . (19)

T = 1/fmod is the period of the modulatory oscillation, and t′ �
τpre, τpost is chosen such that any transient behavior in the traces
yi due to switching on the activity are gone. We derive the ana-
lytical solution for Equation (19) in the appendix, and use it to
generate the plots in Figure 4.

In the case of the non-linear models of STDP a baseline fir-
ing rate (the firing rate averaged over one period of oscillation)
has to be specified. The respective firing rates of the pre- and
postsynaptic neurons change to

rpre(t) = rbase (1 + ε cos(ωmodt))

rpost(t) = rbase (1 + ε cos(ωmodt) − �ϕ) .
(20)

To simplify the analysis, both neurons had the same baseline fir-
ing rate and the same modulation frequency. Similar to spSTDP,
in the CD model and the Triplet model we calculated the weight
change per time by averaging over an integer multiple of the oscil-
lation period starting after enough time has passed to settle the
transient:

�w = 1

NT

〈 t′ + NT∫
t′

ẇmodel dt

〉
, (21)

where model ∈ {CD, Triplet} refers to the model used. In all sim-
ulations, t′ = 2 s and NT = 98 s; we simulated only integer values
of the modulation frequencies, so NT is always a multiple of the
period.

For the three calcium-based models the procedure was differ-
ent. All models have inherent weight limits. As a consequence, the
rate of weight change itself is a function of time which does not
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settle into an equilibrium other than saturation. Therefore it is
not feasible to calculate an average weight change rate as with the
spike pair models. We rather let the two neurons fire with periodic
firing rates for some time [2 s and 5 s in the model of Shouval et al.
(2002), 10 s in the model of Cai et al. (2007), 5 s in the model of
Graupner and Brunel (2012)], after which we silenced the neu-
rons, but continued to simulate until the synapse settled into an
equilibrium. With all models, we report the final weight, with
w = 1 being the initial weight.

The fitting procedure and numerical simulations (Monte-
Carlo-Simulations) were done with custom-made programs in
Matlab (Mathworks Inc., Natick, MA, USA). Numerical integra-
tion of non-linear differential equations was done with Eulers
method and a step size of 0.1 ms. Linear differential equations
were solved analytically, and time evolution of the variables was
calculated based on the spike times.

3. RESULTS
3.1. THE CD MODEL CAPTURES A WIDE RANGE OF DYNAMICAL

PHENOMENA
The CD model describes the non-linear interactions between
spikes on either synaptic side acting on the contributions to
synaptic changes. To evaluate its ability to capture synaptic
changes, we chose four studies from the literature which mea-
sure synaptic changes in response to complex spike patterns,
and matched the model parameters to the experimental results.
Because the experiments were conducted under different condi-
tions (brain region, presynaptic stimulation method), the param-
eters had to be fitted separately for each data set. In the following
we describe the experiments and how the CD model recreates
them in relative detail, to illustrate the action of the different
contributions.

In all experimental studies, spikes were artificially induced by
application of current pulses to patched neurons, or sometimes in
the case of presynaptic spikes by stimulating the tissue close to the
dendritic tree of the postsynaptic neuron.

3.1.1. Area VC5 (Sjöström et al., 2001)
The experiments were a series of pre-post and post-pre pairs,
with fixed timing of 10 ms between the spikes of one pair. The
spike pairs were applied with 0.1 Hz (low frequency) 50 times,
or organized in “5–5”-bursts (moderate to high frequency), and
each burst was induced 15 times. Each burst consisted of 5 spike
pairs at intervals of 100, 50, 25, and 20 ms. Two consecutive bursts
were 10 s apart. Pre-post spike pairs at low frequency (0.1 Hz) do
not change the synapse. We reflect this in the CD model by set-
ting qmin = 1/(1 + τpost/τpre). For post-pre spike pairs of burst
frequencies up to 20 Hz, the weight change remained constant
(Figure 2B, blue bars). For pre-post pairs, however, potentia-
tion increased with increasing burst frequencies well below 20 Hz
(Figure 2A). In the CD model, �w− is proportional to the inte-
gral of the product of the pre- and postsynaptic activity traces ypre

and ypost. Consequently the time window of interaction is limited
by the smaller of the two time constants of decay τpre = 14 ms and
τpost = 42 ms. Because at 20 Hz the distance between each pair
is 40 ms, each spike pair remains effectively isolated, and �w−
only depends on the number of spike pairs. For pre-post pairs,

FIGURE 2 | Best fit of CD model and Triplet model to the data in VC5

(top) and SC23 (bottom). Blue bars show experimental weight change ±
SEM, red bars show weight change predicted by CD model, and green bars
show Triplet model for comparison. Insets show example spike patterns.
(A,B) Experiments in VC5. (A) shows “5–5” bursts with pre- before
postsynaptic spiking, (B) with order reversed. Both models capture the
transition of LTD to LTP with increasing burst rate. (C–E) Experiments in
SC23. The CD model quantitatively recreates the strong non-linearity of the
transition from no change to LTP with the addition of a postsynaptic spike
[(D): left vs. second-to-left, and (C): 50 ms].

however, the outcome is determined by the state of the variable
q at the time of the postsynaptic spike. The time constant τq is
longer (50 ms), which means that as the frequency of spike pairs
is increased, at the time of the next postsynaptic spike the vari-
able q is still well above baseline level and �w− and �w+ do
not cancel anymore, but �w+ “wins.” For even higher spike pair
frequencies (40 and 50 Hz), the spike pairs are so close together
that the traces yi interact. Because q has a considerable build-up
under these conditions, LTP is favored regardless of spike order.
This captures the experimental result that for burst frequencies of
40 and 50 Hz, post-pre pairings potentiate the synapse instead of
depressing it.

3.1.2. Area SC23 (Nevian and Sakmann, 2006)
In this study, one presynaptic spike was paired with a train of one
to three postsynaptic spikes. Each pattern was repeated 60 times at
a repetition rate of 0.1 Hz. Lacking multiple presynaptic spikes the
parameters of presynaptic adaptation could not be determined,
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therefore we set upre = 1 and cpre = 0 during the fitting proce-
dure. The pre-post spike pair at �t = 10 ms does not change the
synaptic efficacy, consequently we set qmin = 1/(1 + τpost/τpre).
However, LTP is reported for pre-post-post triplets of sufficient
postsynaptic burst frequency (≥50 Hz, see Figure 2). This is an
example for a “priming” of the synapse. In the CD model, the
conditional modulation of LTP by q (Equation 11) achieves this.
Pre-post pairs induced with low inter pair intervals (5 s and
longer) do not change the synapse, but allow LTP to be expressed
if a second postsynaptic spike follows the leading pair quickly.

3.1.3. Area HC (Wang et al., 2005)
The experimental setup of this study differs most from the oth-
ers. The measurements were done in cultured neurons from the
hippocampus of rat embryos, compared to neocortical slices of
young rats in all other experiments. Also, the spike pattern rep-
etition frequency was higher (1 Hz compared to 0.1–0.2 Hz).
The main result of these experiments is the synaptic change in
response to several pre-post-pre and post-pre-post spike triplets.
For identical timings, spSTDP predicts the same synaptic change
for both triplets, because the same post-pre and pre-post pairs
occur. But in the experiment, a post-pre-post triplet leads to
LTP (Figure 3C), while a pre-post-pre triplet does not change
synaptic transmission (Figure 3B). This suggests that the lead-
ing postsynaptic spike “primes” the synapse for potentiation,
without the need to meet the condition for q (Equation 11).
In the CD model, this requires a negative threshold ϑq < 0.
Compare this to the data in SC23, where the priming is con-
ditional on a pre-post pair, instead of a single postsynaptic
spike.

3.1.4. Area VC23 (Froemke et al., 2006)
In this study, several of the features of spike integration were
examined. First, “5–5” bursts were conducted similar to the
experiment in VC5 (Figure 3A, blue bars). For post-pre spike
pairs, LTD converted to LTP with burst frequencies greater than
50 Hz. Second, “n − 1” spike patterns were examined to char-
acterize presynaptic adaptation (termed “suppression” in the
original article). One to five presynaptic spikes in a burst at 100 Hz
were paired with one postsynaptic spike either before or after the
presynaptic burst. The result from this experiment can be inter-
preted such that only the leading presynaptic spike of the burst has
a noteworthy influence on synaptic change. In the CD model, this
is reflected by strong presynaptic adaptation in the fit to the data.
Third and last, “1 − n” experiments paired one presynaptic spike
with one to five postsynaptic spikes. (Figure 3D). An interesting
result is the comparison of the post-post-post-post-pre-post pat-
tern (Figure 3D, left) with the post-pre-post triplet: Both result in
the same synaptic change. One possible interpretation is that the
leading postsynaptic spikes had little to no influence on the synap-
tic change. In the CD model, this requires that the threshold ϑq is
greater than zero, so that no modulation of �w+ caused by an
increase of q happens in both spike patterns. If ϑq was smaller
than zero, the postsynaptic bursting before the conclusive pre-
post pair would lead to a build up of the variable q, which in turn
would cause �w+ to be strongly upregulated and to “overwhelm”
�w−, which was not observed.

FIGURE 3 | Best fit of CD model and Triplet model to the data in HC

(A–D) and VC23 (E–H). In HC, CD model and Triplet model capture the
main feature of the results, where pre-post-pre triplets do not change the
synapse, while post-pre-post triplets show strong LTP. The +5, −15 triplet
(B, right) however, can not be reproduced by both models, leading to a
relatively large error. In VC23, adaptation is evident in (G). Adding more
spikes in front of a pre-post pair decreases LTP, contrary to expectation. The
Triplet model has no mechanism which can deal with that.

The parameters of the best fits to all data sets are shown in
Table 3.

3.1.5. Testing the importance of adaptation
The parameters resulting from the fits show substantial postsy-
naptic adaptation only for the VC23 data set whereas postsynaptic
adaptation is non-existent in VC5 or has very fast recovery
reflected by short time constants in SC23 and HC. We there-
fore tested if postsynaptic adaptation was necessary to explain
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Table 3 | Parameters of CD model of best fit for each data set.

Data set τpre (ms) τpost (ms) τrec
pre cpre τrec

post cpost qmin τq cq ϑq cw Error

VC5 14 42 94 ms 0.7 – 0 0.25 46 ms 1.93 <0 0.03 0.17

HC 17 34 3 s 0.2 10 ms 0.9 1 20 ms 3.0 <0 0.009 2.81

SC23 14 42 – – 20 ms 1 0.25 0.5 s 8.5 0.1 0.018 0.81

VC23 14 42 0.6 s 0.7 0.3 s 0.9 1 0.3 s 6.6 0.1 0.033 0.78

Table 4 | Errors for reduced CD model.

Data set Full model cpost = 0 cpre = 0 No adaptation

VC5 0.17 – 0.38 0.59

HC 2.81 2.92 3.55 3.62

SC23 0.81 1.0 – 1.0

VC23 0.78 6.1 7.3 7.8

the data by fitting it a second time with cpost enforced to be
zero; this is effectively switching off postsynaptic adaptation. The
resulting errors are given in Table 4. For HC, the increase in
error is about 3%, for SC23 the error increases by 23%. This
is not a large difference, and it follows that postsynaptic adap-
tation is not necessary to explain these data sets. In the VC23
data set, the error increases sevenfold. If the CD model is fitted
to the data with presynaptic adaptation switched off (cpre ≡ 0
for the fitting), the error increases for HC by 26%, for VC5 it
more than doubles, and for VC23 the increase is greater than
sevenfold.

3.1.6. Comparison with triplet model
The Triplet model (Pfister and Gerstner, 2006) is a model of
STDP which is in scope and formulation similar to the CD model.
Both extend spSTDP with several non-linearities to account for
actual measurements of synaptic changes in complex spike pat-
terns. To gain a relative measure of fitting performance of the CD
model, we compare its fit to the different data sets to the ones
of the Triplet model. Because in the original article the Triplet
model was fitted only to VC5 and HC, we did our own fits to
the remaining two data sets, and a re-fit to VC5 (see Materials
and Methods). The best fits of the triplet model together with
the best fits of the CD model to the different data sets are
shown in Figures 2, 3 (green bars). The respective parameters
are given in Table 5. For VC5 the change of the experimental
protocol in the original article for this data set did not change
the resulting error by much, nor the original conclusion that the
error is lower with nearest neighbor interactions; the error is
0.51 for all-to-all interactions (parameters not shown). The CD
model reaches a lower error (0.17 compared to 0.33), but both
models follow the most prominent feature of this data set, the
conversion of depression to potentiation with increasing repeti-
tion frequency. The preference of nearest neighbor interactions
is also found in the fit to VC23, where the error is 25% lower
for the model with nearest neighbor interactions compared to
all-to-all interactions. An interesting feature of the parameters
is that the amplitude of “potentiating” triplet interactions A+

3
is negative in VC23. The reason is that the adaptation found

in VC23 needs to be accounted for. The triplet model has no
(explicit) adaptation, but negative values for A+

3 mimic part of the
effect.

For the data from SC23 with τ+ and τ− taken from VC23
the fit with all-to-all interactions led to the smallest error (1.69
compared to 1.97). The amplitude parameter A+

3 is two orders of
magnitude greater than the others. This gets outweighted by the
time constant τx = 7.7 s, which leads to an high accumulation of
trace r2 that controls the triplet depression. A second fit which
allowed τ+ and τ− to vary (eight parameters in total) reached a
lower error of 1.25, but the resulting time constants of the STDP
window have the property that τ+ > τ−, which is the reverse of
what is usually found. For the fit of the “minimal” CD model the
error is 1.0, but here only four out of seven parameters were var-
ied: τq, cq, ϑq and the scale parameter cw. The other three param-
eters are kept fixed: τpre and τpost are set to the values from VC23,
and qmin is determined by the outcome of the pre-post spike pair
experiment.

3.2. SYNAPTIC THETA-SUSCEPTIBILITY IN spSTDP
Several studies found that the presence of oscillations with high
theta power or large scale theta synchronization in EEG or LFP
enhance learning. (Mölle et al., 2002; Seager et al., 2002; Guderian
et al., 2009). A possible explanation for these findings could be
an underlying filter property of the single synapse, i.e., synap-
tic change depends on oscillating activity of both neurons in a
way specific to the oscillation frequency. To investigate this, we
assume a very simple model system: Two connected neurons fire
stochastically with vanishing spike-spike correlations, i.e., cor-
relations induced when a presynaptic neuronal activity changes
the probability of postsynaptic spikes. Theta oscillations found in
EEG or LFP are modeled by periodic sinosoidal modulation of
the baseline neuronal activity. Neurons fire spikes with an average
rate that is independent of the modulatory rate. Such a modu-
lation could be e.g., induced by periodic inhibition delivered by
external sources. As a first step we investigate the filter proper-
ties of spSTDP. In Figure 4 we display the rate of weight change
as a function of modulation frequency fmod and phase difference
�ϕ for five different values of q, corresponding to differently
biased STDP. For a given fmod in balanced spSTDP the plot
shows that synaptic change shows the greatest difference between
minimum and maximum (malleability or susceptibility) in the
theta range (4–10 Hz). For high or low frequencies the change
decays back to zero. An analytical calculation (see Appendix)
shows that the maximally effective modulation frequency
lies at

fmax = 1

2π
√

τpreτpost
. (22)
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Table 5 | Parameters of best fit for the triplet model.

Data set τ+ (ms) τ− (ms) τx τy A+
2

A+
3

A−
2 A−

3 Error

VC5 17 34 – 38 ms 0 0.049 0.0068 0 0.33

HC 17 34 946 ms 27 ms 0.0061 0.0067 0.0016 0.0014 2.9

SC23 14 42 7.7 s 6 ms 0.006 0.211 0.0004 0.009 1.69

VC23 14 42 2.7 s 2.6 s 0.007 −0.0005 0.0104 0.01 2.78

The frequency of maximum efficiency is a function of the
time constants of the STDP window. For the parameters from
VC23 used in Figure 4, τpre = 14 ms and τpost = 42 ms, fmax =
6.56 Hz. For the time constants from HC, τpre = 17 ms, τpost =
34 ms, fmax = 6.62 Hz. In general, for physiological parameters
the most effective frequency lies in the theta band.

This is a band-pass filter property, which discards too slow
or too fast oscillations, and uses intermediate oscillation fre-
quencies as signals for synaptic change. This is contrasted by
strongly biased spSTDP (Figures 4C,E). Here, the region of maxi-
mal phase dependency of synaptic plasticity on relative phase (i.e.,
the region of high susceptibility) is not cut off anymore for low
modulation frequencies. The synapse acts as a low pass filter.

3.3. SYNAPTIC SUSCEPTIBILITY IN NON-LINEAR MODELS OF
SYNAPTIC PLASTICITY

We chose five different models of synaptic plasticity to compare
the filter properties between them. First we examine the effects
of extending spSTDP with realistic non-linearities, with the CD
model and the Triplet model. Furthermore, we examine three
calcium-based models. The first one is the model of Shouval et al.
(2002) (“Shouval model” in the following), which introduced a
formalization of the calcium control hypothesis. This hypothesis
states that moderately elevated levels of calcium in the postsy-
naptic spine lead to synaptic depression, while high levels lead to
potentiation. The goal is then to model the calcium dynamics at
the synapse. For reference, we repeat the equations of the Shouval
model in the appendix. The second model is an extension of the
Shouval model with pre- and postsynaptic adaptation and presy-
naptic facilitation (Cai et al., 2007, Cai model). The adaptation is
shared with the CD model. The third calcium model was devel-
oped by Graupner and Brunel (2012) (“Graupner model”). This
model makes similar use of the calcium control hypothesis, how-
ever, it combines it with a bistable synapse model (Graupner and
Brunel, 2007). All models start from biologically plausible first
principles and derive the STDP window as a consequence. Also,
each model has inherent weight limits, which force us to change
the induction protocol for them (see Methods). For all models,
we do the analysis with all available parameter sets.

We constrain ourselves to models which use only spikes (spike
times) as relevant signals, and derive all relevant variables from
them. There exist models which explicitly take subthreshold neu-
ronal dynamics into account (see e.g., Clopath et al., 2010).
Although this type of model is potentially more accurate at
describing experimental results, it has to make specific assump-
tions about neuronal dynamics, which we want to avoid here.

For the CD model, the rate of weight change as a function of
modulation frequency and phase difference is shown in Figure 5.

Because the data in SC23 can not give information about presy-
naptic adaptation, we use τrec

pre and cpre from area VC23 instead.
Three of the plots show a very similar behavior. The weight
change is positive almost everywhere, and the zone of maximal
LTP depending on modulation frequency is tilted such that for
a modulation frequency of 1 Hz highest potentiation occurs at
�ϕ ≈ 0. A comparison with Figure 4 shows that in the case of
a slight bias toward LTP (q = 1.4) the picture looks similar. In
the parameters for VC23 and HC, qmin = 1, which means that
q(t) ≥ 1 and the requirement for potentiation-biased STDP is ful-
filled. In SC23, the STDP window is biased toward LTD (qmin =
0.25), however, the parameters for the activation q show that con-
tributions to it are strong (cq = 8.5) and last long (τq = 0.5 s).
Therefore the bias toward LTP results from the baseline activity.
The rate of weight change in VC5 deviates strongly from this,
it shows an asymmetry between maximal and minimal weight
change, and is strongly biased toward LTD.

The characteristics of the susceptibility in the Triplet model
are different from the CD model (Figure 6). In three parame-
ter sets (HC, SC23, VC23), the weight change is depression only,
and the tilt of maximal weight change (closest to zero) is inverted
compared to the CD model. None of these three parameter sets
shows a pronounced susceptibility specific to a certain frequency
range. Increasing the baseline rate does not change the weight
change qualitatively, but rather scales it up (Not shown for SC23,
VC23). Comparison with spSTDP (Figure 4; q = 0.7) suggests
that the respective parameters are biased toward LTD. Like in the
CD model, area VC5 stands out. At 5 Hz the weight change is the
same as in the CD model. For an increased baseline rate of 20 Hz,
it changes from depression to strong potentiation, as comparison
with Figure 4C shows.

In the Shouval model, the susceptibility depends little on the
parameters of the induction protocol (stimulation time 2 or 5 s,
baseline firing rates different from 5 Hz (not shown), Figure 7).
The synapse potentiates for all parameters, and shows a phase
dependence for slow oscillations (<3 Hz). However, the differ-
ence between maximum and minimum weight is small. The
situation is similar in the Graupner model: In VC5 the phase
dependence of weight change reaches into the theta band, in HC
up to 20 Hz (Figure 7). The synapse, however, shows no band-
pass properties. In contrast to the other two models, in the Cai
model the synapse is susceptible to oscillations in the theta band.
However, as the baseline firing rate is increased, the synapse shifts
to a low pass filter.

3.4. CONTRIBUTIONS TO THETA SUSCEPTIBILITY
The CD model is the only model of synaptic plasticity tested
here which retains a susceptibility specific for a certain frequency
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FIGURE 4 | Rate of weight change in spSTDP. These plots show
the rate of weight change for simple spSTDP (Time constants taken
from VC23). Contours mark lines of same weight change. Colors
indicate positive (red) or negative (blue) weight change, see colorbar.
Colorbar is the same for every plot. Plus and minus signs mark
maximum and minimum, respectively. Weight change is a function of
modulation frequency fmod and phase shift �ϕ [see Equation (31)].
�ϕ > 0 indicates a phase where presynaptic leads postsynaptic
activity. Baseline firing rate is unspecified (see text). (A) Balanced
spSTDP (q = 1). Maximal and minimal weight change occur at
fmod ≈ 6 Hz, while for very low and very high modulation frequencies
the weight change decays to an average value (zero in this case),
regardless of phase shift. We term this the band-pass property of
the synapse. (B,C) spSTDP with a moderate bias toward LTP
(q = 1.4) or LTD (q = 0.7). The bias converts the weight change to
LTP or LTD almost everywhere, however, the band-pass property is
mostly preserved. (D,E) spSTDP with a strong bias toward LTP or
LTD. The rate of weight change shows a strong dependence on
phase shift even for lowest oscillation frequencies instead of a
decay back to an average value. Therefore, the synapse acts as a
low pass filter in both cases.

FIGURE 5 | Susceptibility of the synapse to theta oscillations in the CD

model. Shown is the rate of weight change as a function of phase shift and
modulation frequency (similar to Figure 4). Baseline firing rate is 5 Hz for
each plot. Same colorbar for all plots. (A) Parameters of fit to VC5. The
synapse depresses for all modulation frequencies and phase shifts. (B)

Parameters of HC. The synapse is biased toward potentiation. Maximal
potentiation occurs for zero or small positive phase shifts at a modulation
frequency of ∼2–10 Hz. The result is similar for SC23 [(C), with τrec

pre = 0.6 s,
cpre = 0.7 from VC23] and VC23 (D), with slight variations in magnitude and
size of the zone of maximal LTP. Comparison with Figure 4 shows that
spSTDP with a moderate bias toward LTP exhibits very similar
characteristics.

range beyond the linear regime (low firing rates). To illustrate
the behavior in the non-linear regime, we computed the rate of
weight change for different baseline firing rates for the parameter
set of SC23 (Figures 8A–C). At low firing rates, the susceptibil-
ity is very similar to that of spSTDP with a moderate bias toward
depression (see Figure 4B). One could expect that with increas-
ing firing rate, the bias simply gets stronger until the weight
change is similar to Figure 4C. However, the specific susceptibility
gets slightly more pronounced, and the maximum of potentia-
tion moves toward (and for very high firing rates beyond) zero
phase shift. This effect is stronger for low modulation frequen-
cies (≈3 Hz, Figure 8C). Interestingly, this property resembles the
experimental observation that presynaptic stimulation repeatedly
delivered at the peak of a theta oscillation potentiates the synapse,
while stimulation at the trough depresses it (Hyman et al., 2003).
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FIGURE 6 | Susceptibility of the synapse in the Triplet model. Shown is
the rate of weight change of the synapse as a function of fmod and �ϕ in
the Triplet model, with each of the parameter sets and with different
neuronal baseline firing rates. In contrast to Figure 4 the colorscale is
separate for each plot. (A) Area VC5, left: 5 Hz average firing rate, right:
20 Hz firing rate. At 5 Hz, the weight change is negative everywhere (not
visible because of the order of magnitude). Changing the firing rate to 20 Hz
leads to LTP everywhere. (B) Area HC, at 5 and 20 Hz average firing rate of
the both neurons. The weight change is negative for both conditions. (C,D)

Areas SC23 and VC23 at a baseline firing rate of 5 Hz. With both parameter
sets, the weight change is purely negative.

Next, we investigate the effect of increasing oscillation ampli-
tude on the synapse. We keep the modulation frequency fixed
at 5 Hz with �ϕ = 0, and vary the oscillation scaling parameter
ε. In the case of the SC23 parameters (Figure 9A), the synapse
potentiates for constant (unmodulated) firing for baseline rates
greater than 5 Hz. Theta oscillations in the firing rates simply
lead to an upscaling of this potentiation. We do the same anal-
ysis for an altered set of parameters (Figure 9B). We change
τq to 50 ms instead of 500 ms. This tones down the activation
and therefore potentiation, however, it affects the fitting error
only slightly (increase from 0.81 to 1.1). In this case, the weight
change for constant firing is negative everywhere. Introducing
a periodic modulation then increases weight change, turning
depression into potentiation, but only for baseline firing rates
greater than 5 Hz.

FIGURE 7 | Synaptic susceptibility in the calcium models. Top row: Final
synaptic weights after 2 s (A) and 5 s (B) of stimulation in the Shouval
model. Baseline firing rate is 5 Hz. The synaptic weight shows a phase
dependence only for lowest modulation frequencies. The result is similar
for other baseline firing rates (not shown). Middle row: Final weights in the
Cai model. Baseline firing rate is 5 Hz (C) and 20 Hz (D), duration of theta
modulated firing is 10 s. At 5 Hz, the synapse shows a preference for
modulation in the theta range (centered at ∼5 Hz). Neither of the two other
models does something similar. Bottom row: Final synaptic weights in the
model of Graupner and Brunel after 5 s of stimulation, with parameters
fitted to VC5 (E) and HC (F). Baseline firing rate is 10 Hz. Similar to above,
the synapse reacts strongest to slow and slowest oscillations. Synapses in
calcium models are low-pass filters.

To elucidate what parts of the model are responsible for
this susceptibility, we did the analysis for confined versions
of the CD model. The resulting weight change as a func-
tion of modulation frequency and phase difference is shown
in Figures 8D–F, where we removed presynaptic adaptation,
postsynaptic adaptation and activation q, respectively. The weight
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FIGURE 8 | Susceptibility in the CD model under varying conditions. For
the base parameters for SC23 we repeated the simulations to compute the
rate of weight change under different conditions. Top row: Weight change
with increasing baseline firing rate (A: 5 Hz, B: 20 Hz, and C: 40 Hz). At low
firing rates, the synapse behaves similar to linear spSTDP; maximal LTP
occurs at �ϕ ≈ π/6 (compare Figure 4). With increasing firing rates, maximal
potentiation also increases, and maximal LTP shifts toward slightly negative
phase shifts (20 Hz: �ϕ ≈ 0 40 Hz: �ϕ ≈ −π/4), while being centered at
fmod ≈ 5 Hz. Bottom row: Influence of model constituents on susceptibility.

Neurons fire at an average rate of 5 Hz. (D) CD model without presynaptic
adaptation. The synapse is strongly sensitive to �ϕ, however, there is no
lower bound on fmod. (E) Without postsynaptic adaptation. The susceptibility
of the synapse is very similar to that of the undisturbed model (compare A).
(F) Without activation q. The weight change is negative everywhere, and the
synapse is not susceptible for some intermediate fmod. Plots (D,F) change
only slightly with increasing baseline firing rates. We conclude that of the
model constituents, postsynaptic adaptation is not necessary to explain theta
susceptibility in the non-linear regime.

change shows that presynaptic adaptation as well as activation
are both important for theta susceptibility. Removing either
one results in a low pass filter synapse. The link between
these two variables is the threshold ϑq, as Figure 9D illus-
trates. Here, we show the weight change for the full model
and parameters of SC23, except that ϑq < 0. As a conse-
quence, the synaptic susceptibility has no cutoff for low fre-
quencies anymore. Interestingly, removing the threshold removes
large part of the sensitivity to increasing oscillation ampli-
tude (Figure 9D), which further underlines the importance of
the interplay of presynaptic adaptation and activation for theta
susceptibility.

4. DISCUSSION
We presented a new phenomenological model for dynamic synap-
tic plasticity, which unifies several experimental results in one
framework. We analyzed the filter properties of this model, and
compared them to a range of other models. We found that the
CD model has unique properties which tie in with experimen-
tal findings on the connection of theta oscillations and memory
formation, thus providing a mechanistic link between synaptic
plasticity and the beneficial nature of theta-band oscillations for
learning.

4.1. INTERPRETATION OF MODEL COMPONENTS AND PARAMETERS
Although most of the components of the CD model are only
loosely guided by biophysical considerations, it is possible to

relate them to specific perisynaptic processes, and to envision
experiments for a more direct parameter estimation.

The spike traces y are very similar to the dynamics of bound
glutamate at postsynaptic receptors and calcium dynamics in the
synaptic bouton, which are essentially low-pass filtered action
potentials. Due to the differential Hebbian learning rule at the
core of the CD model, the decay constants of the spike traces
determine the shape of the classical exponential STDP window;
therefore, they can be directly estimated from varying the timing
of a single pre- and postsynaptic spike pair.

The adaptive suppression u, which leads to a sublinear summa-
tion of synaptic change, has a dynamics reminiscent of presynap-
tic short-term depression (Tsodyks and Markram, 1997; Tsodyks
et al., 1998). Its parameters can be determined by measuring
the change of the synapse in response to adding leading presy-
naptic (postsynaptic) spikes to a pre-post (post-pre) spike pair
and comparing the experimental result to the prediction of a
spike pair model. Presynaptic short-term depression is a well-
understood phenomenon, which has been shown to be present in
many different cell types (Zucker and Regehr, 2002). Interestingly,
the results of the fits of the reduced model indicate that short
term depression considerably influences synaptic change and
should be taken into account in quantitative models of synap-
tic plasticity. Some synapses show facilitation as well, and the
CD model can easily be accommodated to include this also by
adding one equation in a manner similar to Tsodyks et al. (1998).
On the postsynaptic side, however, the mechanism behind the
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FIGURE 9 | Effect of different oscillation amplitudes, and negative

threshold ϑq . (A–C) Show the rate of weight change as a function of
common pre- and postsynaptic baseline firing rate for �ϕ = 0, fmod = 5 Hz
and different oscillation amplitudes ε ∈ [0, 1]. (A) Parameters from SC23.
Because of the strong contributions to q, the weight change is positive for
all firing rates. Introducing the theta modulation increases weight change
even more. (B) Parameters from SC23 with shorter time constant of
activation: τq = 50 ms instead of 500 ms. This manipulation increases the
error from 0.81 to 1.1. Under this condition, imprinting theta oscillations on
the neurons alters LTD to LTP. (C) Same as (A), but with ϑ < 0. Removing
the threshold from the activation reduces the sensitivity to theta
oscillations. (D) Weight change as a function of �ϕ and fmod, with
parameters as in (C). The weight change is similar to spSTDP with strong
bias toward LTP (Figure 4C). The maximal potentiation at 1 Hz modulation
frequency occurs at negative phases.

adaptive process has been studied much less (Froemke et al., 2006;
Gasparini, 2011); the details of the formalization will possibly
have to be adapted as soon as more quantitative data becomes
available.

The conditional activating variable q is a coincidence detec-
tor, which primes the synapse for supralinear potentiation. An
interpretation is that q, if dependent on the presynaptic trace,
reflects the calcium trace from NMDA receptors, which rely on
the coincidence of glutamate binding and postsynaptic depolar-
ization to lift the Mg2+ block (Clarke and Johnson, 2006). A
negative threshold could mean that less calcium is needed for
induction of LTP, or influx of calcium through voltage dependent
calcium channels is sufficient for an elevated trace. The relaxed
state value qmin on the other hand tunes the balance of LTP and
LTD at the synapse. Under certain conditions, like in SC23, a
pre-post pair leads to calcium influx which does not exceed the
threshold for induction of LTP. A second postsynaptic spike added
after the pair then “rides” on an elevated level of calcium, and the
summed calcium contributions exceed this threshold. To estimate
the parameters of activation with known postsynaptic adapta-
tion, trailing postsynaptic spikes can be added to a pre-post-pair,
with an additional post-pre-post triplet to find the sign of the
threshold.

4.2. RELATION OF THE CD MODEL TO OTHER MODELS
In the last decade, a number of models for synaptic plasticity
in response to spiking activity have been developed. Some of
them are extensions of spSTDP, like the Triplet model, others are
grounded on more biophysically plausible considerations, like the
calcium models in general. The only model we know of which
was fitted to the same four data sets as the CD model here is
the recent calcium model by Uramoto and Torikai (2013). They
used a different way to calculate the error of their fit, as they did
not normalize the experimental results with the standard error of
the mean (SEM). We repeated the calculation of the error with
normalization by SEM, with the parameters given in the origi-
nal article. The resulting errors are 0.85 for VC5, 2.4 for HC, 0.27
for SC23, and 27.39 for VC23. See Tables 3, 5 for comparison.
The last value mostly results from the omission of the “1 − 5 ×
pre-post” experiments by the authors [Figure 4D in the original
article of Froemke et al. (2006)], although the error without these
experiments is still 9.2. These experiments most prominently
highlight the role of presynaptic adaptation: Adding more presy-
naptic spikes in front of the pre-post pair reliably decreases the
magnitude of synaptic potentiation. The Uramoto model has no
mechanism which results in less postsynaptic calcium (less LTP)
with increasing number of presynaptic spikes, a property shared
with the Triplet model, Graupner model and Shouval model. Our
quantitative analysis in the CD model showed that in the data
sets where applicable (SC23 used only one presynaptic spike in
each induction pattern), adding presynaptic adaptation consider-
ably improves the error. However, presynaptic (and postsynaptic)
adaptation can easily be implemented in all these models, for
example by introducing Equation (9). Different formalizations
are realized by Cai et al. (2007) and Kumar and Mehta (2011). We
propose that adaptation is a mechanism that should in general be
considered for the quantitative modeling of synaptic plasticity.

Among the existing phenomenological models of STDP, the
Triplet model is the one most similar to our CD model. Both
show similar fitting performance on visual cortex layer 5 and
hippocampal data sets. Although it lacks true adaptation, two
properties of the Triplet model partially mimic it: (1) with nearest
neighbor interactions a spike causes the trace to attain a certain,
constant value (from where it relaxes back). If the trace still is
greater than zero, the impact of the subsequent spike is reduced;
(2) a negative value for the triplet interaction A+

3 works in the
opposite direction of the normal spike pair interaction, leading
to a sublinear summation of potentiation. In total, the CD model
reaches a lower error than the Triplet model on all data sets, in
SC23 and VC23 by a considerable margin. This suggests that the
CD model generalizes better than the Triplet model. In addition,
the components of the CD model have a more straightforward
interpretation.

4.3. THETA SUSCEPTIBILITY IN DIFFERENT PLASTICITY MODELS
We investigated the filter properties of synaptic plasticity in a
range of different models. For balanced spSTDP, we can give an
explanation of the origin of the susceptibility to intermediate
neuronal activity oscillation. spSTDP is equivalent to the formu-
lation as differential Hebbian learning, Equations (2), (3). The
traces yi are driven by the spike trains xi, and they “smear” out
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the spike over time, which is basically the action of a low-pass
filter. However, the weight change is proportional to the prod-
uct of the presynaptic trace and the temporal derivative of the
postsynaptic trace, ẏpost. A temporal derivative accentuates (fast)
changes, and its effect is similar to a high-pass filter. The result is
a band-pass filter with an oscillation frequency of maximal effi-
ciency given by Equation (22). If a moderate bias is introduced
(see Figures 4B,C), the basic finding is distorted only slightly.

For non-linear models of synaptic plasticity that are based
on spSTDP, the picture in general is similar as long as the aver-
age firing rate stays low, which keeps the dynamic equations in
the linear regime. If the firing rate gets high enough that spikes
in a neuron start to interact with each other, non-linear inter-
actions will start to distort the susceptibility. For a mean firing
rate of 5 Hz, the CD model stays in a near-linear regime, while
in the Triplet model non-linear effects abandon susceptibility.
Interestingly enough, with the right parameter choice the non-
linearities in the CD model retain a band-pass behavior similar
to the linear regime (Figures 8A–C). The susceptibility in the
non-linear regime depends on the interplay of upre and q with a
threshold for activation ϑ greater than zero. The action of presy-
naptic adaptation is to suppress ypre for sustained constant firing
of the presynaptic neuron. In fact, a mean field calculation shows
that for parameters in VC23 in equilibrium and in the limit of

high firing rates
〈
y∞

pre

〉
= 0.033 < ϑq. However, with oscillating

neuronal firing, ypre reaches a maximum early during the rise
of the rate. The condition on the activation q leads to maximal
increase if the postsynaptic firing rate is maximal at the same time.
Therefore, q is maximal for slightly negative phases, which leads to
the observed phase shift in the transition to the non-linear regime
(increasing baseline firing rates).

We found that in contrast to spSTDP-based models, the
synapse in the two calcium models without adaptation is simply a
low pass filter, and prefers oscillations of both neurons that are in
phase. This is due to the extensive low-pass filtering in the dynam-
ical equations in these models. In both models, the contributions
to the calcium concentration are low-pass filtered spike signals,
which get low-pass filtered again in the calcium dynamics. As the
calcium concentration depends on the sum of pre- and postsy-
naptic contributions, it is not surprising that maximal LTP occurs
close to zero phase and slow oscillations. The Cai model is an
example of a calcium model with synaptic short term dynamics.
Here, the synapse shows a susceptibility to oscillatory modula-
tion in the theta band, if the average firing rate is sufficiently
low. Interestingly, our result seemingly conflicts with previous
results. In the study of Kumar and Mehta (2011), it was shown
that with the Shouval model the STDP window shows maximal
malleability, that is the difference between maximal and minimal
synaptic change, if the spike pairs are delivered with a repetition
frequency of 5–15 Hz. This is very similar to our definition of sus-
ceptibility, where there exists a region of fmod with pronounced
and maximal difference between maximal and minimal weight
change. However, in our study neuronal firing rate and oscillatory
modulation (fmod) are decoupled, while in the aforementioned
study they are equal. Furthermore, we investigated the malleabil-
ity under the condition of stochastic spiking. Here, spSTDP based

models in a near linear regime show a preferred window of
modulation frequency, while calcium based models prefer slow
oscillations.

4.4. THETA SUSCEPTIBILITY IN SYNAPTIC PLASTICITY
Theta band (4–8 Hz) oscillations of both cortical (Landfield et al.,
1972) and hippocampal (Berry and Thompson, 1978) local field
potentials have been associated with memory processes early on.
Later studies extended these findings across species and spatial
scales, i.e., from intracellular membrane potential fluctuations
in the rodent hippocampus (Harvey et al., 2009) to intracranial
recordings in monkey cortex (Liebe et al., 2012) and extracra-
nial EEG in humans (Kahana et al., 2001). Despite being observed
throughout the brain, theta band oscillations appears to be gen-
erated by a network of hippocampal oscillators (Colgin, 2013),
which is then transferred into cortical areas.

Although many studies have established a correlation between
activity in the theta frequency band, so far no direct explana-
tion for how theta rhythms influence memory processes has been
found (Colgin, 2013). Some studies (Berry and Thompson, 1978;
Seager et al., 2002; Nokia et al., 2008) report that the indicator
for learning success is the increased oscillation amplitude before
the onset of a trial. In other words, theta can be present with-
out being linked to a certain task and still be beneficial. Others
find that bursts delivered at theta frequency are optimal for induc-
tion of LTP (Larson et al., 1986), and LTD and LTP are inducted
by bursting at different phases of a background theta oscillation:
Presynaptic bursts at the peak of the oscillation potentiate the
synapse, while bursts at the trough lead to synaptic depression
(Pavlides et al., 1988; Hyman et al., 2003). In humans though, the
situation is not as clear. Some studies find that increased theta
power predicts learning success (Sederberg et al., 2003; Guderian
et al., 2009; Lega et al., 2012), others emphasize theta synchro-
nization and sometimes find decreased theta power (Mölle et al.,
2002; Burke et al., 2013). One experimental study found that in
successful learning single neurons show enhanced phaselocking to
a background theta oscillation in the LFP, with a wide distribution
of specific phase relations to this theta oscillation (Rutishauser
et al., 2010). All these observations make it very likely that theta
oscillations play a constructive role in the formation of memory.

The synaptic filter properties of several plasticity models
reported here provide an explanation, as they endow the synapse
with a susceptibility that is specific to oscillations in the theta
range. This susceptibility does not rely on precise spike tim-
ing, i.e., a fixed phase relation of repeated spikes to an ongoing
background theta oscillation. The distinction between the lin-
ear (similar to spSTDP) and non-linear regimes we found in the
models makes two different scenarios likely of how theta sus-
ceptibility plays a role in learning. With low baseline firing rates
[<10 Hz, reported in Rutishauser et al. (2010)] and a wide dis-
tribution of pairwise relative phases the synaptic changes are
also expected to show a wide distribution of values. In a neu-
ronal population firing at higher baseline rates the interplay
of presynaptic adaptation and conditional activation shifts the
phase requirement for strongest LTP to synchronous (phase zero)
oscillation. How can a synapse capitalize on that? The scenario
in Figure 9 provides a possible answer. The synapse depresses
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uniformly for neuronal constant firing. Introduction of theta
band oscillations (5 Hz) shift up the weight change, but only
for elevated baseline firing rates. The result is Hebbian learning
(“those who fire together wire together”), as synapses between
neurons which get no external excitation slightly depress. In this
scenario, theta oscillations can be present before external stimula-
tion, preparing the synapses for learning correlations of neuronal
firing.
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APPENDIX
THE MODEL OF Shouval et al. (2002)
We decided to include a full description of the model from
Shouval et al. (2002) here. We found the description given in the
original article not sufficiently clear.

In this model, spikes from either the pre- or postsynaptic neu-
ron influence the postsynaptic membrane potential with an EPSP
(pre) or a back propagating action potential (bAP; post), which
add linearly:

V(t) =
t∫

−∞
EPSP

(
t − t′

)
xpre

(
t′
)

dt′

+
t∫

−∞
bAP

(
t − t′

)
cpost

(
t′
)

dt′ (23)

EPSP(s) = �(s)AEPSP

(
e−s/τEPSP

s − e
−s/τEPSP

f

)
bAP(s) = �(s)AbAP

(
IbAP
f e

−s/τbAP
f + e−s/τbAP

s

)
,

with AbAP = 100 mV, τbAP
f , s = 3, 25 ms, IbAP

f , s = 0.75, 0.25, and

τEPSP
f , s = 5, 50 ms. AEPSP depends on the time constants such that

the maximum of the EPSP is exactly 1 mV. The model assumes
that the only source of calcium into the postsynapse are the
NMDA receptors. Each presynaptic spike opens a fraction of
P0 = 0.5 of all receptors still in the closed state, and in inter
spike intervals the open receptors decay exponentially back to
the closed state, however, with two components with different
time constants. This translates to the following equations, where
NMDA(t) is the fraction of open receptors at time t:

Ṅf = −Nf

τf
+ P0If (1 − NMDA (t − 0))xpre

Ṅs = −Ns

τs
+ P0Is(1 − NMDA (t − 0))xpre

NMDA(t) = Nf (t) + Ns(t) .

(24)

If , s = 0.5, 0.5 set the relative amplitudes of the fast and the
slow component, which decay back with time constants τf , s =
50, 200 ms. Due to the voltage-dependent magnesium block of
NMDA receptors, the resulting calcium current is a function of
both the fraction of open receptors as well as the membrane
potential:

INMDA(t) = GNMDA · NMDA(t)(V(t) − Vr)B(V) , with

B(V) = (1 + 0.28 exp(−0.062V))−1 ,
(25)

with V in mV, Vr = 130 mV and GNMDA = −0.02 μM
ms · mV . The

calcium concentration is a low pass filtered version of the current,
with decay time constant τCa:

d[Ca](t)

dt
= INMDA(t) − [Ca](t)

τCa
. (26)

The central assumption in this model is now that synaptic change
is completely ruled by the concentration of calcium in the post-
synaptic spine. Low concentrations lead to LTD, high concentra-
tions lead to LTP. Also, the learning rate is a monotonic function
of calcium concentration:

η
([Ca]) =

(
0.1 s

[Ca]3 + 10−5
+ 1s

)−1

�
([Ca]) = 0.25 + sig

([Ca] − α2, β2
)

(27)

− 0.25sig
([Ca] − α1, β1

)
sig(x, β) = exp(βx)/(1 + exp(βx)),

where [Ca] is measured in μM [in Equation 26 it is measured in
mM]. The resulting weight change is finally:

Ẇ = η
([Ca]) (

�
([Ca]) − W(t)

)
(28)

STDP AND MEAN WEIGHT CHANGE WITH OSCILLATING FIRING RATES
In the mean field case, we investigated the rate of weight change
in spSTDP with periodically oscillating firing rates. The rate as a
function of time is given by Equation (18) We solved Equation
(15) with these ri(t). After sufficient time (t � τi), the transient
is gone, and the solution for the traces is

yi = τi

⎡
⎣1 + ε cos (ωt − φi + arctan(−ωτi))√

1 + ω2τ2
i

⎤
⎦ , (29)

where we replaced ω = 2πfmod for convenience. We now assume
stable conditions, and calculate the rate of weight change:

�w = 1

T

T∫
0

(
qyprerpost − ypreypost

τpost

)
dt . (30)

We replace Ai = ε/

√
1 + ω2τ2

i and ψi = arctan(−ωτi) and get

the solution:

�w = �w+ + �w−

= τpre(q − 1) + Apre

2

(
ε cos(ψpre + �ϕ) − Apost cos

(
ψpre

+ �ϕ − ψpost
))

. (31)

DERIVATION OF fmax

To gain insight into the reasons for theta susceptibility, we investi-
gate spSTDP in the balanced case (q = 1). We are interested in the
oscillation frequency at which the difference between potentiation
and depression depending on phase difference becomes maximal.
Instead of computing the derivative of Equation (31) with respect
to ω, we explicitly use the functional form of ypre and ẏpost (see
Equation 29):

ypre = τpre
[
1 + Apre cos

(
ωt + ψpre

)]
ẏpost = ωτpostApost cos

(
ωt + ψpost − �ϕ − π/2

)
.

(32)
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ypre is bounded between 1 + ε and 1 − ε, and because of 0 < ε <

1 it is strictly positive. The weight change is the integral of the
product of both functions, therefore ypre acts as a weighting func-
tion for ẏpost. As a consequence, potentiation is maximal if the
maxima of both functions coincide, i.e., the phases have to be
identical. This is true for �ϕ = ψpost − ψpre − π/2 (Shifted by
π for depression). At this phase shift, the rate of weight change
becomes

�w = 1

T

T∫
0

ypre ẏpostdt = 1

2

ε2τpreτpost√
1 + ω2τ2

pre

√
1 + ω2τ2

post

. (33)

We calculate the derivative with respect to ω:

2

ε2τpreτpost

d�w

dω
= 1√

1 + ω2τ2
pre

√
1 + ω2τ2

post

·

(
1 − τ2

preω
2

1 + τ2
preω

2
− τ2

postω
2

1 + τ2
postω

2

)
(34)

To find the maximum ωmax, we set d�w/dω = 0 and solve for ω:

fmax = ωmax

2π
= 1

2π
√

τpreτpost
. (35)

LIMITS OF PARAMETER VALUES IN THE FITTING PROCESS
The fitting process of the CD model and the Triplet model to the
data was a brute force search in parameter space. For that, we
defined a volume of space wherein the search was conducted. The
bounds for that space are given in Table 1 for the CD model and
Table 2 for the Triplet model. The range of possible values for ϑq

is given by [0, 0.2], with one additional value <0, whose magni-
tude does not matter. Except in two cases the parameters always
sat well within this space. In the case of the data in HC (Wang
et al., 2005), the presynaptic adaptation time constant τrec

pre should
be long, and the optimum lies at even longer times than given in
Table 3. However, the influence of this parameter on the error is
very small, and changes in τrec

pre do not change the other param-
eters much. Therefore we decided to set it to 3 s. In the Triplet
model, in the fit to the data in SC23, the parameters τx and A+

3 lie
outside the bounds. When the first fit showed that those param-
eters hit the bounds, we decided to redefine the parameter space
for this data set, in order to find a good minimum.
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Chapter 3

Supervised learning

Up to this point, the plasticity processes considered all have been purely activity
dependent. They are either based on experiments which measure synaptic change as
a function of the neuronal activity (as in spSTDP, Triplet model, the CD model), or
they are based on biophysical considerations and display STDP as an epiphenomen
(Shouval model, Graupner model, Uramoto model). However, it is often hard to
link these models to specific learning processes in neuronal networks, especially if
the plasticity model is convoluted.
A different way to explore learning and the underlying plasticity is the concept of
“supervised learning”. Here, the objective of a learning system is clearly defined,
and we can derive learning algorithms that specify the plasticity rules. The objective
in supervised learning in neuronal networks is always formulated as desired input-
output relations, i.e. the network is presented some input and it has to generate
precisely defined output activity. The problem is that input-output relations of
a network are defined by the synaptic weights, but it is rarely possible to assign
synaptic weights in advance such that the output of the network exactly matches
the desired target output. Instead, after the network layout (like neuron type(s),
number of neurons and network structure) is chosen, the synapses are initialised
randomly. With this initialization it performs some random task. In supervised
learning the actual output, as defined by the current set of synaptic weights, is
compared to the desired output. Then, the respective learning algorithm uses the
difference to compute changes of synapses such that in future presentations of the
input the actual output is closer to the desired output.
In the following, I present a number of different supervised learning rules. This is
done for two reasons. First, it is more instructive to explain aspects of supervised
learning with concrete examples. Second, in publication II I show the equivalence of
an Anti-Hebbian STDP rule to the Perceptron Learning Rule, and in chapter 4 the
memory capacity of several different learning algorithms is compared to the one of
Membrane Potential Dependent Plasticity (MPDP). Introducing the reader to these
rules therefore also prepares for publication II and the manuscript in chapter 4.
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3.1 Supervised learning rules for classifiers

A certain way to think about neuronal networks is to view them as “classifiers”.
A network receives input and (nonlinearly) converts it into some output. However,
often inputs can be put into categories. For example, pictures can be categorized
based on their content, like wether they show animals or not. This mimicks how we
perceive the world: We see objects and assign labels. Our reaction to those objects
is then based on the respective label. In the context of neuronal networks, this idea
is usually abstracted. Inputs are neuronal firing patterns, which are caused by some
stimulus. This is a reflection of basic biology; an example is the retina, where light
sensitive neurons convert the image into spiking activity.
Neuronal classifiers do not intrinsically know the correct labels. Instead, they have
to be trained. The input labels are prepared by an outside supervisor, who during
training observes the learning network. Based on errors in the label output, the
supervisor computes changes of synaptic weights, which incrementally bring the
network to correct classification. In the following, I present the perceptron and the
tempotron, two basic examples of neuronal classifiers.

3.1.1 The perceptron

Although the perceptron is not defined for spiking neuronal networks, it is an in-
structive example for an application of a supervised learning rule and an important
model of associative memory. It has been proposed by Rosenblatt in 1958, making
it one of the oldest computational neuronal network models [42, 74].

Original formulation of the Perceptron Learning Rule

The task of the perceptron is to associate a set of given input patterns with specific
output states. The learning system is a single layer feed forward neuronal network
with N (presynaptic) input neurons and a single (postsynaptic) output neuron1.
The neurons are binary rate-based units with states 0 or 1, inactive or active, re-
spectively2. To explore the capabilities of the perceptron, the set of P input patterns
is usually randomly generated. In each pattern μ ∈ {1, . . . , P}, each input neuron
with index i ∈ {1, . . . , N} is in state xμ

i ∈ {0, 1}. Each input pattern is assigned a
desired output state (or label) yμ

d ∈ {0, 1}.
Perceptrons can be trained efficiently with the Perceptron Learning Rule (PLR).
Network training with the PLR is incremental. In one so-called learning block each
of the P patterns is presented one after the other. “Presented” here means that
the state of each input neuron is set externally to the respective state in the input

1From here on, the terminology mostly changes to input/output instead of presynap-
tic/postsynaptic neuron.

2There are many variants of perceptrons, for example with continuous valued input states.
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pattern. The output neuron computes its respective state according to

hμ =
∑

i

wix
μ
i

yμ = Θ(hμ − θ) .

(3.1)

wi is the synaptic weight of neuron i, θ is the activity threshold of the neuron, and hμ

is the weighted sum of the input in response to pattern μ. After each presentation,
a supervisor compares actual and desired output. If they are the same, i.e. yμ

d = yμ,
no further action is required. If they are different, the weights are adjusted according
to

Δwμ
i =

{
−ηxμ

i if yμ
d = 0

ηxμ
i if yμ

d = 1 .
(3.2)

η � 1 is the learning rate. Usually the network is trained in batch mode where
all weight changes are only applied after the learning block. If during a learning
block no weights needed to be changed, then the network has learned all desired
associations and training terminates. If there was at least one Δwμ

i 	= 0, training
continues with the next learning block.
It was shown that the PLR has several desirable properties. With this rule, a network
reaches the maximal memory capacity for associations between randomly generated
input patterns (with P (xμ

i = 1) = P (yμ
d = 1) = 1/2) and output states. It was

shown that the network can on average store at most P = 2N random associations
in its weights [42]. Furthermore, the training terminates in a finite number of steps
if the associations are learnable at all. These traits make the PLR a valuable model
of associative learning even after more than 50 years since its invention.
A common (geometric) interpretation of the perceptron is that of a linear classifier
in an N -dimensional space. Input patterns are generated and assigned a label given
by yμ

d . The weight vector 
w after training is a normal vector on an N−1-dimensional
hyperplane in the space of inputs that seperates the patterns of different labels. This
interpretation helps understanding how the PLR can be adjusted to include error
tolerance. Figure 3.1 illustrates this interpretation in the 2-dimensional case.

The PLR with a margin against input noise

The PLR can be extended to include a safety margin, which ensures that the output
neuron will return the correct association even if the input pattern is corrupted by
noise, i.e. some of the input neurons have randomly altered their state. According to
the geometric interpretation of the perceptron, the computation of hμ is equal to a
scalar product between the weight vector and the input vector in the N -dimensional
space of the inputs:

hμ =
∑

i

wix
μ
i = 
w · 
xμ . (3.3)

Input patterns lie on one of the two sides of the separating hyperplane. For every
pattern on one side, the scalar product with the weights is positive, and negative
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Figure 3.1: Illustration of the geometric interpretation of the perceptron. For illus-
tration purposes the inputs x1 and x2 are not binary, but continuous valued. Red
crosses indicate input pattern with desired output yμ = 1, green circles indicate
desired output yμ

d = 0. Blue arrow shows the weight vector, the blue line perpen-
dicular is the seperating hyperplane. Left figure shows the output before training.
All patterns to the right of the seperating line generate the output yμ = 1, which is
false for the green circles. The weight changes computed with the PLR rotate the
weight vector in the correct direction. Right figure shows the state after learning
with the PLR and the margin against noise. The weight vector has been rotated
until all pattern lie on the correct side of the hyperplane. Because of the additional
condition of a minimal distance of the input from the threshold the vector was ro-
tated more than necessary for correct classification of the input. As a result, the
input states can be slightly noisy and still lead to the correct output.

for those on the other side. The output of the postsynaptic neuron is determined
by the sign of the weighted input and the firing threshold θ. The PLR rotates the
weight vector until all patterns with one label are on one side, and those with the
opposite label are on the other side. However, it stops when the last pattern is just
on the correct side of the hyperplane. Naturally, the classification of this pattern
is prone to errors. Randomly flipping input neurons is equal to random jitter of
the input vector in the input space. If any input vector lies close to the separating
hyperplane, it may move across it, and thus become falsely classified. This problem
can be countered by over-learning until each input pattern lies at least some minimal
distance, called the “margin”, away from the hyperplane. Figure 3.1 illustrates the
concept of the margin.
The margin is set to Nκ, where κ is a parameter, and the factor N ensures the
correct scaling with the number of input neurons. The PLR needs to be changed to
accomodate for the margin:

Δwμ
i = ηΘ [Nκ − (2yμ

d − 1)(hμ − θ)] (2yμ
d − 1)xμ

i . (3.4)
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The expression (2yμ
d−1) transforms the desired output states from {0, 1} to {−1, +1}.

This is necessary to have synaptic depression in the case of a pattern with yμ
d = 0;

otherwise in this case weight changes would be always zero. The argument of the
Heaviside function ensures that weight changes are only applied in the correct con-
dition, i.e. the weighted input is on the wrong side of the margin. For κ = 0, this
is equal to the PLR given above, equation (3.2). In the rest of this thesis, equa-
tion (3.4) is referred to as the Perceptron Learning Rule, as it is the more general
formulation.

Derivation of the PLR from an objective

It is instructive to derive the PLR with the margin from an objective or error func-
tion. The objective is to make the postsynaptic neuron generate the correct output
when presented with an input pattern. However, the formulation is important.
The error function is zero when the weighted input hμ has the correct sign and its
magnitude is larger than the threshold against noise θ. A good choice is

Eμ[
w] = [Nκ − (hμ − θ)(2yμ
d − 1)]+ . (3.5)

Here, [x]+ is the rectifying bracket, defined as [x]+ = x if x > 0 and [x]+ = 0 else. As
previously, the output states yμ

d have to be transformed to be in {−1, +1}, otherwise
for silent output the error function would always be positive. The PLR is obtained
by computing the negative derivative of equation (3.5) with respect to weight wi:

−∂Eμ

dwi

= Δwμ
i = Θ [Nκ − (hμ − θ) (2yμ

d − 1)] (2yμ
d − 1) xμ

i , (3.6)

which is equal to equation (3.4). Therefore, the PLR performs a gradient descent
on the error function equation (3.5).

3.1.2 The tempotron

The perceptron is a linear classifier in an N -dimensional euclidean space and time
is not defined in the perceptron setting. Translated to real neurons, a perceptron is
a neuron sensitive to input firing rates which are constant for an extended period.
However, this discards the ability of neurons to code for stimuli in a time-dependent
manner. In an extreme case of temporal coding, all input neurons always fire with
the same firing rate, but the temporal structure is specific to the respective stimulus.
The tempotron is a network model that extends the idea of the perceptron classifica-
tion to make use of spatio-temporal input patterns. It is a one-layered feed-forward
network using spiking neurons [75]. The task is similar to the perceptron task: The
output neuron should fire one or more spikes in response to a subset of the set of
input patterns. Otherwise, it should remain silent. In other words, the tempotron
performs a classification task on the input patterns using the temporal structure of
the input.
Formally, the tempotron is defined as follows. The postsynaptic neuron is a LIF
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neuron, equation (2.9). The presynaptic input neurons represent different stimuli
through distinct spatio-temporal input patterns. In each input pattern, each presy-
naptic neuron spikes exactly once at time tμi , where i{∈ 1, . . . , N} is the index of
the input neuron and μ ∈ {1, . . . , P} is the index of the pattern. The times are
drawn i.i.d. from the interval [0, T ], where T is the duration of the input. Because
of the way the input patterns are generated, the firing rate in each pattern and
each neuron is always the same. However, a presynaptic spike has an impact on
the postsynaptic membrane potential only for the duration of its PSP. Therefore,
at each point in time the “configuration” of inputs is different, and an appropriate
learning rule allows the output neuron to identify characteristic sub-patterns. For
each of the P input pattern a desired output is generated. We introduce a binary
variable yμ ∈ {0, 1} that holds the desired responses or labels (to spike or not to
spike). Usually, labels are generated such that yμ = 1 for one half of the patterns
μ and zero for the other half. The network is initialized randomly, therefore before
training the output is also random. During training, an input pattern is presented
to the postsynaptic neuron, while spike generation is switched off. This means that
the membrane potential is simply the sum of weighted PSPs at the respective spike
times. After the presentation, the point in time tmax where the membrane potential
reached its maximum is determined. Depending on yμ and V (tmax) there are four
different relevant cases: If yμ = 1 and V (tmax) > Vthr, or yμ = 0 and V (tmax) < Vthr,
the actual response matches the desired one. Otherwise, weights need to be adjusted
according to

Δwμ
i = η(2yμ − 1)λi(tmax) . (3.7)

For simplicity we here introduce the “PSP sum”, which is used several times through-
out this chapter:

λi(t) =
∑

k

ε(t − tki ) . (3.8)

For generality, we here assume that presynaptic patterns can consist of more than
only one spike, therefore tki is the k-th spike of neuron i. ε(s) is the PSP kernel given
by equation (2.8). To put this in words, if the neuron should spike but the voltage
stayed below the firing threshold for the entire duration of the input pattern, weights
of neurons that fired before tmax have to be increased relative to their contribution to
V (tmax). If the neuron should not spike but the voltage crossed the firing threshold,
weights contributing to the absolute maximum have to be depressed. From these
different cases it follows that the learning rule stops changing weights if for each of
the P pattern the actual output matches the desired one.
Important analytical results were later obtained by Ran Rubin and colleagues [76].
They examined the memory capacity of a tempotron, i.e. the question of how many
associations {{tμi }, yμ} can be stored in the synaptic weights of an output neuron.
They computed the cricital load αc = N ·Pmax were the probability of correct recall
is still unity. They found that αc ≈ 3, depending on the length of the input patterns
and the parameters of the PSP kernel τs and τm.
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3.2 The δ-rule

The δ-rule (also called e.g. Widrow-Hoff rule, adaline rule, and others [42]) is a very
basic example of a supervised learning rule. To prepare for the δ-rule, in the fol-
lowing I first present the Rescorla-Wagner model of classical conditioning. It shares
its formulation with the δ rule and provides a link between experimentally estab-
lished animal behavior and abstract computational supervised learning algorithms.
After that, I introduce the δ-rule. Its significance for this thesis is that it builds
a bridge from results in behavioral experiments (captured in the Rescorla-Wagner
model) to the abstract computational learning rules in artificial neuronal networks.
The ReSuMe learning rule is directly derived from the δ-rule, and several recently
developed supervised learning algorithms for spiking neuronal networks include a
term that is very similar to the δ-rule.

The Rescorla-Wagner model

Classical conditioning is a training method to transfer the reaction to a so-called
“unconditioned stimulus” (US) to a “conditioned stimulus” (CS) [65]. The most
famous example is the Pavlovian dog, who through contingency learning is trained
to salivate not only to the presentation of food (the US), but also when it hears a
bell ringing (the CS). Another example is the classical eyeblink conditioning, where
a tone or light signal is presented at the same time a puff of air is blown into the
eye of an animal (commonly rabbits or rats) [77].
In the Rescorla-Wagner model, the magnitude of the response to the US is repre-
sented by λ. V is the magnitude of the response if the animal is presented the CS
alone. Initially, it is zero. During training, both US and CS are presented simulta-
neously, and this presentation transfers the response to the CS. The change of the
conditioned response is given by

V → V + ΔV = V + β(λ − V ) . (3.9)

β is the learning rate. This model correctly captures the fact that initially in each
conditioning trial there is a relatively large change in behavior. Later in training, if
the response to the CS is close to the one of the US, learning takes place in small
steps, which is due to the proportionality to the difference of both responses.

Formulation of the δ-rule

The δ-rule is used to train neuronal networks. Similar to the perceptron, a number
of input-output association should be imprinted in the weights of a (one-layered)
feed-forward neuronal network. The inputs are real valued neuronal states ξμ

i , with
i the index of the presynaptic neuron and μ the index of the pattern. Each input
pattern has a target output, ζμ. The real-valued output is computed using

Oμ = g

(∑
i

wiξ
μ
i

)
. (3.10)
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g(h) is the activation function of the postsynaptic neuron, which in the case of the
δ-rule is often chosen to be linear, g(h) = h. Before training, the actual output will
differ from the desired response. Therefore, the synaptic weights have to be changed
to transform the actual output towards the desired one. The synaptic change is given
by

wi → wi + Δwi = wi + ηξμ
i (ζμ −Oμ) . (3.11)

Again, η is the learning rate. The formulation of the weight changes is the same
as the change of conditioned response in the Rescorla-Wagner model, except that
there is no explicit term for “presynaptic activity” in the latter model. However,
implicitely, the change in the conditioned response results from the co presentation
of the US with the CS, which can be considered as analogue to presynaptic activity
in the δ-rule.
Similar to the PLR, the δ-rule can be derived as a gradient descent from a quadratic
error function. It is given by

E(w) =
∑

μ

(ζμ −Oμ)2 . (3.12)

Computing the negative derivative with respect to weight wi using (3.10) and g(h) =
h will lead to equation (3.11).

3.3 Learning algorithms in networks of stochastic

spiking networks

In the recent years several supervised learning algorithms have been developed to
train spiking neuronal networks to generate time dependent activity patterns. One
example was recently proposed by Urbanczik and Senn [78]. Here I reproduce this
model, since it presents an elaborate way to introduce a teacher into the learning
system. Also, the principal learning rule is very similar to the rules of Xie and
Seung [79], Pfister and colleagues [80] and Brea and colleagues [38]. I relate the rule
of Urbanczik and Senn to the other ones at the end of this section.
In the model of Urbanczik and Senn, the postsynaptic neuron is divided into two
separate but connected compartments: the soma and the dendritic tree. Soma and
dendritic tree receive seperate synaptic input. The somatic membrane potential
U(t) is modelled as a conductance based LIF neuron, given by

U̇ = −gLU + gD(Vw − U) + Isom
U . (3.13)

gL is the leak conductance, gD is the uni-directional coupling conductance of the
dendritic compartement to the soma, Vw is the membrane potential in the dendritic
compartement, and Isom

U is the input current from the synapses projecting directly
onto the soma. This latter term is given by

Isom
U = gE(EE − U) + gI(EI − U) , (3.14)
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where gE,I are the time dependent total conductances of excitatory and inhibitory
synapses, and EE,I are the respective reversal potentials. Spiking is stochastic and
the instantaneous firing rate is a function of the somatic voltage, r(U(t)). The
dendritic membrane potential is modelled as a simple LIF neuron without spiking
and without feedback from the soma. Therefore, the dendritic voltage is a simple
sum of the weighted PSPs:

Vw =
∑

i

wi

∑
k

ε
(
t − tki

)
, (3.15)

where as usual tki denotes the time of the k-th input spike of presynaptic neuron i
with synaptic weight wi. To derive the learning rule, two seperate cases of interest
for the evolution of the somatic voltage are investigated. In the first case, the somatic
synapses stay silent, so that the input to the somatic compartement is completely
determined by the dendritic voltage. The somatic potential is a low-pass filtered
version of the dendritic potential and if gD � gL, it can be approximated by

V �
w(t) ≈ gD

gD + gL

Vw(t) . (3.16)

The respective firing rate of the soma is r(V �
w). In the second case, the dendrite

receives no input, therefore Vw(t) ≡ 0. The time course of the somatic synaptic
conductances defines the so-called matching potential, effectively a time-dependent
reversal potential defined by gE and gI :

UM(t) =
gE(t)EE + gI(t)EI

gE(t) + gI(t)
. (3.17)

The given task is to associate a dendritic input pattern with a “teacher” input
pattern of the somatic synapses. The latter input defines a matching potential, and
the dendritic inputs have to generate a “prediction” of the somatic potential such
that after training V �

w(t) = UM(t). It would be easiest to base the learning rule on
the difference of V �

w and UM , however they are not readily available at synapses.
Instead, what is compared are the firing rate estimations, r(U(t)) − r(V �

w). The
actual somatic membrane potential U(t) can be used because it is situated between
UM and V �

w . Shifting V �
w towards UM therefore also shifts U towards the target.

The estimation of the current firing rate is done by the actual spiking, since any
postsynaptic spike train S(t) =

∑
out δ(t − tout) is a stochastic realization of the

underlying firing rate. This additionally means that learning has to be averaged
over several teaching trials. Altogether, the difference analogous to the δ-rule is
S(t) − r(V �

w(t))3, with which we can define a plasticity induction variable:

PIi(t) = (S(t) − r(V �
w(t))) h (V �

w(t)) λi(t) . (3.18)

λi(t) is again the PSP sum defined in equation (3.8)4. h(x) is a positive weighting
function that effectively determines “sensitive” regions of the plasticity rule. Here,

3Reference [78] gives the full derivation. See also [80].
4Technically, the PSP sum is the derivative of Vw with respect to weight wi.
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h(x) = d/dx ln r(x) = r′(x)/r(x). The weight change is finally computed by low-pass
filtering PIi(t):

τsΔ̇i = PIi(t) − Δi

ẇi = ηΔi .
(3.19)

The rules devised by Xie and Seung [79] and Brea and colleagues [38] work on a
different setting. The neurons are modelled as single compartement LIF neurons,
either in a feed-forward network or recurrent network. Pfister and colleagues derive
the learning rule, equation (3.18), from the probability of emitting a desired spike
train S(t) given the time course of the membrane potential V (t) as a function of
input spikes weighted by synaptic weights and spike-induced voltage resets. The rule
proposed by Brea and colleagues differs slightly in the function h(r). In the model
of Xie and Seung, the spike train is self-generated, i.e. it is a function of synaptic
inputs. In each training trial, the weight changes are collected in an eligibility trace,
and afterwards the spiking activity is compared to a target. From the similarity
a reward is computed, and the effective weight change is the product of eligibility
trace and reward5. In the work of Brea and colleagues, the postsynaptic neuron is
clamped to spike at desired times to produce a teacher signal for the learning rule.

3.4 Spike time learning in deterministic networks

In the following, I present learning algorithms designed to train a network to produce
spikes at precisely defined times. The basic setting is identical for all learning rules.
It is a single-layer feed-forward network of spiking neurons with a LIF output neuron.
In contrast to the previous section, the output neuron is fully deterministic. The
goal is to learn a number of input-output associations. Inputs are defined as spatio-
temporal spike patterns, while the the output is defined as precisely timed spikes
of the output neuron. In comparison, in tempotron training the timing of output
spikes is not important. Because of this difference, the trained network is sometimes
called a “chronotron” [81]. Training always takes place over several learning blocks
until the actual output matches the target.

3.4.1 The Remote Supervised Method (ReSuMe)

The δ-rule is defined for neuronal networks of rate-based neurons and has no time
dependency: Updates are assigned after presentation of a (static) pattern. The
rules devised for stochastic neurons are basically equivalent to a time-dependent
δ-rule, but because of the strong non-linearity of spike generation, they are not
suited for deterministic neurons. However, the δ-rule can be made amenable for
these, as shown by Ponulak and Kasinski [82] in their Remote Supervised Method
algorithm (ReSuMe). The formerly static weight change equation (3.11) is replaced

5Urbanczik and Senn highlight that the same can be done using their model
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by a temporal derivative of the weight, which also necessitates to treat the activities
as functions of time:

ẇi = ξμ
i (t) (ζμ(t) −Oμ(t)) . (3.20)

The learning rate is set to η = 1 (see below). The total weight change is the integral
of ẇi. Spikes are modelled as sums of δ-functions:

Sx(t) =
∑
tx

δ(t − tx) . (3.21)

Here, x ∈ {i, d, o} denotes the location and the type of spike. For example, ti denotes
input spike times, td denotes desired or target spike times for the postsynaptic
neuron, and to are the times of spikes the postsynaptic neuron generates in response
to the synaptic input. However, it is not possible to replace the activities in equation
(3.20) directly with the spike trains Sx(t), since the δ-functions has zero width in
time and therefore the weight change term would always be zero. Instead, the effect
of spikes gets spread out in time, by convolving the input spikes with a temporal
kernel. The input activity is replaced by

ξi(t) =

⎡
⎣c +

∞∫
0

φ(s)Si(t − s)ds

⎤
⎦ . (3.22)

φ(s) is a kernel which converts the discrete spiking events into a function in time
with finite width. c is a constant whose significance is explained below. This trans-
formation of the presynaptic activity allows to use the postsynaptic spike trains to
compute weight changes:

ẇi = (Sd(t) − So(t))

⎡
⎣c +

∞∫
0

φ(s)Si(t − s)ds

⎤
⎦ . (3.23)

Now the role of c can be clarified. The first term on the right hand side of equation
(3.23) is the difference of the target spike train and the actual spike train. If we
assume for the moment that the kernel φ(s) is zero, then for each desired spike each
weight will increase by c, while for each actual spike it would decrease by c. The
weight changes become balanced if the number of actual spikes matches the number
of desired spikes. Therefore, c is a constant which assures that the postsynaptic
output neuron displays the desired activity level.
Specificity of the weight changes to the input can be achieved with a suitable choice
of the kernel φ. It has to make sure that after a learning trial the probability that
the output neuron generates the desired spikes increases. For this it is necessary that
the kernel is causal, i.e. that it only changes synaptic weight wi if the presynaptic
neuron fired a spike before either a desired or actual output spike. The reason is
that presynaptic spikes can only causally influence the postsynaptic neuron. Fur-
thermore, the kernel should be restricted, because the influence of a presynaptic
spike is restricted by the duration of the PSP. In practice, a good choice for the
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kernel is an exponential decay, φ(s) = AΘ(s) exp(−s/τ). A is the amplitude of
the kernel, which also sets the learning rate. τ is the decay time constant of the
exponential function, and it sets the range of temporal interactions of pre- and post-
synaptic spikes. It should be in the order of the membrane time constant such that
both plasticity interactions and PSP decay on a similar time scale.
ReSuMe can be understood on a heuristic level. Similar to the CD model (see pub-
lication I), presynaptic spikes leave a decaying trace at the synapse. At the time of
a desired spike td a signal is send to all synapses, and they potentiate proportional
to the current value of the trace. This way, target spikes are always reinforced.
The opposite is true for actual spikes. Each time the postsynaptic neuron spikes
by itself, a signal is send to synapses to depress proportional to the current trace.
Therefore, actual spikes are treated as spurious. However, ReSuMe has a stop con-
dition: Weight changes cancel as soon as the actual spike train is identical to the
target spike train, So(t) ≡ Sd(t).

3.4.2 E-Learning

While ReSuMe is a simple and easy to understand learning algorithm, its perfor-
mance was found to be lacking [81]. The number of spike associations that can be
imprinted in a feed-forward neuronal network with ReSuMe is quite low. A learning
algorithm with better performance is E-Learning6, which was conceived by Răzvan
Florian in 2012 [81]. E-Learning is a gradient descent rule on the Victor-Purpura
(VP) distance between spike trains [83]. To explain the E-Learning algorithm, I first
describe the VP distance and the algorithm to compute it.
Suppose we are given two different spike trains defined by their spike times So =
t1o, t

2
o, . . . , t

m
o and Sd = t1d, t

2
d, . . . , t

n
d . In the context of E-Learning, So is the set of

actual output spike times, and Sd is the set of desired spike times to be learned. The
general goal is to compute a measure of the similarity K(So, Sd) between the two. In
the VP distance, the similarity is computed by transforming one spike train into the
other. Transformation is performed by either deleting, inserting, or shifting spikes of
one spike train until it is equivalent to the other. Each operation is assigned a cost,
and the VP distance is the minimal cost necessary for the complete transformation.
Deletion and insertion of a spike each have a cost of 1, while shifting a spike has a
cost of Δt/τq, where τq is a parameter of the VP distance, and Δt is the distance in
time of the starting and end point of the shifted spike. If a spike has to be shifted a
distance Δt > 2τq, then the cost of this operation is greater than 2, and it is cheaper
to just delete the spike and re-insert it at the desired time. In figure 3.2 the basic
process is illustrated.
A simple and fast algorithm can be used to compute the minimal cost of transforming
spike trains. Gi,j is the cost to transform the partial spike train of the first i spikes
of So into the partial spike train of the first j spikes of Sd. This cost is computed as

Gi,j = min
{
Gi−1,j + 1, Gi,j−1 + 1, Gi−1,j−1 + q|tio − tjd|

}
. (3.24)

6Florian gives no explanation for the name.
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Figure 3.2: Illustration of the transformation
of source spike train into the target spike train.
Spikes can be shifted, deleted or added, with a
specific cost for each transformation step. In
this example the left spike gets shifted, then
the second spike is deleted, the third spike is
shifted, and a new spike is inserted. The cost
for each transformation step is given in the
graphic. The VP-algorithm (see text) can be
used to compute the minimal transformation
cost.

Therefore, by successively adding spikes to partial spike trains and testing which
addition minimizes the cost, the total minimal cost of transformation can be com-
puted. Starting from Gm,n, it is possible to reconstruct the actual transformations
of the minimal distance.
During training with E-Learning, the input pattern is presented and the output So

is recorded. Afterwards, the VP distance of both patterns is computed and all spikes
in sets So and Sd are sorted into three distinct sets:

� Output spikes which got deleted from So by the VP algorithm are put into the
set D = {tdel}.

� Desired spikes which got inserted into So are put into the set J = {tins}.
� The last set contains the spike pairs from So and Sd which got shifted, S =
{tact, tdes}.

The spikes in D and J are “unpaired”. S contains paired spikes, which means that
each tact in S has a spike tdes in S which is closer in time than 2/q. With these sets
of spikes, the full E-Learning rule is then:

Δwi = γ

⎡
⎣∑

tins

λi(t
ins) −

∑
tdel

λi(t
del) +

γr

τ 2
q

∑
(tact,tdes)

(tact − tdes)λi(t
act)

⎤
⎦ . (3.25)

The first two terms are similar to ReSuMe, except E-Learning uses the PSP kernel.
tins are unpaired desired spikes which need reinforcement, comparable to the set
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Sd in ReSuMe. Similarly, tdel are actual spurious output spikes which should be
extinguished. The difference is the treatment of paired spikes in E-Learning. The
weight changes scale with the timing difference. This leads to a much smoother
convergence of learning and subsequently to an increase of the memory capacity by
a factor of 5 over ReSuMe [81]; and see chapter 4 for similar quantitative results.

3.4.3 FP-Learning

Another heuristic learning algorithm was proposed by Memmesheimer and col-
leagues with FP-Learning [39] (short for Finite Precision-Learning). They identified
a central problem of learning rules like ReSuMe: Spurious spikes distort the mem-
brane potential for a short period of time behind them, which usually leads to false
(spurious) weight changes. This hinders convergence and therefore reduces capacity.
To prevent this problem, the FP-Learning algorithm continuously monitors the out-
put of the learning neuron and stops the learning trial if any error is encountered.
For every desired output spike, it checks if there is exactly one actual output spike
within some window of tolerance around the desired spike. If not, the algorithm
stops the learning trial immediately. Synaptic potentiation is applied to make it
more probable that the output neuron generates the spike in future learning trials.
Also, if the algorithm encounters a spurious spike, the algorithm stops the learning
trial and depresses weights contribution to the unwanted spike. In both cases, after
changing weights the algorithm starts a new learning trial from the beginning.
FP-Learning is formally defined as follows. The network and task are similar as in
ReSuMe and E-Learning, i.e. a set of desired spike times Sd has to be imprinted in
the weights of a single layered feed-forward network. The single output neuron is
a LIF neuron, equation (2.9). A difference to the other learning algorithms is that
the output spikes do not need to be exactly at the times td. Instead, a window of
tolerance of width 2ε is introduced, where ε is a parameter of the learning algorithm.
The desired output spike can be anywhere in the interval [td − ε, td + ε], and there
has to be exactly one output spike within each interval, and no spikes at any other
time. In a learning trial, the output neuron receives input and the membrane po-
tential V (t) and output spikes are computed. Each time the output neuron spikes,
the algorithm checks the following:

1. If the output spike is the first spike in any window of tolerance around any de-
sired spike time td, then everything is in order and the learning trial continues
without further interference.

2. If the output spike lies outside any window of tolerance, or if it is the second
spike within such a window, it is treated as a spurious spike. The time of this
spike is called terr. The learning trial is interrupted and synaptic weights are
changed according to

Δwi = −ηλi(terr) . (3.26)

After changing the weights, a new learning trial from the beginning is initated.
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λi is the PSP sum at synapse i, equation (3.8). Additionally, the algorithm performs
a second type of check at each time td + ε. If there is exactly one spike within the
respective window of tolerance, the desired output was generated and the learning
trial continues without further interference. If there was no spike within this window,
then this is an error needing correction. Weights are changed by

Δwi = +ηλi(td + ε) . (3.27)

Also, the training trial ends immediately and a new trial from the beginning is
initiated. Learning has converged if all learning trials (of a learning block) have
been have finished uninterrupted.
The window of tolerance ε around each td gives FP-Learning its name, since it is
central to the algorithm. After the first spike has been learned successfully, the
algorithm will try to learn the next spike. However, weight changes applied to
learn the latter spike will usually nudge the first spike out of its position. Without
tolerance in the output spike times, any nudging, no matter how small, will cause
the algorithm to nudge it back, which then impacts the second spike, and so on.
Therefore, the output is given some leeway to allow the algorithm to converge.
Memmesheimer and colleagues compared the memory capacity attainable with FP-
Learning to the one of another algorithm with optimal memory capacity (the HTP
learning algorithm [39]), and found that FP-Learning achieves maximal capacity in
the spike time learning task.
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Abstract

Recent extensions of the Perceptron as the Tempotron and the Chronotron sug-
gest that this theoretical concept is highly relevant for understanding networks of
spiking neurons in the brain. It is not known, however, how the computational
power of the Perceptron might be accomplished by the plasticity mechanisms of
real synapses. Here we prove that spike-timing-dependent plasticity having an
anti-Hebbian form for excitatory synapses as well as a spike-timing-dependent
plasticity of Hebbian shape for inhibitory synapses are sufficient for realizing the
original Perceptron Learning Rule if these respective plasticity mechanisms act in
concert with the hyperpolarisation of the post-synaptic neurons. We also show that
with these simple yet biologically realistic dynamics Tempotrons and Chronotrons
are learned. The proposed mechanism enables incremental associative learning
from a continuous stream of patterns and might therefore underly the acquisition
of long term memories in cortex. Our results underline that learning processes
in realistic networks of spiking neurons depend crucially on the interactions of
synaptic plasticity mechanisms with the dynamics of participating neurons.

1 Introduction

Perceptrons are paradigmatic building blocks of neural networks [1]. The original Perceptron Learn-
ing Rule (PLR) is a supervised learning rule that employs a threshold to control weight changes,
which also serves as a margin to enhance robustness [2, 3]. If the learning set is separable, the PLR
algorithm is guaranteed to converge in a finite number of steps [1], which justifies the term ’perfect
learning’.

Associative learning can be considered a special case of supervised learning where the activity of the
output neuron is used as a teacher signal such that after learning missing activities are filled in. For
this reason the PLR is very useful for building associative memories in recurrent networks where
it can serve to learn arbitrary patterns in a ’quasi-unsupervised’ way. Here it turned out to be far
more efficient than the simple Hebb rule, leading to a superior memory capacity and non-symmetric
weights [4]. Note also that over-learning from repetitions of training examples is not possible with
the PLR because weight changes vanish as soon as the accumulated inputs are sufficient, a property
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which in contrast to the naı̈ve Hebb rule makes it suitable also for incremental learning of associative
memories from sequential presentation of patterns.

On the other hand, it is not known if and how real synaptic mechanisms might realize the success-
dependent self-regulation of the PLR in networks of spiking neurons in the brain. For example in
the Tempotron [5], a generalization of the perceptron to spatio-temporal patterns, learning was con-
ceived even somewhat less biological than the PLR, since here it not only depends on the potential
classification success, but also on a process that is not local in time, namely the localization of the
absolute maximum of the (virtual) postsynaptic membrane potential of the post-synaptic neuron.
The simplified tempotron learning rule, while biologically more plausible, still relies on a reward
signal which tells each neuron specifically that it should have spiked or not. Taken together, while
highly desirable, the feature of self regulation in the PLR still poses a challenge for biologically
realistic synaptic mechanisms.

The classical form of spike-timing-dependent plasticity (STDP) for excitatory synapses (here de-
noted CSTDP) states that the causal temporal order of first pre-synaptic activity and then postsy-
naptic activity leads to long-term potentiation of the synapse (LTP) while the reverse order leads to
long-term depression (LTD)[6, 7, 8]. More recently, however, it became clear that STDP can exhibit
different dependencies on the temporal order of spikes. In particular, it was found that the reversed
temporal order (first post- then presynaptic spiking) could lead to LTP (and vice versa; RSTDP),
depending on the location on the dendrite [9, 10]. For inhibitory synapses some experiments were
performed which indicate that here STDP exists as well and has the form of CSTDP [11]. Note that
CSTDP of inhibitory synapses in its effect on the postsynaptic neuron is equivalent to RSTDP of
excitatory synapses. Additionally it has been shown that CSTDP does not always rely on spikes, but
that strong subthreshold depolarization can replace the postsynaptic spike for LTD while keeping
the usual timing dependence [12]. We therefore assume that there exists a second threshold for the
induction of timing dependent LTD. For simplicity and without loss of generality, we restrict the
study to RSTDP for synapses that in contradiction to Dale’s law can change their sign.

It is very likely that plasticity rules and dynamical properties of neurons co-evolved to take advan-
tage of each other. Combining them could reveal new and desirable effects. A modeling example
for a beneficial effect of such an interplay was investigated in [13], where CSTDP interacted with
spike-frequency adaptation of the postsynaptic neuron to perform a gradient descent on a square
error. Several other studies investigate the effect of STDP on network function, however mostly
with a focus on stability issues (e.g. [14, 15, 16]). In contrast, we here focus on the construc-
tive role of STDP for associative learning. First we prove that RSTDP of excitatory synapses (or
CSTDP on inhibitory synapses) when acting in concert with neuronal after-hyperpolarisation and
depolarization-dependent LTD is sufficient for realizing the classical Perceptron learning rule, and
then show that this plasticity dynamics realizes a learning rule suited for the Tempotron and the
Chronotron [17].

2 Ingredients

2.1 Neuron model and network structure

We assume a feed-forward network of N presynaptic neurons and one postsynaptic integrate-and-
fire neuron with a membrane potential U governed by

τU U̇ = −U + Isyn + Iext, (1)

where Isyn denotes the input from the presynaptic neurons, and Iext is an input which can be used
to drive the postsynaptic neuron to spike at certain times. When the neuron reaches a threshold
potential Uthr, it is reset to a reset potential Ureset < 0, from where it decays back to the resting
potential U∞ = 0 with time constant τU . Spikes and other signals (depolarization) take finite times
to travel down the axon (τa) and the dendrite (τd). Synaptic transmission takes the form of delta
pulses, which reach the soma of the postsynaptic neuron after time τa + τd, and are modulated by
the synaptic weight w. We denote the presynaptic spike train as x with spike times tpre:

x(t) =
∑
tpre

δ(t − tpre). (2)
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Figure 1: Illustration of STDP mechanism. A: Upper trace (red) is the membrane potential of the
postsynaptic neuron. Shown are the firing threshold Uthr and the threshold for LTD Ust. Middle
trace (black) is the variable z(t), the train of LTD threshold crossing events. Please note that the first
spike in z(t) occurs at a different time than the neuronal spike. Bottom traces show w(t) (yellow)
and x̄ (blue) of a selected synapse. The second event in z reads out the trace of the presynaptic
spike x̄, leading to LTD. B: Learning rule (4) is equivalent to RSTDP. A postsynaptic spike leads
to an instantaneous jump in the trace ȳ (top left, red line), which decays exponentially. Subsequent
presynaptic spikes (dark blue bars and corresponding thin gray bars in the STDP window) “read” out
the state of the trace for the respective Δt = tpre − tpost. Similarly, z(t) reads out the presynaptic
trace x̄ (lower left, blue line). Sampling for all possible times results in the STDP window (right).

A postsynaptic neuron receives the input Isyn(t) =
∑

i wixi(t − τa − τd). The postsynaptic spike
train is similarly denoted by y(t) =

∑
tpost

δ(t − tpost).

2.2 The plasticity rule

The plasticity rule we employ mimics reverse STDP: A postsynaptic spike which arrives at the
synapse shortly before a presynaptic spike leads to synaptic potentiation. For synaptic depression
the relevant signal is not the spike, but the point in time where U(t) crosses an additional threshold
Ust from below, with U∞ < Ust < Uthr (“subthreshold threshold”). These events are modelled as
δ-pulses in the function z(t) =

∑
k δ(t−tk), where tk are the times of the aforementioned threshold

crossing events (see Fig. 1 A for an illustration of the principle). The temporal characteristic of
(reverse) STDP is preserved: If a presynaptic spike occurs shortly before the membrane potential
crosses this threshold, the synapse depresses. Timing dependent LTD without postsynaptic spiking
has been observed, although with classical timing requirements [12].

We formalize this by letting pre- and postsynaptic spikes each drive a synaptic trace:

τpre ˙̄x = −x̄ + x(t − τa)

τpost ˙̄y = −ȳ + y(t − τd).
(3)

The learning rule is a read–out of the traces by different spiking events:

ẇ ∝ ȳx(t − τa) − γx̄z(t − τd), (4)

where γ is a factor which scales depression and potentiation relative to each other. Fig. 1 B shows
how this plasticity rule creates RSTDP.

3 Equivalence to Perceptron Learning Rule

The Perceptron Learning Rule (PLR) for positive binary inputs and outputs is given by

Δwμ
i ∝ xi,μ

0 (2yμ
0 − 1)Θ [κ − (2yμ

0 − 1)(hμ − ϑ)] , (5)
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where xi,μ
0 ∈ {0, 1} denotes the activity of presynaptic neuron i in pattern μ ∈ {1, . . . , P},

yμ
0 ∈ {0, 1} signals the desired response to pattern μ, κ > 0 is a margin which ensures a certain
robustness against noise after convergence, hμ =

∑
i wix

i,μ
0 is the input to a postsynaptic neuron,

ϑ denotes the firing threshold, and Θ(x) denotes the Heaviside step function. If the P patterns are
linearly separable, the perceptronwill converge to a correct solution of the weights in a finite number
of steps. For random patterns this is generally the case for P < 2N . A finite margin κ reduces the
capacity.

Interestingly, for the case of temporally well separated synchronous spike patterns the combination
of RSTDP-like synaptic plasticity dynamics with depolarization-dependent LTD and neuronal hy-
perpolarization leads to a plasticity rule which can be mapped to the Perceptron Learning Rule. To
cut down unnecessary notation in the derivation, we drop the indices i and μ except where necessary
and consider only times 0 ≤ t ≤ τa + 2τd.

We consider a single postsynaptic neuron with N presynaptic neurons, with the condition τd < τa.
During learning, presynaptic spike patterns consisting of synchronous spikes at time t = 0 are
induced, concurrent with a possibly occuring postsynaptic spike which signals the class the presy-
naptic pattern belongs to. This is equivalent to the setting of a single layered perceptron with bi-
nary neurons. With x0 and y0 used as above we can write the pre- and postsynaptic activity as
x(t) = x0δ(t) and y(t) = y0δ(t). The membrane potential of the postsynaptic neuron depends on
y0:

U(t) = y0Ureset exp(−t/τU )
U(τa + τd) = y0Ureset exp(−(τa + τd)/τU ) = y0Uad.

(6)

Similarly, the synaptic current is

Isyn(t) =
∑

i

wix
i
0δ(t − τa − τd)

Isyn(τa + τd) =
∑

i

wix
i
0 = Iad.

(7)

The activity traces at the synapses are

x̄(t) = x0Θ(t − τa)
exp(−(t − τa)/τpre)

τpre

ȳ(t) = y0Θ(t − τd)
exp(−(t − τd)/τpost)

τpost
.

(8)

The variable of threshold crossing z(t) depends on the history of the postsynaptic neurons, which
again can be written with the aid of y0 as:

z(t) = Θ(Iad + y0Uad − Ust)δ(t − τa − τd). (9)

Here, Θ reflects the condition for induction of LTD. Only when the postsynaptic input at time
t = τa + τd is greater than the residual hyperpolarization (Uad < 0!) plus the threshold Ust, a
potential LTD event gets enregistered. These are the ingredients for the plasticity rule (4):

Δw ∝
∫

[ȳx(t − τa) − γx̄z(t − τd)] dt

=x0y0
exp(−(τa + τd)/τpost)

τpost
− γx0

exp(−2τd/τpre)
τpre

Θ(Iad + y0Uad − Ust).
(10)

We shorten this expression by choosing γ such that the exponential factors of both terms are equal,
which we can drop subsequently:

Δw ∝ x0 (y0 − Θ(Iad + y0Uad − Ust)) . (11)

We expand the equation by adding and substracting y0Θ(Iad + y0Uad − Ust):

Δw ∝x0 [y0(1 − Θ(Iad + y0Uad − Ust)) − (1 − y0)Θ(Iad + y0Uad − Ust)]
=x0 [y0Θ(−Iad − Uad + Ust) − (1 − y0)Θ(Iad − Ust)] .

(12)
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We used 1 − Θ(x) = Θ(−x) in the last transformation, and dropped y0 from the argument of the
Heaviside functions, as the two terms are seperated into the two cases y0 = 0 and y0 = 1. We do a
similar transformation to construct an expression G that turns either into the argument of the left or
right Heaviside function depending on y0. That expression is

G = Iad − Ust + y0(−2Iad − Uad + 2Ust), (13)

with which we replace the arguments:

Δw ∝ x0y0Θ(G) − x0(1 − y0)Θ(G) = x0(2y0 − 1)Θ(G). (14)

The last task is to show that G and the argument of the Heaviside function in equation (5) are
equivalent. For this we choose Iad = h, Uad = −2κ and Ust = ϑ − κ and keep in mind, that
ϑ = Uthr is the firing threshold. If we put this into G we get

G =Iad − Ust + y0(−2Iad − Uad + 2Ust)
=h − ϑ + κ + 2y0h + 2y0κ + 2y0ϑ − 2y0κ

=κ − (2y0 − 1)(h − ϑ),
(15)

which is the same as the argument of the Heaviside function in equation (5). Therefore, we have
shown the equivalence of both learning rules.

4 Associative learning of spatio-temporal spike patterns

4.1 Tempotron learning with RSTDP

The condition of exact spike synchrony used for the above equivalence proof can be relaxed to
include the association of spatio-temporal spike patterns with a desired postsynaptic activity. In the
following we take the perspective of the postsynaptic neuron which during learning is externally
activated (or not) to signal the respective class by spiking at time t = 0 (or not). During learning in
each trial presynaptic spatio-temporal spike patterns are presented in the time span 0 < t < T , and
plasticity is ruled by (4). For these conditions the resulting synaptic weights realize a Tempotron
with substantial memory capacity.

A Tempotron is an integrate-and-fire neuron with input weights adjusted to perform arbitrary clas-
sifications of (sparse) spike patterns [5, 18]. To implement a Tempotron, we make two changes
to the model. First, we separate the time scales of membrane potential and hyperpolarization by
introducing a variable ν:

τν ν̇ = −ν . (16)
Immediately after a postsynaptic spike, ν is reset to νspike < 0. The reason is that the length
of hyperpolarization determines the time window where significant learning can take place. To
improve comparability with the Tempotron as presented originally in [5], we set T = 0.5s and
τν = τpost = 0.2s, so that the postsynaptic neuron can learn to spike almost anywhere over the time
window, and we introduce postsynaptic potentials (PSP) with a finite rise time:

τsİsyn = −Isyn +
∑

i

wixi(t − τa), (17)

where wi denotes the synaptic weight of presynaptic neuron i. With τs = 3ms and τU = 15ms the
PSPs match the ones used in the original Tempotron study. This second change has little impact on
the capacity or otherwise. With these changes, the membrane potential is governed by

τU U̇ = ν + Isyn(t − τd) − U. (18)

A postsynaptic spike resets U to νspike = Ureset < 0. Ureset is the initial hyperpolarization which
is induced after a spike, which relaxes back to zero with the time constant τν � τU . Presynaptic
spikes add up linearly, and for simplicity we assume that both the axonal and the dendritic delay are
negligibly small: τa = τd = 0.

It is a natural choice to set τU = τpre and τν = τpost. τU sets the time scale for the summation
of EPSP contributing to spurious spikes, τν sets the time window where the desired spikes can lie.
They therefore should coincide with LTD and LTP, respectivly.
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Figure 2: Illustration of Perceptron learning with RSTDP with subthreshold LTD and postsynaptic
hyperpolarization. Shown are the traces x̄, ȳ and U . Pre- and postsynaptic spikes are displayed as
black bars at t = 0. A: Learning in the case of y0 = 1, i.e. a postsynaptic spike as the desired
output. Initially the weights are too low and the synaptic current (summed PSPs) is smaller than
Ust. Weight change is LTP only until during pattern presentation the membrane potential hits Ust.
At this point LTP and LTD cancel exactly, and learning stops. B: Pattern completion for y0 = 1.
Shown are the same traces as in A at the absence of an inital postsynaptic spike. The membrane
potential after learning is drawn as a dashed line to highlight the amplitude. Without the initial hy-
perpolarization, the synaptic current after learning is large enough to cross the spiking threshold, the
postsynaptic neuron fires the desired spike. Learning until Ust is reached ensures a minimum height
of synaptic currents and therefore robustness against noise. C: Pattern presentation and completion
for y0 = 0. Initially, the synaptic current during pattern presentation causes a spike and conse-
quently LTD. Learning stops when the membrane potential stays below Ust. Again, this ensures a
certain robustness against noise, analogous to the margin in the PLR.
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Figure 3: Performance of Tempotron and Chronotron after convergence. A: Classification perfor-
mance of the Tempotron. Shown is the fraction of pattern which elicit the desired postsynaptic activ-
ity upon presentation. Perfect recall for all N is achieved up to α = 0.18. Beyond that mark, some
of the patterns become incorrectly classified. The inset shows the learning curves for α = 7/16. The
final fraction of correctly classified pattern is the average fraction of the last 500 blocks of each run.
B: Performance of the Chronotron. Shown is the fraction of pattern which during recall succeed in
producing the correct postsynaptic spike time in a window of length 30 ms after the teacher spike.
See supplemental material for a detailed description. Please note that the scale of the load axis is
different in A and B.

Table 1: Parameters for Tempotron learning
τU , τpre τν , τpost τs Uthr Ust νspike η γ
15 ms 200 ms 3 ms 20 mV 19 mV -20 mV 10−5 2

4.1.1 Learning performance

We test the performance of networks ofN input neurons at classifying spatio-temporal spike patterns
by generating P = αN patterns, which we repeatedly present to the network. In each pattern,
each presynaptic neuron spikes exactly once at a fixed time in each presentation, with spike times
uniformly distributed over the trial. Learning is organized in learning blocks. In each block all P
patterns are presented in randomized order. Synaptic weights are initialized as zero, and are updated
after each pattern presentation. After each block, we test if the postsynaptic output matches the
desired activity for each pattern. If during training a postsynaptic spike at t = 0 was induced, the
output can lie anytime in the testing trial for a positive outcome. To test scaling of the capacity,
we generate networks of 100 to 600 neurons and present the patterns until the classification error
reaches a plateau. Examples of learning curves (Classification error over time) are shown in Fig. 3.
For each combination of α and N , we run 40 simulations. The final classification error is the mean
over the last 500 blocks, averaged over all runs. The parameters we use in the simulations are shown
in Tab. 1. Fig. 3 shows the final classification performance as a function of the memory load α, for
all network sizes we use. Up to a load of 0.18, the networks learns to perfectly classify each pattern.
Higher loads leave a residual error which increases with load. The drop in performance is steeper
for larger networks. In comparison, the simplified Tempotron learning rule proposed in [5] achieves
perfect classification up to α ≈ 1.5, i.e. one order of magnitude higher.

4.2 Chronotron learning with RSTDP

In the Chronotron [17] input spike patterns become associated with desired spike trains. There are
different learning rules which can achieve this mapping, including E–learning, I–learning, ReSuMe
and PBSNLR [17, 19, 20]. The plasticity mechanism presented here has the tendency to generate
postsynaptic spikes as close in time as possible to the teacher spike during recall. The presented
learning principle is therefore a candidate for Chronotron learning. The average distance of these
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spikes depends on the time constants of hyperpolarization and the learning window, especially τpost.
The modifications of the model necessary to implement Chronotron learning are described in the
supplement. The resulting capacity, i.e. the ability to generate the desired spike times within a short
window in time, is shown in Fig. 3 B. Up to a load of α = 0.01, the recall is perfect within the limits
of the learning window τlw = 30ms. Inspection of the spike times reveals that the average distance
of output spikes to the respective teacher spike is much shorter than the learning window (≈ 2ms
for α = 0.01, see supplemental Fig. 1).

5 Discussion

We present a new and biologically highly plausible approach to learning in neuronal networks.
RSTDP with subthreshold LTD in concert with hyperpolarisation is shown to be mathematically
equivalent to the Perceptron learning rule for activity patterns consisting of synchronous spikes,
thereby inheriting the highly desirable properties of the PLR (convergence in finite time, stop condi-
tion if performance is sufficient and robustness against noise). This provides a biologically plausible
mechanism to build associative memories with a capacity close to the theoretical maximum. Equiv-
alence of STDP with the PRL was shown before in [21], but this equivalence only holds on average.
We would like to stress that we here present a novel approach that ensures exact mathematical eqi-
valence to the PRL.

The mechanism proposed here is complementary to a previous approach [13] which uses CSTDP
in combination with spike frequency adaptation to perform gradient descent learning on a squared
error. However, that approach relies on an explicit teacher signal, and is not applicable to auto-
associative memories in recurrent networks. Most importantly, the approach presented here inherits
the important feature of selfregulation and fast convergence from the original Perceptron which is
absent in [13].

For sparse spatio-temporal spike patterns extensive simulations show that the same mechanism is
able to learn Tempotrons and Chronotrons with substantial memory capacity. In the case of the
Tempotron, the capacity achieved with this mechanism is lower than with a comparably plausible
learning rule. However, in the case of the Chronotron the capacity comes close to the one obtained
with a commonly employed, supervised spike time learning rule. Moreover, these rules are biolog-
ically quite unrealistic. A prototypical example for such a supervised learning rule is the Temptron
rule proposed by Gütig and Sompolinski [5]. Essentially, after a pattern presentation the complete
time course of the membrane potential during the presentation is examined, and if classification was
erroneous, the synaptic weights which contributed most to the absolute maximum of the potential
are changed. In other words, the neurons would have to able to retrospectivly disentangle contri-
butions to their membrane potential at a certain time in the past. As we showed here, RSTDP with
subthreshold LTD together with postsynaptic hyperpolarization for the first time provides a realistic
mechanism for Tempotron and Chronotron learning.

Spike after-hyperpolarization is often neglected in theoretical studies or assumed to only play a
role in network stabilization by providing relative refractoriness. Depolarization dependent STDP
receives little attention in modeling studies (but see [22]), possibly because there are only few studies
which show that such a mechanism exists [12, 23]. The novelty of the learning mechanism presented
here lies in the constructive roles both play in concert. After-hyperpolarization allows synaptic
potentiation for presynaptic inputs immediately after the teacher spike without causing additional
non-teacher spikes, which would be detrimental for learning. During recall, the absence of the
hyperpolarization ensures the then desired threshold crossing of the membrane potential (see Fig.
2 B). Subthreshold LTD guarantees convergence of learning. It counteracts synaptic potentiation
when the membrane potential becomes sufficiently high after the teacher spike. The combination
of both provides the learning margin, which makes the resulting network robust against noise in
the input. Taken together, our results show that the interplay of neuronal dynamics and synaptic
plasticity rules can give rise to powerful learning dynamics.

Acknowledgments

This work was in part funded by the German ministry for Science and Education (BMBF), grant
number 01GQ0964.

8



References
[1] Hertz, J., Krogh, A. & Palmer, R.G.(1991) Introduction to the Theory of Neural Computation., Addison-

Wesley.
[2] Rosenblatt, F. (1957) The Perceptron–a perceiving and recognizing automaton. Report 85-460-1.
[3] Minsky M. L. & Papert S. A. (1969) Perceptrons Cambridge, MA: MIT Press.
[4] Diederich, S. & Opper, M. (1987) Learning of correlated patterns in spin-glass networks by local learning

rulesPhysical Review Letters 58(9):949-952.
[5] Gütig R. & Sompolinsky H. (2006) The Tempotron: a neuron that learns spike timing-based deci-

sions.Nature Neuroscience 9(3):420-8.
[6] Dan, Y. &Poo, M.(2004) Spike Timing-Dependent Plasticity of Neural Circuits Neuron 44:2330.
[7] Dan, Y. &Poo, M.(2006) Spike timing-dependent plasticity: from synapse to perception. Physiological

Reviews 86(3):1033-48.
[8] Caporale, N. & Dan, Y. (2008) Spike TimingDependent Plasticity: A Hebbian Learning Rule Annual

Review of Neuroscience 31:2546.
[9] Froemke, R. C., Poo, M.-M., Dan, Y. (2005) Spike-timing-dependent synaptic plasticity depends on den-

dritic location. Nature 434:221-225.
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1 Chronotron learning with RSTDP, subthreshold LTD and
Hyperpolarization

1.1 Introduction

Here, we present model and scenario used to generate the capacity curves for the Chronotron. The
model for the Tempotron learning (equations (16) to (18) in the main article) is slightly modified.
The main reason is that during presentation, synaptic depression which precedes every postsynap-
tic teacher spike will be induced at every iteration. This would prevent convergence and destroys
desired system states with perfect recall. This is not a concern in the Tempotron learning, because
the teacher spike always occurs before any presynaptic activity. Therefore, the major change to the
model for the Chronotron is to add synaptic scaling acting only on the negative weights.

1.2 Model description

Spike trains are sums of δ-pulses:

x(t) =
∑
tpre

δ(t − tpre) , y(t) =
∑
tpost

δ(t − tpost) . (1)

The synaptic current is
Isyn(t) =

∑
i

wixi(t) . (2)

As in the Tempotron, we neglect axonal and dendritic delays. The membrane potential is governed
by equation (1) of the main article, which means that we discarded the variable ν from the Tempotron
model. The external current is used to deliver the teacher spikes and consists of a suprathreshold
delta pulse at the desired times. The plasticity rule (equations (3) and (4)) remains in place. Pattern
presentation and association protocol is similar to the Tempotron case. There are N presynaptic and
one postsynaptic neurons. We generate P = αN different random patterns. In each pattern μ ∈ P ,
each presynaptic neuron spikes exactly once at a fixed time uniformly drawn from the interval [0, T ].
Each presynaptic activity pattern is assigned one postsynaptic spike time tμteach, at which during the
pattern presentation (associative learning) a teacher spike is induced by a suprathreshold external
current. The teacher spike time is drawn from a slightly smaller interval (see below). Learning is
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Table 1: Parameters for Chronotron learning
τU , τpre τpost Uthr Ust Ureset η γ β
10 ms 10 ms 20 mV 19.5 mV -20 mV 10−6/N 1 0.05

organized in learning blocks. During each block, each pattern is presented once, with the order of
presentation randomized for every block. The weights are updated after each pattern presentation.
Due to the considerations presented above, we introduce an additional weight decay term, which
acts only on the (currently) inhibitory synapses. We denote the set of negative weights by W I(t).
After each learning block, the negativeweights are slightly reduced proportionally to their respective
magnitude:

Δwi =
{

βwi for wi ∈ W I(t)
0 else .

(3)

This simple form of synaptic scaling has the disadvantage that the decay depends on the number of
patterns. However, we found that the results are very insensitive to the parameter β, which justifies
this choice.

After each learning block and after the synaptic scaling, we present each presynaptic pattern with-
out the teacher input and with plasticity turned off. The pattern is counted as correctly completed
if a postsynaptic spike occurs in the time window [tμteacher , t

μ
teacher + τlw], where τlw is a param-

eter which controls the length of the learning window. Because the postsynaptic spike can occur
over a finite time window, we reduced the time interval the teacher spike times are drawn from to
[0, T − τlw] to make sure correct association can be achieved by every pattern.

We choose the length of the presentation interval T = 200ms and τU = 10ms to match the re-
spective parameters in the original Chronotron study [1]. The length of the learning window is
τlw = 30ms is associated to the time constants of the STDP window. From the perspective of the
learning task the Tempotron is really just a special case of the Chronotron with a very long learn-
ing window (tμteach ≡ 0, τlw = T ). To allow plasticity over the whole window, we seperated the
time scale of hyperpolarization from the membrane time scale, and set τpost = τnu ≈ T . For the
Chronotron, the postsynaptic spike has to occur as soon as possible after the time of the teacher
spike, which requires a short time constant of LTP, τpost. Compared to the Tempotron, this parame-
ter choice sacrifices capacity for precision. The learning window we use is relatively long compared
to the millisecond (or even submillisecond) precision which is achieved with the alternative learning
rules (E-Learning, [1], ReSuMe [2], PBSNLR [3]). However, in our case the mean time difference
of the actual output spike to the teacher spike is much shorter than the learning window, between 2
ms and 14 ms. Higher loads α lead to larger time mismatches (See Fig. 1). It was shown by Florian
[1] that ReSuMe and his own unoptimized I-Learning rule both reach a capacity of around 0.02, to
which our own plasticity rule is very close. With this load, the average distance of desired to actual
spike is small (≈ 2ms). We have to mention that the highly optimized E-learning rule has a much
higher memory capacity (0.2), however at the expense of biological plausibility.
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Figure 1: Examples of average differences in time of spike produced during recall and the teacher
spike. A shows the time differences for a low load of α = 0.01. Here, regardless ofN the difference
converges to 2 ms. B shows the same for a load of α = 0.04. Shown are only the time differences
for successful recall. The average difference converges to a higher value around 10 ms. The gaps at
the beginning are due to the fact that the initial weights are zero, and therefore there are no spikes
during recall.
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Chapter 4

Learning of Precise Spike Times
with Homeostatic Membrane
Potential Dependent Synaptic
Plasticity

4.1 Abstract

Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory
representations and control of muscle activities. However, it is not known how
the synaptic efficacies in the neuronal networks of the brain adapt such that they
can reliably generate spikes at specific points in time. Existing activity-dependent
plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of
learning spike times. On the other hand, the existing formal and supervised learning
algorithms perform a temporally precise comparison of projected activity with the
target, but there is no known biologically plausible implementation of this compar-
ison. Here, we propose a simple and local unsupervised synaptic plasticity mecha-
nism that is derived from the requirement of a balanced membrane potential. Since
the relevant signal for synaptic change is the postsynaptic voltage rather than spike
times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP).
Combining our plasticity mechanism with spike after-hyperpolarization causes a sen-
sitivity of synaptic change to pre- and postsynaptic spike times which can reproduce
Hebbian spike timing dependent plasticity for inhibitory synapses as was found in
experiments. In addition, the sensitivity of MPDP to the time course of the voltage
when generating a spike allows MPDP to distinguish between weak (spurious) and
strong (teacher) spikes, which therefore provides a neuronal basis for the comparison
of actual and target activity. For spatio-temporal input spike patterns our concep-
tually simple plasticity rule achieves a surprisingly high storage capacity for spike
associations. The sensitivity of the MPDP to the subthreshold membrane potential
during training allows robust memory retrieval after learning even in the presence
of activity corrupted by noise. We propose that MPDP represents a biologically
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realistic mechanism to learn temporal target activity patterns.

4.2 Introduction

Precise and recurring spatio-temporal patterns of action potentials are observed in
various biological neuronal networks. In zebra finches, precise sequences of activa-
tions in region HVC are found during singing and listening to the own song [84].
Also, when spike times of sensory neurons are measured, the variability of laten-
cies relative to the onset of a externally induced stimulus is often higher than if
the latencies are measured relative to other sensory neurons [85, 86]; spike times
covary. Therefore, information about the stimulus is coded in spatio-temporal spike
patterns. Theoretical considerations show that in some situations spike-time cod-
ing is superior to rate coding [87]. Xu and colleagues demonstrated that through
associative training it is possible to imprint new sequences of activations in visual
cortex [88], which shows that there are plasticity mechanisms which are used to
learn precise sequences.
These observations suggest that spatio-temporal patterns of spike activities underlie
coding and processing of information in many networks of the brain. However, it is
not known which synaptic plasticity mechanisms enable neuronal networks to learn,
generate, and read out precise action potential patterns. A theoretical framework to
investigate this question is the chronotron, where the postsynaptic neuron is trained
to fire a spike at predefined times relative to the onset of a fixed input pattern [81].
A natural candidate plasticity rule for chronotron training is Spike-Timing Depen-
dent Plasticity (STDP) [49] in combination with a supervisor who enforces spikes
at the desired times. Legenstein and colleagues [89] investigated the capabilities
of supervised STDP in the chronotron task and identified a key problem: STDP
has no means to distinguish between desired spikes caused by the supervisor and
spurious spikes resulting from the neuronal dynamics. As a result every spike gets
reinforced, and plasticity does not terminate when the correct output is achieved,
which eventually unlearns the desired synaptic state. The failings of STDP hint at
the requirements of a working learning algorithm. Information about the type of a
spike (desired or spurious) has to be available to each synapse, where it modulates
spike time based synaptic plasticity. Synapses evoking undesired spikes should be
weakened, synapses that contribute to desired spikes should be strengthened, but
only until the self-generated output activity matches the desired one. Plasticity
should cease if the output neurons generate the desired spikes without supervisor
intervention. In other words, at the core of a learning algorithm has to be a compar-
ison of actual and target activity, and synaptic changes have to be computed based
on the difference between the two.
In recent years, a number of supervised learning rules have been proposed to train
to fire temporally precise output spikes in response to recurring spatio-temporal in-
put patterns [39, 81, 90]. They compare the target spike train to the self-generated
(actual) output and devise synaptic changes to transform the latter into the former.
However, because spikes are discrete events in time that influence the future dy-
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namics of the neuron, the comparison is necessarily non-local in time, which might
be difficult to implement for a biological neuron and synapse. Another group of
algorithms performs a comparison of actual and target firing rate instead of spike
times [38,78,79,82]. Because they work with the instaneous firing rate, they do not
rely on sampling of discrete spikes and therefore the comparison is local in time.
It is interesting to note that these learning algorithms are implicitely sensitive to
the current membrane potential, of which the firing rate is a monotonous function.
However, two important questions remain unanswered: How is the desired activity
communicated to a biological neuron and how does the synapse compute the differ-
ence?
In this study, we investigate the learning capabilities of a plasticity rule which re-
lies only on postsynaptic membrane potential and presynaptic spikes as signals. To
distinguish it from spike times based rules, we call it Membrane Potential Depen-
dent Plasticity (MPDP). We derive MPDP from a homeostatic requirement on the
voltage and show that in combination with spike after-hyperpolarisation (SAHP) it
is compatible with experimentally observed STDP of inhibitory synapses [20]. De-
spite its Anti-Hebbian nature, MPDP combined with SAHP can be used to train a
neuron to generate desired temporally structured spiking output in an associative
manner. During learning, the supervisor or teacher induces spikes at the desired
times by a strong input. Because of the differences in the time course of the voltage,
a synapse can sense the difference between spurious spikes caused by weak inputs
and teacher spikes caused by strong inputs. As a consequence, weight changes are
matched to the respective spike type. Therefore, our learning algorithm provides a
biologically plausible answer for the open question presented above. Additionally,
the sensitivity of MPDP to subthreshold voltage leads to a noise-tolerant network
after training with noise free examples. For a quantitative analysis, we simplify the
neuron model and apply our learning mechanism to train a chronotron [81]. We find
that the attainable memory capacity is comparable to that of a range of existing
learning rules [39, 81, 82], however the noise tolerance after training is superior in
networks trained with MPDP in comparison to those trained with the other learning
algorithms.

4.3 Results

In the following, we start with presenting our Membrane Potential Dependent Plas-
ticity rule (MPDP). We constructed a simple yet biologically plausible feed-forward
network and show that MPDP, when tested with spike pairs, is equivalent to in-
hibitory Hebbian STDP as reported by Haas and colleagues [20]. We then show
that with MPDP the output neuron of this example can be trained to generate
spikes at specific times. Lastly, we turn to a simplified model to evaluate and com-
pare with other rules the attainable memory capacity with MPDP, as well as its
noise tolerance.
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4.3.1 Membrane Potential Dependent Plasticity

We formulated a basic homeostatic requirement on the membrane potential of a
neuron. The neuron should stay in a sensible working regime; in other words, its
voltage should be confined to moderate values. We formalized this by introducing
two thresholds on the voltage. In this study, ϑD lies between the firing threshold and
resting potential and ϑP is equal to the resting potential. With these thresholds,
we formulated an error function (see Eq. 4.5 in Methods). Using it and a simple
LIF neuron model with linear dynamics below the firing threshold, we computed
an update rule for the weights, Eq. 4.7. Weight changes with this rule “bend” the
voltage at the times of non-zero error towards the region between the two thresholds.
Fig. 4.1 B shows how MPDP effects the voltage for recurring input activity.

4.3.2 Homeostatic MPDP on inhibitory synapses is com-
patible with STDP

We first investigated the biological plausibility of a network with MPDP. Experimen-
tal studies on plasticity of cortical excitatory neurons often find Hebbian plasticity
rules like Hebbian Spike Timing Dependent Plasticity (STDP; see [16,25,26,47,91]
for examples). Reports on Anti-Hebbian plasticity or sensitivity to subthreshold
voltage in excitatory cortical neurons are scarce [23, 52, 92, 93]. However, it has
been reported that plasticity in (certain) inhibitory synapses onto excitatory cells
has a Hebbian characteristic [20], i.e. synapses active before a postsynaptic spike
become stronger, those active after the spike become weaker. The net effect of this
rule on the postsynaptic neuron is Anti-Hebbian, because weight increases tend to
suppress output spikes.
In experimental investigations of STDP, neurons are tested with pairs of pre- and
postsynaptic spikes. We mimicked this procedure in a simple network consisting
of one pre- and one postsynaptic neuron, and one “experimentator neuron” . The
postsynaptic neuron was modelled as a conductance based LIF neuron. The experi-
mentator neuron has a fixed strong excitatory synaptic weight onto the postsynaptic
neuron, so that a spike of the experimentator neuron causes a postsynaptic spike.
We used it to control the postsynaptic spike times. The presynaptic neuron is in-
hibitory and its weight is small compared to the experimentator, so that it has
negligible influence on the postsynaptic spike time. We probed synaptic plasticity
by inducing a pair of a pre- and a postsynaptic spike at times tpre and tpost, and vary
tpre while keeping tpost fixed. The resulting weight change of the inhibitory neuron
as a function of timing difference is shown in Fig. 4.1 C. The shape of the function
is in qualitative agreement with experimental results [20].
It is necessary to assume the presence of an “experimentator neuron”. The reason
is that the shape of the STDP curve explicitely depends on the specifics of spike
induction since the MPDP rule is sensitive only to subthreshold voltage. For exam-
ple, using a delta-shaped input current would lead to a LTD-only STDP curve, since
the time the voltage needs to cross the firing threshold starting from equilibrium is
infinitely short.
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Figure 4.1: A: The model network has a simple feed-forward structure. The top pic-
ture shows three pre- and one postsynaptic neurons, connected by synapses. Line
Width in this example corresponds to synaptic strength. Bottom picture shows
the postsynaptic membrane potential in response to the input. B: Illustration of
Anti-Hebbian Membrane Potential Dependent Plasticity (MPDP). A LIF neuron is
presented twice with the same presynaptic input pattern. Excitation never exceeds
Vthr. MPDP changes synapses to counteract hyperpolarization and depolarization
occuring in the first presentation (blue trace), reducing (arrows) them on the sec-
ond presentation (green trace). C: Homeostatic MPDP on inhibitory synapses is
compatible with STDP as found in experiments. Plasticity is tested for different
temporal distances between pre- and postsynaptic spiking; the resulting spike tim-
ing characteristic is in agreement with experimental data on STDP of inhibitory
synapses [20].

4.3.3 Homeostatic MPDP allows associative learning

At first glance, it might seem unlikely that a homeostatic plasticity mechanism can
implement associative learning. It is Anti-Hebbian in nature, because if the mem-
brane potential is close to firing threshold it gets suppressed, and if is below the
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resting potential it gets lifted up. However, the neuronal dynamics shows somewhat
stereotypic behavior before, during and after each spike. To induce a spike, the
neuron needs to be depolarized up to Vthr, where active feed-back processes kick
in. These processes cause a very short and strong depolarization and a subsequent
undershoot of the membrane potential (hyperpolarization), from where it relaxes
back to equilibrium.
To demonstrate the capability of MPDP for learning of exact spike times, we con-
structed a simple yet plausible feed-forward network of Ni inhibitory and Ne exci-
tatory neurons. Synaptic weights were initialized randomly. Both populations pro-
jected onto one conductance based LIF neuron. We presented this network frozen
poissonian noise as the sole presynaptic firing pattern (Fig. 4.2, top). Excitatory
synapses were kept fixed and inhibitory synapses changed according to MPDP. First
we let the network learn to balance all inputs from the excitatory population such
that the membrane potential mostly stays between the thresholds ϑI

P and ϑI
D. We

then introduced the teacher input as a strong synaptic input from a different source
(e.g. a different neuron population, Fig. 4.2, second to top). After repeated presen-
tations of the input pattern with the teacher input, inhibition around the teacher
spike is released such that after learning the output neuron will spike close to the
desired spike time even without the teacher input (Fig. 4.2, third and fourth to top).
At the same time, due to the balance requirement of the learning rule, inhibitory
and excitatory conductances covary and thus their influence on the membrane po-
tential mostly cancels out (Fig. 4.2 bottom). Due to the sterotypical shape of the
membrane potential around the teacher spike, a homeostatic learning rule is able to
perform associative learning by release of inhibition.
To further investigate the learning process, we simplified the setup. All synapses

were subject to MPDP and were allowed to change their sign. A population of
N presynaptic neurons fires one spike in each neuron at equidistant times. They
project onto a single postsynaptic LIF neuron and all weights are zero initially. In
each training trial an external delta-shaped suprathreshold current is induced at the
postsynaptic neuron at a fixed time relative to the onset of the input pattern (teacher
spike). The postsynaptic neuron reaches its firing threshold instantaneously, spikes
and undergoes reset into a hyperpolarized state (blue trace on the left in Fig. 4.3).
This is mathematically equivalent to adding a reset kernel at the time of the external
current [39]. Because we set ϑP = Veq = 0, potentiation is induced in all synapses
which have temporal overlap of their PSP-kernel with the hyperpolarization. Prob-
ing the neuron a second time without the external spike shows a small bump in
the membrane potential around the time of the teacher spike. We continued to
present the same input pattern, alternating between teaching trials (with teacher
spike) and recall trials without teacher and with synaptic plasticity switched off.
Plasticity is Hebbian until the weights are strong enough such that there is consid-
erable depolarization before the teacher spike, inducing synaptic depression. Also,
spike after-hyperpolarization is partially compensated by excitation, which reduces
the window for potentiation. Continuation of learning after the spike association
has been achieved (second to right plot) shrinks the windows for depression and po-
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Figure 4.2: Hebbian learning with homeostatic MPDP on inhibitory
synapses. A conductance based integrate-and-fire neuron is repeatedly presented
with a fixed input pattern of activity in presynaptic inhibitory or excitatory neu-
ron populations (top row - blue is excitatory, red inhibitory). Before learning, the
neuron is allowed to adapt it’s inhibitory weights according to homeostatic MPDP,
such that the membrane potential mostly stays between the two learning thresholds.
Then a strong excitatory input is given concurrently with the pattern to induce a
spike at t = 100ms (second row). Learning is restricted to inhibitory weights. By
release of inhibition, the net input after the teacher spike is increased (third row).
After learning has converged, the neuron is presented the input pattern without the
teacher input and reproduces the spike close to the target time (4th row) . At all
other times, excitatory and inhibitory conductances are balanced (bottom row).

tentiation, until they are very narrow and very close to each other in time. Because
synaptic plasticity is determined by the integral over the normalized PSP during pe-
riods of depolarization and hyperpolarization, depression and potentiation become
very similar in magnitude for each synapse and synaptic plasticity slows down nearly
to a stop. Furthermore, the output spike has become stable. The time course of the
membrane potential during teaching and recall trials is almost the same (Fig. 4.3
right).

4.3.4 Quantitative evaluation of MPDP

Memory capacity. We numerically evaluated the capacity of MPDP to train
a network to produce precise spike times using the simplified feed-forward net-
work described above. We constructed input patterns and desired output using
the chronotron framework [81]. During training, we monitored the success of recall
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Figure 4.3: Hebbian learning with homeostatic MPDP. A postsynaptic neu-
ron is presented the same input pattern multiple times, alternating between teaching
trials with teacher spike (blue trace) and recall trials (green trace) to test the out-
put. Initially, all weights are zero (left). Learning is Hebbian initially until strong
depolarization occurs (second to left). When the spike first appears during recall,
it is still not at the exact location of the teacher spike (second to right). Continued
learning moves it closer to the desired location. Also, the time windows of the volt-
age being above ϑD and below ϑP shrink and move closer in time (right). Synaptic
plasticity almost stops. The number of learning trials before each state is 1, 16, 53,
and 1600 from left to right.

over time. The network of size N = 1000 generates the desired output spikes within
the window of tolerance after 600 learning blocks (Fig. 4.4 A). However, weights
are still changed by training, and continuation of it reduces the difference of actual
and desired output spike time (see Fig. 4.4 B). After around 2000 learning blocks
the average temporal error of all recalled spikes stays constant for the remainder of
training. For α ≤ 0.1 the self-generated output spike is on average less than 0.5 ms
away from the desired time. The final fraction of recalled spikes and average dis-
tance are shown in Fig. 4.4 C and D. The smallest network (N = 200) never reaches
perfect recall, but has a capacity of α90 = 0.095 (for the definition of capacity, see
Materials and Methods). All other networks achieve perfect recall up to a load of
α = 0.1 and a capacity of α90 ≈ 0.135. The average distance of spikes from teacher
grows with the load, but stays below 0.5 ms.

To put these results into perspective, we trained chronotrons again using three
other learning rules and computed the respective memory capacity. Fig. 4.5 shows
the capacity of all plasticity rules. The upper bound established by FP-Learning
is α90 ≈ 0.26. MPDP is capable of storing half of the maximal possible number of
associations in the weights.

Training and recall with noise on the membrane potential. Next, we turned
to an evaluation of memory under the influence of noise. Having a noise free network
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Figure 4.4: Capacity of networks with MPDP. A: Fraction of pattern where
the network generates an output spike within 2 ms distance of target time tμd , and
no spurious spikes. Network size is N = 1000. The desired spikes are learned within
≈ 600 steps. B: Average distance of output spikes to target for the same network
size. Training continues even though the desired spikes are generated; however, they
are pushed closer to the desired time. C: Average fraction of recalled spikes after
10000 learning blocks for all network sizes as a function of the load. Networks with
N = 200 have a high probability to not be able to recall all spikes even for low loads.
Otherwise, recall gets better with network size. The thin black line lies at fraction
of recall equal to 90 %. The critical load α90 is the point where the graph crosses
this line. D: Average distance of recalled spikes as a function of the load. The lower
the loads, the closer the output spike are to their desired location.

is a highly idealized situation and neurons in the brain are more likely to be subject
to noise, be it because of inherent stochasticity of spike generation or the fact that
sensory inputs are almost never “pure”, but likely to arrive with additional more
or less random inputs. First, we tested training and recall of spike times using
an additional random input of a given variance σinput on the postsynaptic neuron.
The random input is a gaussian white noise process with zero mean, and because
inputs decay with the membrane time constant, this results in a additional random
walk with a restoring force. We trained the chronotron with additional noise of
width σinput ∈ {0, 0.2, 0.5, 1, 2, 5}mV . The width is the standard deviation of the
random walk. Afterwards, we evaluated the critical load of networks of size N =
200, 500, 1000 depending on the noise level during training and during recall. The
results are shown in Fig. 4.6.
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Figure 4.5: Critical load as a function of network size for all four learning rules.
MPDP reaches approximately half of the maximal capacity.

With MPDP, the network trained without noise can perfectly recall patterns up
to a load of α = 0.1 even with additional noise input of σinput = 0.5mV . Adding
noise during training decreases the capacity, but at the same time recall robustness
against noise is improved. This is contrasted by the network trained with FP-
Learning. Here, noise-free training results in a network with imperfect recall under
noise. However, noise during training alleviates this problem. Training with a given
noise width σinput makes recall with the same and less noise width perfect. One
interesting observation is that unlike with MPDP, with FP-Learning the memory
capacity for noise-free recall stays constant regardless of noise during training. This
is explained by the variance of the weights after training. With FP-Learning, the
variance increases approximately linearly with noise width, while the mean of the
weights decreases linearly into negative values. The resulting membrane potential is
strongly biased towards hyperpolarized states. What FP-Learning effectively does
during training is to scale down the noise relative to the weights. This reduces the
influence of noise, but also leads to a membrane potential that stays below resting
potential most of the time during input activity. Because of the threshold for LTP,
MPDP can not scale the weights freely, therefore it suffers from a declining memory
capacity.

Training and recall with input spike time jitter. As a second noise condition
we tested training and recall in the case that the input spike times are not fixed. In
each pattern presentation, we added to each presynaptic spike time some random
number drawn from a gaussian distribution with mean zero and some given variance.
The input is not frozen noise anymore, but a jittered version of the underlying input
pattern {tμi }. Similarly to the condition of a stochastic input current, we tested the
capacity of the network if during recall the input pattern are jittered or if during
training the input is jittered (but noise free during recall).
Fig. 4.7 A (N = 1000) and B (N = 2000) shows the recall of networks trained noise
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free with MPDP if during recall the spike times of the input patterns are jittered.
For jitter with a small variance (σjitter < 0.5ms), the recall is almost unaffected.
For stronger jitter, recall deteriorates. A rather strange feature of the recall is
that for intermediate loads α ≈ 0.05 the recall is worse than for loads close to the
maximal capacity (α90 ≈ 0.125). This observation is counter-intuitive and calls for
explanation, because recall usually becomes worse for memory systems if their load
is close to the capacity. However, fluctiations of the membrane potential due to
jitter in the input spike times are scaled by the weights. This seperates this noise
condition from the one with stochastic input current. A comparison of the weight
statistics of networks trained with MPDP after training shows that the slump in
the recall covaries with the weight variance (Fig. 4.7 C and D). For N = 1000 the
minimum of the slump lies at α = 0.06, which coincides with the maximum of
the weight variance. For N = 2000, both lie at α = 0.04 instead. The mean of
the weights does have little to no influence on that; it stays almost constant as a
function of load. E-Learning and FP-Learning do not have the same characteristics
(data not shown). For example, with FP-Learning weight average and variance stay
basically constant until a load of α ≈ 0.2, rather close to the capacity. Only then
the mean decreases and variance increases (see for example Fig. 4.6 F, right plot for
σinput = 0 during training).

Networks trained without noise and tested with jittered input show a similar
behavior to noise induced by an external stochastic current (Fig. 4.6 E, blue lines,
versus Fig. 4.7 E). Networks trained with MPDP tolerate noise up to a certain degree
without showing a deterioration of recall. With the other learning rules, the recall
gets worse with arbitrary small noise levels. On the other hand, training a network
with FP-Learning while injecting stochastic currents (the previous noise condition)
led to almost unharmed capacity. The reason is that FP-Learning “downscales”
the noise by scaling up the weight variance. This is not a viable path for jitter
of input spike times. Therefore, E-Learning and FP-Learning as well as MPDP
show a decrease of capacity if during training the input spike times are jittered. An
interesting outlier is ReSuMe. The networks trained noise free with ReSuMe have
low capacity and unstable recall. Even with slight jitter the recall does not reach 90
% anymore. Therefore, we do not include ReSuMe in Fig. 4.7 E. However, training
the network with jitter leads to an increase of capacity (Fig. 4.7 F).

4.4 Discussion

We introduced a synaptic plasticity mechanism that is based on the requirement
to balance the membrane potential and therefore uses the postsynaptic membrane
potential rather than postsynaptic spike times as the relevant signal for synaptic
changes (Membrane Potential Dependent Plasticity, MPDP). We have shown that
this simple rule allows the somewhat paradoxical temporal association of enforced
output spikes with arbitrary frozen noise input spike patterns (chronotron). Be-
fore, this task could only be achieved with supervised learning rules that provided
knowledge not only about the desired spike times, but also about the type of each
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postsynaptic spike (desired or spurious). With MPDP, the supervisor only has to
provide the desired spike, while the synapse endowed with MPDP distinguishes be-
tween desired and spurios spikes exploiting the time course of the voltage around the
spike. Additionally, the sensitivity of MPDP to subthreshold membrane potential
allows for robustness against noise.

4.4.1 Biological plausibility of MPDP

Spike-Timing-Dependent Plasticity (STDP) is experimentally well established and
simple to formalize, which made it a widely used plasticity mechanism in modelling.
It is therefore important to note that MPDP is compatible with experimental results
on STDP, in particular with those of Hebbian STDP on inhibitory synapses. The
reason is that spikes come with a stereotypic trace in the membrane potential. The
voltage rises to the threshold, the spike itself is a short and strong depolarization,
and afterwards the neuron undergoes reset, all of which are signals for MPDP. Pair-
ing a postsynaptic spike with presynaptic spikes at different timings gives rise to
a plasticity window which shares its main features with the STDP window: The
magnitude of weight change drops with the temporal distance between both spikes
and the sign switches close to concurrent spiking.
It is known that the somatic membrane potential plays a role in synaptic plasticity.
Many studies investigated the effect of prolonged voltage deflections by clamping
the voltage for an extended time while repeatedly exciting presynaptic neurons (e.g.
see [94]). However, MPDP predicts that synaptic plasticity is sensitive to the exact
time course of the membrane potential, as well as the timing of presynaptic spikes.
This necessitates that dendrites and spines reproduce the time course of somatic
voltage without substantial attenuation. Morphologically the dendritic spines form
a compartement separated from the dendrite, which, for example, keeps calcium lo-
calized in the spine. It has been a topic under investigation whether the spine neck
dampens invading currents. Despite experimental difficulties in measuring spine
voltage, recent studies found that backpropagating action potentials indeed invade
spines almost unhindered [95]. Furthermore, independently of spine morphology
and proximity to soma, the time course of a somatic hyperpolarizing current step
is well reproduced in dendrites [96] and spines [97]. This shows that at least in
principle the somatic voltage trace can be available at the synapse. In turn, voltage-
dependent calcium channels can transform subthreshold voltage deflections into an
influx of calcium, the major messenger for synaptic plasticity. A few studies found
that short depolarization events act as signals for synaptic plasticity [52, 93], with
a dependence of sign and magnitude of weight change on the timing of presynaptic
spikes.
Another important point is the sign of synaptic change. “Membrane Potential De-
pendent Plasticity” per se is a very general term which potentially could include
many different rules [28,98]. In this study, MPDP serves as a mechanism that keeps
the membrane potential bounded. For inhibitory synapses this requirement results
in a Hebbian plasticity rule, which has been reported previously [20]. Inhibitory
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neurons in cortex have been implied to precisely balance excitatory inputs [99].
MPDP on excitatory synapses is necessarily “Anti-Hebbian”. Lamsa et al [92]
found that pairing presynaptic spikes with postsynaptic hyperpolarization can lead
to synaptic potentiation. This was caused by calcium permeable AMPA recep-
tors (CP-AMPARs) present in these synapses. However, Anti-Hebbian plasticity
does not rely on CP-AMPARs alone. Verhoog et al. [23], for example, found Anti-
Hebbian STDP in human cortex, which depends on dendritic voltage-dependent
calcium channels. Taken together, these findings demonstrate the existence of cel-
lular machinery which could implement homeostatic MPDP, either on excitatory or
inhibitory synapses.

4.4.2 Properties and capabilities of Homeostatic MPDP

We derived homeostatic MPDP from a balance requirement: Synapses change in
order to prevent hyperpolarization and strong depolarization for recurring input ac-
tivity. This kind of balance reduces metabolic costs of a neuron and keeps it at
a sensible and sensitive point of operation [100]. The resulting plasticity rule is
Anti-Hebbian in nature because synapses change to decrease net input when the
postsynaptic neuron is excited and to increase net input when it is inhibited. How-
ever, spike after-hyperpolarization turns homeostatic MPDP effectively into Hebbian
plasticity. Every postsynaptic spike causes a voltage reset into a hyperpolarized
state. Therefore synapses of presynaptic neurons which fired close in time to the
postsynaptic spike will change to increase net input if the same spatio-temporal
input pattern re-occurs. The total change summed over all synapses depends on
the duration and magnitude of hyperpolarization. Because the induced synaptic
change reduces this duration, total synaptic change is also reduced. The same is
true for total synaptic change to decrease net input, which depends on the duration
where the membrane potential stays above ϑD (resp. ϑI

P for inhibitory synapses)
and which reduces this duration in future occurances. If the rise time of the voltage
before the spike and residual spike after-hyperpolarization are both short and close
in time, potentiation and depression will become approximately cancelled around a
spike.
In this view, associative synaptic plasticity or “learning” is the consequence of im-
balance. A spike is stable if the time course of the voltage in its proximity leads to
balanced weight changes. For example, if input is just sufficient to cause a spike,
the voltage slope just before the spike is shallow and synaptic depression outweighs
potentiation. On the other hand, the delta-pulse shaped currents used to excite the
postsynaptic neuron during chronotron training are very strong inputs. They are
not unlearned. Instead, the weights potentiate until the membrane potential is in a
balanced state, and the neuron fires the teacher spike on its own when left alone.
Another interesting aspect of MPDP is the emergence of robustness against noise.
Most obviously, with the choice of the threshold for depression the neuron sets a
minimal distance of the voltage to the firing threshold for known input patterns.
This allows to have perfect recall in the case of noisy input in the chronotron. The
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second effect of the depression threshold is more subtle. Not only does it prevent
spurious spikes, but through learning the slope of the membrane potential just be-
fore the desired spike tends to become steep. This is necessary to prevent spike
extinction by noise. To see how this influences noise robustness, consider an output
spike with a flat slope of the voltage. Increasing the voltage slightly around the spike
time moves the intersection of the voltage with the firing threshold forward in time
by a proportionally large margin. Decreasing voltage moves it backwards in time or
could even extinguish the spike; a flat slope implies a low peak of the “virtual” mem-
brane potential. MPDP in contrast achieves a state which is robust against spike
extinction as well as the generation of spurious spikes. On the downside, keeping
the voltage away from the firing threshold as well as imposing steepness on the slope
just before spikes puts additional constraints on the weights. Robustness comes at
the cost of capacity.

4.4.3 Relation of MPDP to other learning rules

There are many supervised learning algorithms that are used to train neuronal net-
works to generate desired spatio-temporal activity patterns. All of them involve a
comparison of the self-generated output to the desired target activity. They can be
broadly put into three different classes. E-Learning and FP-Learning [39, 81] are
examples of algorithms of the first class which are used to train a neuron to gen-
erate spikes at exactly defined times. They first observe the complete output and
then evaluate it against the target. E-Learning performs a gradient descent on the
Victor-Purpura distance [83] between both spike trains. This means that the weight
changes associated to one particular spike (actual or desired) can depend on distant
output spikes. In FP-Learning, the training trial is interrupted if the algorithm
encounters an output error. Subsequent spikes are not evaluated anymore. Thereby
these algorithms are non-local in time and very artificial.
Another class of learning algorithms emerged recently with the examples PBSNLR [101]
and HTP [39]. They take an entirely different route. The postsynaptic membrane
potential is treated as a static sum of PSP kernels weighted by the respective synap-
tic weight, similar to the SRM0 model of the LIF neuron. The firing threshold is
moved towards infinity to prevent output spikes and voltage resets are added at the
target spike times. Then the algorithms perform a perceptron classification on dis-
cretely sampled time points of the voltage, with the aim to keep it below the actual
firing threshold for all non-spike times and to make sure a threshold crossing at the
desired spike times. These algorithms were devised as purely technical solutions
and are highly artificial. However, MPDP bears some similarity to the described
procedure: Except close to teacher inputs, at every point in time recently active
synapses get depressed if the voltage is above the threshold for depression. This is
comparable to a perceptron classification on a continuous set of points.
A third class of algorithms compares actual and target activity locally in time. In
contrast to the algorithms mentioned above, they are usually not used to learn exact
spike times, but rather continuous time dependent firing rates. The ur-example is

97



4.4. DISCUSSION CHAPTER 4. MPDP

the Widrow-Hoff rule [42, 82]. More recently, similar rules were developed by Xie
and Seung [79], Brea et al. [38] and Urbanzcik and Senn [78]. In contrast to the
Widrow-Hoff rule, the more recent rules are defined for spiking LIF neurons with
a “soft” firing threshold, i.e. spike generation is stochastic and the probability of
firing a spike is a monotonous function of the current voltage. In these rules, at
every point in time the synaptic change is proportional to the difference of the cur-
rent firing rate and a target firing rate specified by an external supervisor. When it
comes to biological implementation, the central problem of Widrow-Hoff type rules
is the comparison of self-generated and target activity. It is derived from the ab-
stract goal to imprint the target activity into the network. This target needs to
be communicated to the neuron and synaptic plasticity has to be sensitive to the
difference of the neurons’ own current acticity state (implicitely represented by its
membrane potential) and the desired target activity. Usually, no plausible biolog-
ical implementation for this comparison is given. The combination of homeostatic
MPDP, hyperpolarization and a teacher now offers a solution to both problems. The
teacher provides information about the target activity through temporally confined,
strong input currents which cause a spike. Spike after-hyperpolarization (SAHP)
allows to compare the actual input to the target without inducing spurious spikes
detrimental to learning. The more SAHP is compensated by synaptic inputs, the
closer the self-generated activity is to the target and the less synapses need to be
potentiated. This is implemented naturally in MPDP, where potentiation is pro-
portional to the magnitude and duration of hyperpolarization. On the other hand,
strong subthreshold depolarization implies that self-generated spurious spikes are
highly probable, and weights need to be depressed to prevent spurious spikes in
future presentations.
A further solution for the problem of how information about the target is provided
was given by Urbanczik and Senn [78]. Here, the neuron is modelled with soma and
dendrite as seperate compartements instead of point neurons as used in this study.
The teacher is emulated by synaptic input projecting directly onto the soma, which
causes a specfic time course of the somatic membrane potential. The voltage in the
dendrite is determined by a different set of synaptic inputs, but not influenced by
the somatic voltage; however, the soma gets input from the dendrites. The weight
change rule then acts to minimize the difference of somatic (teacher) spiking and
the activity as it would be caused by the current dendritic voltage. This model
represents a natural way to introduce an otherwise abstract teacher into the neuron.
Nonetheless, the neuron still has to estimate a firing rate from its current dendritic
voltage, for which no explicit synaptic mechanism is provided. Also, it is worth
noting that the model of Urbanczik and Senn requires a one-way barrier to prevent
somatic voltage invading the dendrites; in contrast, MPDP requires a strong two-
way coupling between somatic and dendritic/synaptic voltage.
Another putative mechanism for a biolgical implementation of the δ-rule was pro-
vided by D’Souza et al. [102]. In this model, a neuron recieves early auditory and
late visual input. By the combination of spike frequency adaptation (SFA) and
STDP, the visual input acts as the teacher that imprints the desired response to a
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given auditory input in an associative manner. However, the model is quite specific
to the barn owl setting; for example, parameters have to be tuned to the delay be-
tween auditory and visual input.
Applying rules of the Widrow-Hoff type to fully deterministic neurons can lead to
unsatisfactory results. ReSuMe is an example of such a rule [82]. Its memory capac-
ity is low, but it increases sharply if the input is noisy during training (see Fig. 4.7).
A propable reason is that in a fully deterministic setting, the actual spike times do
not allow a good estimation of the expected activity. This sounds paradoxial. But
if we consider a deterministic neuron with noise-free inputs the membrane poten-
tial can be arbitrarily close to the firing threshold without crossing it. But even
the slightest perturbation can cause spurious spikes at those times. This leads to
bad convergence in chronotron training, since the perturbations caused by weight
changes for one pattern can easily destroy previously learned correct output for an-
other pattern [39]. The problem of these rules is the sensing of the activity via the
instantaneous firing rate. Therefore, the explicit sensitivity to subthreshold voltages
of MPDP is advantageous if training examples are noise free.
We conclude that our MPDP rule with hyperpolarization and teacher input repre-
sents a biologically plausible implementation of the comparison of actual and target
activity that is key to all supervised learning algorithms. Also, because MPDP is
explicitely sensitive to the membrane potential and not the firing rate, it is fully
applicable to deterministic neurons. Additionally, the training procedure leads to
networks whose output is robust against input noise, similar to what learning algo-
rithms of the Widrow-Hoff type achieve.

4.4.4 Outlook

We derived the synaptic plasticity rule from the objective to keep the membrane
potential within bounds, which is a homeostatic principle that at first sight would
primarily serve the stability of network dynamics. In particular, this principle might
explain the strikingly detailed balance of excitation and inhibition as observed in
cortex [103–105] (compare also Fig. 4.2, bottom row). In fact, such homeostatic
plasticity has been found e.g. for parvalbumin expressing interneurons which se-
lectively adapt their synaptic strength in an activity dependent manner to match
the excitatory inputs to target cells [99]. Being an anti-hebbian mechanism home-
ostatic plasticity might even appear to contradict associative learning. Therefore
we find it particularly intriguing that -when combined with the ubiquitous spike
after-hyperpolarizarion- it can paradoxically entail robust spike-based associative
learning. We think this fact suggests that the balance in cortex could rather reflect
a powerful learning principle at work.

4.5 Materials and Methods

In this section, we present the models used. We start with the simpler leaky
integrate-and-fire neuron model (LIF neuron) and use it to derive the MPDP rule.
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We then show how MPDP can be applied to a more realistic conductance based
integrate-and-fire neuron. Last, we describe the chronotron setup we use for quan-
titatively assessing the memory capacity of MPDP.

4.5.1 The LIF neuron and derivation of MPDP

We investigated plasticity processes in a simple single-layered feed-forward network
with N (presynaptic) input neurons and one (postsynaptic) output neuron (see
Fig. 4.1 A). For the input population we stochastically generate spatio-temporal
spike patterns which are kept fixed throughout training (frozen noise). We denote
the time of the k-th spike of presynaptic neuron with index i as tki .
The postsynaptic neuron is modelled as a LIF neuron. The evolution of the voltage
V (t) over time is given by

τmV̇ = −V + Isyn + Iext . (4.1)

Isyn and Iext are synaptic and external currents, respectively, and τm is the membrane
time constant of the neuron. If the voltage reaches the firing threshold Vthr at
time tpost, the neuron generates a spike and undergoes immediate reset to the reset
potential Vreset < 0. In the absence of any input currents, the neuron relaxes to an
equilibrium potential of Veq = 0. Synaptic currents are given by

τsİsyn = −Isyn +
∑

i

wi

∑
k

δ
(
t − tki

)
. (4.2)

τs is the decay time constant of synaptic currents and wi is the synaptic weight of
presynaptic neuron i. For ease of derivation of MPDP, we reformulated the LIF
model. Because of the linearity of Eq. 4.1, we can write the voltage as the sum of
kernels for postsynaptic potentials (PSPs) ε(s) and resets R(s):

V (t) =
∑

i

wi

∑
k

ε(t − tik) +
∑
tpost

R(t − tpost) +

∞∫
0

κ(t − s)Iext(s)ds . (4.3)

κ = exp (−(t − s)/τm) is the passive response kernel by which external currents are
filtered. The other kernels are

ε(s) = Θ(s)
1

τm − τs

(exp(−s/τm) − exp(−s/τs))

R(s) = Θ(s)(Vreset − Vthr) exp(−s/τm) .
(4.4)

Θ(s) is the Heaviside step function. This formulation is also known as the simple
Spike Response Model (SRM0, [41]).
We next derive the plasticity rule from the naive demand of a balanced membrane
potential: The neuron should not be hyperpolarized nor too strongly depolarized.
This is a sensible demand for the dynamics of a neuronal network, because it holds
the neurons at sensitive working points and also keeps metabolic costs down. For
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the formalization of the objective, we introduce an error function which assigns a
value to the current voltage:

2E(t) = γ
(
[V (t) − ϑD]+

)2
+

(
[ϑP − V (t)]+

)2
, (4.5)

where ϑD,P are thresholds for plasticity, and γ is a factor that scales synaptic long-
term depression (LTD) and long-term potentiation (LTP) relative to each other.
Whenever V (t) > ϑD or V (t) < ϑP , the error function is greater than zero. There-
fore, to minimize the error, the voltage must stay between both thresholds. In this
study, we choose ϑP = Veq. ϑD is set between the firing threshold and Veq. From
the error function, a weight change rule can be obtained by computing the partial
derivative of E(t) with respect to weight wi:

∂E(t)

∂wi

= γ [V (t) − ϑD]+
∂V (t)

∂wi

− [ϑP − V (t)]+
∂V (t)

∂wi

=
(
γ [V (t) − ϑD]+ − [ϑP − V (t)]+

) ∑
k

ε
(
t − tki

)
.

(4.6)

The MPDP rule then reads

ẇi = −η
∂E(t)

∂wi

= η
(−γ [V (t) − ϑD]+ + [ϑP − V (t)]+

) ∑
k

ε
(
t − tki

)
. (4.7)

η is the learning rate. The weights change along the gradient of the error function,
i.e. MPDP is a gradient descent rule that minimizes the error resulting from a given
input pattern.

4.5.2 The conductance based LIF neuron

The simple model above suffers from the fact MPDP is agnostic to the type of
synapse. In principle, MPDP can turn excitatory synapses into inhibitory ones by
changing the sign of any weight wi. Since this is a violation of Dale’s law, we present
a more biologically realistic scenario involving MPDP. We split the presynaptic
population into Ne excitatory and Ni inhibitory neurons. The postsynaptic neuron
is modelled as a conductance based LIF neuron governed by

Cm
dV

dt
= −gL(V − VL) − (gs + gf )(V − Vh) − gex(V − Vex) − gin(V − V in) , (4.8)

where V denotes the membrane potential, Cm the membrane capacitance, VL the
resting potential, gL the leak conductance, Vi and Vex the reversal potential of in-
hibition and excitation, respectively and gin and gex their respective conductances.
The spike after-hyperpolarisation is modeled to be biphasic consisting of a fast and
a slow part, described by conductances gf and gs that keep the membrane potential
close to the hyperpolarisation potential Vh. When the membrane potential surpasses
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the spiking threshhold Vthr at time tpost, a spike is registered and the membrane po-
tential is reset to Vreset = Vh. All conductances are modeled as step and decay
functions. The reset conductances are given by

τf,sġf,s = −gf,s + Δgf,s

∑
tpost

δ (t − tpost) , (4.9)

where Δgf,s is the increase of the fast and slow conductance at the time of each
postsynaptic spike, respectively. They decay back with time constants τf < τs.
The input conductances gex and gin are step and decay functions as well, that are
increased by wi when presynaptic neuron i spikes and decay with time constant τs.
wi denotes the strength of synapse i.
In this model, we employ MPDP as defined by Eq. 4.7 with the following restrictions:

� Technically, there is no fixed PSP kernel for the conductance based model,
since the amplitude of a single PSP depends on the current voltage. Still, we
use the same rule by keeping track of “virtual PSPs” for each synapse that do
not affect the neuronal dynamics.

� MPDP affects only inhibitory synapses. Excitatory ones are kept fixed.

� Because inhibitory synapses have negative impact on the neuron, we exchange
LTP and LTD in the MPDP rule to account for that. Formally, we introduce
thresholds ϑI

D and ϑI
P .

ϑI
D lies below the equilibrium potential VL, and an inhibitory synapse depresses

whenever it is active and V (t) < ϑI
D. Similarly, when V (t) > ϑI

P , any active in-
hibitory synapse gets potentiated. Note that the qualitative effect on the membrane
potential remains unchanged to the example in Fig. 4.1 B.

4.5.3 Evaluation of memory capacity

The memory capacity of a typical neuronal network in a given task crucially depends
on the learning rules applied (for an example in spiking networks see [81]). Recently,
it was shown that the maximal number of spiking input-output associations learn-
able by a postsynaptic neuron lies in the range of 0.1 to 0.3 per presynaptic input
neuron [39]. The exact number mostly depends on the shape of the PSP (deter-
mined by τm and τs) and to a lesser extent on average pre- and postsynaptic firing
rates. Here, we evaluate the memory capacity attainable with MPDP and compare
it with ReSuMe [82], E-Learning [81] and FP-Learning [39], with the latter learning
rule being optimal in terms of memory capacity. For ease of comparison, we adapt
the chronotron setting introduced by Florian [81], use the simple neuron model of
the LIF neuron and let synapses change their sign. The definitions of patterns,
associations and memory capacity is similar to the ones used in tempotron and per-
ceptron training [42, 75]. We provide a short description of ReSuMe, E-Learning
and FP-Learning below.
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Chronotron setting. The goal of the chronotron is to imprint input-output
associations into the weights. One input pattern consists of spatio-temporal spiking
activity of the N input neurons with duration T = 200ms. In each pattern, each
input neuron spikes exactly once, with spike times tμi drawn i.i.d. from the interval
[0, T ]. μ ∈ 1, . . . , P indexes the patterns. For each input pattern we draw one desired
output spike time tμd i.i.d. from the interval [Δedge, T − Δedge], with Δedge = 20ms.
We reduce the length of the output interval to ensure that each output spike in
principle can be generated by the input. If the desired output spike time is too early
there might be no input spikes earlier than td, which makes it impossible for the
postsynaptic neuron to generate the desired output. After all P patterns have been
generated, we keep them fixed for the duration of network training and recall testing.
Training is organized in learning trials and learning blocks. A learning trial in MPDP
consists of the presentation of one of the input patterns and concurrent induction of
a teacher spike at time tμd by injection of a supratheshold delta-pulse current by the
supervisor. In all other learning rules, the supervisor passively observes the output
activity and changes weights afterwards based on the actual output. A learning
block consists of P learning trials, with each of the different input patterns presented
exactly once in randomized order. After each learning trial, synaptic weights are
updated. After each learning block, we present the input patterns again to test the
recall quality. Supervisor intervention and synaptic plasticity are switched off for
recall trials.

Computing the capacity. We test the capacity of each learning rule (MPDP,
ReSuMe, E-Learning and FP-Learning) by training networks of different sizes, N ∈
{200, 500, 1000, 2000}. Because we assume that the number of patterns or input-
output associations that can be learned scales with N [39,81], we introduce the load
parameter α with P = αN . We pick discrete α ∈ [0.01, 0.3]. For each combination of
α and N , we generate 50 different realizations of P patterns and N initial weights,
which are drawn from a gaussian distribution with mean and standard deviation
T ·30mV/N . For a non-spiking neuron (i.e. Eq. 4.1 with Vthr � 1) this would result
in an average membrane potential of 30mV before learning. As a result initially the
postsynaptic neuron fires several spurious spikes. This way we test the ability of a
learning rule to extinguish them.
After each learning block, the recall is tested. Recall is counted as a success if
the postsynaptic neuron fires exactly one output spike in a window of length 4ms
centered around tμd , and no additional spike at any time. We define success loosely,
because MPDP and FP-Learning do not converge onto generating the output spike
exactly at tμd .
We train each network for a fixed number of learning blocks (10000 in the case
of MPDP, 20000 for the others). Because we evaluate recall after each learning
block, we can check whether the system has converged. We define capacity as the
“critical load” α90, where on average 90 % of the spikes are recalled after training.
To approximate it, we plot the fraction of patterns correctly learned as a function
of the load α. The critical load is defined as the point where a horizontal line at 90
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% correct recall meets the graph.

Testing noise tolerance. The threshold for LTD, ϑD, is not only a way to
impose homeostasis on the synaptic weights. It is also a safeguard against spurious
spikes that could be caused by fluctuations in the input or membrane potential.
The reason is that after convergence of weight changes for known input patterns
the voltage mostly stays below ϑD for all non spike times due to the repulsion of
the membrane potential away from threshold. This leaves room for the voltage to
fluctuate without causing spurious spikes.
We apply noise in two conditions. First we want to know if a trained network is
able to recall the learned input-output associations in the presence of noise, i.e. we
train the network first and apply noise only during the recall trials. Second we test
if a learning rule can be used to train the network in the presence of noise. In this
condition, we test recall noise free.
We induce noise in two different ways. One way is to add a stochastic external
current

Iext(t) =
σinput√

τm

η(t) . (4.10)

η(t) is a gaussian white noise process with zero mean and unit variance. The factor
makes sure that the actual noise on the membrane potential has standard deviation
σinput.

The other way is to jitter the input spike times. Instead of using presynaptic
spike times tμi , we let the neurons spike at times

t̂μi = tμi + N (0, σjitter) , (4.11)

where N (0, σ) is a random number drawn from a gaussian distribution with standard
deviation σ.
If we apply noise only during recall, we use the weights after the final learning
block and for each noise level σinput,jitter we average the recall over 50 seperate noise
realizations and all training realizations.
Although both procedures lead to random fluctuations of the membrane potential
in each pattern presentation, they lead to different results. The reason is that by
using jitter on the input spike times, the statistics of the weights impact on the
actual amount of fluctuations of the voltage. This has noticable consequences for
the different learning rules.

4.5.4 Learning algorithms used for quantitative comparison

Our goal is a quantitative analysis of the memory capacity of MPDP in the chronotron
task. We feel this necessitates a comparison to other learning rules. We chose Re-
SuMe [82], which is a prototypical learning rule for spiking output, E-Learning [81]
as a powerful extension, and FP-Learning [39], which was shown to achieve optimal
memory capacity in the task. Here, we provide a short description of all three rules.
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The δ-rule and ReSuMe. The δ-rule, also called the Widrow-Hoff-rule [42], lies
at the core of a whole class of learning rules used to teach a neuronal network some
target activity pattern. Synaptic changes are driven by the difference of desired and
actual output, weighted by the presynaptic activity:

Δw(t) ∝ fpre(t)
(
f target

post (t) − factual
post (t)

)
. (4.12)

We denote pre- and postsynaptic firing rate with fpre,post. The target activity
f target

post (t) is some arbitrary time dependent firing rate. The actual self-generated
activity factual

post (t) is given by the current input or voltage of the postsynaptic neuron
(depending on the formulation), transformed by the input-output function g(h) of
the neuron.
ReSuMe (short for Remote Supervised Method) is a supervised spike-based learning
rule first proposed in 2005 [82]. It is derived from the Widrow-Hoff rule for rate-
based neurons, applied to deterministic spiking neurons. Therefore, continuous time
dependent firing rates get replaced with discrete spiking events in time, expressed
as sums of delta-functions. Because these functions have zero width in time, it is
necessary to temporally spread out presynaptic spikes by convolving the presynaptic
spike train with a temporal kernel. Although the choice of the kernel is free, usually
a causal exponential kernel works best. We also used ReSuMe with a PSP kernel to
train chronotron, but the results were worse than with the exponential kernel (data
not shown). The weight change is given by

ẇ(t) ∝ [Sd(t) − So(t)]

⎡
⎣ad +

∞∫
0

exp(−s/τplas)Si(t − s)ds

⎤
⎦ , (4.13)

where Sd(t) is the desired, So(t) is the self-generated and Si(t) the input spike train
at synapse i. τplas is the decay time constant of the exponential kernel. ad is a
constant which makes sure that the actual and target firing rates match; learning
also works without, therefore we choose ad = 0 in our study. ReSuMe converges
when both actual and desired spike lie at the same time, because in this case the
weight changes cancel exactly.
In recent years, several rules for spiking neurons have been devised which are similar
to the δ-rule [38,78,79]. With the “PSP sum”

λi =
∑

k

ε(t − tki ) , (4.14)

the weight change takes the form

ẇi ∝ [Steacher(t) − ρ(V (t))] f(ρ(V (t)))λi(t) . (4.15)

Steacher is a stochastic realization of a given desired time dependent target firing
rate, ρ(V (t)) is the instantaneous firing rate, which depends on the current mem-
brane potential, and f(ρ) is a function which additionally scales the weight changes
depending on the current firing rate. Although the rule of Xie and Seung [79] was
defined in a reward learning framework, it is equivalent to the formulation above if
the output neuron is forced to fire a teacher spike train and reward is kept constant.
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E-Learning. E-Learning was conceived as an improved learning algorithm for
spike time learning [81]. It is derived from the Victor-Pupura distance (VP distance)
between spike trains [83]. The VP-distance is used to compare the similarity between
two different spike trains. Basically, spikes can be shifted, deleted or inserted in order
to transform one spike train into the other. Each action is assigned a cost, and the
VP distance is the minimum transformation cost. The cost of shifting a spike is
proportional to the distance it is shifted and weighted with a parameter τq. If the
shift is too far, it gets cheaper to delete and re-insert that spike.
E-Learning is a gradient descent on the VP distance and has smoother convergence
than ReSuMe. In this rule, first the actual output spike train is compared to the
desired spike train. With the VP algorithm it is determined if output spikes must
be shifted or erased or if some desired output spike has no close actual spike so a
new spike has to be inserted. Based on this evaluation, actual and desired spikes
are put in three categories:

� Actual output spikes are “paired” if they have a pendant, i.e. a desired spike
close in time and no other actual output spike closer (and vice versa). These
spikes are put into a set S.

� Unpaired actual output spike that need to be deleted are put into the set D.

� Unpaired desired output spike times are put into the set J , i.e. the set of
spikes that have to be inserted.

To clarify, S contains pairs of “paired” actual and desired spike times, D contains
the times of all unpaired actual spikes, and J the times of unpaired desired spike
times. With the PSP sum as above, the E-Learning rule is then

Δwi = γ

⎡
⎣ ∑

tins∈J

λi(t
ins) −

∑
tdel∈D

λi(t
del) +

γr

τ 2
q

∑
(tact,tdes)∈S

(tact − tdes)λi(t
act)

⎤
⎦ . (4.16)

γ is the learning rate, and γr is a factor to scale spike shifting relative to deletion
and insertion.
The former two terms of the rule correspond to ReSuMe, except the kernel is not a
simple exponential decay. The advantage of E-Learning is that the weight changes
for spikes close to their desired location are scaled with the distance, which improves
convergence and consequentially memory capacity.

FP-Learning. FP-Learning [39] was devised to remedy a central problem in
learning rules like ReSuMe and others. Any erroneous or missing spike “distorts”
the time course of the membrane potential behind it compared to the desired final
state. This creates a wrong environment for the learning rule, and weight changes
can potentially be wrong. Therefore, the FP-Learning algorithm stops the learning
trial as soon as it encounters any spike output error. Additionally, FP-Learning
introduces a margin of tolerable error for the desired output spikes. An actual
output spike should be generated in the window of tolerance [td − ε, td + ε] with the
adjustable margin ε. Weights are changed on two occasions:
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1. If a spike occurs outside the window of tolerance for any td at time terr, then
weights are depressed by Δwi ∝ −λi(terr). This also applies if the spike in
question is the second one within a given tolerance window.

2. If t = td + ε and no spike has occured in the window of tolerance, then
terr = td + ε and Δwi ∝ λi(terr).

In both cases, the learning trial immediately ends, to prevent that the “distorted”
membrane potential leads to spurious weight changes. Because of this property, this
rule is also referred to as “First Error Learning”.

4.5.5 Parameters of the simulations

Conductance based neuron. The parameters used are as follows: Cm =
0.25nF , gL = 20nS, VL = −55mV , Vthr = −50 Vex = −40mV , Vh = Vreset = Vin =
−75mV , Δgs = 0.001, Δgf = 0.04, τf = 3ms, τs = 12.5ms, and τs = 3ms. For the
MPDP rule, the parameters are: ϑI

D = −58mV , ϑI
P = −53mV , γ = 100, η = 5 ·10−8

and τm = Cm/gL = 12.5ms.

Simple LIF neuron. The neurons’ parameters are τs = 3ms, τm = 10ms and
Vthr = 20mV . The reset potential is Vreset = −5mV with MPDP and Vreset = 0mV
for the other learning rules. For MPDP we use ϑD = 18mV , ϑP = 0mV , γ = 14,
and η = 5 ∗ 10−4. With ReSuMe, we find τplas = 10ms, and η = {10, 4, 2, 1} · 10−10

for 200, 500, 1000 and 2000 neurons as good parameters. FP-Learning has only a
single free parameter, the learning rate η = 10−9.

Numerical procedures. All networks with MPDP were numerically integrated
using a simple Euler integration scheme. The simulations for the conductance based
LIF neuron were written in Python and used a step size of 0.01 ms. The neurons
parameters are set to values that are both biologically realistic and similar to those
of the quantitative analysis. For reference, we put them into the Supporting Infor-
mations.
The simulations of the simple neuron and scripts for analysis were written in Matlab
(Mathworks, Natick, MA). Here, we used a step size of 0.1 ms.
The networks that were trained with ReSuMe, E-Learning and FP-Learning were
simulated using an event-based scheme [106], since in these rules the subthreshold
voltage is not important.
The parameters like learning rates and thresholds we use are set by hand for all
plasticity rules. Before doing the final simulations, we did a search in parameter
space by hand to find combinations which yield high performance in the chronotron
task.
The error we report in Fig. 4.4 C and D, Fig. 4.6 A to D and Fig. 4.7 A and B is
the standard error of the mean (SEM) over all 50 realizations.
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Figure 4.6: Capacity of networks under input noise. A: Recall as a function of
the load for different levels of noise during recall. Noise is imposed as an additional
stochstastic external current. Networks were trained with MPDP. Up to a noise
level σinput = 1mV during recall, there is almost no degradation of capacity. B:
Same as A, but with stochastic input noise of width 0.5mV during network training.
The capacity is slightly reduced, but resistance against noise is slightly better. C
and D: Same as A and B, but the network was trained with FP-Learning. The
capacity is doubled. However, the network trained without noise shows an immediate
degradation of recall with noise. If the network is trained with noisy examples
(D, σinput = 0.5mV ), also recall with noise of the same magnitude is perfect. E:
Comparison of capacity of networks trained with MPDP and FP-Learning depending
on input noise during training and recall. Solid lines: MPDP, dashed lines: FP-
Learning. Lines that are cut off indicate that the network failed to reach 90 % recall
for higher noise. x-axis is noise level during recall. Different colors indicate noise
level during training. Curiously, although FP-Learning suffers more from higher
noise during recall than during training, the capacity drops less than with MPDP.
F: Comparison of weight statistics of MPDP (left) and FP-Learning (right) after
learning. Solid lines are mean, dashed lines are standard deviation. With MPDP,
the weigths stay within a bounded regime, the mean is independent of noise or
load during training; the cyan line for α = 0.1 occludes the others. FP-Learning
rescales the weights during training with noise: The mean becomes negative, and
the standard deviation grows linearly with noise level. This effectively scales down
the noise by stochastic input.
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Figure 4.7: Recall and capacity with input jitter. A: Recall of networks trained
noise-free with MPDP if during recall the input patterns are jittered (N = 1000).
The black line lies on top of the blue and red ones (same in B). Up to σjitter = 0.5ms,
the recall is unhindered. A curious feature is a “slump” in the recall for strong input
jitter and intermediate loads. This slump is even more visible for the larger network
with N = 2000 (B). The slump strongly correlates with the variance of the weights
as a function of network load (C for N = 1000, D for N = 2000). The mean of the
weights stays almost constant. E: Critical load as a function of input jitter during
recall. The networks are trained noise free with different learning rules. Solid lines
show N = 2000, dashed lines N = 1000. Crosses show sampling points. If a line is
discontinued, this means that for this input jitter the networks do not reach 90 %
recall anymore. Recall for MPDP stays almost constant until σjitter = 0.5, while for
the other learning rules a considerable drop-off of recall is visible. F: Noise free recall
of networks trained with noisy input. For MPFP, E-Learning and FP-Learning alike
the capacity drops with increasing training noise. The exception is ReSuMe. Here,
the capacity strongly increases if the noise is small.
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Chapter 5

Discussion

5.1 Summary

The topic of this thesis is synaptic plasticity and its functional implications for
learning. In publication I, the Contribution Dynamics model for spike-timing de-
pendent plasticity was developed. It incorporates novel contributions to model the
interactions between multiple spikes, and over a range of diverse data sets achieves
better fit errors over contemporary plasticity models while being at the same level
of complexity. Also, it was shown that there is a possible link between synaptic
plasticity and the importance of theta-band oscillations for memory formation. The
simple spSTDP model shows a susceptibility to firing rate modulations around 6 Hz,
in the theta range. Among the higher order models, the CD model best retains this
susceptibility and phase dependence of weight changes. This represents a robust
mechanism for synaptic plasticity to take advantage of firing rate modulations with-
out the need for precise spike time locking. In other words, this sensitivity allows
learning even with highly stochastic neuronal firing if theta oscillations are enforced
externally.
Publication II and chapter 4 deal with a different model of synaptic plasticity.
The plasticity rule in publication II is motivated by reports of STDP in inhibitory
synapses. Haas and colleagues [20] found Hebbian STDP for synapses of inhibitory
interneurons onto excitatory neurons in the entorhinal cortex. However, this plas-
ticity rule is Hebbian only regarding the weights; i.e. pre- before postsynaptic
spiking potentiates the synapse, and reversing the order depresses the synapse.
The actual effect on the postsynaptic neuron is sign-reversed: Potentation of the
synapse leads to suppression of postsynaptic activity. In other words, causal spiking
is suppressed, anti-causal spiking is reinforced. This kind of plasticity is usually
thought to be detrimental for learning. However, if we consider additional spike
after-hyperpolarization, anti-Hebbian STDP allows for associative learning using a
simple teacher. Spike after-hyperpolarization desensitizes the neuron to excitation.
This way, the neuron can sum up input to safely “compare” it to the firing threshold.
The exact mechanism is demonstrated in publication II using tempotron learning,
which also shows that it is beneficial to have synaptic depression which does not de-
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pend on postsynaptic spiking. Instead, a second threshold below the firing threshold
was introduced. When the voltage crosses this threshold from below, it triggers a
spike-like signal which, however, does not influence the neuronal voltage dynamics.
Instead, when the signal arrives at the synapses they depress proportional to the
trace of the presynaptic activity. The combination of this subthreshold synaptic de-
pression, anti-causal potentiation and spike after-hyperpolarization can be exactly
mapped to the classical Perceptron Learning Rule (PLR). Because of the locality
of the learning algorithm presented in publication II, it represents a biologically
plausible implementation of the PLR. In chapter 4, the idea of a membrane po-
tential dependent plasticity rule is fully explored. MPDP retains the Anti-Hebbian
characteristic of the Anti-STDP rule from publication II. With this plasticity rule,
additional spike after-hyperpolarization and a teacher who enforces spikes at the
desired times, a postsynaptic neuron can be trained to spike at these times just by
the presynaptic input. The performance of the learning algorithm compares well to
several artificial learning rules.

5.2 Discussion

The modelling of STDP and theta susceptibility

Despite the best efforts over the past decades, the rules underlying synaptic plasticity
are still not well understood. One reason is the difficulty in obtaining quantitative
data of plasticity processes and weight changes. This is made worse by the huge
diversity of synapse types and experimental protocols. Experiments have been per-
formed in thick-tufted cells in layer 5 of [16,47], pyramidal cells in layer 2/3 [25] in
the visual cortex or somatosensory cortex of rats [48, 91], others have been done in
hippocampal cells in slices [64] or in culture [19,26], in living Xenopus tadpoles [21]
or in the olfactory system of locusts [22], just to name a few. Electrical stimula-
tion of presynaptic neurons is done either by patching them [47] or by placing a
bipolar electrode close to the dendritic tree of the postsynaptic neuron and exciting
synapses extracellularly [48, 107]. The specifics of the STDP window also depend
on dendritic location of the examined synapse [108, 109]. It is no surprise that the
phenomenology of STDP is very diverse [49]. Sometimes seemingly minor details
in the experimental procedure change the outcome of the experiment drastically.
An interesting example was provided by Wittenberg and Wang [64]. They recre-
ated STDP experiments performed by Nishiyama and colleagues [110] at excitatory
synapses projecting from the CA3 region to CA1 in the hippocampus of rats. The
earlier work found classical STDP, i.e. potentiation for a pre-post spike pair, at
this synapse type. However, Wittenberg and Wang observed no synaptic change.
Instead, the postsynaptic neuron additionally has to fire at an elevated rate, or fire
two spikes after the presynaptic one (a pre-post-post triplet) for the synapse to po-
tentiate. The difference to the experiments of Nishiyama and colleagues was that
the latter group used cesium instead of potassium in their intracellular solution in
the patch pipette; everything else was the same. After Wittenberg and Wang used

111



5.2. DISCUSSION CHAPTER 5. DISCUSSION

cesium, they reproduced the ealier results. Cesium leads to a slight depolarization
and a broadening of bAPs, which was enough to retrieve classical STDP.
Despite this diversity of findings, spSTDP is by far the most commonly used plas-
ticity model in theoretical studies. There are several reasons for its widespread
use:

� spSTDP faithfully recreates the STDP window with the minimal amount of
parameters, compare figures 2.2 and 2.3.

� The causal LTP part of the STDP window is very appealing from a theoretical
point of view. In supervised learning rules often causal LTP is derived from
an abstract objective [18,38,80].

� spSTDP is a very simple model, which allows for analytical tractability and
low computational cost in network simulations.

However, there are severe caveats concerning the use of spSTDP. In neuronal network
models it is an inherently unstable plasticity rule that has to be augmented with
some kind of stop condition, like synaptic scaling or bounded weights [24, 89]. Ex-
periments that probe spike patterns beyond simple spike pairs reveal that spSTDP
is a poor fit to the results [25, 26, 47, 48, 107]. Given the shortcomings of spSTDP
on this data, the widespread use can be troubling, because it is rarely investigated
how higher-order contributions to synaptic plasticity change the theoretical results
obtained with spSTDP. However, this requires using higher-order models that cap-
ture the effects of spikes (or voltage) on synaptic plasticity beyond spike pairs. But
modellers constructing this kind of model run into a problem: They have to be con-
strained by data. Every model consists of two parts, the mathematical formulation
and the set of parameters. In chapter 2 and publication I we have seen a vast range
of different model formulations. They get constrained to data by fitting the model
parameters such that the fit error, i.e. the deviation between model predictions
and experimental data, is minimized. The minimal models presented in chapter 2
have 8 (Triplet model), 11 (CD model, Uramoto model) or 13 parameters (Graup-
ner model). The big problem is that the data sets which can be used to constrain
the models usually have around 10 to 18 different data points. This makes fitting
the models prone to overfitting; a model with many parameters likely fits the data
well, but it will not generalize well to additional data points obtained in the same
experimental setting. The problem can be alleviated to some extent by fitting the
same model (using different parameters) to diverse data sets. Each data set displays
different features of synaptic plasticity, which should be captured by a general model
of synaptic plasticity. In this respect, of the three models considered the CD model
displays the best fit to all data sets. The other models especially struggle to capture
the adaptation effects in the data set of Froemke and colleagues [107]. Excluding
either pre- or postsynaptic adaptation in the CD model leads to an increase of the
fit error by a factor of ten. In the other data sets, including adaptation most of the
time improves fit error, but not as much.
Modelling attempts to explain the role of theta oscillations in learning processes
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usually involve the precise locking of spike times induced by the externally induced
oscillations [111–114]. While there is evidence for spike time locking by theta os-
cillations in hippocampus, it is desireable to find a more general principle for the
influence of oscillatory activity on synaptic plasticity. The investigation of the sus-
ceptibility of synapses for periodic firing rate modulations in publication I showed
that indeed such a principle might exist in the mammalian brain. Even the basic
spSTDP model shows a pronounced dependence of synaptic changes on oscillation
frequency and relative phase of the connected neurons. The characteristics of the
weight change match the properties of the STDP window, namely having potentia-
tion if the postsynaptic phase trails by between π/4 in the theta range and ≈ π/2
for higher and lower oscillation frequencies, i.e. potentiation for presynaptic ac-
tivity before postsynaptic activity and depression if the order is reversed. This
susceptibility is to some extend retained in the CD model; however, the maximum
of LTP is in general shifted towards zero phase difference, which has been observed
in experiments.

The relation between MPDP and supervised learning rules

The Perceptron Learning Rule and the δ-rule are both very basic supervised learn-
ing rules, conceived for simplicistic neuronal networks of rate-based neurons. The
supervisor postulated in these learning rules has full knowledge about the target
and current output activity, and can manipulate each synapse in order to trans-
form the latter into the former. This raises three question concerning the biological
plausibility of supervised learning:

� Where is the supervisor located, and how does it know what the desired (or
target) output is?

� How does the supervisor compute the difference between target and actual
output?

� How are the weight changes relayed to the synapse?

From physiological experiments we know that synaptic plasticity is sensitive to the
activity of the neurons connected by the synapse. There are hints that plasticity
rules are modulated by dopamine or other neuromodulators, which could act as a
general reward signal [115]. However, reward signals are spatially unspecific. The
brain area responsible for computing reward just observes the outcome of an action
and translates it into a reward. For example the amount of food yielded by hunting
determines how good the hunter feels afterwards. Also, reward signals are too slow
for supervised spike-timing based learning rules. By the time a reward signal arrives
at the synapse, the trace of presynaptic activity is likely already gone. Weight
changes by supervised learning rules in spiking networks need to be very specific in
time. The notion of a supervisor that lies outside of the learning neuron conflicts
with this requirement, because it has to send the information to each synapse on a
separate channel. The problem of this concept are highlighted in a quote from the
article introducing the tempotron by Gütig and Sompolinsky [75]:
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Such learning nexessarily requires supervisory signals, which instruct the
neuron about the correct decision. An important question concerning
the biological feasibility of tempotron learning is through which path-
ways supervisory signals arrive at the site of plasticity and how they are
translated into the appropriate synaptic changes.

We therefore conclude that a hypothetical supervisor mechanism located in the neu-
ron is beneficial, where it can generate supervisory signals that arrive quickly enough
to induce timing specific weight changes.
When we take a closer look at the learning rules for spiking networks, we can roughly
separate them into two classes. The tempotron Learning Rule, E-Learning and FP-
Learning are examples of the first class. Similarly to the PLR and δ-rule, they are
very artificial, since all three are non-local in time. The tempotron Learning Rule
observes the output of the neuron and looks for the time of the maximum of the
voltage tmax after the trial is over. Only then weight changes are assigned propor-
tional to the presynaptic activity at time tmax. In E-Learning and FP-Learning,
weight changes specific to a given output spike depend on the proximity to desired
output spikes. In none of these rules the location or biological implementation of
the supervisor is specified, nor do they provide plausible synaptic plasticity mecha-
nisms with which could realize the learning rules. However, they are very useful to
examine memory capacities of spiking neuronal networks [39, 75]. The second class
of learning rules are the ones by Pfister and colleagues [80], Brea and colleagues [38]
and Urbanczik and Senn [78]. In the following I will collectively refer to them as the
Pfister rule, since Pfister and colleagues provided the earliest formulation in a super-
vised learning setting. In contrast to the learning rules in the first class, this rule is
defined for stochastic output neurons. The strong non-linearity of spike generation
is replaced it with a smooth activation function. Additionally, the Pfister rule is
local in time, and it provides a concrete hypothesis for the supervisory mechanism.
The desired activity is communicated by the activation of the neuron by a teacher.
It induces spikes using strong and short input currents corresponding to a stochastic
realization of the target firing rate. The signals for synaptic plasticity are bAPs that
travel from the soma into the dendritic tree. The supervisory mechanism itself is
defined by the synaptic plasticity rules. The synapses are directly sensitive to the
difference of teacher induced target activity S(t) and the input-driven instantaneous
firing rate r(V (t)), where V (t) is the membrane potential resulting from the “stu-
dent input”, i.e. the input from presynaptic neurons weighted by the synapses to
be trained:

dwi

dt
∝ [S(t) − r(V (t))] λi(t) . (5.1)

λi is the PSP sum, which is multiplied with the difference of teacher spike train and
intrinsic activity. In order to investigate the consequences of this learning rule, let
us examine the resulting synaptic plasticity phenomena. In general, the synaptic
weight becomes stable and changes cease on average if the intrinsic activity r(V (t))
matches the spike trains induced by the teacher. In the case that there is a teacher
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spike at time td, but the current firing rate is low (r(V (td)) ≈ 0), then

Δwi ∝ λi(td) . (5.2)

If we probe this weight change with pairs of a presynaptic spike and a teacher spike
at different relative timings, the resulting weight change as a function of the timing is
very similar to the LTP part of the STDP window; the LTD part is not reproduced.
In the opposite case where there are no teacher spikes but the input-driven firing
rate is high the weight change is

Δwi ∝ −r(V (t))λi(t) . (5.3)

This means that synapses which contribute to a period of high activity without
teacher spiking will be depressed.
With this synaptic plasticity rule, Pfister and colleagues give an answer to the ques-
tions posed above. However, new questions concerning the plausibility are raised.
The Pfister rule crucially relies on the fact that teacher spikes and student activity
enter differently into equation (5.1). The spikes from the teacher provide a bAP-like
signal which upon arrival at the synapse prompt timing-dependent potentiation.
In contrast, the activity resulting from the synapses that have to be trained (the
student synapses) is given by the instantaneous firing rate, which is a continuous
signal. It is not clear how actual output spikes caused by this synaptic input should
be treated. Adding them to the teacher spike train S(t) is detrimental, since the
resulting reinforcement of these spikes would lead to runaway potentiation. In this
context, a minor question is how the synapse could precisely sense the instanta-
neous firing rate r(V (t)). If we exclude adaptation effects, a possible answer to the
question is that the firing rate is a monotonous function of the membrane poten-
tial. Experiments have shown that synapses can be sensitive to the voltage, which
could explain how they sense the firing rate. A last caveat is that the shift from
causal (Hebbian) LTP, equation (5.2), to Anti-Hebbian LTD, equation (5.3), has not
been observed (yet) in experiments. This likely is due to how they are conducted.
In typical plasticity experiments two neurons connected by a synapse are patched
and spikes at specific times are induced similarly to how the teacher produces the
teacher spikes. The resulting activity is extremely sparse; typically, spike pairs are
repeated every 5 seconds. In contrast, in the living brain the activity of many neu-
rons contributes to the output. Because of their sparse activity, pairwise spike time
experiments are likely unsuited to investigate the feasibility of supervised learning
rules.
Let us now turn to MPDP; for brevity I will refer to the combination of the
Membrane Potential Dependent Plasticity rule and spike after-hyperpolarization as
MPDP in the following. Its predecessor, the plasticity rule presented in publication
II, was originally devised to train a neuron to associate two different inputs, one
of which was time-delayed. This necessitates the Anti-Hebbian STDP rule intro-
duced in publication II. To prevent spurious spiking by the student input during
training, a threshold below the firing threshold was introduced. If the membrane
potential crosses this threshold from below, a spike like signal is generated which
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induces synaptic depression. Also, this type of depression provides a stop condition
for learning, as shown in the example of the Perceptron Learning Rule. The full
MPDP rule is the logical evolution of this earlier rule. When compared to the Pfis-
ter rule, one of its conceptual advantages is the fact that teacher spikes and actual
output spikes are not artificially seperated into different signals. Instead, teacher
spikes differ from spurious spikes in the time course of the membrane potential.
Teacher spikes have a very fast rise of the voltage to the firing threshold. In con-
trast, the voltage rises slower before spurious spikes. Therefore, voltage dependent
depression outweighs potentiation induced by the reset, and spurious spikes are ex-
tinguished eventually. The model using the conductance based neuron with teacher
input provided by strong synapses demonstrates that this principle even works in a
biologically more plausible setting, where the teacher input does cause an instanta-
neous rise of the voltage. Furthermore, MPDP avoids using the instantaneous firing
rate by directly implementing a threshold on the membrane potential for synaptic
depression. The effect is the same, as demonstrated by equation (5.3). In absence
of any spiking (teacher or spurious), synapses that contribute to periods of high
depolarization are depressed. Teacher spikes “punch holes” into this threshold by
resetting the neuron. This leads to potentiation by spike after-hyperpolarization
(SAHP), but also for the duration of the reset kernel the neuron is hold at an rela-
tively unresponsive state. Inputs that are just sufficient to drive the relaxed neuron
to fire a spike will not cause a spike during the reset period. An additional benefit
of this threshold is a “dead zone” of no synaptic change when the voltage stays be-
tween both thresholds for plasticity. This is different to the Pfister rule, where the
neuron is usually modelled as a LIF neuron (SRM0 model) with exponential escape
noise. Technically, the firing rate is never zero and therefore every teaching trial
will induce weight changes. A side effect of using thresholds for synaptic plasticity
is that MPDP is suitable for deterministic neurons as well as for stochastic neuron
models. The Pfister rule will have problems if the output neuron is deterministic.
This is highlighted by the performance of ReSuMe, which is derived from the δ-rule
that uses a comparison of target and actual output activity similar to the Pfister
rule. ReSuMe has a low memory capacity that increases if the output neuron is
stochastic.
Similar to the Pfister rule, there is no direct experimental evidence for MPDP in
a single synapse type. However, there are reports of synaptic potentiation when
the postsynaptic neuron is hyperpolarized [92], albeit in excitatory synapses onto
inhibitory interneurons. Also, a synaptic depression only rule has been reported
for presynaptic spikes that are paired with postsynaptic subthreshold depolariza-
tion [52]. However, MPDP avoids two of the problems of the Pfister rule. It does
not need an artificial separation of teacher and student induced activity and it uses
the voltage directly for synaptic plasticity instead of the instantaneous firing rate.
Additionally, it can be used for stochastic neurons as well as for deterministic neu-
rons.
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5.3 Future work

MPDP as developed in chapter 4 is a heuristic learning algorithm. It was devised
as learning rule for associative learning of two time-delayed inputs. Some of its fea-
tures, especially the usage of the relative refractoriness of the output neuron after a
teacher spike and the Anti-Hebbian voltage dependent depression are quite unique.
As shown in the previous section, there are some convergent properties of MPDP
and the Pfister rule. An interesting question for future investigations is to work
out a formal connection between the two. As shown in the previous section, there
are some similarities: The voltage-dependent synaptic depression is very similar to
depression given by equation (5.3), and the teacher mechanism is the same in both
learning rules. If such a connection can be derived, MPDP is an alternative and more
biological feasible implementation for supervised learning. Additionally, it proposes
a concrete mechanism how synaptic plasticity rules can distinguish between teacher
spikes and self-generated activity by using the temporal profile of the membrane
potential around each spike.
Another question concerns the stability of weights under the MPDP rule. The ex-
ample of a single output spike to be learned shows that after a sufficient number of
learning rules, the temporal profile of the voltage in teaching trials and recall trials is
very similar (see figure 4.3). It is likely that withdrawing the teacher input does not
lead to unlearning of this spike, but that weight changes will be the same regardless
of the presence of the teacher. However, there is a caveat. Weight changes in the
example of a single spike do not cease. Instead, synapses of input neurons active
just before the desired spike times continue to depress. This eventually leads to a
hyperpolarized state just before the output spike, which in turn induces synaptic
potentiation that is expressed before the hyperpolarization. After many learning
trials, this causes a wavelike appearence of the temporal profile of the voltage. It is
likely that the magnitude of this effect depends on the load of the system. Figure
4.4 shows that for low loads the temporal distance of output spike and teacher has
not converged at the end of training. In contrast, for high loads the changes have
ceased. The effect of high loads is a relatively high level of noise on the synaptic
weights that interferes with learning.
If a single spike becomes stable, i.e. removing the teacher does not affect the weight
changes, it is worth investigating if the same is true if several spikes are learned at
the same time. If yes, this suggests that memories are maintained by recall, i.e. pre-
senting one particular input pattern causes weight changes similar to training trials.
It is clear that such a mechanism is highly beneficial for memory maintenance.
A last question is wether MPDP or a derivative learning rule can be used for
the training of recurrent networks. This is a notoriously difficult problem [39].
Memmesheimer and colleagues tried to train recurrent networks to fire cyclic se-
quences of spikes using their exact HTP method. Interestingly, despite using a
network simulation method with adjustable precision, the activity was not stable.
Numerical errors accumulated quickly up to the point where neurons missed their
spikes and the sequence died out [39]. In contrast, training with the FP-Learning
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rule lead to stable activity. The difference is that with this rule the network during
training is subject to the noise induced by weight changes, which causes the learning
algorithm to over-learn slightly as a safe-guard against noise. This safe-guard is a
crucial part of MPDP, therefore it is likely that MPDP or a derivative learning rule
can be used in training of recurrent networks.
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List of published articles

Publications in journals with peer review

� Joscha T. Schmiedt, Christian Albers, Klaus Pawelzik. Spike timing-dependent
plasticity as dynamic filter. Advances in Neural Information Processing Sys-
tems 23 (2010)

� Christian Albers, Joscha T. Schmiedt, Klaus Pawelzik. Theta-specific suscep-
tibility in a model of adaptive synaptic plasticity. Frontiers in computational
neuroscience (7) (2013)

� Christian Albers, Maren Westkott, Klaus Pawelzik. Perfect Associative Learn-
ing with Spike-Timing-Dependent Plasticity. Advances in Neural Information
Processing Systems 26 (2013)

Publications on pre-print servers without peer review

� Christian Albers, Maren Westkott, Klaus Pawelzik. Learning of Precise Spike
Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.
arXiv:1407.6525v2 [q-bio.NC] (2015)
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Overview over contributions to
the publications

Publication I

The contribution dynamics model is derived from the model developed in the NIPS
article from 2010. Christian Albers added the q-dynamics. The fitting procedure
for the CD model was planned by Joscha Schmiedt and Christian Albers. Christian
Albers implemented the fitting procedure for the CD model and the Triplet model.
Christian Albers performed the comparison to the Uramoto model and the cross-
model survey of the response properties of synaptic plasticity to oscillatory activity.
Joscha Schmiedt helped interpreting the results. The manuscript was written by all
three authors with main contributions by Christian Albers.

Publication II

The development of the plasticity rule was sparked by previous work by Maren
Westkott and Klaus Pawelzik. Klaus Pawelzik worked out the original proof of
equivalence to the perceptron learning rule. Maren Westkott and Christian Albers
found an error, and all three authors worked out the corrected proof. Christian
Albers performed the numerical simulations for the Tempotron and the Chronotron.
The manuscript was written equally by all three authors.

Overview over contributions to manuscript in chapter 4

The idea of subthreshold membrane potential dependent plasticity was worked out
by all three authors. Maren Westkott performed the simulations of the biological
setting (conductance based LIF neuron). Christian Albers performed the simula-
tions of the simplified model with the LIF neuron for memory capacity and noise
robustness. Maren Westkott helped analysing the data. The manuscript was written
by all three authors with main contributions by Christian Albers.
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Ich möchte mich bei einer Reihe von Menschen bedanken, die mich auf dem Weg
zu dieser Arbeit unterstützt und begleitet haben. Zuallererst bedanke ich mich
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