2,662 research outputs found

    Some notes on Esakia spaces

    Full text link
    Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads

    Tensor products and regularity properties of Cuntz semigroups

    Full text link
    The Cuntz semigroup of a C*-algebra is an important invariant in the structure and classification theory of C*-algebras. It captures more information than K-theory but is often more delicate to handle. We systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C*-algebra AA, its (concrete) Cuntz semigroup Cu(A)Cu(A) is an object in the category CuCu of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, we will call the latter CuCu-semigroups. We establish the existence of tensor products in the category CuCu and study the basic properties of this construction. We show that CuCu is a symmetric, monoidal category and relate Cu(A⊗B)Cu(A\otimes B) with Cu(A)⊗CuCu(B)Cu(A)\otimes_{Cu}Cu(B) for certain classes of C*-algebras. As a main tool for our approach we introduce the category WW of pre-completed Cuntz semigroups. We show that CuCu is a full, reflective subcategory of WW. One can then easily deduce properties of CuCu from respective properties of WW, e.g. the existence of tensor products and inductive limits. The advantage is that constructions in WW are much easier since the objects are purely algebraic. We also develop a theory of CuCu-semirings and their semimodules. The Cuntz semigroup of a strongly self-absorbing C*-algebra has a natural product giving it the structure of a CuCu-semiring. We give explicit characterizations of CuCu-semimodules over such CuCu-semirings. For instance, we show that a CuCu-semigroup SS tensorially absorbs the CuCu-semiring of the Jiang-Su algebra if and only if SS is almost unperforated and almost divisible, thus establishing a semigroup version of the Toms-Winter conjecture.Comment: 195 pages; revised version; several proofs streamlined; some results corrected, in particular added 5.2.3-5.2.

    Topology from enrichment: the curious case of partial metrics

    Get PDF
    For any small quantaloid \Q, there is a new quantaloid \D(\Q) of diagonals in \Q. If \Q is divisible then so is \D(\Q) (and vice versa), and then it is particularly interesting to compare categories enriched in \Q with categories enriched in \D(\Q). Taking Lawvere's quantale of extended positive real numbers as base quantale, \Q-categories are generalised metric spaces, and \D(\Q)-categories are generalised partial metric spaces, i.e.\ metric spaces in which self-distance need not be zero and with a suitably modified triangular inequality. We show how every small quantaloid-enriched category has a canonical closure operator on its set of objects: this makes for a functor from quantaloid-enriched categories to closure spaces. Under mild necessary-and-sufficient conditions on the base quantaloid, this functor lands in the category of topological spaces; and an involutive quantaloid is Cauchy-bilateral (a property discovered earlier in the context of distributive laws) if and only if the closure on any enriched category is identical to the closure on its symmetrisation. As this now applies to metric spaces and partial metric spaces alike, we demonstrate how these general categorical constructions produce the "correct" definitions of convergence and Cauchyness of sequences in generalised partial metric spaces. Finally we describe the Cauchy-completion, the Hausdorff contruction and exponentiability of a partial metric space, again by application of general quantaloid-enriched category theory.Comment: Apart from some minor corrections, this second version contains a revised section on Cauchy sequences in a partial metric spac
    • …
    corecore