6,895 research outputs found

    A System for Compressive Sensing Signal Reconstruction

    Full text link
    An architecture for hardware realization of a system for sparse signal reconstruction is presented. The threshold based reconstruction method is considered, which is further modified in this paper to reduce the system complexity in order to provide easier hardware realization. Instead of using the partial random Fourier transform matrix, the minimization problem is reformulated using only the triangular R matrix from the QR decomposition. The triangular R matrix can be efficiently implemented in hardware without calculating the orthogonal Q matrix. A flexible and scalable realization of matrix R is proposed, such that the size of R changes with the number of available samples and sparsity level.Comment: 6 page

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Parsec-scale structure of quasars: dawn of the golden age?

    Full text link
    Half a century after their discovery, the study of quasars remains one of the most fascinating intellectual challenges in astronomy. Quasars are laboratories for everything from relativity to magnetohydrodynamics and are perhaps the best available probes for cosmology. A tremendous amount has been learned about quasars and yet many of the most fundamental questions about their physics remain open. Parsec-scale observations have played an indispensable role in building up our current understanding of quasars; virtually everything we know about quasars depends on such observations. However, the finest hour for parsec scale observations may be just beginning. This is partly due to the development of highly reliable VLBI networks (which is continuing) but mostly due to the unprecedented availability of multiepoch, simultaneous, broadband observations that have long been the `holy grail' for quasar researchers.Comment: Accepted for publication in the Bulletin of the Astronomical Society of India (20 pages, 3 figures

    Quantum Simulation Logic, Oracles, and the Quantum Advantage

    Full text link
    Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, like the Deutsch-Jozsa and Simon's algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor's algorithm for integer factorization.Comment: 48 pages, 46 figure
    • …
    corecore