4 research outputs found

    The development a fully-balanced current-tunable first-order low-pass filter with Caprio technique

    Get PDF
    This paper presents the development and design of a fully-balanced current-tunable first-order low-pass filter with Caprio technique, which could include the design and implementation of a first-order low-pass filter circuits. The filter consists of six bipolar junction transistor (BJT) and a single capacitor. The filter construction uses a bipolar junction transistor (BJT) as the main device and a single capacitor. A fully-balanced current-tunable first-order low-pass filter with Caprio technique developed. The architecture of the circuit is quite simple and proportional, symmetrical with signs of difference. Circuits developed into integrated circuits act like basic circuits for frequency filter circuits, current modes with Caprio techniques, obtained by improving the first-order low-pass filter for signal differences with incoming impedances. Adjusting the parameters of the circuit with the caprio technique achieves the optimal parameter value for correcting the total harmonic distortion value. The results of testing the operation of the circuit, a fully-balanced current-tunable first-order low-pass filter with Caprio technique developed and designed using the PSpice program. The simulation results showed good results in line with predicted theoretical analysis. The sensitivity of the device to the center frequency (ω0) response is low and independent of variables, the angular frequency is linear with wide current adjustment throughout the sweeping range of a wide frequency range, with a wide range of over tree orders of magnitude. Therefore, fully-balanced current-tunable first-order low-pass filter developed is very suitable to apply various applications regarding low frequency signal filtration, for example in biomedical systems, for example

    An Ultralow-Power Sleep Spindle Detection System on Chip

    Full text link

    Implementing Homeostatic Plasticity in Analog VLSI

    Get PDF
    Neuromorphic engineering systems are electronic devices that emulate the spike based computational paradigm. CMOS processes scaling yield mismatch and non-ideality that limit the performances of the device. A neuromorphic approach to address this problem is to implement the SHP in silicon. The SHP is implemented by an AGC with a LPF with long time constants. Given such LPF challenging specifications, I developed a compact CMOS filter architecture based on leakages currents in a pMOS deviceopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e/o informazioni sensibil
    corecore