516 research outputs found

    C and SM lunar orbital science study, volume 2 Final report

    Get PDF
    Experiment descriptions and cost estimates for CSM lunar orbital science stud

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Photonic low-cost sensors for in-line fluid monitoring. Design methodology

    Get PDF
    779 p.The paradigm of process monitoring has evolved in the last years, driven by a clear need for improving efficiency, quality and safety of processes and products. Sectors as manufacturing, energy, food and beverages, etc. are fostering the adoption of innovative methods for controlling their processes and products, in a non-destructive, in-place, reliable, fast, accurate and cost-efficient manner. Furthermore, the parameters requested by the industry for the quality assessment are evolving from basic magnitudes as pressures, temperatures, humidity, etc. to complete chemical and physical fingerprints of these products and processes. In this situation, techniques based on the UV/VIS/NIR light-matter interaction appear to be optimum candidates to face the request of the industry. Moreover, at this moment, when we are witnessing a technological revolution in the field of optoelectronic components, which are required for setting up these light-based analyzers.However, being able to integrate these optoelectronic components with the rest of subsystems (electronics, optics, mechanics, hydraulics, data processing, etc.) is not straightforward. The development of these multi-domain and heterogeneous sensor products meeting not just technological but also market objectives poses a considerable technical and organizational challenge for any company.In this context, a methodological hybrid and agile integration of photonic components within the rest of subsystems towards a sensor product development is presented as the main outcome of the thesis. The methodology has been validated in several industrial scenarios, being three of them included in this thesis, which covers from hydraulic fluid quality control to real-time monitoring of alcoholic beverage fermentation process

    Applications and Experiences of Quality Control

    Get PDF
    The rich palette of topics set out in this book provides a sufficiently broad overview of the developments in the field of quality control. By providing detailed information on various aspects of quality control, this book can serve as a basis for starting interdisciplinary cooperation, which has increasingly become an integral part of scientific and applied research

    Effective Dose Gradients in Lung Radiotherapy: Setting Target Margins and Monitoring Dose Deviations for Image-Guided Adaptive Strategies

    Get PDF
    Organ motion is a major source of geometric uncertainty in the delivery of external beam radiation therapy. Organ motion that occurs during the delivery of radiation therapy is referred to as intrafraction organ motion. Intrafraction motion is most predominant in the lungs due to the respiratory motion of the diaphragm and lungs. This intrafraction motion presents a substantial challenge to physicists and clinicians interested in the accurate prescription and delivery of a dose in radiation treatment. The convolution model of target motion described in this work was used to assess the impact of respiratory motion on the delivered dose distribution. This model predicts the dose distribution that will be delivered in the presence of motion by performing a mathematical convolution between the planned dose distribution and a probability distribution describing the target motion. The model was modified from its original form to include the gradient of the probability density function, which provides additional insight into the effect of target motion. The validity of the convolution model in the context of intrafraction motion was established based on an analysis of the model assumptions as well as experimental validation of the model predictions using radiochromic film measurements. It is shown that the model makes useful predictions for a wide range of regular and irregular breathing patterns. Breathing trace recordings acquired during four dimensional computed tomography scans of 502502 unique patients were used in conjunction with the convolution model to simulate the effect of target motion using MATLAB code developed in house. The motion effect on dose coverage was simulated for each breathing trace on a range of target sizes in order to establish trends which can be used to guide margin selection. The required margins were found to have a clear dependence on the standard deviation of the probability distribution describing the target motion. A method for calculating the margin required to maintain target dose coverage is presented. A table of margin recommendations for a range of breathing patterns and target sizes is presented. The effect of motion was also simulated on clinical treatment plans including a 3-field, a 4-field and a volumetric modulated arc treatment. The clinical treatment plans demonstrate the interplay between the static dose gradients seen in a clinical setting and the loss of dose coverage due to breathing motion. The validity of the technique is demonstrated for an extreme case of a small lung target undergoing large amplitude motion. This result represents the full use of the proposed methodology. The process demonstrates that using the margins recommended in this work will ensure target dose coverage, but that compromises will be made relative to the plan with unmodified margins. The target dose coverage comes at the expense of increased target volume and potentially increased dose to nearby organs at risk. An analytical approximation of lung target motion and static dose distributions using Gaussian functions is used to demonstrate the limit of the technique for small fields and the sensitivity of the model to its key parameters

    Standardisation of preclinical PET/CT protocols across multiple research centres

    Get PDF
    Preclinical Positron Emission Tomography/Computed Tomography (PET/CT) is a well-established non-invasive imaging tool for studying disease development/progression, the development of novel radiotracers and pharmaceuticals for clinical applications. Over the last five years more than 8,200 preclinical studies using PET/CT were conducted. Despite this pivotal role, standardisation of preclinical PET/CT protocols, including CT absorbed dose guidelines, is essentially non-existent. Therefore, the first and second aims of this project were: (1) to quantitatively assess the variability of current preclinical PET and CT acquisition and reconstruction protocols in routine use across multiple centres and scanners; and (2) to propose optimized standardised acquisition and reconstruction PET/CT protocols for routine scanning procedures across all sites in a preclinical PET/CT laboratory. By assessing quantitative accuracy (known versus measured) and precision (reduced variability) of currently used routine protocols between five different sites/scanners (Bruker Albira, Mediso nanoPET/CT, Sedecal Super Argus, Siemens Inveon and Trifoil LabPET/CT), standard protocols were determined. Thereby, irrespective of scanner characteristics the least biased empirical quantitative and qualitative protocol results defined the standard protocol. In essence, neutralizing the manufacturers' difference, replacing scanner variability for scanner similarity to establish global standard protocols. The analysis of sites’ routine protocol results revealed significant quantitative differences between all five sites/scanners. Whereas the standard protocols put forth improved accuracy and precision across all sites. Additionally, the large disparity and measured amounts of CT absorbed ionising radiation amongst sites brought to light the lack of preclinical radiation guidelines and dose regulations. Unregulated CT radiation dose is of great concern. CT ionising radiation is known to have biological adverse effects. Thus, overexposure of radiation will potentially cause unnecessary animal suffering and confound research outcomes. Overall, the proposed standard CT protocol reduced radiation doses. The implementation of preclinical PET/CT standardised protocols, developed and tested in this project, will provide more robust, reliable and reproducible translational data sets for clinical applications. In accordance with the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) objectives, the refinement of PET/CT protocols and reduction of CT absorbed dose impacts animal welfare positively and potentially reduces the number of animals used. Reducing study variability in site and across sites through standardisation of protocols improves statistically significant results using less animals. For study specific imaging parameters in preclinical PET/CT rodents are commonly used to design the protocol. The third aim of this project strives to develop a tissue equivalent material (TEM) anthropomorphic rodent phantom for the replacement of animals when designing and optimizing varying in vivo rodent imaging protocols. Using a TEM phantom reduces potential biological experimental variability caused by the animals and increases reproducibility of findings. To address this aim, twenty-four commercially available 3D printing materials were X-rayed for the evaluation Hounsfield units (HU). A comparison of calculated 3D material attenuation coefficients and accepted tissue attenuation coefficient was also done. CT images were acquired using four CT protocols and the developed standard CT protocol. Based on measured material HUs compared to accepted tissue/organ HU values, four materials were chosen for testing and further evaluation in a 3D printed phantom prototype was undertaken. In order to obtain the anatomical features of the rodent a CT acquisition of a scheduled 1 rodent was acquired. The CT images were used for the 3D printing design. A 3D printed (TEM) anthropomorphic rodent phantoms was printed and tested. Measured HU analysis of the phantom TEM materials shows promise as a replacement strategy. This imaging protocol optimisation approach is also in line with the NC3Rs objective of replacing and/or avoiding the use animals
    • …
    corecore