766 research outputs found

    Securing CAN-Based Cyber-Physical Systems

    Get PDF
    With the exponential growth of cyber-physical systems (CPSs), new security challenges have emerged. Various vulnerabilities, threats, attacks, and controls have been introduced for the new generation of CPS. However, there lacks a systematic review of the CPS security literature. In particular, the heterogeneity of CPS components and the diversity of CPS systems have made it difficult to study the problem with one generalized model. As the first component of this dissertation, existing research on CPS security is studied and systematized under a unified framework. Smart cars, as a CPS application, were further explored under the proposed framework and new attacks are identified and addressed. The Control Area Network (CAN bus) is a prevalent serial communication protocol adopted in industrial CPS, especially in small and large vehicles, ships, planes, and even in drones, radar systems, and submarines. Unfortunately, the CAN bus was designed without any security considerations. We then propose and demonstrate a stealthy targeted Denial of Service (DoS) attack against CAN. Experimentation shows that the attack is effective and superior to attacks of the same category due to its stealthiness and ability to avoid detection from current countermeasures. Two controls are proposed to defend against various spoofing and DoS attacks on CAN. The first one aims to minimize the attack using a mechanism called ID-Hopping so that CAN arbitration IDs are randomized so an attacker would not be able to target them. ID-Hopping raises the bar for attackers by randomizing the expected patterns in a CAN network. Such randomization hinders an attacker’s ability to launch targeted DoS attacks. Based on the evaluation on the testbed, the randomization mechanism, ID-Hopping, holds a promising solution for targeted DoS, and reverse engineering CAN IDs, and which CAN networks are most vulnerable. The second countermeasure is a novel CAN firewall that aims to prevent an attacker from launching a plethora of nontraditional attacks on CAN that existing solutions do not adequately address. The firewall is placed between a potential attacker’s node and the rest of the CAN bus. Traffic is controlled bi-directionally between the main bus and the attacker’s side so that only benign traffic can pass to the main bus. This ensures that an attacker cannot arbitrarily inject malicious traffic into the main bus. Demonstration and evaluation of the attack and firewall were conducted by a bit-level analysis, i.e., “Bit banging”, of CAN’s traffic. Results show that the firewall successfully prevents the stealthy targeted DoS attack, as well as, other recent attacks. To evaluate the proposed attack and firewall, a testbed was built that consisted of BeagleBone Black and STM32 Nucleo- 144 microcontrollers to simulate real CAN traffic. Finally, a design of an Intrusion Detection System (IDS) was proposed to complement the firewall. It utilized the proposed firewall to add situational awareness capabilities to the bus’s security posture and detect and react to attacks that might bypass the firewall based on certain rules

    Vulnerability and resilience of cyber-physical power systems: results from an empirical-based study

    Full text link
    Power systems are undergoing a profound transformation towards cyber-physical systems. Disruptive changes due to energy system transition and the complexity of the interconnected systems expose the power system to new, unknown and unpredictable risks. To identify the critical points, a vulnerability assessment was conducted, involving experts from power as well as information and communication technologies (ICT) sectors. Weaknesses were identified e.g.,the lack of policy enforcement worsened by the unreadiness of involved actors. The complex dynamics of ICT makes it infeasible to keep a complete inventory of potential stressors to define appropriate preparation and prevention mechanisms. Therefore, we suggest applying a resilience management approach to increase the resilience of the system. It aims at a better ride through failures rather than building higher walls. We conclude that building resilience in cyber-physical power systems is feasible and helps in preparing for the unexpected

    SoK: Design, Vulnerabilities and Defense of Cryptocurrency Wallets

    Full text link
    The rapid growth of decentralized digital currencies, enabled by blockchain technology, has ushered in a new era of peer-to-peer transactions, revolutionizing the global economy. Cryptocurrency wallets, serving as crucial endpoints for these transactions, have become increasingly prevalent. However, the escalating value and usage of these wallets also expose them to significant security risks and challenges. This research aims to comprehensively explore the security aspects of cryptocurrency wallets. It provides a taxonomy of wallet types, analyzes their design and implementation, identifies common vulnerabilities and attacks, and discusses defense mechanisms and mitigation strategies. The taxonomy covers custodial, non-custodial, hot, and cold wallets, highlighting their unique characteristics and associated security considerations. The security analysis scrutinizes the theoretical and practical aspects of wallet design, while assessing the efficacy of existing security measures and protocols. Notable wallet attacks, such as Binance, Mt. Gox are examined to understand their causes and consequences. Furthermore, the paper surveys defense mechanisms, transaction monitoring, evaluating their effectiveness in mitigating threats

    Holistic security 4.0

    Get PDF
    The future computer climate will represent an ever more aligned world of integrating technologies, affecting consumer, business and industry sectors. The vision was first outlined in the Industry 4.0 conception. The elements which comprise smart systems or embedded devices have been investigated to determine the technological climate. The emerging technologies revolve around core concepts, and specifically in this project, the uses of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Internet of Everything (IoE). The application of bare metal and logical technology qualities are put under the microscope to provide an effective blue print of the technological field. The systems and governance surrounding smart systems are also examined. Such an approach helps to explain the beneficial or negative elements of smart devices. Consequently, this ensures a comprehensive review of standards, laws, policy and guidance to enable security and cybersecurity of the 4.0 systems

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Access Control In and For the Real World

    Get PDF
    Access control is a core component of any information-security strategy. Researchers have spent tremendous energy over the past forty years defining abstract access-control models and proving various properties about them. However, surprisingly little attention has been paid to how well these models work in real socio-technical systems (i.e., real human organizations). This dissertation describes the results of two qualitative studies (involving 52 participants from four companies, drawn from the financial, software, and healthcare sectors) and observes that the current practice of access control is dysfunctional at best. It diagnoses the broken assumptions that are at the heart of this dysfunction, and offers a new definition of the access-control problem that is grounded in the requirements and limitations of the real world

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Design of the Security Mechanism for a BPO Cloud Computing Platform

    Get PDF
    The security of a Cloud Computing Platform (CCP)is a key factor in its ability to operate successfully. Currently, the security issues of the physical resource layer and the user application layer of the cloud computing platform have been significantly studied in the field of information security and have already mature products and solutions. This research is aimed at the complex Business Process Outsourcing Cloud Computing Platform (BPO-CCP)for the banking and insurance industries. In particular we are concerned with the BPO-CCP`s virtualization security, cloud data security, access control, user authentication and authorization, and cloud computing auditing. This paper analyzes the specific needs of the platform's security. Then the Security Mechanism of the BPO Cloud Computing Platform (SM-BPO-CCP)is designed. During its implementation (around five years at the time of writing)this SM-BPO-CCP that we have designed has efficiently provided security protection for up to twenty BPO companies with each having more than 1000 employees. This SM-BPO-CCP linked to ten large banks and insurance companies, none of which experienced any security issues due to the protection offered by the SM-BPO-CCP

    The InfoSec Handbook

    Get PDF
    Computer scienc
    • …
    corecore