2,029 research outputs found

    Battery Aging Studies Based on Real-World Driving

    Get PDF
    While being a competitive candidate for energy storage systems in automotive applications, lithium-ion battery still needs to overcome fundamental compromises regarding energy density, power density, lifetime, costs and safety concerns. A significant breakthrough can be expected by understanding the real-world customer usage patterns and leveraging this knowledge to develop an optimized battery design and control. However, the challenges of filtering through massive real-world driving data and identifying the features relevant to the real-world battery operations still remain. This dissertation aims to bridge this gap by linking vehicle drive cycles to battery cell duty cycles, which enables quantifying the impacts of real-world variability on battery performance. In addition to performance and efficiency considerations, the methodology enables battery aging analysis in the context of optimal design and control of hybrid electric vehicles. This will facilitate design decisions that ensure adequate performance over the life span of the vehicle with considerations of the battery health objective. The novelty of this work lies in a more accurate method of synthetizing representative real-world drive cycles with a new algorithm to classify road and an innovative quantitative metric of driver style. A modified 48V mild hybrid vehicle model was built to relate the real-world drive cycles all the way to the battery cell duty cycles and to validate the impacts from driver aggressiveness on both the fuel efficiency and the battery loads. The cell duty cycles were further analyzed in frequency domain to synthesize characteristic cell test profiles representative of driver styles and road conditions. A battery cell cycle aging experiment was carried out using the synthesized test profiles. Results validate the positive correlation between driver aggressiveness and cell degradation, and further allow parameter identification of cell electro-chemical model. Modeling effort was extended to generate insights regarding the aging mechanisms, and calibrate a semi-empirical aging model. These tools will enable the inclusion of road conditions and driver styles into the development of battery pack design and propulsion system control hence improving the design assumption fidelity and real-world representativeness of the modeling approach

    Phase 1 of the near term hybrid passenger vehicle development program

    Get PDF
    In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Mild Hybrid Electric Vehicles: Powertrain Optimization for Energy Consumption, Driveability and Vehicle Dynamics Enhancements

    Get PDF
    This thesis deals with the modeling, the design and the control of mild hybrid electric vehicles. The main goal is to develop accurate design tools and methodologies for preliminary system and component level analysis. Particular attention is devoted to the configuration in which an electric machine is mounted on the rear axle of a passenger car. The use of such a machine in parallel with the internal combustion engine allows one to exploit different functionalities that are able to reduce the overall fuel consumption of the vehicle. In addition, the indirect coupling between the thermal and the electric machine, realized through the road and not by means of mechanical couplers, together with the position of the latter in the overall vehicle chassis system, enables such an architecture to be efficient both from the energy recovery and the full electric driving point of view. Chapter 1 introduces the problem of fuel consumption and emissions reduction in the overall world context and presents the main hybrid architectures available. Chapter 2 is devoted to the study of the influence of the electric machine position in the powertrain regarding the regenerative braking potentialities concerned. The model considered for the analysis will be described on each of its subcomponents. The braking performance of the vehicle in electric mode is presented considering no losses in the electric powertrain (electric motor, battery, inverter). Chapter 3 is dedicated to the design of an electric machine for a rear axle powertrain. The specifications of such machine are optimized considering both the vehicle and the application under analysis. The design takes into account analytical techniques for the computation of electrical parameters (such as phase and DC currents) and the torque - speed map, as well as numerical ones for its thermal behavior. In Chapter 4 the electrical and thermal characteristics of the designed electric motor are implemented in the model presented in Chapter 2. The overall vehicle model is therefore used both to assess a simple torque split strategy between thermal and electric machine and to perform an optimal sizing of the battery considering all the limitations imposed by the electric powertrain (e. g. maximum currents, maximum temperatures). Chapter 5 makes a step forward and analyzes the different implications that the use of the rear axle electric motor to brake the vehicle has on the vehicle dynamics. Open loop analysis will present a degradation of the vehicle handling comfort caused by the introduction of an oversteering moment to the vehicle. Through the use of a simplified vehicle model, the introduced oversteering yaw moment is evaluated, while a control strategy based on a new stability detector will show how to find a trade off between handling comfort and regenerable energy. At last, Chapter 6 deals with the problem of longitudinal driving comfort. Drivelines and chassis are lightly damped systems and the application of an impulsive torque imposed by the driver can cause the vehicle longitudinal acceleration (directly perceived by the driver) to be oscillating and non smooth. A sensitivity analysis on a conventional powertrain is presented demonstrating which of the different components are more influential in the different modes of vibration, and possible solutions to improve the driveability are proposed. One of these relates to the use of the rear axle electric machine in order to give more responsiveness to the vehicle. Finally, concluding remarks are given in Chapter 7

    Calendar Aging and Lifetimes of LiFePO4 Batteries and Considerations for Repurposing

    Get PDF
    In response to rising petroleum prices, the demand for lower emissions standards for vehicles, and better vehicle fuel economy, the market for hybrid and electric vehicles is expanding. These systems incorporate advanced battery systems which store and provide energy in the vehicle. Over time, though, cells degrade and lose capacity in accordance with two different aging phenomena: cycling and calendar aging. It is imperative to understand how these degradation phenomena occur as the loss in capacity results in a loss in vehicle range. Through understanding how these phenomena occur, mitigation efforts can be designed to prevent or lessen their effects. This thesis will focus primarily on studying the effects of calendar aging on commercial LiFePO4 cells. Cells are aged at varying temperatures and states of charge (SOC) to determine the extent of capacity fade and degradation. Additional testing methods are then utilized to attempt to determine which aging phenomena are promoting the losses within the cell. Capacity loss in cells stored at high temperature and fully charged conditions resulted in faster degradation rates. Temperature had the most significant role in the degradation of the cell and then the cell’s SOC. Comparing capacity losses between cells stored at the same temperature, but with different SOCs, found that the cells with higher SOC experienced increased rates of degradation in comparison to their fully discharged counterparts. In addition, storage at high SOC and high temperatures promoted such severe losses that the cells in question were unable to recapture capacity that they had lost reversibly. The primary degradation mode for the cells was the loss of cyclable lithium, and was found to occur under all of the storage conditions. Cells stored at much more severe conditions, though, also demonstrated a loss of active material at the anode. The extent of the loss of the active material was largely predicated on whether or not the cell was stored at fully charged or discharged conditions. Storage of lithium-ion batteries at high temperatures has a dramatic effect on the continual usage of the cells after storage conditions have changed. Despite shifting temperatures or states-of-charge to a lower value, the initial storage conditions leads to increased degradation rates throughout the cell life. Thus, the history of storage for the cell must be also be taken into account when considering losses in capacity

    ME-EM 2016-17 Annual Report

    Get PDF
    Table of Contents Undergrad Features Graduate Features Enrollment & Degrees Graduates Faculty & Staff Department News Alumni Donors Contracts & Grants Patents & Publicationshttps://digitalcommons.mtu.edu/mechanical-annualreports/1002/thumbnail.jp

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0
    • …
    corecore