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Abstract 

While being a competitive candidate for energy storage systems in automotive 

applications, lithium-ion battery still needs to overcome fundamental compromises 

regarding energy density, power density, lifetime, costs and safety concerns. A 

significant breakthrough can be expected by understanding the real-world customer usage 

patterns and leveraging this knowledge to develop an optimized battery design and 

control. However, the challenges of filtering through massive real-world driving data and 

identifying the features relevant to the real-world battery operations still remain. This 

dissertation aims to bridge this gap by linking vehicle drive cycles to battery cell duty 

cycles, which enables quantifying the impacts of real-world variability on battery 

performance. In addition to performance and efficiency considerations, the methodology 

enables battery aging analysis in the context of optimal design and control of hybrid 

electric vehicles. This will facilitate design decisions that ensure adequate performance 

over the life span of the vehicle with considerations of the battery health objective. 

The novelty of this work lies in a more accurate method of synthetizing representative 

real-world drive cycles with a new algorithm to classify road and an innovative 

quantitative metric of driver style. A modified 48V mild hybrid vehicle model was built 

to relate the real-world drive cycles all the way to the battery cell duty cycles and to 

validate the impacts from driver aggressiveness on both the fuel efficiency and the 

battery loads. The cell duty cycles were further analyzed in frequency domain to 

synthesize characteristic cell test profiles representative of driver styles and road 

conditions. A battery cell cycle aging experiment was carried out using the synthesized 
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test profiles. Results validate the positive correlation between driver aggressiveness and 

cell degradation, and further allow parameter identification of cell electro-chemical 

model. Modeling effort was extended to generate insights regarding the aging 

mechanisms, and calibrate a semi-empirical aging model. These tools will enable the 

inclusion of road conditions and driver styles into the development of battery pack design 

and propulsion system control hence improving the design assumption fidelity and real-

world representativeness of the modeling approach. 
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1 Introduction 

1.1 Motivation 

Growing concerns on global warming and energy security have led to stringent fuel 

efficiency and CO2 emission standards for new passenger vehicles. Nine countries and 

regions (including Japan, the European Union, United States, Canada, China, Australia, 

South Korea, Mexico, Brazil, and India), which together account for 75% of global fuel 

consumption by light-duty vehicles, have established mandatory regulations to boost fuel 

economy and reduce greenhouse gas (GHG) emission in near future [1]. The worldwide 

standards, as compiled in Table 1-1, mainly differ in the specified metrics (CO2 emission, 

GHG emission or fuel economy), the structures (footprint, weight, or weight-class based 

corporate average), and the test cycles (NEDC, U.S. combined or JC08. However, the 

stringent trends are unanimous and the enacted targets converge, as shown in Figure 1-1. 

Table 1-1. Global comparison of fuel economy/GHG standards for passenger cars [1] 
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Figure 1-1. Historical fleet CO2 emissions performance and current or proposed 

passenger vehicle standards [1] 

Manufacturers respond to tightened standards by trying to find the right balance 

between fuel efficiency and cost of adopting fuel saving technology [2], which often 

requires complex schemes of fleet analysis and tradeoffs. The leading technological 

options can be mainly categorized by, but not limited to alternative fuels, advanced 

engine concepts, advanced transmission designs and electrification. The vehicle 

propulsion systems with partial or full degree of electrification pave an evolutionary path 

to sustainable mobility, yet the added costs of alternative energy storage systems are still 

hindering their wider market penetration. Compared to flywheel, ultra-capacitor and fuel 

cell, battery is an ideal compromise not only in the balance of energy and power density 

according to the Ragone plot in Figure 1-2, but also with respect to weight, volume, 

lifetime and price. 
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Figure 1-2. The Ragone plot of the energy storage and power handling capacity of 

alternative storage techniques [2] 

The battery chemistries suitable for automotive applications evolve over time. Lead-

acid batteries are the cheapest technology despite low energy density, lifetime and 

dynamic charge acceptance. Therefore, they are still used for Starting Lighting Ignition 

(SLI) functions and 12V power system, but cannot fully meet the energy storage 

requirements for electrified propulsion system. Nickel-metal hydride batteries have been 

used successfully in several commercial hybrid vehicles because of satisfactory power 

capability. Recently, lithium-ion batteries are taking over the market due to their 

improving trajectory along the diagonal of the Ragone plot [3] in Figure 1-3, though they 

are significantly more expensive. Another boost in energy density is expected from 

potential applications commercially viable Lithium-sulfur and metal-air batteries while 

challenges lie in power density, safety and lifetime [3]. 
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Figure 1-3. The Ragone plot of various battery technologies with specification at cell 

level for automotive applications [3] 

The Lithium-ion batteries comprise a family of chemistries that employ various 

combinations of anode and cathode materials [4]. The anode materials are mainly carbon-

based. The most prominent cathode materials are Lithium nickel cobalt aluminum (NCA), 

Lithium nickel manganese spinel (LMO), Lithium nickel manganese cobalt (NMC) and 

Lithium iron phosphate (LFP). The different Li-Ion chemistries are comprehensively 

compared in six dimensions: specific energy, specific power, performance under impact 

of temperatures, life span, cost and safety, referred to Figure 1-4. Being highly 

intertwined, these critical parameters require effective management of their mutual trade-

offs, such as battery lifetime and cost. 
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Figure 1-4. Tradeoffs among the five principal lithium-ion battery technologies [4] 

As the breakthrough cost of battery packs for the massive commercialization of 

electrified vehicles is commonly considered at $150/kWh, an exponential reduction due 

to R&D development and economy-of-scale can be already observed since 2005 and 

predicted further into 2030 [5], in Figure 1-5. However, the customer acceptance largely 

depends on driving experience, of which battery lifespan is important besides expected 

range, acceleration, maintenance and charging issues. To overcome this challenge, 

manufacturers either oversize the pack to compensate expected degradation, or install less 

cells but replace them every five to seven years [6]. While such schemes all incur higher 

costs, current researches focus on achieving required system performance from a 

significantly downsized battery pack with minimized impacts on battery life under 

dynamic battery utilization. This requires critical understandings on vehicle operations 

and the methodologies to relate them to cells. 
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Figure 1-5. Cost of lithium-ion battery packs in battery electric vehicles [5] 

The significance of understanding real-world vehicle operations has been translated 

into several multi-disciplinary collaborative efforts to collect real-world driving data. The 

National Household Travel Survey (NHTS) [7] summarize people’s trip information such 

as duration, distance, and purpose, with additional information related to demography, 

geography, economy and vehicle attribute, in the form of questionnaire. The 

Transportation Secure Data Center (TSDC) by National Renewable Energy Laboratory 

analysis [8] further incorporates valuable second-by-second speed traces for potential 

applications including (i) transit planning and travel demand modeling, (ii) congestion 

mitigation research, (iii) toll and pricing research, (iv) climate change impact studies, (v) 

homeland security evacuation planning, (vi) validating transportation data from other 

sources, (vii) alternative fuel station planning, (viii) emission and air pollution modeling, 

(ix) vehicle energy and power analysis [8]. In certain context, these applications are inter-
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dependent. For battery electric vehicles (BEV) and plug-in hybrid electric vehicles 

(PHEV), the application (i) can derive the cumulative daily distance distribution which 

can assist to guide the charging infrastructure deployment (vii), quantify the life-cycle 

cost of electrified mobility (viii), and calibrate the electric range (ix). 

1.2 Background and Research Questions 

1.2.1 Real-world Drive Cycles 

The drive cycle, in the context of this dissertation, is defined as a speed trace time-

series vehicle velocity data. The applied drive cycles in the literature can be mainly 

categorized in two ways: regulatory and real-world speed traces, transient and steady 

speed traces. The regulatory drive cycles refer to standard speed traces used in either fuel 

consumption or emissions testing for certification purposes under controlled laboratory 

settings. Examples include UDDS, HWFET, US06, and LA92 cycles in United States; 

NEDC, ARTEMIS cycles in Europe; 10-Mode, 10-15 Mode, JC08 cycles in Japan. Some 

of them are shown in Figure 1-6. In the figure, the NEDC and 10-15 Mode cycles are also 

the examples of steady speed traces, consisting of different steady speed segments, 

compared to other transient cycles. 

However, beyond the certification testing application, the regulatory drive cycles are 

in lack of representativeness of real-world driving since they do not reflect the driving 

aggressiveness in real-world settings and do not have enough flexibility in cycle length 

[9][10]. Therefore, many efforts have been put into the collection of detailed real-world 

second-by-second drive cycles. The datasets applied in this dissertation come from the 

2001~2002 Southern California Household Travel Survey, the 2010~2012 California 
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Household Travel Survey [8] and the 2001~2005 Michigan Road Departure Crash 

Warning System Field Operational Tests [11]. 

Faced with a large amount of driving data, two main research problems are the data 

compression and data dimensioning. The compression is to synthesize and condense bulk 

data into representative candidates for time-consuming and cost-intensive applications. 

The dimensioning is for categorization and classification based on underlying features of 

the data for better understanding and applicability. These two problems are both 

discussed in corresponding chapters to improve compression accuracy and refine two 

dimensioning features, in which appropriate statistical methodologies will be applied. 

 

 

Figure 1-6. Selected regulatory drive cycles from US, Europe and Japan 
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1.2.2 Electrified Vehicles 

To meet the stringent fuel economy and emission regulations, as mentioned above, 

electrified vehicles have become attractive options since they offer high efficiency by 

adding alternative energy sources on-board with multiple functions such as start&stop, 

braking energy regeneration, engine assisting, and electric driving. The electrified 

vehicles are comprised of Battery Electric Vehicle (BEV), Plug-in Hybrid Electric 

Vehicle (PHEV) to Hybrid Electric Vehicle (HEV). While BEV and PHEV can be 

recharged by plugging into the electric grid, they need large battery packs to store excess 

energy for long electric range with zero tailpipe emissions. But their market penetration is 

hindered by high prices, long charging time and charging infrastructure availability. This 

explains the earlier success of HEV, an interim electrification technology, with several 

widespread commercial vehicles (e.g., Toyota Prius) [12]. 

The HEV can be classified mainly in two ways [13]. Firstly, they come in series, 

parallel or series-parallel hybrid topologies as in Figure 1-7. The series HEV is 

conceptually an ICE (Internal Combustion Engine)-assisted EV to extend the driving 

range because the ICE is mechanically connected to a generator to convert electricity 

which charges either the battery or the motor. The parallel HEV combines both the ICE 

and the motor to mechanically propel the vehicle. The series-parallel HEV adds one more 

mechanical link between engine and wheel compared to series, and one more generator 

compared to parallel. Secondly, they can also be differentiated by the hybridization level, 

the power ratio between the ICE and the electric motor. The micro HEV applies a 

limited-power motor as a starter-generator to realize start&stop function. The mild HEV 
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uses a larger motor to achieve engine-assist and regeneration functions in addition to 

start&stop function. The full HEV integrates the largest motor to ensure occasional 

electric propulsion. Higher hybridization level usually indicates higher fuel savings. 

Practically HEVs come in different topologies with different hybridization levels, 

which are proposed based on many factors such as cost, complexity and efficiency. And 

the trade-offs must be evaluated in the initial design phase under the context of real-world 

driving scenarios. The 48V parallel mild hybridization is a promising near-term 

technology because it requires minimal powertrain modifications other than coupling a 

belt-driven or crankshaft-integrated motor to the engine, yet bears great potential for fuel 

savings. The real-world performance a 48V mild parallel HEV will be discussed in 

corresponding chapters on both vehicle and cell level. 

 

 

Figure 1-7. Common hybrid topologies of HEV [13] 
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1.2.3 Lithium-ion Battery Aging 

1.2.3.1 Cell Operation 

A lithium-ion battery, as in Figure 1-8, is typically composed of positive and negative 

electrodes immersed with electrolyte solution, a separator which prevents electron flows 

but allows ions migration, and current collectors at both electrodes to provide pathways 

for electron flows with external circuits. Common denotations for a battery include: 

positive electrode, negative electrode, anode, and cathode. They are illustrated in Figure 

1-8 [14]. During discharging, the electron flow is from negative electrode to positive 

electrode, the current flow is in opposite direction; the positive electrode is the cathode 

accepting positive ions, and negative electrode is the anode accepting negative ions. 

During charging, current flow is from negative electrode to positive electrode, always 

contrary to electron flow; negative electrode becomes cathode attracting positive ions, 

and positive electrode becomes anode attracting negative ions. 

 

Figure 1-8. Lithium ion cell under charge and discharge [14] 
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1.2.3.2 Aging Mechanisms 

Lithium-ion batteries suffer from degradation of performance over real-life utilizations, 

explicitly in the loss of available energy and power. As the usable cell capacity losses, 

available energy decreases affecting the electric driving range; as the cell internal 

resistance increases, available power reduces impacting the capabilities for acceleration 

and recuperation. The cell aging can occur under both storage conditions (calendar aging) 

and operating conditions (cycle aging). While all internal mechanisms are coupled thus 

complicating the cell aging process [15][16][17], an overview of main mechanisms of 

lithium-ion cells as in Figure 1-9 is necessary. 

 

Figure 1-9. Lithium ion cell aging mechanisms [16] 

The most popular material for lithium ion cell negative electrode is graphite. The 

graphite-based negative electrode operates typically at the voltage that is outside the 
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electrochemical stability window of the electrolyte components. Therefore, reductive 

electrolyte decomposition during charge accompanied with irreversible consumption of 

lithium ions occurs at the interface between negative electrode and electrolyte. The 

change at the interface is believed to be the major source for aging of negative electrode. 

At the beginning of cycling, the decomposition products build up “protective layers” at 

the electrode surface. The protective layers act as a so-called solid electrolyte interphase 

(SEI), which is permeable for lithium ions but rather impermeable for other electrolyte 

components and electrons. Hence, SEI does not have the perfect unity transference 

number for unsolved lithium cations, other charged and neutral species still diffuse 

through the SEI. As a consequence, the Li
+
 loss and electrolyte decomposition continue 

throughout the entire battery life (⑨), though at lower rates compared to the first cycle. 

On a long time scale, the SEI might even penetrate into pores of the electrode and induce 

a decrease of accessible electrode active surface area (⑬), leading to impedance rise. 

The SEI growth process will be accelerated by elevated temperature, which can reversely 

break down SEI and bring a greater capacity loss (⑨). On the other hand, low 

temperature also poses significant challenges. It not only slows down Li
+
 diffusion, but 

also results in metallic lithium plating and lithium dendrite growth during fast charging 

(⑪). Besides, the effects of transition metal dissolution and deposition at negative 

electrode exist with some positive electrode materials (especially LiMn2O4 spinel) to 

accelerate SEI growth (②⑩).  

In contrast to negative electrode, positive electrode can be composed of different 

materials, among which LiFeO4 (LFP), Li(NixMnyCoz)O2 (NMC), Li(NixCoyAlz)O2 
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(NCA) and LiMn2O4 (LMO) are widely used. The impacts of different aging mechanisms 

vary considerably when different cathode materials are considered. The significant 

changes on positive electrode include: 1) aging of active material (③⑤⑭) during high 

cycling current rates; 2) degradation of electrode components like conducting agents, 

binder, current collector (①⑧) at high temperature and high SOC; 3) oxidation of 

electrolyte components and surface film formation (⑦) at high temperature and when 

overcharging; 4) active material dissolution and the interactions with negative electrode 

(②), especially for LMO chemistry and when overcharging. Specifically, NMC 

electrode is characterized by a large impedance rise at positive electrode due to the 

formation of surface films; LFP and LMO electrodes are also affected by considerable 

transition metal dissolution which contributes to the growth of the negative electrode SEI; 

NMC and NCA electrodes are prone to phase transitions and anti-site cation defects of 

the active materials. 

1.2.3.3 Aging Modeling 

For any battery technology, the life in the long run is critical for its introduction and 

penetration into the market. Things get more complicated when lithium ion cells are 

applied in the transportation sector, where complex driving activities and extreme 

ambient factors are mixed. It has been shown that the real-world battery life depends 

heavily on the actual driver demands and the operating temperatures. In order to avoid 

risks and customer expectations, a reliable management of the battery pack with accurate 

estimations of battery health is required. Then, a battery aging model as a function of 

different aging stressors (current rate, SOC, temperature and so on) should be 
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parameterized to quantify the aging effects in real-world usage. Usually constructed from 

accelerated aging tests in the lab with the concept of design-of-experiments, the aging 

models can be used to estimate battery SOH (state of health) and predict battery SOL 

(state of life) even in an extrapolation manner. This dissertation aims to integrate the 

variability of real-world driving activities into the evaluation of lithium-ion cell aging to 

achieve improved predictiveness and enable battery health conscientious optimization..  

1.3 Objectives and Dissertation Outline 

This dissertation aims to integrate the real-world driving variability into the 

calibration of battery aging models in the context of optimal design and control of 

electrified vehicles. The inclusion of the real-world drive cycles requires more accurate 

synthesis and finer categorization. This comprises quantification of a metric for driver 

aggressiveness and an algorithm to classify road conditions. The drive cycles can then be 

further related to lithium-ion cell duty cycles in a more representative way via a vehicle 

simulation for impact characterization. A methodology needs to be proposed to integrate 

the real-world features extracted from the characterization study and enable their 

execution in the experimental aging tests in laboratory settings. The aging test results can 

hint on the aging mechanisms of selected lithium-ion battery chemistry through 

development of an aging model, but more over can directly identify the most influential 

features for battery degradation coming from the real-world driving scenarios. The results 

in this dissertation can support the engineering efforts in the new cell chemistry 

development but also facilitate the advancement of design decisions and control 
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strategies to guarantee lifetime performance of electrified vehicles with considerations of 

battery health objective. This dissertation is organized as follows. 

In chapter 2, a higher order Markov Chain model is proposed for improved accuracy 

of representative drive cycle synthesis [18]. This approach guarantees to condense a large 

amount of real-world driving cycles into representative ones, useful for time-consuming 

and cost-intensive simulation studies. Chapter 3 respectively proposes a new algorithm to 

classify the road conditions [19] and defines an original metric to quantify the driver style 

[20][21], which allows finer data categorization. Subsequently, the real-world drive 

cycles are evaluated through a MATLAB/Simulink into a model of 48V mild hybrid 

vehicle. While identifying relationships between fuel saving potential and battery current 

load through the impact from the driver styles, the drive cycles are simultaneously related 

to cell duty cycles, in chapter 4 [21]. A characterization of the cell duty cycles in 

frequency domain lays the foundation for the synthesis of representative test profiles, 

repeatable in laboratory settings for aging tests, in chapter 5 [22]. The aging results of 

commercial 18650 NMC lithium-ion cells are used to identify the parameters of single-

particle battery model with a stochastic algorithm, and set up the semi-empirical aging 

model in chapter 6 [23]. The overall summary and suggestions for future work is 

discussed in chapter 7. 
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2 The Synthesis of Real-World Drive Cycles

Previous studies consider the impacts of the drive cycles on electrified vehicle design 

[24], as well as the large-scale life-cycle energy analysis with electrified fleets [25][26]. 

They recognized the drawbacks of using just the federal drive cycles are recognized and 

suggested application of the naturalistic driving patterns instead. Nevertheless, applying 

the whole naturalistic driving database directly is time-consuming since it involves 

thousands of executions, while it also makes the results less tractable and difficult to 

analyze. Vehicle system evaluation needs to be done in a more compact way using only a 

limited set of highly representative drive cycles. The goal of this chapter is to develop a 

method for an accurate synthesis of naturalistic drive cycles that provides a realistic 

representation of real-world vehicle usage patterns. 

A procedure for naturalistic cycle synthesis is shown in Figure 2-1. It consists of 

collection of naturalistic cycles as the first step. Categorization of naturalistic cycles 

based on variables related to driving pattern and road condition is the second step. The 

third step synthesizes numerous candidate drive cycles in stochastic manner. Finally, 

through the regression analysis based on a set of significant cycle metrics, representative 

cycles are chosen. 
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Figure 2-1. Procedure for generating representative cycles 

The main objective of drive cycle categorization is to divide cycles into different 

groups, expecting to aggregate similar drive cycles in each category. A much better 

chance of success in analysis and synthesis of representative cycles will be achieved if 

low-speed stop-and-go cycles are separated from high-speed free-flow highway cycles. 

The synthesis of candidate drive cycles involves a stochastic recombination of drive 

cycle segments. Common definitions of drive cycle segments range from micro-trips 

between vehicle stops [27], to acceleration/cruise/deceleration events related to emissions 

[28], and to velocity points under maximum recording resolution [26]. The stochastic 

recombination process relies on the premise that future segment is strongly related to past 

ones due to vehicle physical limitations and human behavioral patterns. The relationship 

is captured with probability distribution. Markov chain is a frequently-used mathematical 

model to capture the probability of driver activities due to its simplicity with 

“memoryless” character [29]. Analysis assumes that future state only depends on the 

current state. A data-driven exploration of Markov chain has been done in a previous 

study [30] but effects from different Markov chain orders have not been addressed, which 

forms the core part of this comparison study. 
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After synthesizing numerous candidate cycles for each cycle category, there should 

be certain criteria upon which some satisfactory cycles can be selected as the 

representatives for each category. This step is often called representativeness validation. 

Previous criteria include significant cycle metrics [29] and Speed/Acceleration Frequency 

Distribution (SAFD) [28]. This study uses 7 significant cycle metrics after a systematic 

regression analysis [29]. Then the candidate drive cycle whose significant metrics are 

closest to mean values of these in corresponding cycle category is regarded as the most 

representative drive cycle. 

This chapter starts with naturalistic drive cycle categorization. Impacts of Markov 

chain of different orders on cycle synthesis performance are assessed next. Solutions and 

results follow; the chapter ends with the conclusion. 

2.1 Naturalistic Drive Cycles Categorization 

The data source for this study is a portion of the GPS-enhanced regional household 

travel survey from June 2001 to March 2002, conducted by the Southern California 

Association of Government (SCAG). It was made publically accessible by the U.S. 

Department of Energy’s National Renewable Energy Laboratory [8]. This dataset 

includes filtered drive cycles after removing outlying high and low speeds, data spikes 

and infeasible accelerations. A total of 612 drive cycles from 292 passenger vehicles are 

used in this work. 

Since our acceptance criteria for a representative drive cycle is the mean-value 

approximation error, large variance of cycle characteristics will have a detrimental effect. 

In other words, mixing significantly different driving patterns together, such as low-speed 
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city driving and highway cruising, will lead to the synthetic cycles might not capture the 

characteristics from either. This study categorizes the drive cycles based on cycle 

distance as in a previous study [29]. 

In Figure 2-2, cycle distances are classified into bins with 2 km increments. Very 

short cycles less than 2 km are intentionally neglected. The cumulative distribution for 

the trip distance is also included. We categorize trips by splitting the cumulative 

distribution equally. Three cycle categories, short, medium and long, are identified. As 

indicated by the star notation in Fig 2, cycles with the distance less than 4 km cover 

nearly 33% of people’s driving activity, another 33% of trips fall between 4 km and 10 

km and the rest 33% are more than 10 km. This categorization is used for subsequent 

comparison study.  

 

Figure 2-2. Distribution of cycle distances in the SCAG database 
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Typical driving patterns for three driving distance categories are shown in Figure 2-3. 

A clear increasing trend of cycle duration and mean velocity is observed when moving 

from a short cycle to a long cycle, while the idle time percentage and stops per kilometer 

decrease. 

  

 

Figure 2-3. Typical naturalistic drive cycles for (a) short, (b) medium and (c) long 

distance categories 

2.2 Problem Formulation 

After drive cycle categorization based on cycle distance, cycles in each category are 

used to generate Transition Probability Matrices (TPM) and subsequently apply Markov 

chains of different orders. The specific forms of Markov chains are derived next.  
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The naturalistic driving cycles are considered as a sequence of transitions between 

different states xk at time k. Acceleration and speed are reliable representations of 

vehicle’s instantaneous states based on vehicle dynamics. They are combined to represent 

a state in Markov chain [29]. Each of them is discretized and assumed to take on a finite 

number of values, {a1, a2 ,…, am} and {v1, v2 ,…, vn }, into which any sequence of 

observations {a, v} can be mapped. According to Markov Chain property, the future 

probability of transitions between two successive states depends only on the current state 

[31][32], shown as: 

Pr {xk+1 | xk, xk-1, xk-2… x1} = Pr {xk+1 | xk} Eq. 2.1 

Pr {xk+1 | xk, xk-1, xk-2… x1} denotes the conditional probability distribution of xk+1 

given the occurrence of xk, xk-1, xk-2, …, x1. Pr {xk+1 | xk} denotes the conditional 

probability distribution of xk+1 given the occurrence of only xk. 

In [26], the state xk of Markov Chain takes the specific form of (vk, ak):                     

Pr {vk+1, ak+1 | vk, ak}                                                          Eq. 2.2 

Then, vk+1 is calculated based on the approximation in Eq. 2.3, Δt is the time 

resolution, 1 second in this study, the same following. 

�̇� k+1 = ak+1 ≈ (vk+1– vk) /Δt = (vk+1– vk) Eq. 2.3 

Extending Eq. 2.2 by Eq. 2.3 to get Eq. 2.4, we can see that information of previous 

states is actually taken into account. 

Pr {vk+1, vk+1-vk | vk, vk-vk-1}                                                    Eq. 2.4 

Rewrite Eq. 2.4 in Eq. 2.5: 
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Pr {vk+1|vk, vk-1}                                                                        Eq. 2.5 

The Eq. 2.5 not only allows feasibility to use only velocity as states instead of Eq. 2.2 

for a 2-order Markov chain, but also results in a compact form when trying to consider 

more past states. A 3-order Markov chain implicitly brings ak-1 with the introduction of 

vk-2 in Eq. 2.6. 

Pr {vk+1|vk, vk-1, vk-2}                                                               Eq. 2.6 

Different forms of Markov chain are summarized in Table 2-1. While 2-order Markov 

chain uses the combination of vk and vk-1 as the vehicle state at time k, 3-order Markov 

chain adds vk-2 to the combination as well. 

Table 2-1. Summary of forms of Markov chain in this study 

Standard Form Derivative Form Notation 

Pr {vk+1+, ak+1 | vk, ak} Pr {vk+1|vk, vk-1} 2-order Markov 

chain 

Pr {vk+1, ak+1 | vk, ak; vk-1, ak-1} Pr {vk+1|vk, vk-1, vk-2} 3-order Markov 

chain 

 

Moreover, the exemplary Transition Probability Matrix (TPM) for both 2-order and 

3-order Markov chains could be constructed as shown in Figure 2-4 (a) and (b), by 

sampling the occurrences of velocity states from the naturalistic cycle database. The 0.2 

m/s (≈0.8 km/h) for velocity discretization, equaling to nearly 200 values, is used. The 

real velocity data are mapped onto these state grids. Relying on the derived TPM, the 

cycle synthesis process begins from standstill, and then moves to each subsequent state in 

a stochastic manner based on respective cumulative probability distribution, as shown in 

Figure 2-4 (c), until reaching the destination and ending again in standstill.   
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Figure 2-4.a) TPM for 2-order Markov chain; b) TPM for 3-order Markov Chain; c) 

Different cumulative probability distributions for different vehicle states and one-step 

vehicle state transition 
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Next section presents a comprehensive comparison of the cycle synthesis 

performance by both 2-order and 3-order Markov chain, using the medium-distance (4-10 

km) cycle category for illustration. 

2.3 Methods 

To compare the cycle synthesis performance, a performance index should be defined 

firstly. The index describes how closely a synthesized candidate drive cycle follows the 

mean values of significant metrics from the corresponding cycle categories, which are 

compiled in Table 2-2. Then the distribution of the performance index can be investigated 

to quantify the cycle synthesis quality achieved by different forms of Markov chain. 

2.3.1 Definition of Performance Index 

After using Markov chain to generate a candidate cycle of a certain length, say 6.56 

km (mean distance of cycles between 4~10km), the ideal outcome would lead to minimal 

differences between any metric of the synthesized cycle and the mean value of the 

corresponding metric calculated for the whole category. Therefore in this study, the 

deviations of the mean values of significant metrics in certain cycle category are summed 

up and defined as the Metric Errors for any candidate cycle. 

𝑀𝑒𝑡𝑟𝑖𝑐 𝐸𝑟𝑟𝑜𝑟𝑠 =  ∑
|𝑋�̅� − 𝑌𝑖|

|𝑋�̅�|

𝑁

𝑖=1

 

𝑋�̅�: Mean Values of ith interested cycle metrics from certain category of naturalistic cycles. 

𝑌𝑖:  Value of ith interested cycle metrics from a candidate cycle. 

N:   Number of significant cycle metrics.               
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Table 2-2. Summary of significant cycle metrics for short, medium and long-distance 

naturalistic drive cycles and their statistics 

Significant Cycle Metrics 
Mean Values for 

Cycles (< 4 km) 

Mean 

Values for 

Cycles 

( 4~10km) 

Mean Values for 

Cycles (>10 km) 

Standard deviation of velocity 

(km/h) 
21.79 26.06 34.50 

Mean positive velocity            

(km/h) 
35.30 43.52 62.01 

Standard deviation of acceleration 

(m/s^2) 
0.66 0.67 0.59 

Minimum acceleration (m/s^2) -2.47 -2.77 -2.99 
Percentage of driving time under 

negative acceleration (%) 
35.99 36.82 44.10 

Percentage of driving time under 

positive acceleration (%) 
39.06 40.89 50.01 

Number of stops/km (1/km) 1.52 1.03 0.50 

 

2.3.2 Performance Index Comparison 

To select representative cycles in each cycle category, numerous candidate cycles 

need to be synthesized. The distributions of Metric Errors from these candidate cycles are 

then compared to evaluate cycle synthesis performance with two different forms of 

Markov chain. Two features of Metric Error distributions are of particular interests, 

namely, the mean value of Metric Error and the minimum value of Metric Error. They 

will be used to evaluate the differences between 2-order and 3-order Markov chain cycle 

synthesis methods.  However, regarding the statistical significance of the differences of 

the mean value of Metric Error and the minimum value of Metric Error, hypothesis tests 

should be set up to obtain a convincing proof. 

2.3.2.1 Hypothesis Test on the Decrease of Mean Metric Error 

While numerous candidate cycles can be synthesized, a practical problem arises: how 

many candidate cycles should be synthesized to estimate the population mean value of 
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Metric Errors, µ, in certain confidence interval, (1-α)100%, within certain estimation 

error, ɛ? 

The formula for a (1-α)100% confidence interval for a population mean µ: 

 

Eq. 2.7 

𝑀𝑒𝑡𝑟𝑖𝑐 𝐸𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 is the mean value of the sample, n is the size of the sample, t denotes 

the t-distribution, s is the standard deviation of the sample. 

ɛ = 𝑡𝛼
2

,𝑛−1
(

𝑠

√𝑛
) Eq. 2.8 

𝑛 =
(𝑡𝛼

2
,𝑛−1

)2𝑠2

ɛ2
                                                               

Eq. 2.9 

As sample size n increases, the t-distribution approaches the standard normal 

distribution, denoted by Z in Eq. 2.10.  

𝑛 ≈
(𝑧𝛼

2
)2𝑠2

ɛ2
 

Eq. 2.10 

To solve n, the standard deviation, s, and the estimation error, ɛ, should be fixed. 

They can be inferred from a small pilot study on 100 candidate cycles, whose statistics 

are compiled in Table 2-3. 

Table 2-3. A pilot study on mean metric error with a sample of size 100 in medium-

distance cycle category 

 No. of Candidate 

Cycles 
Mean 

Standard 

Deviation 
2-order Markov chain 100 1.2723 0.4220 
3-order Markov chain 100 1.1881 0.3776 
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From the results of the small-scale pilot study, the standard deviations for both forms 

of Markov chain are used directly, and the estimation error ɛ is set loosely at 0.02. 

Besides, the confidence interval is set at 95% so 𝑧𝛼

2
 = 1.96. Then minimal sample sizes for 

both methods can be determined as: 

n2-order = 
1.9620.42202

0.022   = 1711 Eq. 2.11 

n3-order = 
1.9620.37762

0.022  =  1370                                                                     Eq. 2.12 

Therefore, the sample size is chosen as 2000 for following application. 

Based on the results from the previous subsection, 2000 candidate drive cycles are 

synthesized by 2-order and 3-order Markov chain respectively. Their statistics are 

summarized in Table 2-4. 

Table 2-4. The study on mean metric error with a sample of size 2000 in medium-

distance cycle category 

 No. of Candidate 

Cycles 
Mean 

Standard 

Deviation 
2-order Markov chain 2000 1.2802 0.4449 
3-order Markov chain 2000 1.2430 0.4278 

 

A decrease of mean values of Metric Error from 1.2802 to 1.2430 can be achieved by 

using a 3-order Markov chain. However, the statistical significance of the decrease 

should be validated, relying on hypothesis test. 

Hypothesis test is oriented towards making decisions and moving ahead with actions. 

Basic procedures for the test is to (1) formulate a null hypothesis H0 and, if appropriate, 

an alternative hypothesis H1; (2) design a test procedure by which a decision can be 
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made; (3) Use statistics to finalize the test procedure, making judgments about the 

significance level; (4) Apply the test to individual cases; (5) Make decisions. 

The two-sample t-test [33] is applied to determine if two population means are equal. 

The purpose in this study is to test if the 3-order Markov chain is superior to 2-order 

Markov chain in reducing the mean Metric Error when synthesizing representative drive 

cycles. 

In this study, the two-sample t-test is defined as: 

Null hypothesis, H0 : µ2-order  = µ3-order 

Alternative hypothesis, Ha : µ2-order  > µ3-order 

µ2-order  and µ3-order are the population mean of Metric Error by 2-order and 3-order 

Markov chain respectively. 

Test Statistics: T = 

𝑋1
̅̅ ̅̅ − 𝑋2

̅̅ ̅̅

√
𝑠1

2

𝑁1
+ 𝑠2

2

𝑁2

 
Eq. 2.13 

where N1 and N2 are the sample sizes, both 2000 in this study; 𝑋1
̅̅ ̅̅  and 𝑋2

̅̅ ̅̅  are the 

sample means for 2-order and 3-order Markov chain; 𝑠1
2  and 𝑠2

2  are the sample 

variances for 2-order and 3-order Markov chain. 

The significance level α is set at 0.05. 

The rejection for the null hypothesis is T>𝑡1−𝛼,𝑣, where 𝑡1−𝛼,𝑣 is the critical value of 

the t distribution with v degrees of freedom. 
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v =  
(
𝑠1

2

𝑁1
+

𝑠2
2

𝑁2
)2

(𝑠1
2/𝑁1)2

𝑁1 − 1 +
(𝑠2

2/𝑁2)2

𝑁2 − 1

 Eq. 2.14 

When statistics from Table 2-4 are inserted into above equations, the results are T = 

2.6954, and  𝑡1−𝛼,𝑣 = 1.645. Therefore the criteria of rejection for the null hypothesis is 

met, µ2-order > µ3-order. In other words, the difference between the mean values of Metric 

Error population from the candidate cycles by 2-order and 3-order Markov chain is 

statistically significant; the 3-order Markov chain can indeed improve accuracy. 

2.3.2.2 Hypothesis Test on the Decrease of Minimum Metric Error 

Another meaningful statistical feature for assessing the performance of a Markov 

chain is the minimum Metric Error. From a sample of 2000 Metric Errors, only the 

minimum one will be from the representative cycle. For example, if 10 samples of 2000 

candidate cycles, totally 20,000 cycles, are synthesized, only 10 minimum Metric Errors, 

representative cycles correspondingly, will be achieved. Then two similar questions as 

above arise again: is there any difference between the minimum Metric Errors? If any, is 

the difference statistically significant? To answer them, certain amount of minimum 

Metric Errors should be attained first; in other words, several iterations of synthesizing 

2000 candidate cycles should be done. Then the hypothesis test procedures can be set up 

again by replacing the mean Metric Error with the mean Minimum Metric Error. 

The first step is to determine how many minimum Metric Errors should be attained. 

The statistics of a pilot study of size 10 are in Table 2-5.    
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Table 2-5. A pilot study on mean minimum metric error with a sample of size 10 in 

medium-distance cycle category 

 
No. of 2000-sized 

Cycle Sample 

Mean 

Minimum 

Metric Error 

Standard 

Deviation 

2-order Markov chain 10 0.4188 0.0455 
3-order Markov chain 10 0.3882 0.0309 

 

Setting estimation error at 0.01, refer to Eq. 2.10: 

n2-order, minimum = 
1.9620.04552

0.012
 = 79.53 

 

n3-order, minimum = 
1.9620.03092

0.012  = 36.68 

 

Therefore, 80 iterations of 2000 candidate cycle synthesis will be conducted for both 

forms of Markov chain. Thus 80 minimum Metric Errors can be attained for each form of 

Markov chain. 

The statistics of the 80 iterations of 2000 candidate cycle synthesis are summarized in 

Table 2-6. A two-sample t-test is proposed to test the significance of the decrease of 

mean Minimum Metric Error. 

In this study, the two-sample t-test is defined as: 

Null hypothesis, H0 : µ2-order, minimum  = µ3-order, minimum 

Alternative hypothesis, Ha : µ2-order, minimum  > µ3-order, minimum 

Table 2-6. The study on mean minimum metric error with a sample of size 80 in medium-

distance cycle category 

 
No. of 2000-sized 

Cycle Sample 

Mean 

Minimum 

Metric Error 

Standard 

Deviation 

2-order Markov chain 80 0.4037 0.0477 
3-order Markov chain 80 0.3869 0.0442 
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µ2-order, minimum  and µ3-order, minimum are the population mean of Minimum Metric Error 

by 2-order and 3-order Markov chain respectively. 

According to Eq. 2.13 and Eq. 2.14 at the same significance level (0.05) and the 

statistics in Table 2-6, the test statistics T = 2.3107 > 𝑡1−𝛼,𝑣=1.660, indicating rejection to 

the null hypothesis while accepting the alternative hypothesis. In other words, with 3-

order Markov chain, the minimum Metric Error is significantly reduced in a statistical 

sense. 

Summing up, with the new cycle synthesis method based on the 3-order Markov 

chain, the Metric Error as a performance index decreases in both mean value and 

minimum value. The significance is statistically validated with hypothesis tests. Though 

not shown in detail, the decreases by 3-order Markov chain apply to short and long 

distance cycle categories as well.  

2.4 Results  

For every cycle category, 80 2000-sized cycle samples have been attained with two 

forms of Markov chain. From the 160,000 cycles in each cycle category, the 7 significant 

cycle metrics of the most representative cycles (with least Metric Error) with both forms 

of Markov chain are compiled in columns 3 and 4 of Table 2-7. The mean values of 

significant cycle metrics of all naturalistic cycles in each category are also shown in the 

column 2 of Table 2-7 for better illustration of representativeness. 
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Table 2-7. The statistics of the most representative drive cycles by 2-order and 3-order 

Markov chains 

Significant Cycle Metrics 
Mean Values for 

Cycles (< 4 km) 

2-order Markov 

Chain 

(Deviations 

from mean) 

3-order Markov 

chain  

(Deviations   

from mean) 

Standard deviation of velocity 

(km/h) 
21.79 

21.05 

(3.42%) 

22.32 

(2.42%) 

Mean positive velocity            

(km/h) 
35.30 

36.11 

(2.29%) 

35.06 

(0.7%) 

Standard deviation of acceleration 

(m/s^2) 
0.66 

0.74 

(11.80%) 

0.73 

(10.70%) 

Minimum acceleration (m/s^2) -2.47 
-2.45      

(0.93%) 

-2.44 

(0.93%) 

Percentage of driving time under 

negative acceleration (%) 
35.99 

34.36 

(4.54%) 

35.26 

(2.03%) 

Percentage of driving time under 

positive acceleration (%) 
39.06 

36.81 

(5.76%) 

36.99 

(5.28%) 

Number of stops/km (1/km) 1.52 
1.41 

(7.46%) 

1.44 

(5.68%) 
Metric Errors N/A 36.19% 27.75% 

 

Significant Cycle Metrics 
Mean Values for 

Cycles (4-10 km) 

2-order Markov 

Chain 

(Deviations 

from mean) 

3-order Markov 

chain  

(Deviations   

from mean) 

Standard deviation of velocity 

(km/h) 
26.06 

25.53 

(2.04%) 

25.53 

(2.04%) 

Mean positive velocity            

(km/h) 
43.52 

 41.20 

(5.33%) 

43.61 

(0.20%) 

Standard deviation of acceleration 

(m/s^2) 
0.67 

0.71 

(6.06%) 

0.73 

(9.43%) 

Minimum acceleration (m/s^2) -2.77 
-2.67      

(3.56%) 

-2.89 

(4.48%) 

Percentage of driving time under 

negative acceleration (%) 
36.82 

34.13 

(7.30%) 

36.85 

(0.08%) 

Percentage of driving time under 

positive acceleration (%) 
40.89 

39.87 

(2.49%) 

37.01 

(9.48%) 

Number of stops/km (1/km) 1.03 
1.09 

(6.13%) 

1.02 

(0.26%) 

Metric Errors N/A 32.91% 25.98% 
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Significant Cycle Metrics 
Mean Values for 

Cycles (>10 km) 

2-order Markov 

Chain 

(Deviations 

from mean) 

3-order Markov 

chain  

(Deviations   

from mean) 

Standard deviation of velocity 

(km/h) 
34.50 

33.37 

(2.04%) 

34.68 

(0.51%) 

Mean positive velocity            

(km/h) 
62.01 

 55.42 

(10.62%) 

57.83 

(6.74%) 

Standard deviation of acceleration 

(m/s^2) 
0.59 

0.57 

(2.55%) 

0.64 

(8.49%) 

Minimum acceleration (m/s^2) -2.99 
-3.11      

(4.21%) 

-2.89 

(3.23%) 

Percentage of driving time under 

negative acceleration (%) 
44.10 

29.45 

(26.15%) 

30.86 

(22.61%) 

Percentage of driving time under 

positive acceleration (%) 
50.01 

35.08 

(20.46%) 

35.42 

(19.68%) 

Number of stops/km (1/km) 0.50 
0.50 

(0.55%) 

0.50 

(0.64%) 
Metric Errors N/A 67.83% 61.89% 

 

From above results, 3-order Markov chain is capable of synthesizing more 

representative drive cycles. Their significant cycles approach mean values better. Worthy 

of note are the large Metric Errors for long-distance cycle category. One possible reason 

is that driving patterns in this category have more variability than counterparts in other 

categories, implying a need for a better cycle categorization in this long-distance range. 

In fact, using 10km as a transition from medium to long-distance driving activity is 

imprecise because many city trips would be longer than 10km. However, for a 

comparison study this inaccuracy is within tolerance. For real applications of 

representative drive cycle synthesis, this point should be taken into account and finer 

cycle categorization is recommended. The Figure 2-5 below illustrates the speed traces 

for the 3 most representative drive cycles. 
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Figure 2-5. Representative drive cycles for (a) short, (b) medium, (c) long-distance real-

world trips 

2.5 Conclusions 

This study investigates synthesis of representative drive cycles by Markov chain of 3-

order versus 2-order. Prior to analysis, the naturalistic drive cycles are categorized into 

short, medium and long, to aggregate similar driving patterns. Then Markov chains of 

different orders are derived and output is analyzed to determine the potential benefits 
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from using the higher order. The comparison between 2-order and 3-order Markov chain 

on cycle synthesis performance is based on the newly defined index, Metric Errors. It 

sums up the differences on significant cycle metrics between any candidate cycle and the 

mean values of the naturalistic drive cycles in a corresponding cycle category. The mean 

Metric Errors and the minimum Metric Errors from numerous synthesized candidate 

cycles both decrease with a 3-order Markov chain compared to 2-order Markov chain. 

The significance of the decrease has been validated with statistical hypothesis tests. 

Hence, the Markov chain of 3-order is preferred when generating representative synthetic 

cycles from large naturalistic driving database. 
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3 The Categorization of Real-World Drive Cycles 

In chapter 2, the significance of categorizing similar drive cycles has been 

emphasized for the accuracy of representative cycle synthesis. However, it cannot be 

emphasized enough that finer categorization is required to validate the product design and 

control strategy under complex real-world driving scenarios. This chapter proposes an 

algorithm and a metric, to identify road conditions and quantify driver styles, respectively 

with only the speed traces available. Demonstration on different datasets indicates the 

methodologies can be generalized and widely used in different product engineering 

applications. 

3.1 Categorization of Drive Cycles by Road Conditions 

Boundary conditions are a critical element of electrified vehicle design process, and 

they are to a large extent determined by the drive cycles employed in vehicle simulations 

or testing. Hence, a basic premise of this work is that understanding of customers and 

their naturalistic driving patterns are essential for the success of the propulsion system.  

That’s the only way to assess the performance and fuel economy that the consumer will 

experience after acquiring the new vehicle, as well as expected battery degradation over a 

complete life cycle. 

In this study, we rely on the publically accessible portion of a GPS-enhanced regional 

household travel survey from June 2001 to March 2002 conducted by the Southern 

California Regional Travel Survey in TSDC [8]. As drive cycle is defined as a series of 

speed points versus time from “key-on” (zero speed) to “key-off” (zero speed), 2347 

drive cycles are collected for 292 “Autos”, 513 drive cycles for 66 “Sports Utility 
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Vehicles”, 381 drive cycles for 43 “Vans”, 349 drive cycles for 58 “Pickup Trucks”, 63 

drive cycles for 5 “Other Trucks”. Considering the purpose of this study, detailed second-

by-second naturalistic drive cycles from the “Pickup Truck” segment are analyzed. 

3.1.1 Methods  

The main objective of drive cycle categorization is to divide cycles into different 

groups, based on their dominant features. Since our acceptance criteria for a 

representative drive cycle will be the error of mean-value approximation, a large variance 

of cycle characteristics would have adverse effect on determination of representativeness.  

As an example, it is not reasonable to attempt to synthesize a representative drive cycle 

from a mixed group of cycles that include low-speed stop-and-go city driving and high-

speed free-flow highway driving under the risk of losing features of both driving patterns. 

Previously used cycle categorization methods relied on cycle distance and cycle mean 

velocity and their probability distribution in the database [29][36]. Though the authors 

found a correlation between the driving distance and some of the statistically significant 

variables, e.g. mean velocity or mean positive acceleration, one obvious drawback is the 

sacrifice of other cycle details, e.g. frequency of “hills”. This is illustrated by two specific 

drive cycles from the database in Figure 3-1. Both cycles cover the same distance with 

the same mean velocity, but Example cycle #1 can be interpreted as a mixed-cycle of 

highway cruise and congested urban driving, while Example cycle #2 represents an 

uncongested urban driving interrupted only by traffic lights. With the intuition from 

Figure 3-1, it is recommended to cut every cycle into several sub-cycles which are self-

contained, and correlate them with road conditions to better identify categories. One 
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approach to determine snapshots of sub-cycles is to look at the driving activities between 

successive stops, so-called micro-trips, as illustrated in Figure 3-2. In this paper, the 

defined micro-trip does not include any idling period because the characteristics of 

running periods can individually describe local road conditions adequately. In Figure 3-2, 

one can confidently attribute urban stop-and-go traffic to the #1 micro trip, highway 

traffic to the #2 micro trip, and urban/suburban mixed traffic to the #3 micro trip.   

 

Figure 3-1. Two example drive cycles from the 2001-2002 South California Household 

Travel Survey 
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Figure 3-2. Illustration of the micro trip concept 

In order to make the technique objective, statistical parameters for characterizing the 

micro trips ought to be identified. This study uses micro trip duration and micro trip mean 

velocity for characterization. The two parameters carry explicit driving information. For 

example, a short-duration micro trip with low mean velocity is associated with city stop-

and-go traffic and a medium-duration micro trip with medium mean velocity is indicative 

of urban-suburban mixed traffic. Figure 3-3(a) shows the micro trip mean velocity vs. 

micro trip duration for all micro trips extracted from the available pickup truck drive 

cycles. In Figure 3-3(a), a steep upward trend can be observed for the short micro trips, 

i.e. part of the range below 10 min duration, followed by leveling-off beyond the 10 

minute duration.  This is where data clustering concept can be introduced to partition the 

micro trips. While there are many data clustering techniques, this study uses k-means 

clustering which utilizes a basic but fast algorithm. 

The k-means clustering technique involves an iterative process to partition 

observations into the requested number of clusters, which equals to k. Necessary steps 

include the following: 

Step 1: Choose k initial cluster centers. 
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Step 2: For all observations, calculate their distances to each chosen center. 

Step 3: Assign each observation to the closest center. 

Step 4: Calculate the average distances between all observations and the respective 

center in each cluster and respectively update the cluster centers. 

Step 5: Repeat the steps 2 to 4 until the cluster assignments cease to change. 

Reader is referred to Lloyd’s algorithm [37] for more details. This study uses the 

kmeans function in the MATLAB’s statistics toolbox. 

3.1.2 Results 

Since two clusters have been visually identified, all micro trips are firstly clustered 

based on both normalized micro trip duration and normalized micro trip mean velocity, as 

seen in Figure 3-3(b). The result clearly separates data that demonstrates a steep increase 

of mean velocity with trip duration, from the longer trips where this relationship levels 

off. However, this does not provide sufficient segregation, as micro trips in each cluster 

still display significant differences. The #1 Cluster alone includes micro trips that reach 

mean velocity of 5 km/h and 95 km/h but with the same duration. In other words, the 

two-cluster partitioning is still very rough. Consequently, micro trips in each of the two 

clusters are further sub-divided into two additional clusters, based solely on micro trip 

mean velocity, as shown in Figure 3-3(c). All trips with velocity below 30 km/h fall into 

the #1 Cluster, representing low-speed (congested) urban driving well. While micro trips 

in cluster #2 represent uncongested urban road conditions with somewhat higher 

velocities. Clusters #3 and #4 describe urban/suburban mixed, and highway road 
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conditions, respectively. The duration of these micro-trips is much longer, and mean 

velocities in cluster #4 are above 80 km/h.   

 

 

Figure 3-3. (a) Distribution of all micro trips; (b) partitioned by both micro trip duration 

and micro trip mean velocity into two clusters; (c) further partitioned into four clusters 

only by micro trip mean velocity. 
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After clustering all micro trips, the next question is how to categorize every drive 

cycle based on the variety of its micro trips. In this study, a look-up table is created for 

manual cycle categorization, see Table 3-1. The specific rules include:  

1) If drive cycle contains micro trips from #1 and probably #2 clusters, and the 

number of micro trips from #1 cluster over total number of micro trips is over ½, the 

drive cycle is categorized as from Congested Urban road conditions. 

2) If drive cycle contains micro trips from #2 and probably #1 clusters, and the 

number of micro trips from #2 cluster over total number of micro trips is over ½, the 

drive cycle is categorized as from Uncongested Urban road conditions. 

3) If drive cycle contains micro trips from #3 and probably #1 or #2 clusters, and the 

number of micro trips from #4 cluster is zero, the drive cycle is categorized as from 

Urban-Suburban road conditions. 

4) If drive cycle contains micro trips from #4 and probably #1 or #2 or #3 clusters, 

and the number of micro trips from #4 cluster over total number of micro trips is below ½, 

the drive cycle is categorized as from Urban/Suburban-Highway road conditions. 

5) If drive cycle contains micro trips from #4 and probably #1 or #2 or #3 clusters, 

and the number of micro trips from #4 cluster over total number of micro trips is over ½, 

the drive cycle is categorized as from Highway road conditions. 

Figure 3-4 illustrates typical drive cycles for every cycle category. 
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Table 3-1. Cycle categorization based on micro trip cluster components 

Cycle Category 
Micro trip Cluster 

Components 
Cycle Characteristics 

Congested Urban #1, (#2)
a
 

[#1]
b
/[#Total]≥0.5 

Uncongested Urban (#1), #2 
[#2]/[#Total]

c
>0.5 

Urban-Suburban (#1,#2),#3 
[#4]=0 

Urban/Suburban –Highway (#1,#2,#3),#4 
[#4]/[#Total]<0.25 

Highway (#1,#2,#3),#4 
[#4]/[#Total]≥0.25 

a. The micro trip components in () do not necessarily exist 

b. The [] represents the number of corresponding cluster of micro trips in a drive cycle  

c. The [#Total] represents the total number of micro trips in a drive cycle 

 

 

Figure 3-4. Typical drive cycles in each cycle category 

Above categorization algorithm allows grouping of cycles with similar features.  

However, each category contains a huge amount of cycles, and therefore is not practical 

for powertrain design and/or control studies. Rather, a representative drive cycle should 

be synthesized for every road condition with the methodology in chapter 2. Following 
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that logic, five representative drive cycles are selected and their statistics are also inserted 

in Table 3-2. Their speed traces vs. time are shown in Fig. 6. 

Table 3-2. Statistics for naturalistic drive cycles and the representative drive cycle in all 

cycle categories 

Significant Cycle 

Metrics 

Mean Values                             

Congested Urban Cycles 

Representative                          

Congested Urban Cycle 
Standard deviation of 

velocity (km/h) 
 22.83  23.59 

Mean positive velocity 

(km/h) 
 34.25  35.18 

Standard deviation of 

acceleration (m/s2) 
 0.5652  0.6654 

Minimum acceleration 

(m/s2) 
 -2.4622  -2.4400 

Percentage of driving 

time under negative 

acceleration (%) 

 33.50  33.50 

Percentage of driving 

time under positive 

acceleration (%) 

 36.12  35.78 

Number of stops/km 

(1/km) 

 1.61  1.55 

 

Significant Cycle 

Metrics 

Mean Values                             

Uncongested Urban Cycles 

Representative                          

Uncongested Urban Cycle 
Standard deviation of 

velocity (km/h) 
 26.73  27.93 

Mean positive velocity 

(km/h) 
 44.71  43.63 

Standard deviation of 

acceleration (m/s2) 
 0.6909  0.7220 

Minimum acceleration 

(m/s2) 
 -2.9268  -2.8900 

Percentage of driving 

time under negative 

acceleration (%) 

 36.94  32.18 

Percentage of driving 

time under positive 

acceleration (%) 

 41.40  40.10 

Number of stops/km 

(1/km) 

 0.90  0.84 
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Significant Cycle 

Metrics 

Mean Values                             

Urban-Suburban Cycles 

Representative                          

Urban-Suburban Cycle 
Standard deviation of 

velocity (km/h) 
 31.82  31.94 

Mean positive velocity 

(km/h) 
 56.77  56.17 

Standard deviation of 

acceleration (m/s2) 
 0.5284  0.5354 

Minimum acceleration 

(m/s2) 
 -2.6640  -2.6700 

Percentage of driving 

time under negative 

acceleration (%) 

 42.08  30.32 

Percentage of driving 

time under positive 

acceleration (%) 

 47.60  36.04 

Number of stops/km 

(1/km) 

 0.33  0.33 

 

Significant Cycle 

Metrics 

Mean Values                             

Urban/Suburban –Highway 

Cycles 

Representative                            

Urban/Suburban –Highway 

Cycle 
Standard deviation of 

velocity (km/h) 
 40.41  39.67 

Mean positive velocity 

(km/h) 
 76.56  74.79 

Standard deviation of 

acceleration (m/s2) 
 0.5344  0.5463 

Minimum acceleration 

(m/s2) 
 -3.0461  -3.3300 

Percentage of driving 

time under negative 

acceleration (%) 

 41.32  29.19 

Percentage of driving 

time under positive 

acceleration (%) 

 45.58  31.22 

Number of stops/km 

(1/km) 

 0.25  0.27 

 

 

 



 47 

Significant Cycle 

Metrics 

Mean Values                             

Highway Drive Cycles 

Representative                          

Highway Drive Cycle 

Standard deviation of 

velocity (km/h) 
 36.52  35.64 

Mean positive velocity 

(km/h) 
 80.40  75.44 

Standard deviation of 

acceleration (m/s2) 
 0.4711  0.4755 

Minimum acceleration 

(m/s2) 
 -2.5606  -2.6700 

Percentage of driving 

time under negative 

acceleration (%) 

 46.57  30.71 

Percentage of driving 

time under positive 

acceleration (%) 

 48.91  32.77 

Number of stops/km 

(1/km) 

 0.13  0.14 
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Figure 3-5. Illustration of Representative Drive Cycles for All Cycle Categories 

3.1.3 Conclusions – Categorization Based on Road Conditions 

An innovative approach based on micro trip clustering is proposed based on road 

conditions. The naturalistic drive cycles are categorized by analyzing their micro trip 

components. Micro trips are defined as the driving activity between successive stops. The 

micro trips are partitioned based on the duration and mean velocity using the k-means 

data clustering technique to infer the underlying local road conditions. Four typical micro 

trip clusters were identified. Subsequently, a look-up table was created to categorize drive 
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cycles based on the features of micro trips. This new method enhances the ability to 

recognize local underlying road conditions. Next, for each category of road conditions, a 

representative drive cycle was synthesized from numerous real-world ones. Not 

surprisingly, closer examination of the results reveals mean-value approximation errors 

of all representative cycles. The magnitudes are low and therefore very acceptable, but in 

new large set of data, it will be advisable to assess the appropriate number of drive cycle 

categories.  

3.2 Categorization of Drive Cycles by Driver Style 

This part defines a new metric of driver style, derived from the perspective of the 

cycle speed fluctuations. The speed fluctuations can be divided into two portions: the 

large-scale low frequency speed traces related to road conditions and the small-scale 

rapid speed fluctuations normally related to the driver. The latter represent to some extent 

the driver style and it is well known to affect the vehicle energy consumption and 

component duty cycles.  

Driver style is an abstract term related to vehicle’s energy consumption rate over a 

specific drive cycle. Previous studies had attempted to quantify the driver style with 

metrics based on velocity, acceleration and jerk [38][39][40][41]. Relationships between 

these metrics and energy consumption rates had been established to assist in various 

applications such as component design, eco-drive coaching and hybrid vehicle energy 

management [41][42][43]. However, the drawbacks of these metrics are that they are 

mostly average-based, percentile-based or variance-based. In other words, they capture 

only the general trend of drive cycles, missing some interesting details such as the rapid 
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fluctuations of the speed traces. These fluctuations cause a significant fuel economy 

penalty in gasoline/diesel engine powered vehicles, while their impacts on a hybrid 

vehicle depend on the propulsion system design and control. A metric, denoted as driver 

aggressiveness, is proposed in this study to define driver style by capturing the rapid 

speed fluctuations. 

Real-world driving data collected with the GPS devices are widely adopted for the 

evaluation of real-world fuel economy, or the impact on electrified vehicle range and 

component duty cycles [8][44]. Nevertheless, due to the inherent operating behaviors of 

these devices, several sources of errors in the collected driving data had been discussed in 

[45], and summarized as: duplicate records, outlying records, signal drift, signal loss, and 

signal noises. An important step before downstream applications of the GPS collected 

data is to separate signal noises. This is visualized in Figure 3-6 with the GPS raw data 

and smoothed data. Common way of eliminating noise is to implement some filter. 

However, distinguishing between noises and real speed fluctuations is critical, and a new 

method is needed to guide proper filtering. While TSDC driving data applies in-house 

filters to address above errors, the availability of both raw data and processed data offers 

a chance to examine the potential filtering effects. Besides, the Michigan driving data, 

which were collected directly from the onboard Controller Area Network (CAN) bus and 

are assumed to be free of GPS-related high-power noise, are included for comparison as 

well. 



 51 

This study aims to distinguish real world driving signals from signal noises and 

derive a new metric of driver style. The new metric will be validated with vehicle fuel 

consumption simulation. 

 

Figure 3-6. An example of GPS raw data and smoothed data 

3.2.1 Methods 

Every speed trace is a finite-length signal characterizing a driving event (from start to 

stop). Vehicle speed traces can be regarded as the discretized version of continuous-time 

driving velocity. In other words, the driving data from the surveys are sampled from real-

world driving patterns. The sampling frequency for GPS devices is 1 Hz in this study.  

Any discrete-time signal can be studied in both the time domain and frequency 

domain. The bridge between the two domains is the Fourier theory, a branch of harmonic 

analysis [46]. Several Fourier operators (direct and inverse) can be applied to discrete-

time signals.  

160 180 200
60

65

70

75

80

Time (s)

V
e

lo
c
it
y
 (

km
/h

)

 

 

GPS raw data

5-point smoothed



 52 

• Discrete Fourier Transform (DFT) maps length-N signals into a set of N discrete 

frequency components; 

• Discrete Fourier Series (DFS) maps N-periodic infinite signals into a set of N discrete 

frequency components; 

• Discrete-Time Fourier Transform (DTFT) maps infinite signals into the space of 2𝜋-

periodic function of a real-valued argument. 

This study deals with finite-length signal; therefore, the DFT operator is chosen as 

basis for development of new metrics. 

3.2.1.1 Discrete Fourier Transform 

Given a length-N signal, x(n) in discrete time domain, with the Discrete Fourier 

Transform (DFT), the Fourier analysis formula of the signal is in Eq. 3.1: 

𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘𝑁−1

𝑛=0 , 𝑘 = 0, … , 𝑁 − 1  Eq. 3.1 

In Eq. 3.1, 𝑊𝑁 =  𝑒−𝑗
2𝜋

𝑁  

Therefore, a finite length-N signal in time domain can be transferred to frequency 

domain and decomposed into a set of N sinusoidal oscillatory components, characterized 

by the X(k) in frequency domain. X(k), which contain the magnitude and initial phase of 

each oscillator, corresponds to the digital frequency of  2𝜋𝑘

𝑁
 (𝑘 = 0, 1, . . . , 𝑁 − 1). If denote the 

abstract dimensionless digital frequency as ωdigital, it relates to real frequency freal in Hertz 

as in Eq. 3.2: 

𝑓𝑟𝑒𝑎𝑙 =  
𝑓𝑠

2𝜋
𝜔𝑑𝑖𝑔𝑖𝑡𝑎𝑙 

Eq. 3.2 

𝑓𝑠 is the sampling frequency of the signal. Due to the phenomenon of Aliasing [46], 

the maximum real frequency for the signal is 𝑓𝑠/2 for real-valued signal and 𝑓𝑠 for 
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complex-valued signal. Since for all available speed traces in this study, the speed values 

are all real and the sampling frequency is 1Hz, the real-frequency range should be (0: 1/N: 

1/2).  

The transfer from frequency domain to time domain is also feasible with Inverse 

Discrete Fourier Transfer (IDFT), or say, the Fourier synthesis, as illustrated in Eq. 3.3 

for above signal: 

𝑥(𝑛) =  
1

𝑁
∑ 𝑋(𝑘)

𝑁−1

𝑘=0

𝑊𝑁
−𝑛𝑘, 𝑛 = 0, … , 𝑁 − 1 

Eq. 3.3 

DFT is a numerical tool which deals with finite signals and defines a finite number of 

operations, and the Fast Fourier Transform (FFT) is commonly used as the computation-

efficient algorithm to accelerate the DFT. There are several techniques to implement the 

FFT, such as the Cooley-Tukey algorithm [47] and Rader’s algorithm [48]. 

3.2.1.2 The Results of DFT: Periodogram 

Based on DFT, one more useful relationship between the X(k) and x(k) of a signal is 

in the viewpoint of energy conservation, based on the Parseval’s theorem [46] as 

described in Eq. 3.4. 

∑|𝑥(𝑛)|2 =  
1

𝑁
∑|𝑋(𝑘)|2

𝑁−1

𝑘=0

𝑁−1

𝑛=0

 
Eq. 3.4 

As the left side of Eq. 3.4 represents the energy of the finite signal in time domain, it 

equals to the energy in the frequency domain normalized by 1/N, as shown on the right 

side of Eq. 3.4. All the terms on the right side of Equations, described as 
1

𝑁
|𝑋(𝑘)|2, make 

up the so-called Periodogram. Specifically for the zero-mean signals, Eq. 3.4 would have 
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a straightforward physical interpretation: the area under the Periodogram approximates to 

the variance of the signal in time domain with long signal length and high recording 

resolution.  

With all above techniques, every available speed trace can be observed in both the 

time domain and the frequency domain, yielding a new insight on the driving data. 

3.2.2 Application of the Methods 

To apply Fourier analysis on the driving data, some pre-processing is preferred to 

investigate the relevant details of this study. This section showcases these steps before the 

final results are described with an example based on the LA92 (Air Resources Board 

Dynamometer Driving Schedule) drive cycle. 

3.2.2.1 Speed Trace 

Figure 3-7 shows the speed trace of LA92 drive cycle. Even though the speed trace 

seems continuous, it is actually discrete-time signals with the sampling time of 1 second. 

To better view a speed trace in frequency domain via DFT, several pre-processing 

steps have to be completed in time domain. The sequential steps include: 

• Deleting the Idle-period; 

Since the idle-periods do not affect the Ripple Aggressiveness discussed in this study, 

and would significantly affect the frequency components if included, they should be 

deleted.   

• Mean-Adjusting; 

Our investigating Ripple Aggressiveness will not be affected by subtracting the mean 

value from every speed point. By mean-adjusting, the Direct Current (DC) component 
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[46] at the 0 Hz in the frequency domain which can be too big and disguise other 

frequency components will be deleted. 

 

Figure 3-7. (a) Original LA92 drive cycle. (b) Idle-deleted and Mean-adjusted LA92 

drive cycle 

Converting the processed speed trace in the time domain to the periodogram in the 

frequency domain, in Figure 3-8 we can find that for LA92’s speed trace, nearly all of its 

significant frequency components are within the low frequency range(<0.1 Hz), implying 

an inherent harmonic trend. At high frequency range (>0.1 Hz), the frequency 

components though rather small still exist. 
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Figure 3-8. Periodogram of LA92 speed trace 

One way to quantify the aggregation of low-frequency components for speed traces is 

based on the Parseval’s theorem in above section. Specifically for zero-mean signals, the 

area under the curve of Periodogram in the frequency domain approximates the variance 

of the signal in the time domain. Therefore for all the mean-adjusted speed traces, we can 

move from the origin of the Frequency axis to cover the same proportion of the total 

variance in time domain, say 99% in this study. The frequency which satisfies this 

condition will be denoted as the Cutoff Frequency in the following. We apply this notion 

to all trips with driving distance over 1 km from two survey’s processed data, and the 

results are shown in the Figure 3-9. 
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Figure 3-9. Distribution of the cutoff frequency to cover 99% of total variance of the 

speed traces (idle period excluded) 

Figure 3-9 shows a tight relationship between mean running velocity (idle periods 

excluded) and the cutoff frequency. With increasing mean running velocity, the cutoff 

frequency inversely decreases from the peak value of 0.1 Hz. In other words, if we focus 

on the frequency components below 0.1 Hz, all trips can be well transformed with more 

than 99% of variance covered. This means that 0.1Hz can be enough to cover the basic 

features of driving. 

From above results, we can see that in order to investigate the high-frequency speed 

fluctuations, it is necessary to firstly eliminate the low-frequency harmonic trend 

contained in the speed traces. A traditional method that not only de-trends the original 

trace but also contains explicit physical meaning is to difference the speed traces in 

viewpoint of time series [49]. 
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3.2.2.2 Acceleration Trace 

Differencing of the speed trace yields the acceleration trace. An example of the 

acceleration trace from LA92 is shown in the Figure 3-10(a). The intention is to eliminate 

the low-frequency harmonic trend of the speed trace, and the outcome can be evaluated in 

the Periodogram plot for the LA92’s acceleration trace shown in the Figure 3-10(b).  

In Figure 3-10(b), the frequency components of the acceleration trace aggregate in the 

low frequency range (<0.2 Hz) with significant peaks at several frequencies, just as the 

counterparts from the speed trace. Therefore, an inherent harmonic trend is still contained 

in the acceleration trace. In order to further de-trend the acceleration trace, a second 

derivative of speed, or jerk, is examined next. 

 

Figure 3-10. (a) LA92's acceleration and (b) its periodogram 

3.2.2.3 Jerk Trace 

Jerk is defined as the rate of change in acceleration or deceleration. An example 

calculated for the LA92 is illustrated in Figure 3-11(a). Further converting the jerk trace 

into Periodogram in the frequency domain is shown in Figure 3-11(b), no obvious peak 

can be observed and the energy of the trace is almost evenly distributed across the 
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frequency domain, which is in sharp contrast with counterparts from speed and 

acceleration traces. In other words, after two-time differencing, the rapid speed 

fluctuations can be regarded as having been separated from the “traffic trend”. Further 

differentiation is not necessary, and it would not have explicit physical meaning. 

Therefore, jerk trace is utilized for further analysis. 

 

Figure 3-11. (a) LA92’s jerk trace and (b) its periodogram 

For better illustration, periodograms of several jerk traces from real-world 

transportation surveys are shown in Figure 3-12. The elimination of high frequency 

components in Figure 3-12(a) indicates intensive filtering of 2010 California survey’s 

processed data. In stark contrast, the effect of high-power noise is evident in 2001 

California survey’s raw data, because signal energy aggregates mainly in the high-

frequency range (see Figure 3-12(b). Figure 3-12(c) and Figure 3-12(d) show 

periodograms of the jerk traces from the 2001 California survey’s processed data and the 

2001 Michigan project’s CAN data.  Both display a flat distribution similar to the LA92 

data. 
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The greatest difference among the 3 real-world transportation surveys is the 

proportion of high-frequency energy over the whole frequency domain. While the jerk 

trace of the 2010 California survey’s processed data has the high-frequency components 

almost eliminated, the jerk trace from the 2001 California survey’s raw data has nearly all 

energy aggregated in the high frequency range. 

 

Figure 3-12. Example periodograms of jerk traces from (a) 2010 California survey’s 

processed data; (b) 2001 California travel surveys raw data; (c) 2001 California survey’s 

processed data; (d) 2001 Michigan Project’s CAN data 
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3.2.2.4 The Definition of Ripple Aggressiveness 

To formally quantify the variations of the high frequency range observed in Figure 7, 

the first important step is separation of the low-frequency range and high-frequency range 

similarly to [50]. This can be referred back to the Cutoff Frequency in Figure 4. As 

previously mentioned, the frequency components of speed trace below 0.1 Hz can cover 

at least 99% of energy on time domain for all the speed traces. In other words, for a speed 

trace, using only the frequency components below 0.1Hz can be enough to cover the 

basic features of driving determined by traffic 

This observation is used to separate frequency regions in the jerk trace. The low-

frequency part (<0.1 Hz) in Figure 8 is denoted as the “Traffic” part and attributed to the 

basic driving situations which cannot be avoided. The high-frequency part (>0.1 Hz) is 

denoted as the “Ripples”, attributed to the individual driver characteristics and 

investigated as Ripple Aggressiveness. 
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Figure 3-13. Periodogram of LA92's jerk trace 

Based on above discussion, the aggressiveness metric can be defined as in Eq. 3.5. 

Ripple Aggressiveness =  
𝐻𝐹

𝐿𝐹 + 𝐻𝐹 
 

Eq. 3.5 

According to Parseval’s theorem, LF is the energy aggregated in the low frequency 

range by summing the low frequency components below 0.1 Hz, while HF is the energy 

aggregated in the high frequency range by summing the high frequency components 

above 0.1Hz.  

Using this definition, the variation in the proportion of energy between high-

frequency range and low-frequency range can be quantified. This metric is automatically 

normalized between [0, 1], to provide an explicit evaluation for speed traces from any 

database. 

In this work, we apply the Ripple Aggressiveness (RA) defined in Eq. 3.5 to all 

available speed traces. To better illustrate its distribution, all calculated Ripple 
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Aggressiveness values are counted and sorted into a 10-bin histogram shown in Figure 

3-14. Clearly, the distributions of Ripple Aggressiveness calculated using data from 

various transportation surveys vary significantly. While the raw data mostly occupy the 

very upper level of Ripple Aggressiveness (~0.9) due to high-power noise in the signal, 

the processed data of 2010 California survey show normal distribution around 0.4. We 

assume the data from onboard CAN bus are subject to much less noise and represent the 

real-world Ripple Aggressiveness - see the RA distribution of 2001 Michigan project data. 

Ripple Aggressiveness calculated from 2001 California survey processed data show 

distributions similar to Michigan CAN; therefore, it can be inferred that 2001 data are 

more representative for our study, than data from the 2010 survey.  

To further test for potential over-filtering effects, a 5-point SG-Binomial filter 

proposed in [45] is applied to all available speed traces except the processed data of 2010 

California survey. As can be seen in Figure 3-14(b), after further filtering, all traces move 

closer to the traces of the 2010 California survey in Ripple Aggressiveness. Nevertheless, 

more aggressive filter is needed to create complete overlap with processed data of the 

2010 California survey. This leads to a conclusion that the speed traces of California 

2010 survey have indeed been over-filtered to reasonably capture the Ripple 

Aggressiveness. 
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Figure 3-14. (a) Distribution of Ripple Aggressiveness for processed data of California 

2010 travel survey, the processed data and raw data of 2001 California survey and CAN 

data of 2001 Michigan project; (b) Distribution of “Ripple Aggressiveness” for processed 

data of California 2010 travel survey, the further-filtered processed data and raw data of 

2001 California survey and further-filtered CAN data of 2001 Michigan project; 

3.2.3 The New Metric of Driver Aggressiveness 

This section firstly investigates the relation between Ripple Aggressiveness and fuel 

consumption. To achieve this goal, a conventional compact vehicle model, adapted from 

ADVISOR [51], is set up in MATLAB/Simulink as in Figure 3-15. It is a 

backward/forward-looking model, i.e. the power demands are directly calculated from the 

drive cycle and fed back upstream to the engine. The specifications of its key components 

are compiled in Table 3-3. Correctly configured, a reference drive cycle is followed well 

as shown in Figure 3-16. Then the 1851 trips of 292 passenger vehicles from 2001~2002 

Southern California Household Travel Survey [8] with a total driven distance of about 

25,000 km are adopted for simulation. Their cumulative distribution of ripple 

aggressiveness are equivalently split for three drive style categories, namely calm, normal, 

and aggressiveness in Figure 3-17(a). Their mean fuel consumptions are plot in Figure 

3-17(b), yet revealing only a limited positive correlation with ripple aggressiveness. 
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Figure 3-15. Simulink model of a conventional compact vehicle 

Table 3-3. Specifications for vehicle/engine/transmission 

Specifications Units Values 

Vehicle Dynamics 

Curb Weights kg 1300
 

Passenger and Cargo Weight kg 136 

Drag Area m
2 

0.66 

Rolling Resistance Coefficient  0.012 

Tire Radius m 0.287 

Engine 

Engine Type  

Inline 4 cylinders & 

Naturally aspirated & 

Spark Ignition 

Engine Displacement L 1.9 

Transmission 

Transmission Type  6-speed manual 

Transmission Ratios  
[4.148, 2.370, 1.756, 1.155, 

0.859, 0.683] 

Final Drive Ratio  3.21 
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Figure 3-16. Cycle following behaviors by backward/forward-looking vehicle model 

 

Figure 3-17. (a) Distribution of ripple aggressiveness in SCAG database; (b) Mean fuel 

consumption predicted for different ripple aggressiveness categories and according to trip 

distance 

Figure 3-18 illustrates an inconsistency that needs to be addressed. Both trips in 

Figure 3-18 display nearly the same ripple aggressiveness, as defined by Eq. 3.5, even 

though the acceleration rates of the trip (excluding idling periods) in Figure 3-18(a) are 

much higher compared to the trip in Figure 3-18(b). A closer examination indicates that 
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different magnitudes of periodograms might be the cause for the inconsistency, and ought 

to be included in the metric. Hence, a multiplier is added to the definition of ripple 

aggressiveness and the new definition is shown in Eq. 3.6. The modified driver 

aggressiveness is better correlated with the cycle acceleration rates as in Figure 3-18. 

Driver Aggressiveness =  mean (periodogram) ∗
𝐻𝐹

𝐿𝐹 + 𝐻𝐹 
 

Eq. 3.6 

The LF is the energy aggregated in the low frequency range by summing the low 

frequency components below 0.1 Hz; HF is the energy aggregated in the high frequency 

range by summing the high frequency components above 0.1Hz. The Mean (periodogram) 

is the mean value of the periodogram across the whole frequency range. 

 

 

Figure 3-18. Example periodograms of two real-world trips and their corresponding 

speed traces: two driving activities on secondary road at moderate speeds. 

Figure 3(a) on the left, 3(b) on the right 
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Moreover, the driver aggressiveness after categorization into three driver styles are in 

strong positive correlations with fuel consumptions in Figure 3-19. The key points are 

summarized as follows: 

• The fuel consumption variation between calm and aggressive driver can be as much 

as 2L/100km for the short distance trips 

• The relative fuel consumption values increase with reduction of trip distance as the 

short trips can be mostly attributed to city driving and frequent stop-and-start 

situations, with generally higher fuel consumption.  

• The relation between fuel consumption and driver aggressiveness is strongest among 

short-distance trips, seen as the highest positive slope. 

• Strength of the correlation degrades with increasing trip distance because operating 

points move towards the high efficiency region, and the impacts due to driver action 

is not that pronounced. 

 

Figure 3-19. (a) Distribution of driver aggressiveness in SCAG database; (b) Mean fuel 

consumption predicted for different driver aggressiveness categories and according to trip 

distance 



 69 

3.2.4 Conclusions – Driver Aggressiveness Metric 

This part investigates a tradeoff between speed trace fluctuations and GPS data noises 

to deduce the proper filtering method for drive cycles in real-world transportation surveys. 

Analysis of certification cycles led to a conclusion that spectrum of jerk trace 

characterizes all aspects of driving. Vehicle jerk traces below 0.1 Hz represent driving 

dictated by traffic, while higher frequencies correspond to driver behaviors. Rapid speed 

fluctuations in the drive cycle are quantified with metrics called Ripple Aggressiveness 

(RA). It is calculated based on energy aggregated in the spectrum of vehicle jerk traces.  

To assess the relationship between filtering and Ripple Aggressiveness, the analysis 

methodology is applied to several sets of naturalistic driving data. The probability 

distribution of Ripple Aggressiveness clearly indicates differences between data acquired 

with different methodologies. On the left side of the spectrum are over-filtered data from 

the 2010~2012 California Travel Survey (normal distribution of RA around 0.4), while 

the raw data from the 2001-2002 Southern California Regional Travel Survey lead to the 

opposite extreme.  The mildly filtered data from the 2001-2002 Southern California 

Regional Travel Survey produce a Ripple Aggressiveness distribution centered around 

0.78, very similarly to the data from Michigan recorded directly from vehicle CAN.  

Since CAN data are by definition realistic, we conclude that RA distributions can be used 

to assess the representativeness of data obtained with GPS, and that RA distribution 

should be centered between 0.6-0.8. 

Using a conventional compact vehicle model in the MATLAB/Simulink, the fuel 

consumption is found to be in loose positive correlation with the newly defined Ripple 
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Aggressiveness. Modified by the mean value of the periodogram, an innovative definition 

of driver aggressiveness is found to strongly correlate with fuel consumption, which 

paves the pathway for following discussions. 
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4 48V Mild Hybrid Vehicle Modeling and Simulation 

The objective of this chapter is to relate real-world drive cycles to battery cell duty 

cycles. Meanwhile, the impacts of real-world drive cycles on the performance and fuel 

economy of a generic 48V mild hybrid vehicle are analyzed as well. 

The 48V mild hybrid technology is emerging as an attractive option for high-volume 

vehicle electrification. Compared to high-voltage hybrids, the 48V system has a potential 

of achieving competitive fuel economy with significantly lower incremental costs. Its 

typical functions, on top of the Start&Stop, include torque assist and regenerative braking. 

Furthermore, the electrical shock protection is not required for 48V thus lowering the 

overall system and maintenance cost [52]. 

Concerning 48V mild-hybrid technology, many previous studies have been developed. 

In [53], several mild hybrid system architectures are showcased, while [54][55] discuss 

engine options and electric component sizing. Benchmark for the fuel saving potential 

with optimal power management strategy is established in [56][57], and [58][59] propose 

the implementable rule-based and fuzzy-logic strategy, respectively. Simulation based 

study of the 48V system efficiency potentials in different vehicle classes is discussed in 

[60], thus providing useful insights for assessing technology adoption. 

Despite previous efforts, one drawback is that they were all based on the certification 

cycles which lack the representativeness of the real-world driving conditions. Therefore, 

leveraging a naturalistic driving database is indispensable when analyzing a real-world 

fuel saving potential and HEV component duty cycles. In this study, 1851 real-world 

trips from passenger vehicles in the 2001~2002 Southern California Household Survey [8] 
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are imported and coupled with a vehicle model, which is adapted from ADVISOR 

(Advanced Vehicle Simulator) [51]. Subsequently, a consistent energy management 

strategy is implemented in the vehicle simulator and the real-world fuel consumption 

reductions are quantified for different levels of driver aggressiveness. The strategy is 

based on the approach proposed in [61], and it separates power demands into the low-

frequency range, met by the engine, and high-frequency range fulfilled by the electric 

motor. Therefore, engine is assumed to carry the low-frequency, high-amplitude base 

loads for better fuel efficiency, while battery covers only the high-frequency, low-

amplitude fluctuations of the power demands. This assures that the power split between 

the engine and battery is managed consistently regardless of the driver aggressiveness. 

This also enables fair comparison of the fuel efficiency potential. 

4.1 The 48V Mild HEV Simulator 

The statistical distributions of travel distances, cycle mean velocity, idle percentage 

and mean positive acceleration rates of the applied real-world drive cycles are shown in 

Figure 4-1. A large variety of driving conditions are contained in this database; hence, it 

well reflects the real-world driving conditions. The drive cycles with distance less than 1 

mile (1.6 km) are intentionally excluded. 
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Figure 4-1. Distribution of trip distance, trip mean velocity, trip idle percentage, trip 

mean positive acceleration in the SCAG naturalistic drive cycle database 

For the purpose of this study, the 1851 real-world trips are further categorized 

according to driver aggressiveness. It abstracts the frequency of changing the vehicle 

power demand can be referred to Eq. 3.6 and Figure 3-19. 

4.1.1 Vehicle Architecture 

The conventional compact size car in chapter 3 is selected as a platform for 

evaluating the impact of the 48V hybrid system. The baseline roughly corresponds to a 

compact car with a conventional powertrain, which are popular on market with cost-

sensitive customers, with vehicle/engine/transmission specifications in Table 3-3. 

Typical mild hybrid vehicle combines the separate alternator and starter into a single 

starter-generator. The electric motor can be connected mechanically to the engine via 

belt-drive (commonly known as Belt Starter Generator or BSG) or directly coupled to the 
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engine crank-shaft (commonly known as Integrated Started Generator or ISG). This study 

assumes the latter, with a pre-transmission location and continuous operation of ISG 

without an additional clutch. 

A vehicle model, adapted from ADVISOR, is set up in MATLAB/Simulink, shown in 

Figure 4-2. It is a backward/forward-looking model, i.e. the power demands are directly 

calculated from the drive cycle and fed back upstream to the engine in case of the 

conventional vehicle, or the engine and ISG in case of a hybrid configuration. The 

reference drive cycle is again followed closely as shown in Figure 3-16. Hence, there is 

no noise on top of the measured speed trace that could distort driver aggressiveness 

calculations. 

 

 

Figure 4-2. A generic of mild hybrid vehicle in the form of backward vehicle model and 

its Simulink Model 
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The electric motor is represented by its efficiency map. The specifications of electric 

motor and battery used in this study are summarized in Table 3. The battery is a zero-

order equivalent circuit model, illustrated in Figure 7. The state of charge (SOC) is based 

on coulomb counting method, as described by Eq. (4).   

Table 4-1. Motor and battery specifications 

Motor Supply Voltage (V) 42~58 

Motor Maximum Power (kW) 25 

Motor Continuous Power (kW) 20 

Motor Maximum Torque (Nm) 75 @ (0~3000 rpm) 

Motor Maximum Speed (rpm) 10000 

Battery Cell Type Lithium-ion (LFP) 

Battery Cell Rated Capacity (Ah) 4.2 

Battery Cell Max. Continuous Discharge 

Current (A) 84 

Battery Cell Pulse Discharge Current at 30 

seconds (A) 110 

Battery Cell Max Charge Current (A) 42 

Battery Cell Max/Min SOC 0.75/0.35 

Battery Pack Configuration 14 Series/4 Parallel 

 

 

Figure 4-3. Battery zero-order equivalent circuit model 
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SOC =  𝑆𝑂𝐶𝑖𝑛𝑖𝑡 −
∫ 𝑖𝑑𝑡

𝐶𝑏𝑎𝑡𝑡
 

Eq. 4.1 

Where 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 is the initial battery SOC, ∫ 𝑖𝑑𝑡 is the current integration over time, 

𝐶𝑏𝑎𝑡𝑡 is the battery capacity. 

4.1.2 Power Management Strategy 

The power management strategy is derived in frequency domain, so that the impact of 

different levels of driver aggressiveness can be evaluated in a consistent manner. Similar 

to the concept proposed in [61], the power demand passes through a low-pass filter, and 

sends low-frequency and high-frequency power demands to the engine and battery, 

respectively. In contrast to commonly used approach focused exclusively on efficient 

operation by moving the operating points towards high-load, lower brake specific fuel 

consumption (BSFC) region, the strategy developed here aims to separate out the impacts 

of driver aggressiveness and burden the battery consistently. This fulfills the intent to 

correlate the effects of driver aggressiveness with fuel consumption. Since the power 

rating of the ISG is relatively small, consumption penalty associated with the sacrifice of 

some of the HEV’s load leveling ability is not significant. 

The benefits of the frequency-based power split strategy include the decrease of 

engine low-torque/low-BSFC operation, reduced engine transients, and simultaneous 

decrease of battery power peaks. The constraints and assumptions are as follows:  

The filtering effects on power series should ensure that electrical power demands do 

not exceed component limits. Thus, a simple 2-point weighted moving average filter, as 

in Eq. 4.2, is adopted. 
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𝑃�̂� = 0.7𝑃𝑛 + 0.3𝑃𝑛−1 Eq. 4.2 

Where 𝑃�̂� is the low-pass filtered power demand to engine at current time step n, 𝑃𝑛 is 

the actual power demand in current time step n, 𝑃𝑛−1 is the actual power demand in 

previous time step n-1. The coefficient ratios, of which sum equals to 1, are selected 

considering the frequency of crossing battery power limits with real-world cycles. For 

example, at high-power discharge peaks, if the ratio before 𝑃𝑛is less than 0.7, the filtered 

power demand 𝑃�̂�  would be smaller, simultaneously the battery power loads 𝑃𝑛 −  𝑃�̂� 

would be larger. 

The negative power demands were not filtered, but covered by regenerative braking, 

while respecting the battery charging limits and considering engine drag torque. When 

necessary the frictional brakes are blended with the regenerative torque. For the positive 

power demands, whenever the filtered value is smaller than the actual, the filtered power 

demand is met by engine while battery makes up the rest of the demand. The application 

on US06 drive cycle power demand is shown in Figure 4-4. 

Prescribed minimum and maximum SOC is set at 0.35 and 0.75, respectively, and the 

initial SOC at 0.55. The moving average filter is applied between SOC values of 0.45 and 

0.65. Outside of that range, the low-pass filter output is further adjusted by a multiplier 

before being passed on to the engine, as defined in Eq. 4.3. This is done to ensure charge 

sustaining operation. As an example, if the SOC falls to 0.4, the multiplier according to 

Eq. 4.3 is (0.35+0.75) / (2*0.4) = 1.375, and the engine power request is multiplied by 

1.375. In summary, the engine power can be increased to the level that eliminates power-

assist, or even provides battery charging. The same reasoning applies to situations when 
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SOC is higher than 0.65. In that case, the power assist is enhanced and charging events 

reduced/eliminated until SOC falls back to the pre-determined target. The aim is to 

enable a fair comparison of the final fuel economy predictions. Figure 4-5 shows the 

SOC variation of ISG hybrid model over the US06 drive cycle. Desired SOC levels are 

maintained over the drive cycle and the final value is close to the initial. After a small 

correction shown in Eq. 4.3, fuel economy numbers can be fairly compared. 

 

Figure 4-4. Original and filtered power demand of US06 drive cycle 

 (Engine_Power_Demand) Adjusted_Multiplier =  
𝑆𝑂𝐶𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡+𝑆𝑂𝐶ℎ𝑖𝑔ℎ_𝑙𝑖𝑚𝑖𝑡

2𝑆𝑂𝐶𝑎𝑐𝑡𝑢𝑎𝑙
                                                                      

 

Eq. 4.3 

The 𝑆𝑂𝐶𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡 is the minimum battery SOC, 0.35 in this case; 𝑆𝑂𝐶ℎ𝑖𝑔ℎ_𝑙𝑖𝑚𝑖𝑡 is the 

maximum battery SOC, 0.75 in this case; 𝑆𝑂𝐶𝑎𝑐𝑡𝑢𝑎𝑙 is the actual SOC at current time step. 
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Figure 4-5. Battery SOC for US06 drive cycle 

Simulated operation of the 48V mild hybrid powertrain system over the US06 drive 

cycle is illustrated in Figure 4-6. Figure 4-6(a) shows the extent to which engine 

operating points can be shifted towards the higher load with power-assist provided by the 

electric motor. In addition, idling is completely eliminated. Operating points of the 

electric motor are superimposed on its efficiency map in Figure 4-6(b). Negative torque 

points correspond to regeneration mode, and one can observe frequent saturation due to a 

limited power capacity of the 48V system. 

Next, the 48V mild hybrid vehicle model is executed 1851 times for both 

conventional and mild hybrid configuration, using the naturalistic drive cycles from the 

SCAG database, in order to validate the fuel saving potential of the 48V hybrid under the 

real-world conditions, and understand the impacts of driver aggressiveness. 
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Figure 4-6. Operating points obtained over the US06 drive cycle, super-imposed on 

efficiency maps of the a) engine, and b) electric motor. 

4.2 Results 

This section presents the investigation of the potential for reducing fuel consumption 

with 48V mild hybridization. Specifically, relative contributions of different mechanisms 

for reducing consumption are quantified, i.e. Start&Stop, power assist and regenerative 

braking. Furthermore, analysis evaluates the sensitivity of fuel consumption to driver 

aggressiveness. 

The baseline fuel consumtpion in the unit of L/100km is established by simulating the 

operation of the conventional vehicle, as described in the previous section. In the HEV 

simulation study, different functions can be enabled or disabled, to assess their respective 

contributions to the efficiency improvements. Results are presented in a manner that 

allows assessment of the 48V hybrid’s fuel saving potential, as well as its comparison 

with a lower-cost 12V Start&Stop system. In addition, relative contributions of the 

Start&Stop function and the power assist/regeneration functions are quantified. 



 81 

4.2.1 Fuel Saving Potential of 48V vs. 12V Hybridization 

Fuel consumption reduction potential of the 48V mild hybrid stems from both 

Start&Stop function and the power assist/regeneration function. Start&Stop function is 

particularly effective in city driving.  Therefore, Figure 4-7 presents fuel consumption 

reduction with a 48V system as a function of Idle Percentage (time based).  Fuel 

consumption simulation results were fitted with a third-order polynomial with very tight 

coefficient of determination of R
2
 = 0.94 in order to highlight the trends. As the trip idle 

percentage increases, the fuel savings with a 48V system increases exponentially. This 

emphasizes the critical role of the Start&Stop function.  

To further illustrate this point, the 48V hybrid model was modified to include only 

the Start&Stop function while excluding power assist and regenerative braking. This 

effectively approximates a 12V hybrid vehicle. The relationship between fuel 

consumption reduction percentage and trip idle percentage is shown in Figure 4-7, thus 

enabling a comparison of 12V with a fully-featured 48V hybrid.  Both lines display 

almost the same shape, and a relatively small downward translation of the 12V hybrid 

line. This leads to a conclusion that benefits of Start&Stop function dominate under the 

real-world conditions, even in the case of a 48V system. The specific power management 

strategy in this study plays a secondary role, since even with a frequency domain power-

split e-motor and battery power often experience saturation. 
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Figure 4-7. Predicted fuel consumption reduction percentage vs. trip idle percentage for 

both 48V and 12V hybrid vehicle. Results illustrate the critical role of Star&Stop 

function in the case of mild hybrids 

While the dominant role of the Start&Stop function is emphasized whenever driving 

condition included significant idle time, the marginal benefits from power 

assist/regeneration functions worth a closer look. The aim is to correlate the fuel 

consumption improvements with driver impacts. Power management strategy applied in 

this study facilitates the analysis, since the high-frequency power spikes are mostly 

handled by the electrical sub-system. To extract the marginal benefits of power 

assist/regeneration, the Start&Stop function was disabled in the 48V hybrid vehicle 

model. Distribution of predicted fuel consumption reduction (%) for all naturalistic trips 

is given in Figure 4-8. 
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Figure 4-8. Distribution of mild hybridization fuel consumption reduction excluding 

Start&Stop function calculated for 1851 driving cycles in SCAG. 

The most common fuel consumption reduction percentage excluding Start&Stop 

function is around 3%. According to the cumulative probability distribution, about 1-4% 

of fuel consumption reduction percentage points can be realized in 80% of trips. The 

individual gains from power assist/regeneration function are modest but still tangible, as 

expected considering the limited size of electrical components. 

4.2.2 Impacts of Driver Aggressiveness on 48V System 

Since a drive cycle’s idling period when Start&Stop function engages is not directly 

related to driver activity, the impacts of driver aggressiveness can be evaluated better by 

excluding the Start&Stop function. In other words, the fuel saving potential of 48V 

system employing only the power assist/regeneration function can be correlated to driver 

aggressiveness. The simulation is setup accordingly, and predicted fuel consumption is 

assessed for three levels of driver aggressiveness. Statistics of predicted fuel consumption 
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reduction (%) are compiled in Table 4-2. Clearly, aggressive drivers benefit most from 

the 48V hybrid function. 

Table 4-2. Statistics of fuel consumption reduction percentage excluding Start&Stop 

function for different driver aggressiveness in SCAG database 

 

Mean Fuel Consumption 

Reduction Percentage              

(%) 

Standard Deviation of 

Mean Fuel Consumption 

Reduction Percentage 

(%) 

Calm Drivers 2.15 0.87 

Normal Drivers 2.82 0.83 

Aggressive drivers 3.30 0.93 

 

Results are obtained for 617 trips in each driver category. Before claiming a high-

degree of confidence, any differences inferred from the analysis of bulk data should be 

proven to be statistically significant. In other words, statistical analysis ought to prove 

that trends hold regardless the variance of data. A hypothesis tests is setup for this 

purpose. 

4.2.2.1 Hypothesis Test on Mean Fuel Consumption Reduction Percentage by 

Driver Aggressiveness 

Hypothesis test is setup to evaluate the statistical significance of v fuel consumption 

variations due to driver aggressiveness. The basic idea is to compare the data set 

generated in the actual study against a synthetic data set. Basic procedures comprises 

several steps, i.e. (1) formulate a null hypothesis H0 and, if appropriate, an alternative 

hypothesis H1; (2) design a test procedure by which a decision can be made; (3) use 
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statistics to finalize the test procedure, making judgments about the significance level; (4) 

apply the test to individual cases; (5) make decisions. 

The two-sample t-test [33] is applied to determine if means of both two populations 

are equal. The purpose is to test whether aggressive drivers achieve more fuel 

consumption reduction compared to calm drivers. 

In this case, the two-sample t-test is defined as: 

Null hypothesis, H0:    𝜇aggressive = 𝜇calm 

Alternative hypothesis, Ha:     𝜇aggressive > 𝜇calm 

𝜇aggressive and 𝜇calm are the population mean of fuel consumption reduction percentage 

with mild hybridization. Test Statistics: 

T = 
𝑋1̅̅̅̅ −𝑋2̅̅̅̅

√𝑆1
2

𝑁1
+

𝑆2
2

𝑁2

 

Eq. 4.4 

𝑋1
̅̅ ̅ and 𝑋2

̅̅ ̅ are the sample mean fuel consumption reduction percentage of aggressive 

and calm drivers as in first column of Table 4-2; s1 and s2 are the sample standard 

deviation of fuel consumption reduction percentage of aggressive and calm drivers as in 

second column of Table 4-2; N1 and N2 are the sample size, 617 for each driver category 

in this study. 

The significance level α is set at 0.05, equivalently 95% confidence interval. 

The rejection for the null hypothesis is T>𝑡1−𝛼,𝑣, which is the critical value of the t-

distribution with v degrees of freedom, calculated as: 
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v =  
(

𝑆1
2

𝑁1
+

𝑆2
2

𝑁2
)2

(𝑠1
2/𝑁1)2

𝑁1−1
+

(𝑠2
2/𝑁2)2

𝑁2−1

                                                                      

 

Eq. 4.5 

According to t-distribution table, to compare calm and aggressive driver, 𝑡0.95,1226 = 

1.645.  

We further put values from Table 4-2 into Eq. 4.4 and Eq. 4.5, and get T = 22.5452 > 

𝑡0.95,1226 = 1.645. Thus, the criteria of rejection for the null hypothesis is met, the null 

hypothesis that 𝜇aggressive = 𝜇calm should be rejected while accepting the alternative 

hypothesis 𝜇aggressive > 𝜇calm. In other words, the difference in mean fuel consumption 

reduction percentage between aggressive and calm drivers is statistically significant, and 

our conclusion that aggressive drivers benefit more from mild hybridization stands. The 

same procedure can be applied to tests between calm and normal drivers, normal and 

aggressive drivers. Results are Tnormal-calm = 14.0532> t0.95,1230 = 1.645 and Taggressive-normal = 

9.4700> t0.95, 1216 = 1.645, both validating the statistical significance of findings. 

4.2.2.2 Hypothesis Test on Battery Loads by Driver Aggressiveness 

Simulation of the 48V hybrid generates a plethora of powertrain related variables, 

therefore allowing a deeper look into impact of driver aggressiveness on powertrain 

behavior. This presents opportunities to take the study beyond fuel economy predictions. 

In particular, simulation prediction can provide useful insight into the impact of driver 

aggressiveness on battery duty-cycle. Since the magnitude and frequency of the energy 

flows in/out of the battery is known to have a significant impact on its health, battery 

duty cycle analysis can bring an additional dimension to the 48V HEV study. This will be 

addressed in chapter 5 and 6. 
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Battery’s current trace representing the electrical loads was generated for every drive 

cycle. After the zero currents are excluded, the mean values of the average absolute 

current and the standard deviations of the average absolute current are compiled in Table 

4-3. 

Table 4-3. Statistics of mean values of average absolute current for different driver 

aggressiveness in SCAG database 

 

Mean of Average 

Absolute Current                      

(A) 

Standard Deviation of 

Average Absolute Current 

(A) 

Calm Drivers 8.8709 2.5227 

Normal Drivers 9.6375 2.3028 

Aggressive drivers 10.8202 2.5519 

 

Similar to the trend of mean fuel consumption, the mean values of average absolute 

current increase with driver aggressiveness. This can pose challenges regarding battery 

life. Hypothesis tests conducted on the variations of mean average absolute current across 

all driver categories indicates that finding are statistically significant. According to Eq. 

4.4 and Eq. 4.5 and values in Table 4-3, the test results are: Taggressive-calm = 13.4936 > t0.95, 

1211 = 1.645; Tnormal-calm = 5.5749 > t0.95, 1231 = 1.645; Taggressive-normal = 8.5467 > t0.95, 1228 = 

1.645.  

In short, aggressive drivers not only increase the real-world fuel consumption, but 

also impose highest loads on the battery and increase the chances for its premature 

deterioration. The proposed methodology in this study can be extended to modify the 
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supervisory control and explore the trade-off between fuel saving potential and battery 

life for real-world conditions. 

4.3 Conclusions 

This chapter translates the real-world drive cycles into cell duty cycles via the 

simulation of a 48V mild hybrid system. A particular aspect emphasized in the study is 

the impact of driver aggressiveness on fuel saving potential of the near-term 48V 

hybridization technology. A naturalistic database based containing 1851 individual trips 

is processed using a novel definition to determine a distribution of “driver 

aggressiveness”. Methodology splits the signals of vehicle jerk in frequency domain to 

separate the low-frequency range attributed to traffic, from the high-frequency range 

influenced by the driving style. The ratio of energy aggregated in the high-frequency 

range to total, corrected by a mean value of periodogram across the whole range, 

provides the metric for categorizing trips based on their aggressiveness. 

Both the conventional and the 48V mild hybrid configurations of a compact 

passenger car are modeled using MATLAB/Simulink. Supervisory controller is designed 

to facilitate consistent power management while assessing the impacts of driver 

aggressiveness. A low-pass, moving-average filter is used to split the power demand; 

splitting the low-frequency/large-amplitude signal to the engine, and high-frequency but 

small-amplitude signal to the battery.  

The fuel consumption of the baseline conventional vehicle and the 48V hybrid was 

simulated for all 1851 driving cycles from the SCAG database. Analysis of results was 

approached from two angles, i.e. the findings were used to both assess the contribution of 
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different fuel economy improvement mechanisms in a 48V system, and correlate the 

driver aggressiveness with the magnitude of improvements. The conclusions are as 

follows: 

• 48V HEV system with Start&Stop, torque assist and regenerative braking functions, 

provide tangible fuel consumption reduction, strongly correlated with the percentage 

of idle time 

• 48V hybrid can surpass the 12V hybrid by 1-4% of relative fuel consumption 

improvement in 80% of cases. Therefore, while Start&Stop plays a dominant role, the 

contribution of electric torque assist/regeneration is still tangible   

• Aggressive driving can lead to ~25% increase of fuel consumption with the 

conventional powertrain. Hybridization can partially mitigate the effects of aggressive 

driving on fuel consumption, as aggressive drivers benefit the most from the 48V 

technology. However, insights also indicate that aggressive style leads to highest 

average battery currents, which can stress the battery and affect its life.  

Overall, the results confirm the tangible improvements of fuel economy with a 48V 

system compared to a 12V HEV, and indicate increased positive impact of hybridization 

in case of aggressive driving. The quantitative assessments of the driver style aid in 

optimizing the design and power management under real-world conditions, thus enabling 

the balance between the regulation requirements and consumer expectations. 

This simulation study also translated the real-world vehicle drive cycles to battery cell 

duty cycles categorized by driver styles and road conditions. The subsequent chapter 
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serves to characterize the duty cycles and presents a methodology to synthesize them into 

representative profiles feasible for aging experiments. 
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5 Synthesis and Experimental Validation of Battery 

Aging Test Profiles 

Electrified powertrains are gaining a larger market share due to regulatory strategies 

and customer desires. Ranging from micro hybrid to all electric powertrains, however, 

their success highly depends on satisfactory life-long performance of onboard energy 

storage systems. In order to guide the battery pack design and management, real-world 

representative aging tests are essential for a successful product development. Focusing on 

cycle aging, this study proposes a methodology based on Welch’s power spectral density 

estimation to extract and synthesize characteristic cell aging test profiles from real-world 

duty cycles. The 48V mild hybrid vehicle model in MATLAB/Simulink relates the real-

world vehicle drive cycles to cell-level duty cycles. Compared to other test profiles 

currently available in the literature, which are mostly composed of constant pulses or 

real-world transient pulses, the newly designed test profiles combine both clarity and 

real-world representativeness. Experimental validation is conducted with the proposed 

aging profiles on nickel manganese cobalt (NMC) lithium-ion batteries. The impacts of 

real-world driving activities on cell aging are studied and results lay foundation for aging 

models to identify the most influential aging mechanisms. This chapter focuses on 

incorporating knowledge of real-world driving activities into battery cycle aging test on 

cell level. 

In contrast to calendar aging tests which typically consider only temperature and SOC 

(State-of-Charge) [62][63][64], cycle aging tests incorporate additional stress factors, 

including ΔSOC, C-rate, Ah-throughput and Discharge/Charge events. The design of 
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cycle aging tests is largely driven by the type of applications, such as hybrid electric 

vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and Electric Vehicles (EVs) 

[65]. Although battery cycle aging tests are being conducted worldwide, e.g., United 

States, Japan and Europe, a unified aging test protocol does not exist as different 

procedures are being used from country to country. 

This chapter investigates the battery operations in the 48V mild hybrid vehicle [21] 

and extracts useful information to synthesize repeatable test profiles to be run in 

laboratory settings. The cell cycle aging stress factors are closely linked to driver styles 

as well as road conditions. To account for these uncertain causes, nearly 2000 real-world 

drive cycles with detailed second-by-second speed traces are adopted in this study from 

the public travel survey provided by National Renewable Energy Laboratory (NREL) [8]. 

Cycle aging test profiles from the literature can be summarized in three categories. 1) 

Rectangular constant current/power pulses. These cycles, shown in Figure 5-1(a), are 

widely used to separate the impacts of different stress factors, usually with no 

implications from real-world scenarios [66][67][68][69][70][71][72][73][74]. 2) 

Transient real-world cell duty cycles. These traces, shown in Figure 5-1(b), are directly 

adopted as test profiles to fully consider the intrinsic cycle variability although complex 

statistical analysis is needed to explore the correlation between aging phenomena and 

operating conditions [75][76]. 3) Semi-transient test profiles. These cycles, as depicted in 

Figure 5-1(c), which are usually synthesized from statistical analysis of real-world 

current/power profiles, are the most popular candidates for cycle aging campaign 
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[77][78][79], as they constitute a well-compromise between clarity and real-world 

resemblance. 

 

Figure 5-1. Illustration of commonly used cycle aging test profiles 

In this study, we propose a novel methodological framework to characterize real-

world cell duty cycles in frequency domain with their power spectral density (PSD) 

estimations, and synthesize them into representative semi-transient test profiles. Through 

our process, the output profiles are dynamic, charge-neutral, within manufacturer 

operation limits, and most importantly can be well traced back to the real-world driving 

scenarios. These representative profiles can be coupled with different temperatures to set 

up the aging test for aging assessment. 

Lithium-ion batteries comprise a family of chemistries that employ mostly carbon-

based anode and various cathode materials. Each provides disadvantages and advantages 

in several aspects: safety, performance, cost, specific energy, specific power and lifespan 

[80][81]. The cycle aging experimental results conducted in this study aim at 

supplementing the understanding of lifespan of nickel-manganese-cobalt (NMC)-based 

cathode lithium-ion cells [69][70]. Previous findings on other popular cathode materials, 
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such as nickel-cobalt-aluminum (NCA) [67][68] and iron-phosphate (LFP) [71][72][73] 

can be found in the literature. The experimental results obtained in this chapter can be 

applied to identify cell aging models, useful for the design and control of onboard lithium 

ion battery pack. 

5.1 Approach 

This study as above applied the part of GPS (Global Positioning System) enhanced 

household travel survey from June 2001 to March 2002 conducted by SCAG (Southern 

California Association of Governments), of which de-identified data are publicly 

available through the U.S. Department of Energy’s National Renewable Energy 

Laboratory (NREL) [8]. 1851 trips from 292 passenger vehicles with a total driven 

distance of about 25,000 km are adopted in this study. The statistical distributions of 

travel distances, cycle mean velocity, idle percentage and mean positive acceleration 

rates can be referred to Figure 4-1. Our definition of driver aggressiveness abstracts the 

frequency of changing the vehicle power demand, which is essentially equivalent to the 

frequency of changing power/brake pedal position, and can be referred to Eq. 3.6 and 

Figure 3-19. 

Table 5-1 compiles the number of trips in each category determined by drive cycle 

mean velocity and driver aggressiveness, of which the probabilistic distributions are 

equivalently separated into three parts respectively (calm, normal, aggressive for driver 

styles; low-, medium- and high-speed for traffic conditions ). While aggressive style 

dominates the low-speed driving, calm style rules the high-speed scenario. This 

interesting trend implies the real-world variability of driver behaviors. 
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Table 5-1. The number of real-world trips in each category 

Number of 

Trips 
Calm Normal Aggressive 

Low Speed 64 235 318 

Medium Speed 150 234 233 

High Speed 406 141 70 

 

The 48V mild hybrid vehicle is described in previous chapter. Since the NMC lithium 

ion chemistry emerges as a very strong candidate for 48V system, the HEV simulation 

was modified to align the work in this chapter with relevant industry needs. The NMC 

cell specifications shown in Table 5-2 were used to develop a model incorporated in the 

HEV simulation throughout this chapter. 

 An exemplary drive cycle and its related battery cell current profile are compared in 

Figure 5-2. The cell discharge and charge periods display significantly different patterns. 

In contrast to charge current demands, the discharge counterparts with higher limit are 

more segmented. All drive cycles in the database can then be processed through the 48V 

hybrid vehicle model to attain related cell current profiles. Next section serves to identify 

latent features in real-world battery duty cycles and extract characteristic aging test 

profiles. 
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Table 5-2. Specifications for battery and starter-generator 

Specifications Units Values 

Battery 

Cell Chemistry  
Nickel-Manganese-Cobalt (NMC) 

Lithium ion 

Cell Rated Capacity Ah 2.0 

Cell Max Discharge           

Pulse Current 
A 30 

Cell Max Charge                  

Pulse Current 
A 12 

Battery Pack 

Configuration 
 14 series/4 parallel 

Starter-Generator 

Supply Voltage V 42-58 

Max/Continuous Power kW 25/20 

Max Torque Nm 75 @ (0~3000 rpm) 

Max Speed rpm 10000 

 

 

Figure 5-2. A drive cycle speed profile and its battery cell current profile 
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5.2 Development of Representative Battery Test Profiles 

With a snapshot over 460s~540s time window of the current profile in Figure 5-2, 

discharge and charge micro profiles are defined and displayed in Fig. 6. The zero current 

snippets during vehicle stops are not considered. This study aims to investigate whether 

there is any underlying cyclic pattern in discharge/charge micro profiles and how these 

patterns vary across real-world scenarios. While only sequential data are observed in time 

domain, cyclic events can be better captured in frequency domain with the Fourier 

analysis. The introduction of Fourier analysis can be referred back to section 3.2.2.1 

 

Figure 5-3. The definition of discharge and charge micro profiles 

5.2.1 Characterization of Cell Duty Cycles 

As the differences between discharge and charge activities had been emphasized, all 

the discharge micro profiles and charge micro profiles in this study are separately 

concatenated in each driving data category. Additionally, a pre-processing step, namely 

mean-adjusting, is preferred to make hidden frequency features more discernible; 
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otherwise, the component at zero frequency might be too large to disguise other 

frequency components. For both discharge and charge data, we adjust by flipping every 

other micro profile, as displayed in Figure 5-4 and Figure 5-5. Considering the length of 

data and accuracy requirement, we adopt the Welch’s method and illustrate the process 

on the mean-adjusted charge data in Figure 5-5. It applies to the discharge data in Figure 

5-4 as well. A hamming window of length 256 is moving along the time series with 

overlap of length 128; these modified periodograms are averaged to output the estimated 

PSDs in Figure 5-6 and Figure 5-7 The length 256 and 128 are chosen to achieve 

satisfactory smoothing level. 

 

Figure 5-4. Mean-adjusted concatenated discharge micro profiles of calm low speed trips 

(~4.5 hour data for display) 

As the power spectral density indicates the distribution of time series variance across 

the frequency domain, we emphasize the different peak values of PSDs between calm and 

aggressive drivers in low-speed driving activities in Figure 5-6 for illustration. In 

discharge, aggressive drivers have the peak frequency of 0.0215 Hz, translated to a 46-
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second sinusoidal period in time domain; calm drivers have the peak frequency of 0.0156 

Hz, equal to a 64-second period. In charge, the comparison is 0.0469 Hz of aggressive to 

0.0390 Hz of calm; equivalently a period of 22-second to 26-second. The fact that 

aggressive drivers have shorter discharge/charge events applies for high-speed driving 

activities in Figure 5-7 as well. Another difference is the area under the curve of PSDs, 

which is proportional to the variances of concatenated time series summarized in Table 

5-4. 

 

Figure 5-5. Mean-adjusted concatenated charge micro profiles of calm low speed trips 

(~0.5 hour data for display); also include illustration of Welch’s moving window method 

for power spectral density estimation 
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The information in Table 5-3 and Table 5-4 can be summarized as: 1) the batteries of 

aggressive drivers switch faster between discharge and charge; 2) the batteries in low 

speed driving conditions switch faster between discharge and charge; 3) In each category 

the charge periods are shorter than discharge counterparts; 4) The differences of current 

variances in discharge scenarios are significantly enlarged by both driver aggressiveness 

and driving speed; 5) The differences of current variances in charge scenarios are 

relatively small because they are mostly saturated by the charge current limits. 

 

Figure 5-6. Power spectral density estimation for low speed drive cycles 

 

Figure 5-7. Power spectral density estimation for high speed drive cycles 
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Table 5-3. Significant frequency of concatenated mean-adjusted discharge and charge 

micro trips for calm and aggressive drivers in low/high-speed drive cycles 

Peak Frequency (Hz) 
Mean-Adjusted 

Discharge 

Mean-Adjusted    

Charge 

Calm Low Speed 0.0156
 

0.0390 

Calm High Speed 0.0004 0.0352 

Aggressive Low Speed 0.0215 0.0469 

Aggressive High Speed 0.0117 0.0352 

 

Table 5-4. Variance of concatenated mean-adjusted discharge and charge micro trips for 

calm and aggressive drivers in low/high-speed drive cycles 

Variance (A
2
) 

Mean-Adjusted 

Discharge 

Mean-Adjusted    

Charge 

Calm Low Speed 21.85
 

74.34 

Calm High Speed 52.96 84.00 

Aggressive Low Speed 54.96 82.44 

Aggressive High Speed 99.03 91.10 

 

5.2.2 Synthesis of Battery Aging Test Profiles 

Information on Table 5-3 and Table 5-4 can be used to synthesize characteristic cell 

aging test profiles based on cycle speeds and driver styles. The synthesized aging profiled 

are in the form of sinusoidal waves with the peak frequencies from estimated PSDs and 

the period of mean-adjusted time series. The derivation of such profiles is illustrated, see 

Figure 5-8, considering the aggressive high speed category. Constructed with half 

sinusoidal profiles separately from discharge and charge data, the synthesized 

characteristic profile should comply with current limits and must be Ah-throughput 
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neutral to guarantee repeatability. Following the same philosophy, the characteristic 

profiles for calm low speed, calm high speed, aggressive low speed and aggressive high 

speed driving conditions are compiled in Figure 5-9. For all of them, the charge parts are 

close to the manufacturer limit, but the discharge parts are significantly different in 

duration and current magnitude. Aggressive drivers tend to discharge their batteries faster 

and harder; high-speed driving increases battery discharge duration and current 

magnitude. 

 

Figure 5-8. The process of synthesizing the characteristic battery test profiles for 

aggressive high speed category 

T = 1/0.0117 Hz ≈ 86s

Amplitude 

=
= 14 A

T = 1/0.0352 Hz ≈ 28s

Amplitude 

=
= 13.5 A

• Decrease Charge Current within limit
• Make Profile Ah-throughput Neutral

by adapting Discharge Current
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Figure 5-9. Characteristic battery test profiles for four categories of driving data 

5.3 The Experimental Setup and Aging Test Results 

This section discusses the experimental setup and the aging test results using the 

synthesized charge-neutral profiles developed in the previoous sections. Experiments 

were carried out at the Battery Aging and Characterization (BACh) Laboratory at the 

Automotive Engineering Department at Clemson University. The experimental setup 

used for the aging campaign, shown in Figure 5-10, is composed of the Arbin BT-2000 

battery cycler with a programmable power supply and an electronic load; a MITS Pro 

data acquisition software for the programming of test profiles and the control of the Arbin 

cycler; Peltier junctions that are in direct contact with the cell fixtures for thermoelectric 

temperature control. This study applies cylindrical Nickel-Manganese-Cobalt (NMC) 
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18650 lithium ion cells with nominal capacity of 2Ah and nominal voltage of 3.6V. Other 

cell specifications can be referred to Table 5-2. 

 

Figure 5-10. Experimental test set-up at the BACh Laboratory, CU-ICAR 

In the experimental aging campaign the calm low speed (CLS) and aggressive high 

speed (AHS) profiles were tested at two temperatures, 23
 
C and 45 C, respectively to 

form the test matrix shown in Table 5-5. For each test condition, two cells were tested for 

repeatability concerns. At the beginning and periodically, typically 3 weeks, all cells 

underwent capacity characterization tests at room temperature of around 25C. The 1C 

capacity tests was performed by first charging the cell to 4.2V at constant current of 1C, 

then holding constant voltage at 4.2V until the current dropped to C/50. The fully charge 

phase was followed by one hour rest, then finally the 1C discharge until the cut-off 

voltage of 2.5V was reached. A flowchart of this aging campaign is visualized in Figure 

5-11. 

Arbin 
BT-2000 Cycler

Peltier Junctions 
with 18650 NMC 
Li-ion cells inside

MITS Pro Data 
Acquisition
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Table 5-5. Aging test matrix, numbered cells with aging conditions 

Aging Conditions Cell No. # 

Calm Low Speed 23oC (CLS23) Cell 1 / Cell 2 

Calm Low Speed 45oC (CLS45) Cell 3 / Cell 4 

Aggressive High Speed 23oC (AHS23) Cell 5 / Cell 6 

Aggressive High Speed 45oC (AHS45) Cell 7 / Cell 8 

 

 

Figure 5-11. The flowchart of the aging test 

The normalized capacity loss results from three-month characterization tests are 

shown in Figure 5-12. The cells undergoing the AHS45 cycle (i.e. cells #7 and #8) only 

lasted 2 months considering the severe aging rate of the cycle. For better comparison, the 

x-axis is in Ah-throughput rather than time. Cells #1 and #2, undergoing the CLS23 cycle 

show no capacity loss after 3-month aging period. A slight capacity recovery is instead 

observed. Interestingly, for CLS45 Cell#3 and AHS23 Cell#6, some capacity recoveries 

are also observed during the first few aging characterization stages. But when compared 

to their repeated counterparts, those recoveries can be regarded as outliers. 



 106 

The capacity loss severity is in following orders: the aggressive high speed 45
o
C case 

as the severest, calm low speed 45
o
C case as the second, aggressive high speed 23

o
C as 

the third, calm low speed 23
o
C as the mildest. The aging results can be interpreted as 

following: 1) the impact of temperature on aging is more significant than the discharge 

current magnitude, or the driving style; 2) the impact of discharge current rate on aging is 

larger at high temperature; 3) the impact of temperature on aging is larger as the 

discharge current rate increases. The aging results derived with the test results emphasize 

the need for an efficient battery thermal management as well as the benefits one might 

obtain from eco-driving. 

 

Figure 5-12. Battey aging test results with in-house characteristic profiles 

5.4 Conclusions 

This chapter analyzes the real-world battery duty cycles and synthesizes characteristic 

aging test profiles. Using naturalistic vehicle drive cycles, which are categorized by mean 
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speed and driver aggressiveness, a 48V mild hybrid vehicle model with appropriate 

power management strategy is constructed in MATLAB/Simulink to generate real-world 

battery duty cycles. By Fourier analysis on discharge and charge data separately, we 

conclude that: 1) discharge pulses are generally longer in duration than charge pulses; 2) 

aggressive driver style shortens the discharge/charge durations while high-speed driving 

activities lengthen them 3) aggressive driver style and high-speed driving activities both 

stimulate larger discharge/charge current rates. Recognizing the patterns, characteristic 

sinusoidal test profiles are synthesized with peak frequencies and amplitudes respectively 

from power spectral density estimations and time series variances.  After adapting those 

profiles to be within current limits and Ah-throughput neutral, they are qualified for aging 

tests. Under different temperatures and ‘driving styles’, the cycle aging results reveal the 

negative impacts of aggressive driver style at high temperature on cell capacity. The 

methodologies for the characterization of real-world duty cycles and synthesis of 

representative profiles can be flexibly extended to new datasets. The aging test results lay 

the foundation for the cell aging modeling and the investigation of cycle aging 

mechanisms. This study has also shown that repeatability of tests is an important aspect 

to account for when aging campaigns are being conducted. 
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6 NMC Lithium ion Battery Aging Modeling 

Lithium-ion chemistry is expanding its dominance from the portable devices to 

automotive applications. However, to fulfill customer expectations regarding the 

performance of electrified vehicles in real-world scenarios, lithium-ion batteries are still 

fundamentally compromised due to effects of aging on regarding electric range, power 

capability and service life. In response, manufactures have chosen to either oversize the 

battery pack or provide a smaller pack with a strong warranty program. Both result in 

added ownership costs. Efficient battery management based on accurate state estimation 

offers a path to extended life and reduced cost. Among all battery internal states, the 

state-of-health (SOH) quantifies the capacity loss or impedance rise across usage. 

Therefore, accurate SOH estimations are critical for pursuing battery aging conscious 

pack design and including battery aging into supervisory control optimization. This 

chapter focuses on identification of parameters critical for SOH estimation, and their 

subsequent calibration of aging models using experimental results generated with battery 

cycler setup. 

The main aging mechanisms of lithium-ion batteries have been discussed in several 

review papers [15][16][17], and can be briefly summarized based on a phenomena 

occurring at two electrodes. For carbon-based negative electrode (commonly graphite), 

there is a passivation protective layer forming at its electrolyte/electrode interface, named 

solid electrolyte interface (SEI), during first few charging processes. Upon operation 

tensions, the SEI undergoes thickening and reformation by consuming available lithium 

ions. The SEI development is accepted as the major reason for lithium ion battery aging. 
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For positive electrode, despite various material choices, its aging can be attributed to 

active material loss and a solid permeable interface (SPI) without full passivation. High 

temperature and state-of-charge (SOC) can aggravate the aging conditions at both 

electrodes.  

Battery aging processes are commonly distinguished by calendar aging under storage 

and cycle aging under usage, of which an additive degradation relationship is often 

assumed [16]. While calendar aging is stressed by time, temperature and SOC, cycle 

aging introduces additional stressors such as Ah-throughput, ΔSOC, C-rate, 

charge/discharge events. We focus on cycle aging under real-world usage. To separate 

highly-coupled impacts from the aging stressors in real-world operation, well-controlled 

test activities are usually set up to age the cells in an accelerated manner. A series of such 

efforts has been carried out for the family of lithium-ion chemistry which employs 

different positive electrode materials. Specifically on the cycle aging of Li(NiMnCo)O2 

(NMC) 18650 cylindrical cells, [69][82] combined several SOCs with different ΔSOC 

only at 1 C-rate at 35
o
C, [83]applied a comprehensive test matrix comprised of 5 ΔSOC , 

3 charging rates, 3 discharge rates and 3 temperatures at 50% SOC but aiming at high 

energy applications (like EVs). A gap clearly exists in the understandings of NMC 

performance in high power applications. This scarce of knowledge extends to large 

format NMC pouch cells as well [70][84][85][86]. Taking HEV propulsion as example, 

with shallow ΔSOC around a fixed SOC for charge sustaining operation, a wide range of 

discharge/charge current rate and temperature should be the dominating aging factors.  

Although the NMC chemistry has been generally considered to be limited on high current 
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rates [64][87], this study tends to evaluate its feasibility in HEV configuration 

quantitatively with experimental and simulation results. 

Our aging campaign builds on a test matrix filled with in-house customized aging 

profiles, which are extracted from real-world battery duty cycles concerning road 

conditions and driver styles in chapter 5. They mainly differ in discharge current rate, 

charge/discharge event duration and Ah-throughput per cycle. A 48V mild hybrid vehicle, 

which is a near-term affordable electrification solution, is modeled in chapter 4 using 

MATLAB/Simulink to relate the vehicle drive cycles and battery duty cycles. Further 

coupled with two temperatures, the NMC cells exhibits capacity loss and impedance rise 

in varying degrees. 

The cycle aging results stimulate the needs to fit appropriate aging models to suggest 

the internal degradations, imply cell design trade-offs and facilitate online management. 

A variety of models has been proposed for reasonable inference and can be classified into 

four categories. 1) Data-driven models, including artificial neural networks [67] and time 

series analysis [88], are simple yet suffer from inaccuracy especially for unlearned 

conditions. 2) Empirical functions are directly set up between capacity loss/impedance 

rise and Ah-throughput, but they require intensive calibration efforts in their prefixed 

coefficients [69][72][74][85][89] and shed little insights into aging mechanisms. 3）

Equivalent circuit based models approximate the batteries with resistors, inductors, 

capacitors and so on [90][91]; the aging of these electrical components as functions of 

usage patterns can update the circuit parameters for battery health information [92][93]. 

Nevertheless, their implications into aging mechanisms are still limited. 4) Physics based 
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aging models firstly rely on electrochemical battery models, ranging from single-particle 

model, to porous electrode pseudo-2D, and way up to kinetic Monte Carlo model in the 

increasing order of complexities [94]. Then either aging sources (mostly the growth of 

SEI) are explicitly inserted into the governing equations [95][96][97][98][99] or selected 

model parameters are updated with some curve-fitting procedures [100][101]. To 

exchange for aging insights and accuracy, they calls for accurate identification of a large 

parameter set and probably needs model reduction for online applications. 

Physics-based aging models typically involve dozens of parameters and are thus 

under the risk of overfitting. As some parameters (geometry, mass and concentration) can 

be measured directly, other ones (diffusion, kinetic and stoichiometric) are not easily 

accessible. The parameter correlations and parameter sensitivities further complicate the 

problem. They can be summarized as the issue of parameter identifiability. Therefore, the 

challenge of reliable parameter identification must be tackled before any meaningful 

conclusions based on model parameters are derived. Several literature have proposed 

scientific methodologies, such as sensitivity analysis [101], fisher information matrix 

[102] and Monte Carlo sampling [103]. Among them, Monte Carlo sampling method, a 

global parameter space searching algorithm, has the potential to evaluate parameter 

identifiability comprehensively in a simple manner despite its computational burden. On 

an off-line investigation, this study affords to use the Monte Carlo method to understand 

the parameter identifiability of the single-particle battery model. Subsequently, without 

assuming aging mechanisms into the governing equations, an empirical relationship 
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between the identifiable aging-related parameters and Ah-throughput will be fit for 

lifetime estimation in other aging conditions. 

6.1 Methods and Results 

The experimental setup, applied cells, test profiles and test procedures have been 

reviewed in chapter 5. Besides the capacity loss data reviewed in chapter 5, the internal 

resistance rise data are also included below for completeness. For calculation of the inner 

resistance, the hybrid pulse power characterization (HPPC) profile was executed. It 

applies a 18s 4C discharge pulse followed by a 40s rest period and 10s 3C charge pulse 

followed by a 40s rest period for every 10% interval between 90% and 20% SOC. An 

flowchart of the complete aging test is illustrated in Figure 6-1. 

 

Figure 6-1. The flowchart of the complete aging test 

The eight cells for the aging test were numbered and mapped to their corresponding 

aging conditions in Table 5-5. The initial capacities for the eight cells are plot in Figure 
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6-2(left), all a bit short of the nominal capacity at 1C. The relationships between open 

circuit voltage and SOC cells in Figure 6-2(right) are tight among cells. 

 

Figure 6-2. Cell initial capacities (left); Cell open circuit voltage vs. SOC (right) 

The increase ratios of internal resistance, which is the average 1-second discharge 

resistance from the HPPC test, can be referred to Figure 6-3. Generally, the degradations 

of internal resistance are not significant since only the CLS45 conditions reached the 1.1 

increase ratio in our aging campaign. In contrast to our intuition, the CLS23 condition 

overwhelms the AHS23 and AHS45 conditions, and all cells somehow show deviating 

trends. These may be attributed to the limited resistance degradations so that potential 

trends are heavily affected by the test uncertainties. In this case, meaningful results on 

internal resistance increases call for extended aging tests beyond 3 months. 
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Figure 6-3. The internal resistance increase in the aging test 

The normalized capacity losses percentages are compiled in Figure 6-4. The capacity 

loss severity is in following orders: the AHS45 cases as the severest, the CLS45 case as 

the second, the AHS23 as the third, the CLS23 as the mildest. Interestingly, except the 

AHS45, all other conditions witness some capacity recoveries in few beginning 

characterization stages. The aging results can be interpreted as: 1) the impact from 

temperature is larger than discharge current magnitude; 2) the impact from discharge 

current magnitude is larger at high temperature; 3) the impact from temperature is larger 

at higher discharge current rate. The aging trends derived with the test results emphasize 

the importance of eco-driving and battery health management. 
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Figure 6-4. The capacity loss in the aging test 

6.1.1 Electrochemical Model Parameter Identification 

6.1.1.1 Single Particle Model 

The single particle model is set up to simulate the cell voltage response.  Each 

electrode is represented by a spherical particle, inside which the lithium ion diffusion 

follows the Fick’s diffusion law as in Eq. 6.1. 

∂𝑐𝑖

∂𝑡
−  𝐷𝑖

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
) = 0 

 

Eq. 6.1 

Initial and boundary conditions are: 

𝐷𝑖

𝜕𝑐𝑖

𝜕𝑟
= 0,    𝑎𝑡 𝑟 = 0 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡 ≥ 0 

 

Eq. 6.2 

𝐷𝑖

𝜕𝑐𝑖

𝜕𝑟
= −𝑗𝑖,    𝑎𝑡 𝑟 = 𝑅𝑖 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡 ≥ 0 

 

Eq. 6.3 

Where the subscript 𝑖 = 𝑛 for negative electrode, 𝑖 = 𝑝 for positive electrode; 𝐷𝑖  is 

the diffusion coefficient of the electrolyte in the solid particle (m
2
/s); 𝑐𝑖 is the solid-phase 
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concentration (mol/m
3
); 𝑅𝑖 is the radius of the solid particle (m); 𝑟 is the distance from 

the center of the particle (m); 𝑡  is the time (s); 𝑗𝑖  is the intercalation current density 

calculated as in Eq. 6.4. 

𝑗𝑖 =
𝐼

𝐴𝑖
=

𝐼

3/𝑅𝑖𝜀𝑖𝑉𝑖
 

 

Eq. 6.4 

Where 𝐼 the applied current, positive for discharge is, negative for charge; 𝐴𝑖is the 

equivalent electro-active surface area (m
2
); 𝜀𝑖 is the volume fraction of the active material 

in the electrode; 𝑉𝑖 is the volume of the electrode (m
3
). 

To simplify the Eq. 6.1, a parabolic solid concentration profile in Eq. 6.5 is assumed 

[104]. 

𝑐𝑖(𝑟, 𝑡) = 𝑎(𝑡) + 𝑏(𝑡)
𝑟2

𝑅𝑖
2 

 

Eq. 6.5 

After insertion, the resultant equations are: 

𝑑

𝑑𝑡
𝑐𝑎𝑣𝑔,𝑖 + 3

𝑗𝑖

𝑅𝑖
= 0 

 

Eq. 6.6 

𝐷𝑖

𝑅𝑖
(𝑐𝑠,𝑖 − 𝑐𝑎𝑣𝑔,𝑖) = −

𝑗𝑖

5
 

 

Eq. 6.7 

The 𝑐𝑠,𝑖  is the particle surface lithium ion concentration; the 𝑐𝑎𝑣𝑔,𝑖  is the average 

lithium ion concentration in the electrode, which can determine the SOC or the 

stoichiometric number of the electrode in Eq. 6.8 by normalizing on 𝑐𝑚𝑎𝑥,𝑖, maximum 

electrode lithium ion concentration (mol/m
3
). 
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𝑆𝑂𝐶𝑖 =
𝑐𝑎𝑣𝑔,𝑖

𝑐𝑚𝑎𝑥,𝑖
 

 

Eq. 6.8 

As the 𝑆𝑂𝐶𝑖 can be used to infer the electrode open circuit potentials (OCP), 𝑉𝑖,𝑜𝑐𝑝, it 

should be further adjusted by the contact resistance voltage drop (𝑅𝑓 ), and the over-

potentials derived in Eq. 6.9 and Eq. 6.10, which is caused by the resistance of the flow 

of electrons at the electrode-electrolyte interface. 

𝑑0,𝑖 = 𝐹 ∗ 𝑘𝑖 ∗ √𝑐𝑒 ∗ 𝑐𝑠,𝑖 ∗ (𝑐𝑚𝑎𝑥,𝑖 − 𝑐𝑠,𝑖) 

 

Eq. 6.9 

𝜂𝑖 =
𝑅𝑇

0.5𝐹
asinh (

𝑗𝑖

2𝑑0,𝑖
) 

 

Eq. 6.10 

The cell voltage response output, 𝑉𝑜𝑢𝑡𝑝𝑢𝑡, is expressed in Eq. 6.11. 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑉𝑝,𝑜𝑐𝑝 + 𝜂𝑝 − 𝑉𝑛,𝑜𝑐𝑝 − 𝜂𝑛 − 𝑅𝑓 ∗ 𝐼 

 

Eq. 6.11 

Where 𝜂𝑖 is the electrode surface over-potential; 𝑑0,𝑖 is the exchange current density 

(A/m
2
); 𝑅 is the universal gas constant, 8.314 J/kmol; 𝑇 is the temperature (K); 𝐹 is the 

Faraday constant, 96487 (C/mol); 𝑘𝑖 is the reaction rate constant (m
2.5

/mol
0.5

/
 
s); 𝑐𝑒 is the 

solution phase concentration (mol/m
3
); 0.5 is the approximate apparent exchange 

coefficient for lithium ion cell. 

In addition to the two electrode OCPs, the single particle model discussed above 

introduces 14 parameters as in Table 6-1. The initial values are from similar-sized 18650 

cells in [95][100] However, the coupling between 𝑘𝑖 and 𝑐𝑒 in the form of 𝑘𝑖√𝑐𝑒 in Eq. 
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6.9 indicates that only 13 effective parameters should be identified. In this study 𝑐𝑒 is 

always fixed at 1000 mol/m
3
 to allow the estimation of 𝑘𝑖. 

Table 6-1. The parameter set with cited values for the discharge capacity test data 

Notations Parameters Cited Values 

𝑅𝑛 
Negative Electrode Equivalent Particle 

Radius (μm) 
5 

𝑅𝑝 
Positive Electrode Equivalent Particle 

Radius (μm) 
5 

𝐴𝑛 
Negative Electrode Equivalent Active 

Surface Area (m
2
) 

2 

𝐴𝑝  
Positive Electrode Equivalent Active 

Surface Area (m
2
) 

2 

𝐷𝑛 
Negative Electrode Solid Phase Diffusion 

Coefficient, *10
-14

(m
2
/s) 

2 

𝐷𝑝 
Positive Electrode Solid Phase Diffusion 

Coefficient, *10
-14

(m
2
/s) 

2 

𝑘𝑛 
Negative Electrode Surface Reaction Rate 

Constant, *10
-11

(m
2.5

/mol
0.5

/
 
s) 

2 

𝑘𝑝 
Positive Electrode Surface Reaction Rate 

Constant, *10
-11

(m
2.5

/mol
0.5

/
 
s) 

2 

𝑐𝑚𝑎𝑥,𝑛 
Negative Electrode Maximum Lithium 

ion Concentration (mol/m
3
) 

25000 

𝑐𝑚𝑎𝑥,𝑝 
Positive Electrode Maximum Lithium ion 

Concentration (mol/m
3
) 

22000 

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 
Negative Electrode Beginning-of-

Discharge SOC 
0.90 

𝑆𝑂𝐶𝑝,𝐵𝑂𝐷 
Positive Electrode Beginning-of-

Discharge SOC 
0.02 

𝑅𝑓 Cell Contact Resistance (Ω) 0.02 

𝑐𝑒 Solution Phase Concentration (mol/m
3
) 1000 

 

Despite the simplicity, the inherent drawback of neglecting solution phase dynamics 

limits the application of single-particle model in the low current rate scenarios (usually 

smaller than 1C). In our case, the open circuit voltage measurements (@C/20) and 
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discharge capacity measurements (@1C) are qualified for the adoption of single-particle 

model. 

The OCPs of the two electrodes are chosen from [105], and validated on the OCV 

measurements (Cell#7 for example) in Figure 6-5. The three discernible staging 

phenomena in the OCV measurements are captured well with the selected OCP curves. 

The electrode OCPs thus are set to be constant and used for 1C discharge capacity 

measurements as well. 

 

Figure 6-5. Electrode open circuit potential vs. Li and cell open circuit voltage response 

6.1.1.2 Aging-Related Parameter Identification 

After confirming the electrode OCPs with the fresh cells, we move on to investigate 

the variations of the parameters of the single-particle model along with the capacity loss. 
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In other words, the single particle model without including the aging mechanisms in the 

governing equations is fitted for the discharge capacity test at every characterization stage. 

In the context of full discharge capacity test, in previous researches, [100] indicated 

that 𝑆𝑂𝐶𝑛,𝐵𝑂𝐷  (negative electrode SOC at the beginning of discharge), 𝑆𝑂𝐶𝑝,𝐵𝑂𝐷 

(positive electrode SOC at the beginning of discharge), 𝐴𝑝 (positive electrode equivalent 

surface area) are the most significant parameters related to aging; [103] evaluated the 

degradation of 𝐷𝑛  (negative electrode solid phase diffusion coefficient), 𝐷𝑝  (positive 

electrode solid phase diffusion coefficient), 𝑘𝑛 (negative electrode surface reaction rate 

constant), 𝑘𝑝 (positive electrode surface reaction rate constant) during aging. 𝑆𝑂𝐶𝑛,𝐵𝑂𝐷, 

𝑆𝑂𝐶𝑝,𝐵𝑂𝐷, 𝐷𝑛, 𝑘𝑛 are assumed to account for the SEI form development at the negative 

electrode; 𝐴𝑝, 𝐷𝑝, 𝑘𝑝 are mainly considered to account for active material losses at the 

positive electrode.  

Other non-aging parameters are assumed to be constants and fitted with the OCV data 

by the fminsearch function in MATLAB. The rest of the parameters, aging-related ones, 

are firstly evaluated on their identifiability with full discharge data in a Bayesian 

framework. 
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Table 6-2. The Single-particle model non-aging parameter identification for all cells with 

OCV measurements 

Notations Cell#1 Cell#2 Cell#3 Cell#4 Cell#5 Cell#6 Cell#7 Cell#8 

 Non-aging Parameters 

𝑅𝑛 5.02 5.03 5.03 5.07 5.02 5.02 5.02 5.04 

𝑅𝑝 5.22 5.22 5.24 5.30 5.24 5.23 5.22 5.29 

𝐴𝑛 2.05 2.05 2.05 1.99 2.05 2.04 2.05 2.06 

𝑐𝑚𝑎𝑥,𝑛 23531 23552 23591 23775 23523 23499 23516 23310 

𝑐𝑚𝑎𝑥,𝑝 22868 22906 22824 23231 23005 22812 22761 23516 

𝑅𝑓 0.017 0.018 0.018 0.018 0.018 0.018 0.0183 0.018 

𝑐𝑒 1000 1000 1000 1000 1000 1000 1000 1000 

 

Bayesian parameter identification differs from traditional Frequentist counterparts 

(such as the above fminsearch methodology), since it treats any parameter as a 

distribution. In the domain of Bayesian inference, prior knowledge of parameter values is 

allowed to be integrated, referred to the Bayes’ relation in Eq. 6.12. 

𝑝(𝜽|𝐷𝑎𝑡𝑎) =
𝑝(𝐷𝑎𝑡𝑎|𝜽)𝑝(𝜽)

𝑝(𝐷𝑎𝑡𝑎)
=

𝑝(𝐷𝑎𝑡𝑎|𝜽)𝑝(𝜽)

∫ 𝑝(𝐷𝑎𝑡𝑎|𝜽)𝑑𝜽
 

 

Eq. 6.12 

Where 𝑝(𝜽) is the prior distribution, quantifies the prior knowledge of parameter 

values; 𝑝(𝐷𝑎𝑡𝑎|𝜽)  is the likelihood distribution, quantifies the probability of the 

observed data under a certain set of parameter values; 𝑝(𝐷𝑎𝑡𝑎)  is the normalizing 

constant, represents the probability of the observed data; 𝑝(𝜽|𝐷𝑎𝑡𝑎)  is the posterior 

distribution, quantifies the conditional probability distribution of unknown parameters 

under the observed data; 𝜽, in the this case, is a vector of parameters (Ap , Dn, Dp, kn, kp, 

SOCn,BOD, SOCp,BOD). 
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While the analytical solution of Eq. 6.12 is hard to attain, numerical sampling is 

desired for approximation of exact distributions. The Metropolis algorithm, which 

follows a Markov chain Monte Carlo (MCMC) method, is applied in our study according 

to following steps: 

(1) Set the number of sampling iteration N 

(2) Determine an initial set of parameters using the 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ method 

𝜽0 = 𝑎𝑟𝑔 min
𝜽

𝑆𝐸 ;     𝑆𝐸 = ∑[𝑽𝑚𝑜𝑑𝑒𝑙 − 𝑽𝑒𝑥𝑝(𝑡𝑗; 𝜽)]2

𝑛

𝑗=1

  

 (3) The error variance of the initial fit: 

𝑒𝑟𝑟2 =
1

𝑛 − 𝑝
∑ 𝑆𝐸𝜽0

𝑛

𝑗=1

  

 𝑝 is the length of the parameter set. 

(4) For 𝑖 = 1, 2, … , 𝑁 

  Sample 𝑧 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1);  

  Set 𝑹 = 0.01 ∗ 𝜽0 ∗ 𝑰; 

  Generate a new candidate set of parameters in the random-walk manner: 

                        𝜽∗ = 𝜽𝑖−1 + 𝑹𝑧; 

  Compute 𝑆𝐸𝜽∗ = ∑ [𝑽𝑚𝑜𝑑𝑒𝑙 − 𝑽𝑒𝑥𝑝(𝑡𝑗; 𝜽∗)]2𝑛
𝑗=1 ; 

  Sample 𝑢 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0 1]; 

  Compute α(𝜽∗, 𝜽𝑖−1) = 𝑚𝑖𝑛 (1, 𝑒
−

[𝑆𝐸𝜽∗−𝑆𝐸
𝜽𝑖−1]

2𝑒𝑟𝑟2 ); 

  If 𝑢 <  α(𝜽∗, 𝜽𝑖−1) 



 123 

   Set 𝜽𝑖 = 𝜽∗, 𝑆𝐸𝜽𝑖 = 𝑆𝐸𝜽∗; 

  Else 

   Set 𝜽𝑖 = 𝜽𝑖−1 

  End 

The basic philosophy of the random-walk metropolis algorithm is to allow a global 

search in the parameter space towards the best fit on the voltage response. While any set 

of parameter that generates a better fit must be accepted, the ones with a poorer fit can 

still be accepted with some probability. After enough iteration, the distribution of each 

parameter in the set can be numerically approximated. 

Starting directly with the cited parameter values in Table 6-3, a MCMC sampling of 

the six aging-related parameters are executed and visualized in Figure 6-6. The traces of 

the parameters after 50,000 iterations have different characteristics. While the Ap and 

SOCn,BOD quickly reach stability, the kp is the slowest one taking nearly 30,000 iterations. 

Therefore, the last 20,000 iterations can be used to approximate the parameter 

distributions, which can be referred to Figure 6-7. From it, both the Ap and SOCn,BOD vary 

in narrow windows of deviation from their mean values, inside (-0.1%, 0.1%). In contrast, 

other parameters have rather wide variation windows, thus indicating un-identifiability.  

The Dp, Dn, kn, and SOCp,BOD all have uncertainty intervals with width over 50%. In other 

words, among the six pre-selected aging-related parameters, only Ap and SOCn,BOD can be 

identified with high confidence under the scenario of full discharge test. Any further 

aging investigations based on these two parameters should be convincing. 



 124 

 

Figure 6-6. The traces of aging-related parameters in the MCMC exploration with 50,000 

iterations. 
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Figure 6-7. The distributions of the aging-related parameters with the last 20,000 

iterations of the parameter traces above; (*) highlights the well identified parameters. 
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To get the values of Ap and SOCn,BOD at different characterization stages, the 1C 

discharge test are used for fitting, referred to the Cell#8 in Figure 6-8. The discharge 

curves are well fitted; for four cases, the root mean squared errors between experiment 

and simulation data are all under 0.02V. The fitted values of these two parameters are 

compiled in Table 6-3. The Ap, which indicates the positive electrode active material loss 

and SPI degradation, decreases in all cases. The SOCn,BOD, which implies the active 

lithium ion loss and SEI development, is overall reducing except few characterization 

stages.  

 

Figure 6-8. The experiment and simulated 1C discharge data with the Cell#8 as example 
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Table 6-3. The fitted values of Ap and SOCn,BOD for the 1C discharge data at different 

aging stages. 

Aging 

Parameters 
Initial 

1
st 

Aging 

Stage 

2
nd

 Aging 

Stage 

3
rd

 Aging 

Stage 

4
th

 Aging 

Stage 

5
th

 Aging 

Stage 

 CLS 23
o
C Cell#1 

𝐴𝑝 1.949 1.945 1.948 1.940 1.940  

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.906 0.911 0.912 0.908 0.908  

 CLS 23
o
C Cell#2 

𝐴𝑝 1.989 1.953 1.948    

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.906 0.913 0.912    

 CLS 45
o
C Cell#3 

𝐴𝑝 2.001 1.966 1.958 1.935 1.925 1.920 

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.907 0.918 0.914 0.903 0.899 0.896 

 CLS 45
o
C Cell#4 

𝐴𝑝 1.986 1.885     

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.915 0.915     

 AHS 23
o
C Cell#5 

𝐴𝑝 1.978 1.914 1.906 1.887 1.880  

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.905 0.905 0.900 0.892 0.887  

 AHS 23
o
C Cell#6 

𝐴𝑝 1.967 1.944 1.938 1.956   

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.904 0.912 0.896 0.897   

 AHS 45
o
C Cell#7 

𝐴𝑝 1.942 1.869 1.798 1.751   

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.904 0.873 0.838 0.814   

 AHS 23
o
C Cell#8 

𝐴𝑝 1.983 1.847 1.817 1.717   

𝑆𝑂𝐶𝑛,𝐵𝑂𝐷 0.910 0.883 0.871 0.823   

 

Further correlating the loss of the two significant aging parameters with the capacity 

loss in Figure 6-9, it is found that the loss of SOCn,BOD is strongly positively related to 

capacity loss (R
2
=0.9926), yet the relationship between Ap loss and capacity loss is loose 

(R
2
=0.6757). In the perspective of aging mechanisms, these correlations should mean that 
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in our aging period (around 3 months), the degradation at the negative electrode (mainly 

SEI film development) is the most significant cause of capacity loss; the degradation at 

the positive electrode do exist but affect the capacity loss in a limited manner. Extended 

aging test beyond 3 months should yield new insights on the shift of aging mechanisms. 

 

Figure 6-9. The relationships of capacity loss vs. SOCn,BOD loss, capacity loss (left), 

capacity loss vs. Ap loss (right), for all cells 

6.1.2 Battery Aging Estimation in New Test Conditions 

After establishing the correlation between significant aging parameters (e.g. SOCn,BOD) 

and capacity loss, it is meaningful to apply it to set up some aging model. New conditions, 

which might further accelerate the battery aging conditions, can be tested for useful 

recommendations in real-world vehicle applications. 

Two new test profiles, in Figure 6-10, are constructed by adding and deleting one 

charge micro profile to adapt the current level when the discharge time period is kept 

unchanged. In this way, new condition #1 and #2 respectively has an increased average 

current at 16.1A and 5.3A. They are meant to be tested both under the temperature of 

45
o
C for enough aging effects. 
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Figure 6-10. Two newly constructed test profiles (bottom) 

As the SOCn,BOD is highly correlated with the capacity loss, its evolution with Ah-

throughput can be modeled for its updates to predict capacity loss across aging. In Figure 

6-11, for both CLS45 and AHS45 cases, a linear relationship between SOCn,SOC loss and 

Ah-throughput is identified. Since that the SOCn,BOD loss is further linearly correlated to 

capacity loss, a linear relationship between capacity loss and Ah-throughput is actually 

assumed in this scenario, which has been reviewed in [16]. Coupling the average 

discharge current of the profiles with the SOCn,SOC loss evolutions, the predictions for the 

two new test conditions with uncertainty bounds can be referred to Figure 6-11 as well. 

Interestingly, an aging characterization result under the new condition #1 falls far below 

its prediction, on par with the AHS45 case. While the test uncertainty is a potential 

explanation, the impact of discharge rate on capacity loss is also probably limited beyond 
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certain level on the NMC chemistry, i.e. the capacity loss might deviate from a linear 

relationship for high C-rates. Extended and repeated tests are highly recommended. 

 

Figure 6-11. SOCn loss (equivalently capacity loss) vs. Ah-throughput of calm low speed 

and aggressive high speed 45
o
C cases; the extrapolated case, the new condition #1 with 

its 95% prediction bounds; the interpolated case, the new condition #2 with its 95% 

prediction bounds 

6.2 Conclusions 

This study tries to supplement the understandings on the cycle aging of 18650 NMC 

lithium ion batteries. A set of in-house customized test profiles based on real-world 

driving data analysis were applied under different temperatures. After a 3-month aging 

campaign, the capacity loss is severer than the internal resistance rise and shows negative 

impacts from elevated temperature and discharge current rate. As the single-particle is 

capable to simulate the battery voltage response under low current scenarios, its model 

parameters are identified with the 1C discharge data at different aging characterization 
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stages. Out of seven aging-related parameters, two are identified as the significant ones 

due to their narrow uncertainty interval from a Bayesian analysis. The loss of negative 

electrode state of charge at the beginning of full discharge (SOCn,BOD) is found to 

strongly linearly correlate with the cell capacity loss, suggesting the SEI surface film 

development at the negative electrode as the main aging mechanism in the 3-month scope. 

Built upon above relationship, the SOCn,BOD is further fit against Ah-throughput to 

facilitate capacity loss estimation with the battery usage history. The derived aging model 

predicts the battery capacity degradation in two new test conditions with different 

discharge current rates. While validating the medium-current test condition, the aging 

model highly overestimates the aging under very high current rate, which might be 

attributed to either test uncertainty or the inherent feature of NMC chemistry. 
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7 Summary and Contributions 

7.1 Summary 

The lithium-ion battery has emerged as an important energy storage system due to 

high energy and power density for electrified powertrains. However, its aging across 

usage has always been a problem for automotive applications which require consistent 

performance throughout life. While manufacturers typically have to oversize the battery 

pack with increased costs, a promising solution to eliminate this trade-off is a 

significantly downsized battery pack with minimized impacts on battery life under 

dynamic battery utilization. This concept requires comprehensive understandings of real-

world vehicle operations and the methodologies to incorporate the knowledges in the 

optimal design and control of battery packs. This dissertation presents a battery aging 

model derived from aging test results with implications on driver style and road 

conditions based on real-world driving data. 

7.2 Contributions 

The main contributions of this dissertation are as follows:  

 The methodology for synthesis of representative vehicle drive cycles from a large 

amount of real-world drive cycles. Previously published work indicates that recorded 

vehicle speed traces can be can be modeled using a Markov chain. This dissertation 

extends the approach to consider a higher-order Markov chain, with the goal of 

improved accuracy. The 3-order Markov chain demonstrated a consistently higher 

accuracy than the 2-order, and is therefore recommended for future efforts requiring 
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translation of a large amount of naturalistic driving data into a small number of 

representative cycles.  

 A new algorithm for classifying real-world road conditions based on statistical 

analysis of a large number of recorded vehicle speed traces. The method relies on 

micro trips (the speed profiles between consecutive stops) extracted from the real-

word drive cycles, and subsequently separated  into categories using the k-means 

clustering. Clustering of micro trips based on duration and mean speed defines four 

micro trip categories.  Finally, a systematic study enabled relating the key features of 

driving cycles to micro trips, and classification of all vehicle speed profiles in a large 

database into typical road conditions, e.g. congested urban, uncongested urban, 

urban-suburban, highway etc.  

 An original methodology for developing a metric to quantify driver aggressiveness 

through analysis of a large amount of real-world speed traces. It is defined in the 

frequency domain based on the Fast Fourier Transform (FFT) analysis of the jerk 

traces, which are the second-order derivative of the speed traces. Multiplying the 

average magnitude of the frequency components by the high-frequency components 

normalized across the full spectrum leads to the innovative metric. The 

aggressiveness metric and the ability to synthesize driving cycles representative of 

selected road conditions and driver aggressiveness are critical for bringing a high 

degree of reality to battery aging studies.  

 A 48V mild hybrid electric vehicle (HEV) was modeled in MATLAB/Simulink to 

enable relating vehicle drive cycles to battery cell duty cycles. A heuristic supervisory 
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control strategy includes separation of the power demands between high- and low-

frequency , such that the battery meets the high-frequency demands, while the engine 

responds to low-frequency demand. In addition to generating the battery duty-cycles 

for subsequent studies of battery aging, the 48V HEV simulation is utilized to assess 

the sensitivity of the vehicle fuel economy to driver aggressiveness. Results also 

revealed a strong negative trade-off between battery current loads and driver 

aggressiveness metric. This emphasizes a need to consider driving style when 

optimizing the design or control of an HEV. 

 An original methodology to synthetize battery current profiles usable for 

experimental studies of battery aging. The real-world battery current profiles 

generated by the HEV simulator were characterized in frequency domain to estimate 

their power spectral density (PSD). Increased driver aggressiveness leads to increased 

peak frequency and time-series variance of the battery current profiles, implying 

faster charge/discharge switching and higher C-rates. The information about the peak 

frequency and time-series variance are used to synthesize representative profiles for 

experimental testing of cells. The method ensures that the test profiles are charge-

neutral and within manufacturer current limits for maximum current and the teat the 

test profiles are directly relational to anticipated usage in real-world driving scenario. 

 An experimental campaign employing the synthesized representative test profiles at 

two temperature levels, namely 23
o
C and 45

o
C. The test was designed to quantify the 

negative impacts from high temperature and high current rate (driver aggressiveness) 

combined impact on cell capacity loss.  
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 Identification of parameters for the electro-chemical, single-particle battery model for 

the NMC chemistry. Parameters were identified across different aging stages by a 

stochastic Bayesian analysis with the Monte Carlo Markov Chain algorithm. Results 

of the simulation study indicate that the loss of one parameter, negative electrode 

state of charge at the beginning of full discharge (SOCn,BOD), strongly correlates with 

the cell capacity loss.  This suggests that the SEI surface film development at the 

negative electrode is the main aging mechanism. 

 A semi-empirical aging model based on the relationship between SOCn,BOD 

characterized in the identification study, and the cell capacity. Aging model 

predictiveness was assessed for two validating test conditions corresponding to 

medium and very high current rates. Excellent agreement was observed for the case 

with medium current rate, while the model overestimates the capacity loss in the case 

of very high current rate, thus indicating favorable behavior of the NMC chemistry at 

high-C rates.  

7.3 Future Work 

The tools and findings of this dissertation can inspire various future applications: 

 The information of the large amount of real-world driving data can also be used for 

drive cycle prediction for real-time adaptive control studies.  

 The quantification of driver style can assist in promoting eco-driving. Real-time 

feedbacks on driver aggressiveness can be beneficial for adaptive hybrid vehicle 

power management strategy. 
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 The methodologies of characterizing and synthesizing real-world cell duty cycles can 

be unified as a framework and even extended to general analysis of time series data 

related to vehicle operation. 

 A cell aging model with detailed aging functions coupled in the single-particle model 

can be constructed and compared to the semi-empirical model used in this dissertation 

in terms of speed and accuracy. 

 The battery aging model can be integrated in the battery management system for 

online estimation of battery health conditions and real-time prediction of battery 

remaining-useful-life (RUL). 
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