18,898 research outputs found

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Cloud-based manufacturing-as-a-service environment for customized products

    Get PDF
    This paper describes the paradigm of cloud-based services which are used to envisage a new generation of configurable manufacturing systems. Unlike previous approaches to mass customization (that simply reprogram individual machines to produce specific shapes) the system reported here is intended to enable the customized production of technologically complex products by dynamically configuring a manufacturing supply chain. In order to realize such a system, the resources (i.e. production capabilities) have to be designed to support collaboration throughout the whole production network, including their adaption to customer-specific production. The flexible service composition as well as the appropriate IT services required for its realization show many analogies with common cloud computing approaches. For this reason, this paper describes the motivation and challenges that are related to cloud-based manufacturing and illustrates emerging technologies supporting this vision byestablishing an appropriate Manufacturing-as-a-Service environment based on manufacturing service descriptions

    Towards a pivotal-based approach for business process alignment.

    Get PDF
    This article focuses on business process engineering, especially on alignment between business analysis and implementation. Through a business process management approach, different transformations interfere with process models in order to make them executable. To keep the consistency of process model from business model to IT model, we propose a pivotal metamodel-centric methodology. It aims at keeping or giving all requisite structural and semantic data needed to perform such transformations without loss of information. Through this we can ensure the alignment between business and IT. This article describes the concept of pivotal metamodel and proposes a methodology using such an approach. In addition, we present an example and the resulting benefits

    Parameterization and geometric optimization of balloon launched sensorcraft for atmospheric research missions

    No full text
    We present a method for the payload centric automated design and manufacturing of balloon launched, high altitude gliders. The purpose of these gliders is to conduct directed measurements of atmospheric phenomena with a variety of payloads. A bespoke airframe design is generated that can protect the payload, ensure recoverability and extend sampling times. A manufacturing technique, that relies heavily on rapid prototyping, allows for rapid realization of the aircraft design. This allows atmospheric scientists and researchers unprecedented access to a broad range of altitudes

    Effect of Ductile Damage Evolution in Sheet Metal Forming: Experimental and Numerical Investigations

    Get PDF
    The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as necking, fracture, springback, buckling and wrinkling. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. In the first part of this work, we focus on the traditional identification of the constitutive law using oriented tensile tests (0°, 45°, and 90° with respect to the rolling direction). A Digital Image Correlation (DIC) method is used in order to measure the displacements on the surface of the specimen and to analyze the necking evolution and the instability along the shear band. Therefore, bulge tests involving a number of die shapes (circular and elliptic) were developed. In a second step, a mixed numerical–experimental method is used for the identification of the plastic behavior of the stainless steel metal sheet. The initial parameters of the inverse identification were extracted from a uniaxial tensile test. The optimization procedure uses a combination of a Monte-Carlo and a Levenberg-Marquardt algorithm. In the second part of this work, according to some results obtained by SEM (Scaning Electron Microscopy) of the crack zones on the tensile specimens, a Gurson Tvergaard Needleman (GTN) ductile model of damage has been selected for the numerical simulations. This model was introduced in order to give informations concerning crack initiations during hydroforming. At the end of the paper, experimental and numerical comparisons of sheet metal forming applications are presented and validate the proposed approach

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Component-based simulation for a reconfiguration study of transitic systems

    Get PDF
    This paper is organized as follows. Part A presents the context of reconfiguring transitic systems and the main idea in implementing the decision step. It comprises sections 1 to 3. Section 3 presents an example that illustrates the concepts presented in the next sections. Parts B and C express the models and principles used to simulate transitic systems, the result of which will be helpful for choosing the new configuration. Part B focuses mainly on models. It comprises sections 4 to 6. Part C focuses mainly on simulation principles. It comprises sections 7 to 10

    An improved approach for automatic process plan generation of complex borings

    Get PDF
    The authors are grateful for funding provided to this project by the French Ministry of Industry, Dassault Aviation, Dassault Systemes, and F. Vernadat for his review and recommendations.The research concerns automated generation of process plans using knowledge formalization and capitalization. Tools allowing designers to deal with issues and specifications of the machining domain are taken into account. The main objective of the current work is to prevent designers from designing solutions that would be expensive and difficult to machine. Among all available solutions to achieve this goal, two are distinguished: the generative approach and the analogy approach. The generative approach is more adapted to generate the machining plans of parts composed of numerous boring operations in interaction. However, generative systems have two major problems: proposed solutions are often too numerous and are only geometrically but not technologically relevant. In order to overcome these drawbacks, two new concepts of feature and three control algorithms are developed. The paper presents the two new features: the Machining Enabled Geometrical Feature (MEGF) and the Machinable Features (MbF). This development is the result of the separation of the geometrical and the technological data contained in one machining feature. The second objective of the paper is to improve the current Process Ascending Generation (PAG) system with control algorithms in order to limit the combinatorial explosion and disable the generation of unusable or not machinable solutions
    corecore