7 research outputs found

    Multiparty multilevel watermarking protocol for digital secondary market based on iris recognition technology

    Get PDF
    Background: In order to design secure digital right management architecture between different producers and different consumers, this paper proposes a multiparty and multilevel watermarking protocol for primary and secondary market. Comparing with the traditional buyer-seller watermarking protocols, this paper makes several outstanding achievements. Method: First of all, this paper extends traditional buyer-seller two-party architecture to multiparty architecture which contains producer, multiply distributors, consumers, etc. Secondly, this paper pays more attention on the security issues, for example, this paper applies iris recognition technology as an advanced security method. Conclusion: Finally, this paper also presents a second-hand market scheme to overcome the copyright issues that may happen in the real world. © 2017 Bentham Science Publishers

    Secure Authentication for Mobile Users

    Get PDF
    RÉSUMÉ :L’authentification biométrique telle que les empreintes digitales et la biométrie faciale a changé la principale méthode d’authentification sur les appareils mobiles. Les gens inscrivent facilement leurs modèles d’empreintes digitales ou de visage dans différents systèmes d’authentification pour profiter de leur accès facile au smartphone sans avoir besoin de se souvenir et de saisir les codes PIN/mots de passe conventionnels. Cependant, ils ne sont pas conscients du fait qu’ils stockent leurs caractéristiques physiologiques ou comportementales durables sur des plates-formes non sécurisées (c’est-à-dire sur des téléphones mobiles ou sur un stockage en nuage), menaçant la confidentialité de leurs modèles biométriques et de leurs identités. Par conséquent, un schéma d’authentification est nécessaire pour préserver la confidentialité des modèles biométriques des utilisateurs et les authentifier en toute sécurité sans compter sur des plates-formes non sécurisées et non fiables.La plupart des études ont envisagé des approches logicielles pour concevoir un système d’authentification sécurisé. Cependant, ces approches ont montré des limites dans les systèmes d’authentification sécurisés. Principalement, ils souffrent d’une faible précision de vérification, en raison des transformations du gabarit (cancelable biometrics), de la fuite d’informations (fuzzy commitment schemes) ou de la réponse de vérification non en temps réel, en raison des calculs coûteux (homomorphic encryption).---------- ABSTRACT: Biometric authentication such as fingerprint and face biometrics has changed the main authentication method on mobile devices. People easily enroll their fingerprint or face template on different authentication systems to take advantage of their easy access to the smartphone with no need to remember and enter the conventional PINs/passwords. However, they are not aware that they store their long-lasting physiological or behavioral characteristics on insecure platforms (i.e., on mobile phones or on cloud storage), threatening the privacy of their biometric templates and their identities. Therefore, an authentication scheme is required to preserve the privacy of users’ biometric templates and securely authenticate them without relying on insecure and untrustworthy platforms. Most studies have considered software-based approaches to design a privacy-reserving authentication system. However, these approaches have shown limitations in secure authentication systems. Mainly, they suffer from low verification accuracy, due to the template transformations (in cancelable biometrics), information leakage (in fuzzy commitment schemes), or non real-time verification response, due to the expensive computations (in homomorphic encryption)

    Recognition of Nonideal Iris Images Using Shape Guided Approach and Game Theory

    Get PDF
    Most state-of-the-art iris recognition algorithms claim to perform with a very high recognition accuracy in a strictly controlled environment. However, their recognition accuracies significantly decrease when the acquired images are affected by different noise factors including motion blur, camera diffusion, head movement, gaze direction, camera angle, reflections, contrast, luminosity, eyelid and eyelash occlusions, and problems due to contraction and dilation. The main objective of this thesis is to develop a nonideal iris recognition system by using active contour methods, Genetic Algorithms (GAs), shape guided model, Adaptive Asymmetrical Support Vector Machines (AASVMs) and Game Theory (GT). In this thesis, the proposed iris recognition method is divided into two phases: (1) cooperative iris recognition, and (2) noncooperative iris recognition. While most state-of-the-art iris recognition algorithms have focused on the preprocessing of iris images, recently, important new directions have been identified in iris biometrics research. These include optimal feature selection and iris pattern classification. In the first phase, we propose an iris recognition scheme based on GAs and asymmetrical SVMs. Instead of using the whole iris region, we elicit the iris information between the collarette and the pupil boundary to suppress the effects of eyelid and eyelash occlusions and to minimize the matching error. In the second phase, we process the nonideal iris images that are captured in unconstrained situations and those affected by several nonideal factors. The proposed noncooperative iris recognition method is further divided into three approaches. In the first approach of the second phase, we apply active contour-based curve evolution approaches to segment the inner/outer boundaries accurately from the nonideal iris images. The proposed active contour-based approaches show a reasonable performance when the iris/sclera boundary is separated by a blurred boundary. In the second approach, we describe a new iris segmentation scheme using GT to elicit iris/pupil boundary from a nonideal iris image. We apply a parallel game-theoretic decision making procedure by modifying Chakraborty and Duncan's algorithm to form a unified approach, which is robust to noise and poor localization and less affected by weak iris/sclera boundary. Finally, to further improve the segmentation performance, we propose a variational model to localize the iris region belonging to the given shape space using active contour method, a geometric shape prior and the Mumford-Shah functional. The verification and identification performance of the proposed scheme is validated using four challenging nonideal iris datasets, namely, the ICE 2005, the UBIRIS Version 1, the CASIA Version 3 Interval, and the WVU Nonideal, plus the non-homogeneous combined dataset. We have conducted several sets of experiments and finally, the proposed approach has achieved a Genuine Accept Rate (GAR) of 97.34% on the combined dataset at the fixed False Accept Rate (FAR) of 0.001% with an Equal Error Rate (EER) of 0.81%. The highest Correct Recognition Rate (CRR) obtained by the proposed iris recognition system is 97.39%

    A Study on Iris Localization and Recognition on Mobile Phones

    Get PDF
    A new iris recognition method for mobile phones based on corneal specular reflections (SRs) is discussed. We present the following three novelties over previous research. First, in case of user with glasses, many noncorneal SRs may happen on the surface of glasses and it is very difficult to detect genuine SR on the cornea. To overcome such problems, we propose a successive on/off dual illuminator scheme to detect genuine SRs on the corneas of users with glasses. Second, to detect SRs robustly, we estimated the size, shape, and brightness of the SRs based on eye, camera, and illuminator models. Third, the detected eye (iris) region was verified again using the AdaBoost eye detector. Experimental results with 400 face images captured from 100 persons with a mobile phone camera showed that the rate of correct iris detection was 99.5% (for images without glasses) and 98.9% (for images with glasses or contact lenses). The consequent accuracy of iris authentication was 0.05% of the EER (equal error rate) based on detected iris images
    corecore