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A new iris recognition method for mobile phones based on corneal specular reflections (SRs) is discussed. We present the following
three novelties over previous research. First, in case of user with glasses, many noncorneal SRs may happen on the surface of
glasses and it is very difficult to detect genuine SR on the cornea. To overcome such problems, we propose a successive on/off dual
illuminator scheme to detect genuine SRs on the corneas of users with glasses. Second, to detect SRs robustly, we estimated the size,
shape, and brightness of the SRs based on eye, camera, and illuminator models. Third, the detected eye (iris) region was verified
again using the AdaBoost eye detector. Experimental results with 400 face images captured from 100 persons with a mobile phone
camera showed that the rate of correct iris detection was 99.5% (for images without glasses) and 98.9% (for images with glasses
or contact lenses). The consequent accuracy of iris authentication was 0.05% of the EER (equal error rate) based on detected iris
images.
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1. INTRODUCTION

Instead of traditional security features such as identifica-
tion tokens, passwords, or personal identification numbers
(PINs), biometric systems have been widely used in various
kinds of applications. Among these biometric systems, iris
recognition has been shown to be a highly accurate method
of identifying people by using the unique patterns of the hu-
man iris [1].

Some recent additions to mobile phones have included
traffic cards, mobile banking applications, and so forth. This
means that it is becoming increasingly important to protect
the security of personal information on mobile phones. In
this sense, fingerprint recognition phones are already being
manufactured. Other recent additions to these phones have
been megapixel cameras. Our final goal is to develop an iris
recognition system that uses only these built-in cameras and
iris recognition software without requiring any additional
hardware components such as DSP chips.

In addition to other factors such as image quality, illumi-
nation variation, angle of capture, and eyelid/eyelash obfus-
cation, the size of the iris region must be considered to ensure
good authentication performance. This is because “the im-

age scale should be such that irises with diameters will show
at least 100 pixels diameter in the digital image to meet the
recommended minimum quality level” [2]. In the past, it was
necessary to use large zoom and focus lens cameras to cap-
ture images, so large iris images could not be obtained with
small cheap mobile phones. However, a megapixel camera
can make it possible to capture magnified iris images with
no need for large zoom and focus cameras.

Even when facial images are captured relatively far away
(30∼ 40cm), the captured regions possess sufficient pixel
information for iris recognition. In addition, the camera-
viewing angle is larger than in conventional iris cameras and
the depth of field (DOF), in which focused iris images can
be captured is larger, consequently. With captured facial im-
ages, eye regions must be detected for iris recognition. So,
in this paper we propose a new iris detection method based
on corneal specular reflections (SRs). However, for users with
glasses, there may be many noncorneal SRs on the glasses and
it can be very difficult to detect genuine SRs on the cornea. To
overcome these problems, we also propose a successive on/off
dual illuminator scheme.

Existing eye detection methods can be classified into two
categories. Methods in the first category detect eyes based on
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the unique intensity distribution or the shape of the eyes un-
der visual light [3–9]. Methods in the second category exploit
the spectral properties of pupils under near IR illumination
[10–12].

All the research discussed in [3–6] used a deformable
template method to locate the human eye. The method dis-
cussed in [7] used multicues for detecting rough eye regions
from facial images and performed a thresholding process.
Rowley et al. [8] developed a neural network-based upright
frontal facial feature (including the eye region) detection sys-
tem. The face detection method proposed by Viola and Jones
[9] used a set of simple features, known as an “integral im-
age.” Through the AdaBoost learning algorithm, these fea-
tures were simply and efficiently classified and then a cascade
of classifiers was constructed [13, 14].

In the method discussed in [10], eye detection was ac-
complished by simultaneously utilizing the bright/dark pupil
effect under IR illumination and the eye appearance pattern
under ambient illumination via the support vector machine
(SVM). Ebisawa and Satoh. [11] generated bright/dark pupil
images based on a differential lighting scheme that used two
IR light sources (an on/off camera axis). However, it is diffi-
cult to use this method for mobile applications because the
power of the light source must be very strong to produce a
bright/dark pupil image (this increases the power consump-
tion of mobile phones and reduces battery life). Also, large
SRs can hide entire eye regions for users with glasses.

Suzaki [12] detected eye regions and checked the qual-
ity of eye images by using specular reflections for racehorse
and human identification. However, the magnified eye im-
ages were captured close to the object in an illuminator-
controlled harness place. This led to small noncorneal SR re-
gions in the input image. Also, these researchers did not con-
sider users with glasses. In addition, they only used heuristic
experiments to determine and threshold the size and pixel
intensity value of the SR in the image. In [15], the activa-
tion/deactivation illuminator scheme was proposed to detect
eye regions based on corneal SRs. However, because these re-
searchers used a single illuminator, detection accuracy was
degraded when there were many noncorneal SRs on the sur-
face of glasses. In addition, because eye regions were deter-
mined only based on detected SRs, there were many false ac-
ceptance cases, which meant that noneye regions were falsely
regarded as eye regions. Also, only the iris detection accuracy
and processing times were shown. In [16], the researchers
also used the on/off illuminator scheme, but it was used for
detecting rough eye positions for face recognition.

In [17], the researchers proposed a method for selecting
good quality iris images from a sequence based on the po-
sition and quality of the SR relative to the pupil. However,
they did not solve the problem of detecting corneal SRs when
there were many noncorneal SRs when users wore glasses. In
addition, they did not show the theoretical size and bright-
ness of corneal SRs.

To overcome these problems, we propose a rapid iris de-
tection method for use in mobile phones and based on SRs.
To determine the size and pixel intensity values of the SRs in
the image, theoretically, we considered the eye model and the
camera, the eye, and the illuminator geometry. In addition,

we used a successive on/off dual illuminator to detect gen-
uine SRs (in the pupil region) for users with glasses. Also, we
excluded the floating-point operation to reduce processing
time, since the ARM CPU used in mobile phones does not
have floating-point coprocessors.

2. PROPOSED IRIS DETECTION ALGORITHM

2.1. Overview of the proposedmethod and the
illuminator on/off scheme

An overview of the proposed method is shown in Figure 1
[16]. First, the user initiates the iris recognition process by
clicking the “start” button of a mobile phone. Then, the cam-
era microcontroller alternatively turns on and off the dual
(left and right) infra-red (IR) illuminators. When only the
right IR illuminator is turned on, two facial images (Frame
#1, #2) are captured, as shown in Figure 2. And then, an-
other one (Frame #3) is captured when both illuminators are
turned off. After that, two additional facial images (Frame
#4, #5) are captured again when only the left IR illuminator
is turned on. So, we obtained five successive images as shown
in Figures 1(1) and 2. This scheme was iterated successively
as shown in Figure 2. When Frames #1–#5 did not meet our
predetermined threshold for motion and optical blurring (as
shown in Figure 1(2), (3)), another five images (Frame #6–
#10) were used (Figure 1(4)).

The size of the original captured image was 2048∗1536
pixels. To reduce processing time, image was 2048∗1536 pix-
els. To reduce processing time, we used the eye region in a
predetermined area of the input image. Because we attached
a cold mirror (to pass the IR light through and reflect the
visible light) in front of the camera lens and the eye-aligning
region was indicated on the mirror as shown in Figure 5, the
user was able to align his or her eye with the camera. So, the
eye existed in the restricted region of any given captured im-
age. This kind of eye-aligning scheme has been adopted by
conventional iris recognition cameras such as the LG IrisAc-
cess 3000 or the Panasonic BM-ET300. By using the eye-
aligning region in the cold mirror, we were able to determine
that eye regions existed in the area of (0,566)∼ (2048,1046)
in the input image. So, it was not necessary to process the
whole input image (2048 × 1536 pixels) and we are able to
reduce processing time. For this, the captured eye region im-
ages (2048 × 480 pixels ((0,566)∼ (2048,1046))) were 1/6
down-sampled (341 × 80 pixels image) and we checked the
amount of motion blurring in the input image as shown in
Figure 1(2).

In general, the motion blur amount (MBA) can be cal-
culated by the difference image between two illuminator-on
images. If the calculated MBA was greater than the prede-
termined threshold (Th1 as shown in Figure 1) (we used
4 as a threshold), we determined that the input image was
too blurred to be recognized. After that, our system checked
the optical blurring amount (OBA) by checking the focus
values of the A2 and A4 images in Figure 2, as shown in
Figure 1(3). In general, focused images contain more high-
frequency components than defocused images [18]. We used
the focus checking method proposed by Kang and Park [19].
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Figure 1: Flowchart of the proposed method.
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Figure 2: The alternative on/off scheme of the dual IR-illuminators [16].

The calculated focus value was compared to the predeter-
mined threshold. If all the focus values of A2 and A4 were not
below the threshold (Th2 as shown in Figure 1) (we used 70
as the threshold), we regarded the input image as defocused
and captured five other images as shown in Figure 1(4), as
mentioned before.

Next, our system calculated the environmental light
amount (ELA) of the illuminator-off image (the average
gray level of A3 shown in Figure 2) to check whether outer
sunlight existed or not in the input image, as shown in
Figure 1(5). As shown in Figure 5, we attached a cold mir-
ror with an IR-Pass filter in front of the camera lens so that
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image brightness was not affected by visible light. In indoor
environments, the average gray level of the illuminator-off
image (A3) was very low (our experiments showed that it was
below 50 (Th3)).

However, sunlight includes a large amount of IR light
and in outdoor environments, the average gray level of the
illuminator-off image (A3) increases (more than 50 (Th3)).

The American Conference of Government Industrial Hy-
gienists (ACGIH) exposure limit for infrared radiation is
defined by the following equation. For exposures greater
than 1,000 seconds, irradiance must be limited to less than
10 mW/cm2 [20],

3000nm
Σ

770nm
Eλ•Δλ ≤ 1.8t−3/4 W/cm2, (1)

where λ represents the wavelength of incident light, Eλ rep-
resents the irradiance onto the eye in watts/cm2, and t rep-
resents the exposure time in seconds. In our iris recognition
system, the exposure time (t) was a maximum of five sec-
onds (time-out) for enrollment or recognition. We obtained
the maximum ACGIH exposure limits for infrared radiation
as 540 mW/cm2 based on (1). As shown in Section 2.2, the
Z-distance between the illuminator and the eye in our sys-
tem was 250–400 mm. Experimental results showed that the
infrared radiation power (0.44 mW/cm2) of our system was
much less than the limits (540 mW/cm2), so it met the safety
requirements.

2.2. Detecting corneal SRs by using the difference
image

After that, our system detected the corneal specular reflec-
tions in the input image. For indoor environments (ELA <
Th3 shown in Figure 1(6)), corneal SR detection was per-
formed using the difference image between A2 and A4 in
Figures 1(6) and 3. In general, large numbers of noncorneal
SRs (with similar gray levels to genuine SRs on the cornea)
occurred for users with glasses and that made it difficult
to detect genuine SRs on the cornea (inside the pupil re-
gion, as shown in Figure 3). So, we used a difference image
to detect the corneal SRs easily. That is because the genuine
corneal SRs had horizontal pair characteristics in the differ-
ence image as shown in Figure 3(c) and their interdistance in
the image was much smaller than that of other noncorneal
SRs on the surface of glasses. Also, the curvature radius of
the cornea was much smaller than that of glasses. How-
ever, in outdoor environments, SR detection was performed
using the difference image between ((A2−A3)/2+127) and
((A4−A3)/2+127), as shown in Figure 1(7).

In outdoor environments, the reason we used A2−A3
and A4−A3 was to get rid of the effect of sunlight. A3 was
only illuminated by sunlight. So, by obtaining the difference
image between A2 and A3 (or A4 and A3), we were able
to reduce the effect of sunlight. In detail, in outdoor envi-
ronments, sunlight increased the ELA. So, in addition to the
corneal SR, the brightness of other regions such as the sclera
and facial skin became so high (their brightness became sim-
ilar to that of the corneal SR) that it was very difficult to dis-

(a)

(b)

Imposter SRs on the glasses surface and frame

Genuine corneal SR (gray level is over 250)

Genuine corneal SR (gray level is below 4)

(c)

Figure 3: The captured eye images for users with glasses. (a) Eye
image with right illuminator on, (b) eye image with left illuminator
on, and (c) difference image between (a) and (b).

criminate those regions from the corneal SR only by using
the difference images of A2 and A4 like (6) of Figure 1.

In this case, because the effect of sunlight was included in
both A2 and A4, by subtracting the brightness of A3 (because
it was captured with the camera illuminator off, its bright-
ness was determined only by outer sunlight) from A2 and A4
(((A2−A3)/2+127) and ((A4−A3)/2+127)), we got rid of the
effect of sunlight in A2 and A4. Consequently, the brightness
of other regions such as sclera or facial skin regions became
much lower compared to that of the corneal SR and we were
easily able to discriminate the corneal SR from other regions.

Based on that, we used the following three pieces of in-
formation to detect the genuine SRs inside the pupil region.
First, the corneal SR is small and it can be estimated by
the camera, eye, and illuminator models (details are shown
in Section 3). Second, genuine corneal SRs have horizontal
pair characteristics in the difference image that are differ-
ent from other noncorneal SRs on the surface of glasses be-
cause they are made by left and right illuminators. Since we
knew the curvature radius of the cornea (7.8 mm) based on
Gullstrand’s eye model [21], the distance (50 mm) between
the left and right illuminators and the Z-distance was 250–
400 mm. Also, our iris camera had an operating range of
250–400 mm between the eye and the camera, and we were
able to estimate the pixel distance (on the X axis) between
the left and right genuine SRs in the image based on the per-
spective projection model [22].

Especially, because the curvature radius of the cornea is
much smaller than that of the surface of the glasses, the dis-
tance between the corneal left and right SRs is shorter than
that between the noncorneal ones in the image, as shown in
Figure 3. However, because there was a time difference be-
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tween the left and right SR images (as shown in Figure 2, the
time difference of A2 and A4 is 66 milliseconds) and there
was also hand vibration, there was also a vertical disparity of
the left and right SR positions. Experimental results showed
a maximum of ±22 pixels in the image (which corresponds
to the movement of 0.906 mm per 66 milliseconds as mea-
sured by the Polhemus FASTRAK [23]) and we used it as the
vertical margin of the left and right SR positions.

Third, because genuine SRs occur in the dark pupil
region (whose gray level is below 5) and its gray level
is higher than 251 (see Section 4), the difference value
(= (A2−A3)/2+127 in indoor environments) of the gen-
uine SR is higher than 250 or lower than 4. Also, us-
ing a similar method, we estimated the difference value
(= ((A2−A3)/2+127) − ((A4−A3)/2+127)) of the genuine
corneal SRs in outdoor environments. Based on that, we dis-
criminated the genuine SR from the noncorneal ones. From
the difference image, we obtained the accurate center posi-
tion of the genuine SRs based on the edge image obtained by
the 3× 3 Prewitt operator, component labeling, and circular
edge detection. Based on the detected position of the genuine
SR in the 1/6 down-sampled image, pupil, iris detection, and
iris recognition were performed in the original image (details
are shown in Sections 5 and 6).

3. ESTIMATING THE SIZE OF CORNEAL SPECULAR
REFLECTIONS IN IMAGES

3.1. Size estimation of SRs in focused images

In this section, we estimate the size of the genuine SRs on
the cornea based on eye, camera, and illuminator models as
shown in Figure 4 [15]. Previous researchers [12] have used
only heuristic experiments to determine and threshold the
size and pixel intensity values of the SRs in images. Also, in
this section, we discuss why the SRs are brighter than the re-
flection of the skin.

By using the Fresnel formula (ρ = (n1 − n2)/(n1 + n2),
where ρ is the reflection coefficient, n1 is the refractive in-
dex of the air (=1), and n2 is that of the cornea (=1.376) [21]
(or facial skin (=1.3) [24])), we obtained the reflection coeffi-
cients (ρ) of the cornea as about−0.158 (here, the reflectance
rate is 2.5 (= 100∗ρ2)) and the skin as about−0.13 (here, the
reflectance rate is 1.69). So, we discovered that the SRs are
brighter than the reflection of the skin.

We then tried to estimate the size of the SR in the im-
age. In general, the cornea is shaped like a convex mirror
and it can be modeled as shown in Figure 4 [25]. In Figure 4,
C is the center of the eyeball. The line that passes from the
cornea’s surface through C is the principal axis. The cornea
has a focal point F, located on the principal axis. According
to Gullstrand’s eye model [21] and the fact that C and F are
located on the opposite sides of the object, the radius of the
cornea (R) is −7.8 mm and the corneal focal length ( f1) is
−3.9 mm (because 2∗ f1 = R in the convex mirror). Based
on that information, we obtained the image position (b) of
the reflected illuminator by (1/ f1 = 1/a + 1/b). Here, a rep-
resents the distance between the cornea surface and the cam-
era illuminator. Because our iris camera in the mobile phone

had an operating range of 25–40 cm, we defined a as 250–
400 mm. From that, b was calculated as −3.84–3.86 mm and
we used −3.85 mm as the average value of b. From that cal-
culation, we obtained the image size of the reflected illumi-
nator (A′B′) (∵ A′B′/AB = b/a as shown in Figure 4) as
0.096–0.154 mm, because AB (the diameter of the camera
illuminator) was 10 mm. We then adopted the perspective
model between the eye and the camera and obtained the im-
age size (X) of the SR in the camera, as shown in Figure 4(a)
(a + |b| : A′B′ = f2 c: X, X is 1.4–3.7 pixels in the image).
Here, f2 (the camera focal length) was 17.4 mm and c (the
distance between the CCD cell) was 349 pixel/mm. f2 and c
were obtained by camera calibration [22]. Consequently, we
determined the size (diameter) of the SR as 1.4–3.7 pixels in
the focused input image and used that value as a threshold for
size filtering when detecting the genuine SR on the cornea.

However, in one case, the user tried to identify his iris by
holding the mobile phone, which led to image blurring. This
blurring by hand vibration occurs frequently and it increases
the image size of the SR (by optical and motion blurring).
When this happens, we also need to consider the blurring to
determine the image size of the SR.

The meaning to estimate the size of corneal SR is like this.
Based on Figure 4, we were able to estimate the size of the
corneal SR theoretically by not capturing actual eye images
including the corneal SR. Of course, by using heuristic meth-
ods, we were able to estimate the size of the corneal SR. But
for that, we had to obtain many images and analyze the size of
the corneal SR intensively. In addition, most conventional iris
cameras include the Z-distance measuring sensor with which
a of Figure 4 can be obtained automatically. In this way, the
size of the corneal SR can be estimated easily without requir-
ing intensive and heuristic analysis of many captured images.
The obtained size information can be used for size filtering in
order to detect the corneal SR among many noncorneal SRs.

In order to prove our theoretical model, we used 400 face
images captured from 100 persons (see Section 7). Among
them, we extracted the images which were identified by our
iris recognition algorithm (because the size (1.4–3.7 pixels)
of the SR denoted a focused image). Then, we measured the
size of the SR manually and found that the obtained size of
the SR was almost the same as that obtained theoretically.

Because the corneal SR was generated on the cornea mir-
ror surface as shown in Figure 4 and it was not reflected on
the surface of the glasses, the actual size of the SR did not
change irrespective of wearing glasses. Of course, many non-
corneal SRs occurred on the surface of the glasses. To prove
this, we analyzed the actual SR size with the images of glasses
among 400 face images and we found that the size of SR was
not changed when glasses were worn.

3.2. Optical blurmodeling of SRs

In general, optical blurring can be modeled as (O(u, v) =
H(u, v)•I(u, v) + N(u, v), where O(u, v) represents the
Fourier transform of the blurred iris image caused by defo-
cusing, H(u, v) represents that of the degradation function
(2-D PSF), I(u, v) represents that ofthe clear (focused) im-
age, and N(u, v) represents that of noise [22]). In general,
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Figure 4: A corneal SR and the camera, illuminator, eye model [15]. (a) The camera, illuminator, and eye model, (b) a corneal SR in the
convex mirror.

N(u, v) is much smaller than other terms and can be ex-
cluded. Because the point spread function (PSF) (H(u, v)) of
optical blurring can be represented by the Gaussian function
[22], we used the Gaussian function for it.

To determine an accurate Gaussian model, we obtained
the SR images at a distance of 25∼ 40 cm (our operating
range) in the experiment. We then selected the best focused
SR image as I(u, v) and the least focused one as O(u, v). With
those images, we determined the mask size and variance of
the Gaussian function (H(u, v)) based on inverse filtering
[22]. From that, we determined that the maximum size (di-
ameter) of the SR was increased to 4.4∼ 6.7 pixels in the
blurred input image (1.4–3.7 pixels in the focused image).
We used those values as a threshold for size filtering when
detecting the genuine SR [15].

3.3. Motion blurmodeling of SRs

In addition, we considered motion blurring of the SRs. In
general, motion blurring is related to the shutter time of the
camera lens. The longer the shutter time, the brighter the in-
put image, but the more severe the degree of motion blur-
ring. In these cases, the SRs are represented by ellipses instead
of circles. To reduce motion blurring, we could have reduced
the shutter time, but the input image was too dark to be used
for iris recognition. We could also have used a brighter illu-
minator, but this may have led to an increase of system costs.
Due to these reasons, we set our shutter time as 1/30 second
(33 milliseconds).

To measure the amount of motion blurring by a conven-
tional user, we used a 3D position tracker sensor (Polhemus
FASTRAK [23]). Experimental results showed that transla-
tions in the directions of the X ,Y , and Z axes were 0.453 mm
per 33 milliseconds. From that information, and based on the
perspective model between the eye and the camera as shown
in Figure 4(a), we estimated the ratio between the vertical
and horizontal diameters of the SR, the maximum length of

the major SR axis, that of the minor axis, and the maximum
SR diameter in the input image. We used those values as the
threshold for shape filtering when detecting the genuine SR.
Even if we used another kind of iris camera, we knew a, f2 c,
and AB as shown in Section 3.1 (as obtained by camera cali-
bration or the camera and illuminator specifications). So, we
obtained the above size and shape information of the SR ir-
respective of the kind of iris camera [15].

4. ESTIMATING THE INTENSITY OF CORNEAL
SPECULAR REFLECTIONS IN IMAGES

The Phong model identifies two kinds of light (ambient
light and point light) [26]. However, because we used a cold
mirror (IR pass filter) in front of the camera as shown in
Figure 5, we were able to exclude the effect of ambient light
when estimating the brightness of the SR. Although point
light has been reported to produce both diffuse elements and
SRs, only SRs can be considered in our modeling of corneal
SRs, as shown in (2),

L = Ip
[
Ks(V·R)n

]

d + d0
, (2)

where L is the reflected brightness of the SR, R is the reflected
direction of incident light, and V is the camera viewing di-
rection.Ks is the SR coefficient, as determined by the incident
angle and the characteristics of the surface material. Here, the
distance between the camera and the illuminator was much
smaller than the distance between the camera and the eye as
shown in Figure 4(a). Due to that, we supposed that the in-
cident angle was about 0 degrees. Also, the angle between V
and R was 0 degree (so, V·R = 1). From that, Ks was only
represented as the reflection coefficient (ρ) of the cornea as
about−0.158. This value was obtained in Section 3.1. Ip rep-
resents the power of incident light (camera illuminator) mea-
sured as 620 lux. d is the operating range (250–400 mm) and
d0 is the offset term (we used 5 mm) to ensure that the di-
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Eye aligning area

Cold mirror (with IR pass filter)Dual illuminators

Figure 5: Mobile phone used for iris recognition.

vider did not become 0. n represents the constant value, as
determined by the characteristics of the surface. From that,
we obtained L (the SR reflected brightness on the cornea sur-
face) as 0.242–0.384 lux/mm. From (2) and (3), we obtained
the radiance L′ (0.0006–0.0015 lux/mm2) of the SR into the
camera:

L′ = L

d + d′0
, (3)

where d is the distance between the camera and the eye, and
d′0 is the offset term of 5 mm. We then obtained the image
irradiance E value of the SR [27]:

E = L′
(
π

4

)(
D

f

)2

cos4α, (4)

where f and D represent the camera focal length (17.4 mm)
and aperture of the lens (3.63 mm), respectively, [28]. α is the
angle between the optical axis and the ray from the center of
the SR to the center of the lens. Because the distance between
the optical axis and the SR is much smaller than the distance
between the camera and the eye as shown in Figure 4(a), we
supposed α was 0 degree. From that, we found that E was
2.05× 10−5 ∼ 5.12× 10−5 lux/mm2. Finally, we obtained the
image brightness of the corneal SR (B) [27]:

B = F(Etc) = (Etc)γ, (5)

where t is the camera shutter time, and c is the auto gain
control (AGC) factor. In general, γ can be assumed to be
1. In our camera specifications, t is 33 milliseconds and c is
3.71×105 mm2/Lux·milliseconds. From those values, we ob-
tained the minimum intensity of the corneal SR in the image
as 251 and used it as the threshold value to detect the corneal
SR. Even if we used another kind of iris camera, we obtained
the above camera and illuminator parameters by camera cal-
ibration or camera and illuminator specifications. Therefore,
we obtained the minimum intensity of the corneal SR in the
image irrespective of the kinds of iris camera hardware [15].

5. PUPIL AND IRIS DETECTION AND VERIFICATION
WITH THE ADABOOST CLASSIFIER

Based on the size, shape, and brightness of the SR obtained
from theoretical analysis in Sections 3 and 4, we were able to
detect the accurate SR position of the pupil in the difference
image by the method mentioned in Section 2.2. After that,

before detecting the pupil region based on the detected SR,
we verified the detected eye region by using the AdaBoost
algorithm [9]. That is because when there are large SRs on
the surface of glasses caused by left or right illuminators, it is
possible not to detect accurate SR positions in the pupil.

The original AdaBoost classifier used a boosted cascade
of simple classifiers with Haar-like features capable of detect-
ing faces in real time at both high detection rates and very low
false positive rates [13, 14]. In essence, the AdaBoost classifier
represents a sequential learning method based on a one-step
greedy strategy. It is reasonably expected that postglobal op-
timization processing will further improve AdaBoost perfor-
mance [13]. A cascade of classifiers is a decision tree where at
each stage a classifier is trained and formed to detect almost
all objects while rejecting a certain percentage of background
areas. Those image windows not rejected by a stage classifier
in the cascade sequence will be processed by the successful
stage classifiers [13]. The cascade architecture can dramati-
cally increase the speed of the detector by focusing attention
on promising regions. Each stage classifier was trained by the
AdaBoost algorithm [13, 29]. The idea of boosting refers to
selecting a set of weak learners to form a strong classifier [13].

We modified the original AdaBoost classifier for veri-
fication of detected eye regions by using corneal SRs. For
training, we used 200 face images captured from 70 per-
sons and in each image, we selected the eye and noneye re-
gions manually for classifier training. Because we applied
the AdaBoost classifier only to the detected eye candidate
region by using the SRs, it did not take much processing
time (less than 0.5 milliseconds when using a Pentium-IV
PC (3.2 Ghz)). Then, if the detected eye region was correctly
verified by the AdaBoost classifier, we defined the pupil can-
didate box as 160∗160 pixels based on the detected SR po-
sition. Here, the box size was determined by the human
eye model. The conventional size of the pupil was adjusted
from 2 mm to 8 mm depending on the level of extraneous
environmental light [30]. The magnification factor of our
camera was 19.3 pixels/mm. Consequently, we estimated the
pupil diameter from 39 to 154 pixels in the input image
(2048∗480 pixels). The size of the pupil candidate box was
determined to be 160∗160 pixels (in order to cover the pupil
at the maximum size).

Then, in the pupil candidate box, we applied circu-
lar edge detection to detect accurate pupil and iris regions
[1, 31]. To enhance processing speed, we used an integer-
based circular edge detection method, which excluded the
floating-point operation [32].

6. IRIS RECOGNITION

To isolate iris regions from eye images, we performed pupil
and iris detection based on the circular edge detection
method [31, 33]. For iris (or pupil) detection, the integro-
difference values between the inner and outer boundaries of
the iris (or pupil) were calculated in the input iris image with
the changing radius values and the different positions of the
iris (or pupil). The position and radius when the calculated
integro-difference value was the maximum were determined
as the detected iris or (pupil) position and radius.
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The upper and lower eyelids were also located by an eye-
lid detection mask and the parabolic eyelid detection method
[33–35]. Since the eyelid line was regarded as a discontinu-
ity area between the eyelid and iris regions, we first detected
the eyelid candidate points by using an eyelid detection mask
based on the first-order derivative. Because there were de-
tection errors in the located candidate points, the parabolic
Hough transform was applied to detect accurate positions of
the eyelid line.

Then, we determined the eyelash candidate region based
on the detected iris and pupil area and located the eyelash
region [33, 36]. The image focus was measured by the fo-
cus checking mask. Then, with the measured focus value of
the input iris image, an eyelash-checking mask based on the
first-order derivative was determined. If the image was de-
focused, a larger mask was used, and vice versa. The eye-
lash points were detected where the calculated value of the
eyelash-checking mask was maximum and this was based on
the continuous characteristics of the eyelash.

In circular edge detection, we did not use any threshold.
By finding the position and radius with which the difference
value was maximized, we were able to detect the boundaries
of the pupil and the iris.

For eyelid detection masking and parabolic eyelid de-
tection, we did not use any kind of threshold either. In the
predetermined searching area as determined by the localized
iris and pupil positions, the masking value of the eyelid de-
tection mask was calculated vertically and the position with
which the masking value was maximized was determined as
the eyelid candidate position. Based on these candidate po-
sitions, we performed the parabolic Hough transform which
had four control points: the curvature value of the parabola,
the X and Y positions of the parabola apex, and the rota-
tional angle of the parabola. In this case, because we detected
one parabola with which the maximum value of curve fitting
was obtained, we did not use any threshold. In order to re-
duce the processing time of the parabolic Hough transform,
we restricted the searching dimensions of four control points
by considering the conventional shape of the human eyelid.

For eyelash detection, because the eyelash points were de-
tected on the maximum position, we again did not use any
kind of user defined threshold.

After that, the detected circular iris region was normal-
ized into rectangular polar coordinates [1, 37, 38]. In gen-
eral, each iris image has variations in terms of the length of
the outer and inner boundaries. The reason for these varia-
tions is that there are size variations between people’s irises
(the diameter of any iris can range from about 10.7–13 mm).
Another reason is because the captured image size of any
given iris may change according to the zooming factor caused
by the Z-distance between the camera and the eye. Another
reason is due to the dilation and contraction of the pupil
(known as hippus movement).

In order to reduce these variations and obtain normal-
ized iris images, we adjusted the lengths of the inner and
outer iris boundaries to 256 pixels by stretching and lin-
ear interpolation. In conventional iris recognition, low, and
mid-frequency components are mainly used for authentica-
tion instead of high-frequency information [1, 37, 38]. Con-

sequently, linear interpolation did not degrade recognition
accuracy. Experimental results with the captured iris images
(400 images from 100 classes) showed that the accuracy of
iris recognition when using linear interpolation was the same
as when using bicubic interpolation and B-spline interpola-
tion. So, we used linear interpolation to reduce processing
time and system complexity.

Then, the normalized iris image was divided into 8 tracks
and 256 sectors [1, 37, 38]. In each track and sector, the
weighted mean of the gray level based on a 1D Gaussian ker-
nel was calculated vertically [1, 37, 38]. By using the weighted
mean of the gray level, we were able to reduce the effect
caused by the iris segmentation error and obtain a 1D iris
signal according to each track. We obtained eight 1D iris sig-
nals (256 pixels wide, resp., based on 256 sectors) from eight
tracks. Consequently, we obtained a normalized iris region
of 256 × 8 pixels, from 256 sectors and 8 tracks. Then, long
and short Gabor filters were applied to generate the iris phase
codes as shown in (6) [33],

G(x) = A·e−π[(x−x0)2/σ2]( cos
(
2π
[
u0
(
x − x0

)]))
, (6)

where A is the amplitude of the Gabor filter, and σ and u0 are
the kernel size and the frequency of the Gabor filter, respec-
tively, [33].

Here, the long Gabor filter had a long kernel and was
designed with a low frequency value. So, it passed a low-
frequency component of the iris textures. However, the short
Gabor filter passed a mid-frequency component with a short
kernel and a mid-frequency value for designing the Gabor
kernel.

The optimal parameters of each Gabor filter were deter-
mined to obtain the minimum equal error rate (EER) by test-
ing with test iris images. The EER is the error rate when the
false acceptance rate (FAR) is the same as that of the false
rejection rate (FRR). The FAR is the error rate of accepting
imposter users as genuine ones. The FRR is the error rate of
rejecting genuine users as imposters [33].

In terms of the long Gabor filter, the filter size was
25 pixels and the frequency (u0 of (6)) was 1/20. In terms of
the short Gabor filter, the filter size was 15 pixel and the fre-
quency (u0 of (6)) was 1/16. The calculated value of Gabor
filtering was checked to determine whether it had a positive
or negative value. If it had a positive value (including 0), the
calculated value of Gabor filtering was 1. If it had a negative
value, it was 0 [1, 37, 38]. This was called iris code quantiza-
tion and we used the iris phase information from that. The
Gabor filter was applied on every track and sector, and we
obtained an iris code of 2,048 bits (= 256 sectors ×8 tracks)
which had either a 1 or a 0 code. Consequently, 2,048 bits
were obtained from long Gabor filtering and another 2,048
bits were obtained from short Gabor filtering [33].

In this case, the iris code bits which were extracted from
the eyelid, eyelash, and SR occluded areas were regarded as
unreliable and were not used for code matching [33]. After
pupil, iris, eyelid, and eyelash detection, the noise regions
were depicted as unreliable pixels (255). With Gabor filter-
ing, even if one unreliable pixel was included in the range, the
extracted bit on that position was regarded as an unreliable
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code bit. Only when the number of reliable codes exceeded
the predetermined threshold (we used 1000 as the threshold
to obtain the highest iris authentication accuracy with the
iris database) they could be used as an enrolled template with
high confidence [33].

The extracted iris code bits of the recognition image were
compared with the enrolled template based on the hamming
distance (HD) [1, 37, 38]. The HD was calculated based on
the exclusive operation (XOR) between two code bits. So, if
they were the same, the XOR value was 0. If they were dif-
ferent, the value was 1. Consequently, it was highly probable
that the two iris codes of two genuine users would have both
been 0. Therefore, all the reliable code bits of the recognition
image were compared with those of the enrolled one based
on the HD. If the calculated HD exceeded the threshold (we
used 0.3), the user was accepted as genuine. If not, he or she
was rejected as an imposter.

7. EXPERIMENTAL RESULTS

Figure 5 shows the mobile phone that we used. It was a Sam-
sung SPH-S2300 with a 2048∗1536 pixel CCD sensor and a
3X optical zoom. To capture detailed iris patterns, we used
IR-illuminators and an IR pass filter [19]. In front of the
camera lens as shown in Figure 5, we attached a cold mir-
ror (with an IR pass filter), which allowed IR light to pass
through and reflect visible light. Also, we attached dual IR-
LED illuminators to detect genuine SRs easily (as mentioned
in Section 2.2).

In the first test, we measured the accuracy (hit ratio) of
our algorithm. Tests were performed on 400 face images cap-
tured from 100 persons (70 Asians, 30 Caucasians). These
face images were not used for AdaBoost training. The test
images consisted of the following four categories: images
with glasses and contact lenses (100 images); images with-
out glasses or contact lenses (100 images) in indoor environ-
ments (223 lux.); images with glasses and contact lenses (100
images); and images without glasses or contact lenses (100
images) in outdoor environments (1,394 lux.).

Experimental results showed that the pupil detection rate
was 99.5% (for images without glasses or contact lenses in
indoor and outdoor environments) and 99% (for images
with glasses or contact lenses in indoor and outdoor envi-
ronments). The iris detection rate was 99.5% (for images
without glasses or contact lenses in indoor and outdoor en-
vironments) and 98.9% (for images with glasses or contact
lenses in indoor and outdoor environments). The detection
rate was not degraded irrespective of conditions due to the il-
luminator mechanism as mentioned in Section 2.2. Though
performance was slightly lower for users with glasses, contact
lenses did not affect performance.

When we measured performance only using the Ad-
aBoost algorithm, the detection rate was almost 98%. But
there were also many false alarms (e.g., when noneye regions
such as eyebrows or frames of glasses were detected as cor-
rect eye regions). Experimental results with 400 face images
showed that the false alarm rate using only the AdaBoost
eye detector was almost 53%. So, to solve these problems,
we used both the information of the corneal SR and the Ad-

(a) (b)

Figure 6: Examples of captured iris images.

aBoost eye detector. These results showed that the correct eye
detection rate was more than 99% (as mentioned above) and
the false alarm rate was less than 0.2%.

Also, experimental results showed that the accuracies of
the detected pupil (iris) center and radius were measured by
the pixel RMS error between the detected and the manually-
picked ones. The RMS error of the detected pupil center was
about 2.24 pixels (1 pixel on the X axis and 2 pixels on the
Y axis, resp.). The RMS error of the pupil radius was about
1.9 pixels. Also, the results showed that the RMS error of the
detected iris center was about 2.83 pixels (2 pixels on the X
axis and 2 pixels on the Y axis, resp.). The RMS error of the
iris radius was about 2.47 pixels. All the above localization
accuracy figures were determined by manually assessing each
image.

In the second test, we checked the correct detection rate
of the pupil and the iris according to the size of the pupil
detection box (as mentioned in Section 5) and as shown in
Tables 1–4.

In the next experiments, we measured recognition accu-
racy with the captured iris images and detailed explanations
of the recognition algorithm are presented in Section 6. Re-
sults showed that the EER was 0.05% when using 400 images
(from 100 classes), which meant that the captured iris im-
ages could be used for iris recognition. Figure 6 and Table 5
show examples of the captured iris images and the FRR ac-
cording to the FAR. In this case, the FAR refers to the error
rate of accepting an imposter user as a genuine one, and the
FRR refers to the error rate of rejecting a genuine user as an
imposter. Here, an imposter means a user who did not enroll
a biometric template in the database [33].

Then, we applied our iris recognition algorithm (as men-
tioned in Section 6) to the CASIA database version 1 [39]
(using 756 iris images from 108 classes), the CASIA database
version 3 [39] (a total of 22,051 iris images from more than
700 subjects), the iris images captured by our handmade iris
camera based on the Quickcam Pro-4000 CCD camera [40]
(using 900 iris images from 50 classes [33]) and those by the
AlphaCam-I CMOS camera [41] (using 450 iris images from
25 classes [33]). Results showed that the iris authentication
accuracies (EER) of the CASIA version 1, the CASIA version
3, the iris images captured with the CCD camera, and the
iris images captured with the CMOS camera were 0.072%,
0.074%, 0.063%, and 0.065%, respectively. From that, it was
clear that the authentication accuracy with the iris images
captured by the mobile phone was superior and the captured
iris images on mobile phone were of sufficient quality to be
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Table 1: Correct pupil detection rate for images without glasses (unit: %).

The size of the pupil detection box

120∗120 pixels 140∗140 pixels 160∗160 pixels 180∗180 pixels

Correct detection rate
(hit ratio)

90 95 99.5 100

Table 2: Correct pupil detection rate for images with glasses or contact lenses (unit: %).

The size of the pupil detection box

120∗120 pixels 140∗140 pixels 160∗160 pixels 180∗180 pixels

Correct detection rate
(hit ratio)

87 94 99 100
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Figure 7: ROC curves for all datasets.

used for iris authentication. Figure 7 shows the ROC curves
for the datasets such as the iris images obtained by our mo-
bile phone camera, the CASIA version 1, the CASIA version
3, those by the Quickcam Pro-4000 CCD camera, and those
by the AlphaCam-I CMOS camera.

In order to evaluate the robustness of our method to
noise and show the degradation in the recognition accu-
racy as the amount of noise in the captured iris images
increased, we increased the Gaussian noise in the iris im-
ages captured by our mobile phone camera. To measure the

amount of inserted noise, we used the signal-to-noise rate
(SNR = 10 × log 10 (Ps/Pn)), where Ps represents the vari-
ance of the original image and Pn represents that of the noise
image.

Results showed that if the SNR exceeded 10 dB, there was
no iris segmentation error or recognition. If the SNR was be-
tween 5–10 dB, the RMS error of the detected pupil and iris
increased to 4.8% based on the original RMS error. However,
even in that case, the recognition error was not increased. If
the SNR was between 0 and 5 dB, the RMS error of the de-
tected pupil and iris increased to 6.2% based on the original
RMS error. However, again, the recognition error was not in-
creased.

That is because in conventional iris recognition, the low-
and mid-frequency components of iris texture are mainly
used for authentication instead of high-frequency informa-
tion, as mentioned before [1, 33, 37, 38]. Based on that, both
long and short Gabor filters were applied to generate iris
phase codes [33]. The long Gabor filter had a long kernel
and was designed with a low frequency value (it passed the
low-frequency component of the iris textures). Whereas, the
short Gabor filter passed the mid-frequency component with
a short kernel size and a mid-frequency value for designing
the Gabor kernel.

In the next test, we measured different processing times
with a mobile phone, a desktop PC, and a PDA. The mo-
bile phone (SPH-S2300) used a Qualcomm MSM6100 chip
(ARM926EJ-STM CPU (150 Mhz), 4 MB Memory) [28, 42].
To port our algorithm on the mobile phone, we used a wire-
less internet platform for interoperability (WIPI) 1.1 plat-
form [43] without an additional DSP chip. For the PDA,
we used an HP iPAQ hx4700 (with an Intel PXA270 CPU
(624 Mhz), 135 MB Memory, and a Pocket PC 2003 (WinCE
4.2) OS). The desktop PC was a Pentium-IV CPU (3.2 Ghz),
with 1 GB Memory and a Windows-XP OS.

Experimental results showed that the total process-
ing times for iris detection and recognition in the desk-
top PC, PDA, and mobile phone were 29.32, 107.7, and
524.93 milliseconds, respectively. In previous research, the
face detection algorithm proposed by Viola and Jones [44]
was also tested on mobile phones such as the Nokia 7650
(with a CPU clock of 104 MHz) and the Sony-Ericsson P900
(with a CPU clock of 156 MHz) with an input image of
344∗288 pixels. Results showed that processing time on each
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Table 3: Correct iris detection rate for images without glasses (unit: %).

The size of the pupil detection box

120∗120 pixels 140∗140 pixels 160∗160 pixels 180∗180 pixels

Correct detection rate
(hit ratio)

90 94 99.5 99.8

Table 4: Correct iris detection rate for images with glasses or contact lenses (unit: %).

The size of the pupil detection box

120∗120 pixels 140∗140 pixels 160∗160 pixels 180∗180 pixels

Correct detection rate
(hit ratio)

87 94.5 98.9 99.6

Table 5: FRR according to FAR (unit: %).

FAR FRR

1.0 0.0

0.1 0.0

0.01 0.31

0.001 1.59

EER 0.05

mobile phone was 210 milliseconds and 160 milliseconds, re-
spectively. Though these methods showed faster processing
speed, they only included a face detection procedure and did
not address recognition. In addition, they used an additional
DSP chip, which increased their total costs.

8. CONCLUSIONS

In this paper, we have proposed a real-time pupil and iris de-
tection method appropriate for mobile phones. This research
has presented the following three advantages over previous
works. First, for users with glasses, there may be many non-
corneal SRs on the surface of the glasses and it is very difficult
to detect genuine SRs on the cornea. To overcome these prob-
lems, we proposed the successive On/Off Scheme of the dual
illuminators. Second, to detect SRs robustly, we proposed a
theoretical way of estimating the size, shape, and brightness
of SRs based on eye, camera, and illuminator models. Third,
the detected eye (iris) regions by using the SRs were verified
again by using the AdaBoost eye detector.

Results with 400 face images captured from 100 persons
showed that the rate of correct iris detection was 99.5% (for
images without glasses) and 98.9% (for images with glasses
and contact lenses). Consequent accuracy of iris authentica-
tion with 400 images from 100 classes was 0.05% of the equal
error rate (EER) based on the detected iris image.

In future work, more field tests will be required. Also, to
reduce processing time in mobile phones, we plan to port our
algorithm into the ARM CPU of mobile phones. In addition,
we plan to restore optical and motion blurred iris images and
use them for recognition by not rejecting and recapturing
images. This may reduce total processing time and enhance
recognition accuracy.
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