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RÉSUMÉ

L’authentification biométrique telle que les empreintes digitales et la biométrie faciale a
changé la principale méthode d’authentification sur les appareils mobiles. Les gens in-
scrivent facilement leurs modèles d’empreintes digitales ou de visage dans différents systèmes
d’authentification pour profiter de leur accès facile au smartphone sans avoir besoin de se
souvenir et de saisir les codes PIN/mots de passe conventionnels. Cependant, ils ne sont pas
conscients du fait qu’ils stockent leurs caractéristiques physiologiques ou comportementales
durables sur des plates-formes non sécurisées (c’est-à-dire sur des téléphones mobiles ou sur
un stockage en nuage), menaçant la confidentialité de leurs modèles biométriques et de leurs
identités. Par conséquent, un schéma d’authentification est nécessaire pour préserver la con-
fidentialité des modèles biométriques des utilisateurs et les authentifier en toute sécurité sans
compter sur des plates-formes non sécurisées et non fiables.

La plupart des études ont envisagé des approches logicielles pour concevoir un système
d’authentification sécurisé. Cependant, ces approches ont montré des limites dans les sys-
tèmes d’authentification sécurisés. Principalement, ils souffrent d’une faible précision de
vérification, en raison des transformations du gabarit (cancelable biometrics), de la fuite
d’informations (fuzzy commitment schemes) ou de la réponse de vérification non en temps
réel, en raison des calculs coûteux (homomorphic encryption).

Au regard de tout ce qui précède, cette thèse vise à concevoir un nouveau schéma d’authentific-
ation sécurisé et préservant la confidentialité pour les utilisateurs mobiles. Nous utilisons la
technique match-on-card (MOC) sur les appareils mobiles qui en profite des caractéristiques
de sécurité matérielle des cartes de module d’identité d’abonné (SIM) ou de carte SIM in-
tégrée (eSIM) disponibles sur tous les smartphones. Toutefois, en raison des limitations de
ressources des cartes SIM, la conception d’un système d’authentification préservant la confi-
dentialité en utilisant la technique MMOC est une tâche difficile à accomplir. Afin d’atteindre
cet objectif, le travail a été réparti sur trois principales phases.

Tout d’abord, compte tenu de la plus grande sécurité des systèmes d’authentification ac-
tive, nous proposons un système d’authentification active comportementale sécurisé pour
les utilisateurs mobiles utilisant la biométrie tactile. Une architecture assistée par le cloud
est proposée, où l’interaction de l’utilisateur avec le dispositif à écran tactile est surveillée
de manière transparente en arrière-plan, et les caractéristiques les plus discriminantes de
chaque coup tel que la vitesse, l’accélération, la pression sur l’écran, la zone couverte, la - la
distance de fin, la durée de course sont extraites et stockées sur la carte SIM/eSIM pour au-
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thentification. Un réseau neuronal profond quantifié (quantized DNN) est implémenté sur la
carte SIM/eSIM pour la vérification de l’utilisateur avec un module de formation modèle sur
un serveur cloud. Cette architecture nous aide à augmenter la précision des performances
tout en augmentant la sécurité et la confidentialité du système. De plus, une technique
d’optimisation du compilateur est également employée pour accélérer le passage avant du
DNN sur la carte.

Dans la deuxième phase, nous étendons notre système d’authentification active sécurisé aux
traits biométriques avec des vecteurs de caractéristiques plus grands. La biométrie phys-
iologique telle que la biométrie faciale peut également être utilisée dans l’authentification
active. Nous utilisons les méthodes d’apprentissage par transfert (transfer learning) et d’
extraction profonde des caractéristiques (deep feature extraction) pour générer une représen-
tation profonde du visage qui est robuste contre les changements de pose et d’illumination,
et surtout, elle est assez légère pour être migrée vers SIM/eSIM pour la vérification finale.
Une authentification active sur carte est proposée pour authentifier en permanence les util-
isateurs légitimes. Nous proposons deux systèmes d’authentification pour l’authentification
active basée sur le visage. Le premier qui est une authentification basée sur un modèle
(model-based authentication) utilise les ressources du cloud à des fins de sélection de mod-
èle et de formation, tandis que le second qui est une authentification basée sur un gabarit
(template-based authentication) ne dépend que des ressources SIM/eSIM pour l’inscription et
la vérification, étant plus sécurisé que la première architecture. Lors de la phase d’inscription
sur la carte, la distance L2 est utilisée pour trouver la distance entre le modèle d’ancrage
et d’autres modèles négatifs ou positifs, et le meilleur seuil de classification est obtenu. Une
méthode numérique est proposée pour calculer la distance L2 sur la carte.

Enfin, un système générique d’authentification de réservation de confidentialité basé sur
MMOC est présenté. L’apprentissage par transfert en utilisant des approches basées sur
l’apprentissage en profondeur a considérablement amélioré les performances des systèmes de
reconnaissance et peut également être utilisé dans les systèmes d’authentification biométriques.
Nous utilisons l’apprentissage par transfert pour créer une architecture de réseau spécial-
isée pour l’extraction et la vérification des fonctionnalités sur la carte. Nous modifions
l’architecture d’un modèle préentraîné et le peaufinons pour le rendre adapté à l’implémentation
SIM/eSIM. Un nouveau schéma de quantification et une architecture d’optimisation sont pro-
posés pour réduire le temps d’exécution du sous-réseau de classification sur la carte tout en
maintenant la précision des performances proche du modèle à valeur réelle.

Les performances du système d’authentification proposé sont évaluées à l’aide d’ensembles
de données accessibles au public. Grâce à des expériences approfondies, nous montrons que
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le système proposé avec un bon schéma de quantification et une architecture d’optimisation
efficace atteint une grande précision en temps réel avec une faible empreinte mémoire sur les
cartes à puce, et convient à l’authentification multiplateforme. Une implémentation sur de
vrais smartphones montre également que le système a moins de surcharge de performances
que même une simple méthode d’authentification sécurisée basée sur le cryptage.

En résumé, cette thèse est le premier travail qui étudie le potentiel de la technique MMOC
en tant que système d’authentification sécurisé, léger et en temps réel pour les smartphones,
même en utilisant des classificateurs informatiques coûteux tels que les réseaux neuronaux
profonds.
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ABSTRACT

Biometric authentication such as fingerprint and face biometrics has changed the main au-
thentication method on mobile devices. People easily enroll their fingerprint or face templates
on different authentication systems to take advantage of their easy access to the smartphone
with no need to remember and enter the conventional PINs/passwords. However, they are
not aware that they store their long-lasting physiological or behavioral characteristics on in-
secure platforms (i.e., on mobile phones or on cloud storage), threatening the privacy of their
biometric templates and their identities. Therefore, an authentication scheme is required to
preserve the privacy of users’ biometric templates and securely authenticate them without
relying on insecure and untrustworthy platforms.

Most studies have considered software-based approaches to design a privacy-reserving authen-
tication system. However, these approaches have shown limitations in secure authentication
systems. Mainly, they suffer from low verification accuracy, due to the template transfor-
mations (in cancelable biometrics), information leakage (in fuzzy commitment schemes), or
non real-time verification response, due to the expensive computations (in homomorphic
encryption).

To this end, this thesis aims to design a new secure and privacy-preserving authentication
scheme for mobile users. We use match-on-card (MOC) technique on mobile devices that
takes advantage of hardware security characteristics of subscriber identity module (SIM) or
embedded SIM (eSIM) cards available on all smartphones. However, due to the resource
limitations of SIM cards, designing an authentication system that preserves privacy using
MMOC technique is a difficult task to accomplish. In order to achieve this goal, the work
has been divided into three main phases.

First, considering the higher security of active authentication systems, we propose a secure
behavioral active authentication system for mobile users using touchscreen biometric. A
cloud-assisted architecture is proposed, where the user’s interaction with the touchscreen
device is monitored transparently in the background, and the most discriminative features
of each stroke such as velocity, acceleration, pressure on the screen, the covered area, direct
end-to-end distance, stroke duration are extracted and stored on the SIM/eSIM card for
authentication. A quantized deep neural network (DNN) is implemented on the SIM/eSIM
card for user verification with a model training module on a cloud server. This architecture
helps us to increase the performance accuracy while increasing the security and privacy of
the system. Moreover, a compiler optimization technique is also employed to speed up the
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forward pass of DNN on the card.

In the second phase, we extend our secure active authentication system to biometric traits
with larger feature vectors. Physiological biometric such as face biometric also can be used
in active authentication. We employ transfer learning and deep feature extraction methods
to generate a deep representation of the face that is robust against pose and illumination
changes, more importantly, lightweight enough to be migrated to the SIM/eSIM for final
verification. An on-card active authentication is proposed to continuously authenticate le-
gitimate users. We propose two authentication systems for face-based active authentication.
The first one which is a model-based authentication uses the cloud resources for model se-
lection and training purposes while the latter one which is a template-based authentication
only relies on SIM/eSIM resources for enrollment and verification, and is more secure than
the first architecture. In the enrollment phase on the card, L2 distance is used to find the
distance between the anchor template and other negative or positive templates, and the best
classification threshold is obtained. A numerical method is proposed to compute L2 distance
on the card.

Finally, a generic MMOC-based privacy-preserving authentication system is presented. Trans-
fer learning by using deep learning-based approaches has drastically improved the perfor-
mance of recognition systems and can be used in biometric-based authentication systems as
well. We use transfer learning to build specialized network architecture for feature extraction
and verification on the card. We modify the architecture of a pre-trained model and fine-tune
it to make it suitable for SIM/eSIM implementation. A novel quantization scheme and an
optimization architecture is proposed to reduce the classification sub-network execution time
on the card while keeping the performance accuracy close to the real-valued model.

The performance of the proposed authentication system is evaluated using publicly avail-
able datasets. With extensive experiments, we show that the proposed system with a good
quantization scheme and an efficient optimization architecture achieves high accuracy in
real-time with a small memory footprint on smart cards, and is suitable for cross-platform
authentication. An implementation on real smartphones also shows that the system has less
performance overhead compared to even a simple encryption-based secure authentication
method.

In summary, this thesis is the first work that studies the potential of the MMOC technique as a
secure, privacy-preserving, lightweight, and real-time authentication system on smartphones,
even using computationally expensive classifiers such as deep neural networks.
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CHAPTER 1 INTRODUCTION

With the increasing usage of smartphones, a robust authentication system is required to
prevent any unauthorized access to personal and sensitive information stored on the device.
Traditional authentication schemes such PIN/password or graphical patterns suffer from two
attacks namely shoulder surfing attack and smudge attacks [1]. Shoulder surfing attacks
could happen in public places and public transportation where people can easily spy your
PIN/password or your touch screen patterns. In smudge attacks, an attacker can take ad-
vantage of the residues left on the device after drawing a touch screen pattern. Moreover,
recent studies show that many users do not take security issues seriously for accessing their
smartphones. About 46.8% of users believe that unlocking their phones is time consuming
and inconvenient and prefer to leave their mobile devices unprotected [2]. A study shows that
35.5% of users never lock their smartphones using PIN/password or lock patterns [3]. An-
other study shows that 67% of users use a simple PIN method to lock their devices [4]. About
34% of users in the united states do not use any authentication on their smartphones [5]. In
recent years, biometric authentication has attracted attentions from academia and industry.
Biometric authentication uses physiological characteristics such as fingerprint, face recogni-
tion, etc., or behavioral characteristics of users such as gait recognition, signature, gesture
recognition on touchscreen devices, or a hybrid scheme that takes advantage of the both sys-
tems [6]. Moreover, new biometric authentication systems continuously and unobtrusively
authenticate users to eliminate any attacks to the system even after a successful login.

Biometric templates are unique and long-lasting characteristics of their owners, and unlike
traditional authentication methods such as PIN/password or graphical patterns, cannot be
changed if compromised. Therefore, the storage and verification of biometric templates are
big concerns in mobile authentication systems. Most of the mobile authentication systems
store biometric templates on cloud storage or on smartphones both threaten the privacy of
users’ identities. Around 75% of users download applications from official repositories who
believe that downloaded applications from these repositories are secure [7]. However, studies
show that security control and application testing are not enabled in all official repositories
or are inadequate [8]. Moreover, due to the increasing number of applications, validation
techniques become more and more complex. On the other hand, not all users are knowledge-
able and even are not aware of the consequences of installing a spyware or a trojan on their
phones. Interestingly, only 36% of smart phone users consider themselves as responsible for
the security of their devices and the sensitive information stored on them [9]. McAfee reports
the increasing number of banking trojans that take advantage of Android vulnerabilities [10].
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These statistics reveal the importance of a secure biometric authentication for mobile users.

Software-based privacy-preserving biometric authentication approaches such as fuzzy com-
mitment [11] or homomorphic encryption [12] store biometric templates securely on mobile
devices. In the first approach, the verification accuracy would degrade due to template trans-
formation. In the latter method, computing the matching score on encrypted templates using
homomorphic encryption affects the real-time response of the authentication system owing
to the heavy computation on cipher text space. Hardware-based approaches used by Original
Equipment Manufacturers (OEMs) or processor design companies use a Trusted Execution
Environment (TEE) with supporting hardware (e.g., ARM TrustZone [13]) and a trusted
OS (e.g., Trusty [14]) for isolation of user verification phase, and secure storage of biometric
templates. However, this approach needs a special hardware design; moreover, the TEE is
not available on all mobile devices, or is very costly to buy the required SDK.

In this thesis, we pursue a hardware-based secure biometric authentication system using a
new concept Mobile Match on Card (MMOC) authentication that takes advantage of smart
cards (SCs) in the form of Subscriber Identity Module (SIM) or the newly evolved technology,
embedded SIM (eSIM) cards, available on all smartphones to design a privacy-preserving and
secure authentication system for mobile users without relying on any specific hardware design.

The remainder of this chapter is organized as follows. Section 1.1 introduces basic concepts
and definitions necessary to understand the conducted research in this thesis properly. Section
1.2 discusses secure biometric authentication approaches. In section 1.3, open problems in
authentication systems are investigated. Then, we set our research objectives in section 1.4.
After that, in section 1.5, the main contributions of the thesis is explained. Finally, the
outline of the thesis is presented in section 1.6.

1.1 Basic Concepts and Definitions

1.1.1 Biometric user authentication

A biometric system uses one or more physiological characteristics (e.g., fingerprint, palm-
print, face, iris, retina, face, voice) or behavioral traits of a user (e.g., signature, touchscreen,
gait, key strokes) or hybrid schemes that take advantage of the both systems to authenticate
the legitimate user (mostly known as verification).

User authentication problem is divided into two main domains. User identification and user
verification. In user identification, when a probe (unknown biometric template) is presented
to the system, the system should determine the identity of the user by comparing it with the
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gallery set (known templates)1 of legitimate users in the system to find the best match and
determine if the input biometric template belongs to any of enrolled identities in the system.
However, in user verification, a user claims an identity by presenting a probe and the system
should validate the user’s claim by comparing the probe with the galley set of the enrolled
legitimate user in the system.

In general, a biometric user authentication system has two main phases. Fig. 1.1 shows a
common authentication system.

• Enrolment: user enrolment of authentication systems can be studied in two cate-
gories. Model-based enrolment takes advantage of machine learning models to classify
the legitimate user’s templates from impostors’ templates. Collected user’s biometric
templates are used for model training and model selection purposes that will be used
in verification phase. In this approach, a user verification problem turns into a binary
classification problem in machine learning era. Template-based enrolment uses similar-
ity metrics such as distance metric to compare a presented probe to the system with
the legitimate user’s profile (gallery set). The user is a legitimate user if the similarity
of her presented biometric template to the stored profile passes a pre-defined threshold
in the system.

• Verification: in this phase, the system validates the user’s claiming identity. Similar to
the enrolment phase, this process starts with the feature extraction method. Depending
on what approach is used in the enrolment phase, user verification can be probability-
based approach or similarity-based approach. Probability-based approach is used when
model-based method is employed in the enrolment phase where a squashing function
produces a probability value that shows how likely the presented probe belongs to the
legitimate user.

D =

P, if σ(x) > TC .

N, otherwise.
(1.1)

where, x is the input, σ is the squashing function, and TC is the classification threshold.
P means that the user is verified as a legitimate user (positive class) while N means
that the user is an impostor (negative class). On the other hand, the similarity-based
approach is used when template-based approach is used in the enrolment phase. When
a probe is presented to the system, the authentication system compares its similarity
to the legitimate user’s gallery. Distance metrics such as euclidean distance or cosine
similarity are used to measure the similarity between templates. The probe belongs to

1also known as reference set or enrollment set
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Figure 1.1 User biometric authentication systems have two phases. In user enrollment, bio-
metric templates or the model’s internals are stored for verification phase. In user verification,
a verification algorithm based on the enrollment approach is employed to decide whether the
presented template belongs to the legitimate user or not. The user can access the system
upon the positive verification decision [15].

the legitimate user if its similarity metric is above a pre-defined threshold.

D =

P, if d(x, y) > TD.

N, otherwise.
(1.2)

where, d(x, y) is the similarity function, x is the input template, y is the legitimate
template, and TD is the distance threshold.

A biometric system should satisfy the following requirements [16]:

• Universality: does everyone have the biometric characteristic?

• Distinctiveness: are two persons distinguishable using the biometric characteristic?

• Permanence: does not the biometric characteristic change over a long time?

• Performance: does the recognition system achieve fast acceptable accuracy by using
low system resources?

• Acceptability: how willing are people to use the biometric characteristic?

• Circumvention: can the authentication system be easily fooled?
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From the security point of view, we can divide authentication systems into single point entry
authentication and active authentication (AA)2. Single point entry authentication systems
validate the user’s identity only once at the login time. It is likely that an impostor takes
over the phone after a successful authentication. However, active authentication systems
continuously and unobtrusively monitor the mobile user after the login while she is working
with the device until she logs out of the system. This new emerging authentication scheme
minimizes session hijacking attacks on smartphones. These systems mostly use behavioral
biometrics such as gait, touchscreen biometric, motion sensors or facial attributes (using the
smartphone’s front-facing camera). Fig. 1.2 shows a face-based active authentication system.

Figure 1.2 An active authentication system can detect intrusion on the phone even after
login. Frames A-I show the legitimate user working with the phone. At frame J, an impostor
takes the phone’s control. Since the AA system periodically captures user’s face images, it
can detect the attack on the phone [17].

Evaluation metrics

In order to evaluate authentication systems, several evaluation metrics are widely used. In
the following we discuss these metrics.

• False Negative Rate (FNR): shows the percentage of legitimate users falsely identified
as impostors.

• False Positive Rate (FPR): shows the percentage of impostors falsely identified as le-
gitimate users.

• True Positive Rate (TPR), Recall (REC): is the probability of correctly identifying
legitimate users, and defined as

REC = TP

TP + FN
(1.3)

2also known as continuous authentication (CA)
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where, TP and FN are the number of true positive and false negative samples for a
given threshold, respectively.

• Precision (PRE): identifies the frequency with which the authentication system was
correct when predicting the legitimate user. That is

PRE = TP

TP + FP
(1.4)

where, FP is the number of false positive samples for a given threshold.

• Receiver operating characteristic (ROC): is a graph that shows the performance of a
binary classification at all classification thresholds. The curve is plotted by showing
the TPR of the system for different FPR values at a specific classification threshold.

• Area Under Curve (AUC): is the possibility of ranking a randomly chosen positive
instance higher than a randomly chosen negative one by a classifier.

• Equal Error Rate (EER): represents a point where false positive rate (FPR) equals
false negative rate (FNR). This point is obtained by intersecting the ROC curve with
a diagonal of the unit square. In general, the lower the equal error rate, the higher the
accuracy of a biometric system. Figure 1.3 illustrates the relation between ROC, AUC,
and EER.

1.1.2 SIM/eSIM Overview

Smart Cards (SCs), devices in card format including an embedded integrated circuit (IC),
are used to store information in a secure and yet flexible way. Smart card architecture consist
of the following components:

• CPU: all smart card processors support 8-, and 16-bit computations. Moreover, some
smart cards also support 32-bit calculations.

• I/O Interface.

• Crypto-processor: used to perform cryptographic operations or hash calculation such
as RSA, ECC, SHA, faster on chip (not available on all smart cards).

• Memory

– ROM: stores the OS
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Figure 1.3 ROC, AUC, and EER of an authentication system [18]

– EEPROM: used to store system and application files, and to load applications.

– RAM: used during execution of applications to store computation values.

Smart cards demonstrate high security features that make them a good candidate to store
sensitive information for authentication, cryptography, communication, personalization as
payment cards, ePassport, public transport fare cards, SIM cards. Some of these security
features are: 1) communication channel is a restricted path to the smart card that is controlled
by the card OS. 2) smart cards support most of encryption algorithms even in hardware to
offer higher security solutions. 3) smart cards are kept small and less complex to prevent
system misfunctionality, or easy to find security flaws in the system [19]. 4) smart cards
have a secure OS which is tamper resistant and robust against side channel attacks and fault
injections [6], [20].

Smart cards communicate with the outside world using a packet mechanism called Appli-
cation Protocol Data Units (APDUs). The communication model is a command-response
model. The card receives a command APDU, performs the processing requested by the com-
mand, and returns a response APDU [21]. An APDU commnad is 255 bytes and consists of
5-byte header and 250 bytes of data. Fig. 1.4 shows the format of an APDU packet.
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Figure 1.4 APDU packet format.

In Fig. 1.4:

• CLA indicates one of ISO 7816-4 classes implemented on smart cards’ OS.

• INS indicates the instruction code defined in an applet to run a specific function.

• P1 and P2 indicate additional parameters.

• Lc indicates the length of the data.

• Data is the input data for a specific function in an applet.

• Le indicates the length of the expected response.

However, not all smart card applets require data from the outside to operate. Therefore, the
Data field is optional in the packet.

Java card

Smart card applications or applets are mostly developed by a simplified version on Java
technology called Java card technology. Software components on the smart cards with Java
Card technology are [21]:

• Card OS.

• Native services: performs the I/O, cryptographic, and memory allocation services of
the card.

• Java Card Virtual Machine (JCVM): provides bytecode execution.

• Framework: the set of classes which implement the API.

• Application Programming Interface (API): used by applets to accesses the JCRE and
native services.

• Java Card runtime environment (JCRE): provides the class libraries and other resources
that a specific applet needs to run.
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• Industry extensions: add-on classes that extend the applets installed on the card.

• Applets: application written in Java to run on smart cards.

SIM card

Smart cards’ security features made them a good candidate for secure storage of network
subscribers’ credentials and secure authentication of subscribers to the network. Smart cards
in the form of Subscriber Identity Module (SIM) cards are used to securely store a profile on
user devices. A profile contains the operator’s and the subscriber’s credentials that are used
to authenticate the subscriber to the operator’s network. It includes authentication keys KI,
KC, Opc Key, International Mobile Subscriber Identity (IMSI) that uniquely identifies the
subscriber in the mobile network, Integrated Circuit Card Identifier (ICCID) that is a serial
number to identify the SIM card, among other useful information. Moreover, profiles can
contain applets to offer value added services (VAS) to subscribers in order to take advantage
of security features and available resources on the SIM cards.

eSIM

Physical limitations of a SIM card such as its size, fragility, or physical security hinder it
to be a successful player in Internet of Thing (IoT) era, despite its successful presence in
telecommunication era for 25 years. With the explosion of IoT devices, the limitations of
SIM cards are more evident. Embedded SIM (eSIM) is an evolution of SIM card designed
to address the limitations of traditional SIMs. They incorporate new functionality that is
needed to enable the world of IoT devices. eSIMs unlike SIMs are permanently soldered into
the device and are a container of several mobile network operator (MNO) profiles. eSIMs
are managed remotely with a platform called remote SIM provisioning (RSP) that enables
storage and management of multiple MNO profiles.

Using traditional SIM cards, the user sets up a contract with an MNO and receives a SIM
card that should be inserted into the device to connect to the MNO’s network. If the user
decides to change her operator, she should set up a new contract with a new MNO and
physically swap the SIMs (new one with the old one) to connect to the new MNO’s network.
However, using eSIMs, there is no physical SIM available to the end user. When the user
sets up a contract with an MNO, instead of a SIM card, she receives an instruction on how
to connect to the MNO’s RSP and download the required profile, probably in the form of
Quick Response (QR) code. If the user wants to change her operator, she scans the new QR
code to download the profile from the operator’s RSP into the eSIM. The user can easily
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Figure 1.5 Smart card software components [21].

switch between the profiles available on the eSIM whenever she is not satisfied with the
offered service of the current network [22]. Fig.1.6 illustrates the MNO profile installation
and profile selection.

1.2 Privacy-preserving (secure) biometric authentication

Although biometric authentication systems provide a great usability and accuracy for users,
they are the target of many security attacks. Despite their ease of use and accuracy compared
to traditional authentication methods such as password, biometric templates are not kept
secret and they are not easily revocable if compromised. Therefore, the consequences of being
stolen are more severe such as identity theft, illegal access to personal records on electronic
services such as e-health, e-ID, or unauthorized access to information on personal devices.
Therefore, it is crucial to design a privacy-preserving biometric authentication system that
is able to minimize the risk of aforementioned attacks. A privacy-preserving authentication
system should meet the following requirements:

• resistance to possible attacks: a privacy-preserving authentication system should be
robust against attacks on privacy, especially impersonation or spoofing attacks.

• Revocability: which indicates that in case of privacy compromise of biometric tem-
plates, the user should be able to revocate the previously enrolled templates and enroll
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(a)

(b)

Figure 1.6 Remote SIM provisioning (RSP) operations. (a) shows the MNO profile download
and installation. (b) shows profile selection on consumer device [22].

a new gallery set on the system.

• Noninvertibility: if biometric templates are transformed in order to protect the pri-
vacy of biometric information, this transformation should not be invertable. Otherwise
attackers can easily retrieve the original biometric templates from the transformed ones.

• Unlinkability: access to the original bioemtric templates should be disconnected from
the outside world. This way, we minimize the risk of network attacks to the biometric
database.

The term privacy is about the safeguarding of the user’s identity and the term security is
about the safeguarding the user’s data. In biometric-based authentication systems, since
the data to protect is in fact the identity of the user, privacy-preserving authentication is
also referred to as secure authentication. Therefore, the two terms are used interchangeably
throughout the thesis.
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1.3 Open problems in biometric authentication

Biometric authentication has become popular among mobile users due to its ease of use
compared to the traditional authentication methods. However, there are several open issues
in boimetric-based authentication that need to be addressed to achieve a higher level of
acceptance among users.

• Performance: biometric authentication is supposed to grant access to valuable informa-
tion on the system. Therefore, its performance accuracy and low resource consumption
are crucial for a successful implementation. Finding a new biometric authentication
solution that verifies legitimate users with high accuracy with zero false positive rate
(FPR) and zero false negative rate (FNR) is a challenging task. Except well-known
fingerprint biometric, other physiological biometrics have not shown that percentage of
accuracy. For behavioral bimetrics this situation is even worse.

• Security: increasing the security of a biometric system requires collecting more informa-
tion from the user (i.e., extract more features), increasing the frequency of data acqui-
sition (i.e., active authentication), modality fusion (e.g., use fingerprint with face), or
increasing the difficulty of verification phase (i.e., using deep recognition methods), all
add more overhead on the mobile system that increases resource consumption. There-
fore, design of an authentication system with high security, high performance and high
efficiency is a challenging task and needs more attention from the academic community.

• Privacy protection: biometric templates can reveal the identity of their owners. More-
over, considering their enduring connection with owner, their privacy becomes very
important. Leakage of biometric information may have many serious consequences for
users, where it can be used to impersonate the legitimate user to access different services
online or on the phone, or unauthorized access to personal or financial information.

• Usability enhancement: biometric systems need to demonstrate a high level of usability
to be widely accepted by end users. The enrollment phase should be straightforward
and fast, data acquisition should not be complicated, feature extraction needs to extract
most distinctive features in an acceptable time, design of the user interface is important,
and the verification phase should be in real-time, more importantly the system must
have a high accuracy with almost zero false positive rate.

• Biometric for IOT: with the increasing use of wearable devices such as smartwatches,
design of a lightweight and accurate biometric authentication system for constrained
devices is a big challenge. Most of these devices do not support large data processing
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tasks leading to a degrade in performance accuracy. Therefore, a trade-off between
security, efficiency, and performance need to be considered for biometric authentication
on resource constrained devices.

1.4 Research Objectives

The more the people trust on biometric authentication systems, especially on their personal
devices such as smart phones, the more they reveal their identities to third parties. Consider-
ing the long-lasting characteristics of biometrics such as fingerprint, face, or behavioral traits,
the increasing use of biometrcis will increase the risk of identity thefts. Therefore, secure and
privacy-preserving authentication systems are required for biometric-based authentication on
mobile devices.

1.4.1 Main objective

The main objective of this thesis is to design a lightweight and secure biometric-based system
for real-time authentication on smartphones.

1.4.2 Specific objectives

The main objective of the thesis is divided into several specific objectives as follows.

1. Design an architecture for secure active authentication.

2. Propose a quantization scheme to reduce resource consumption on the device.

3. Design an optimization architecture to make real-time authentication decisions.

4. Present a generic model for an accurate and privacy-preserving authentication system.

5. Implement the proposed model on real smartphones.

6. Evaluate the performance of the system on different publicly available datasets.

1.5 Research Contributions

In this thesis, we design a novel privacy-preserving biometric-based authentication system
for mobile users. The proposed system unlike other research efforts, takes advantage of
hardware security of smartphones and demonstrates its potential for a secure authentication
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on smartphones with a fast and higher accuracy performance and low resource consumption.
This thesis makes the following contributions:

• Mobile match-on-card system: while most of the studies on privacy-preserving
authentication concentrate on software-based solutions on smart phones, we consider
SIM/eSIM cards on smart phones as a secure element (SE) to store biometrci templates
and verify users securely isolated from the untrustworthy mobile environment. This
way, we can benefit from the built-in and well-known security characteristics of SIM
cards used for more than 25 years in telecommunication industry. Mobile match-on-
card is a term coined within this thesis to indicate the match-on-card technique on
smartphones.

• Deep Neural Network (DNN) on smart cards: DNN has shown higher accuracy
in classification problems, and has been used in recent biometric authentication systems.
Therefore, a novel quantization scheme is proposed to make a DNN-based verification
system implementable on smart cards. Using the proposed scheme, we can implement a
DNN model on off-the-shelf SIM cards without relying on any specific hardware design.
To the best of our knowledge this work is the first work that implements a DNN model
on smart cards.

• Quantization scheme: to this date, there is no smart card that support floating point
operation. All operations are done in integer domain. Therefore, the models’ internal
(in DNN or in other models) and the inputs to the model (i.e., inputs to smart cards)
should be converted to integers prior to sending to the smart card. A quantization
scheme is proposed to convert floating point datatype to integer without losing a lot of
accuracy in the system. Two quantization schemes are introduced. The first one maps
data in a real valued range to a specific integer range readable for the smart card. The
second scheme, goes further by moving to log domain where it can significantly reduce
the execution time in the DNN model while showing low quantization error as well.

• On-card optimization: an authentication system is expected to work in real-time.
However, smart cards have limited resources and even a simple computation on smart
phones is an expensive computation on smart cards. To mitigate the effect of smart
card resource constraints on the authentication system, an optimization architecture is
proposed to speed-up the verification process on the card. The effect of the proposed
technique is more noticeable in DNN models where many multiply-accumulate calcu-
lations (MACs) are needed to obtain the verification decision. The proposed solution
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helps us to gain 44.3× speed-up over the original architecture on a DNN model showing
the feasibility of on-card real-time authentication using a DNN inference.

• A generic model for smart card-specific feature extraction: deep feature ex-
traction is widely used to extract features from biometric templates. They use multiple
layers to extract more discriminative features of the samples in a domain. These models
need a giant dataset for their high accuracy which may not be available on a specific
problem domain. Moreover, the extracted feature vectors can be large and not suitable
for smart cards. Using transfer learning concept, we fine-tune a model on our target
dataset, and produce features that are suitable for our proposed privacy-preserving
authentication system. In addition, a quantization layer is added on top of the feature
extraction network to make extracted features readable for smart cards.

• Implementation on real devices: an MMOC face-based active authentication sys-
tem is developed for Android devices. The system has three components: 1) a com-
ponent on a cloud server for training purpose, where it trains a user specific model
for each legitimate user by using a reference dataset and one-vs-all protocol. 2) an
Android application for data acquisition and pre-processing that captures user face
images using front-facing camera every sampling interval, pre-process and extract fea-
tures for enrollment or verification. 3) a SIM card applet for secure storage of biometric
templates during the enrollment phase or secure matching during the user verification
phase. In enrollment, after a pre-defined number of samples are stored in the SIM, the
samples are sent to server for training. In the verification, a newly captured face image
is compared to the threshold to grant access to the system or not. To the best of our
knowledge this is the first implementation of an MMOC system on real devices.

1.6 Thesis Outline

In this chapter, we introduced basic concepts needed to pursue the research done in this
thesis. We talked about biometric authentication systems, and open issues in biometric
systems. Moreover, we discussed about SIM/eSIM card, their functionalities and security
features as a solution for privacy-preserving biometric authentication. Then, we defined
the research objectives of the thesis, followed by the research contributions. The remainder
of the thesis is organized as follows. Chapter 2 discusses the related works in one-shot or
active biometric authentications especially recent works on face-based and touchscreen-based
active authentication systems. Moreover, we also study the research works that considered
match-on-card (MOC) for secure and privacy-preserving biometric authentication. Chapter



16

3 describes the relation between the submitted/published articles obtained from this research
and the objectives of the thesis set in section 1.4.

Chapter 4 presents the full text of an article entitled «Mobile Match on Card Active Authen-
tication Using Touchscreen Biometric», accepted for publication in the IEEE Transactions
on Consumer Electronics journal. This article proposes a secure touchscreen active authen-
tication system based on MMOC technique. As the user interacts with the touchscreen,
the system in the background extract features and store them privately on the SIM/eSIM
card. A DNN classifier is trained on a cloud server and the inference phase, simplified with
a quantization scheme, is migrated to the card for active authentication. The active authen-
tication engine, every sampling interval, captures new touchscreen sample, extract features,
pre-process and send them to the SIM for verification. In order to increase the authentication
accuracy multi-stroke authentication is applied. Moreover, a speed-up technique is employed
to decrease the verification time on the card.

Chapter 5 presents the full text of an article entitled «Lightweight and Secure Face-based
Active Authentication for Mobile Users», submitted to the IEEE Transactions on Mobile
Computing journal. In this article, a face-based active authentication system is proposed
that uses SIM cards as a secure element. A highly accurate deep feature extraction method
that is implementable on smart cards is employed to extract the most distinctive features
from each face image. Two architectures are proposed for user authentication. First ar-
chitecture that is model-based authentication uses cloud resources for training and model
selection, while the second architecture that is a template-based authentication only relies
on card resources for enrolment and verification; therefore, showing higher privacy compared
to the first architecture. A numerical method is employed to implement euclidean distance
computation on the card for comparison with the classification threshold. An on-card ac-
tive authentication model is proposed that controls the security and efficiency of the system.
An analysis is done to prevent any malfunctioning of the system when the card is isolated
from the outside world (i.e., unlinkability). Moreover, the article reports platform evaluation
results obtained by an implementation on real devices.

Chapter 6 presents the full text of an article entitled «A Generic Model for Privacy-Preserving
Authentication on Smartphones», accepted for publication in Proceedings of the 15th An-
nual IEEE International Systems Conference. This article presents a generic model for an
MMOC-based privacy-preserving authentication system. It uses transfer learning technique.
The feature extraction network is modified to meet the requirements for a successful on-
card implementation, then the model is fine-tuned on a target dataset. The customized
feature extraction network is used afterwards for user verification on the card. Since the



17

classification sub-network of transfer learning has several layers with multiple nodes, its im-
plementation is cumbersome on smart cards. A novel log quantization scheme and an on-card
optimization architecture are proposed to decrease the execution time of on-card classification
sub-networks. The model is evaluated on face biometrics; however, since transfer learning is
also employed on other biometric systems, the proposed model has the potential to be used
for other recognition systems.

Chapter 7 presents a general discussion about the proposed authentication system and the
obtained results. Finally, chapter 8 concludes the thesis by highlighting the contributions of
the research, limitations, and showing the path for future research works.
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CHAPTER 2 LITERATURE REVIEW

User authentication is a central part of many security services. After user verification phase,
the user can utilize resources or services offered to legitimate users [39]. In this chapter,
we review biometric-base authentication (single point entry or continuous) systems. More
precisely, we study two main types of biometric systems, that is physiological or behavioral
biometrics, and privacy-preserving authentication systems that is the main objective of this
research as well.

Biometric authentication systems use physiological or behavioral characteristics of a user
to validate her identity. Upon authentication decision, the access is granted to the user or
her access is denied. On the other hand, biometric systems can operate in a single point
authentication where the user is verified only once at the beginning of a session, or in an
active authentication in which the user is continuously and transparently is authenticated
during the session by the system in the background.

2.1 Physiological biometrics

Physiological biometrics are physical characteristics of a user that are not supposed to change
in a long-time. Some of well-known physiological biometrics are discussed in the following:

2.1.1 Fingerprint recognition

With no doubts, fingerprint recognition is the most successful and acceptable biometric au-
thentication for smartphones. Matching accuracy of fingerprint is shown to be very high;
as a consequence many manufacturers equip their devices with fingerprint authentication.
Fingerprint systems mostly use minutia or patterns techniques to extract most distinctive
features of a fingerprint.

Liu et al. [23] proposed a real-time embedded finger-vein recognition system for smartphone
authentication. The system is implemented on a DSP platform. A novel finger-vein recogni-
tion algorithm is proposed that helped the system to take only about 0.8 seconds to verify
one finger-vein template with an Equal Error Rate (EER) of 0.07% on a database of 100
subjects.

Derawi et al. [24] introduced the first effort towards employing cell phone cameras capturing
fingerprint images as biometric templates. They evaluated the proposed approach using about
1300 fingerprint images from each embedded capturing device. Fingerprints were collected
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by a Nokia N95 phone and a HTC Desire. The results of the proposed method showed a
performance with an EER of 4.5% by applying a commercial extractor.

2.1.2 Palmprint recognition

Users’ palms contain pattern of ridges and valleys that are different among people. Palms
have larger area compared to fingerprint; therefore, they tend to output more accurate au-
thentication results. On the other hand, the size of palms hinders them to be acceptable
on mobile phones. Moreover, since palmprint scanners scan larger areas, they are more ex-
pensive. There are several research works on palmprint recognition on smartphones. For
example, Han et al. [25] proposed a real-time palmprint authentication system for mobile
phones. They used sum-difference ordinal filter to extract disticitive features of palmprint
using only +/- operations on image intensities. They claimed that the proposed algorithm
verifies a user palmprint in about 200 ms while having 1

10 of other methods’ complexity.

Use of Palmprint for biometric authentication on smartphones is studied in [26]. They
showed that using the main camera in smartphones, good quality pictures of palmprint
are captured that can be used as an alternative biometric authentication on smartphones.
Applying image processing techniques, they extracted the palmprint Region Of Interest (ROI)
in the captured image. They used Competitive Code (CompCode) algorithms for feature
extraction of palmprint ROIs. A Collaborative Representation Classifier with Regularized
Least Squares (CRC-RLS) was used for model training and verification of legitimate user.
This classifier has a high performance and needs light computational resources that is a good
selection for constrained resource devices. It showed an average EER of 7.4% and Recognition
Rate (RR) of 86.06%.

2.1.3 Iris recognition

The iris is elastic region of the eye bounded by the pupil and the sclera on either side. The iris
has unique patterns that are different from a person to person. Moreover, the iris recognition
systems show a promising accuracy and efficiency that make the iris recognition systems good
candidates for large-scale identification systems [27]. The trabecular meshwork, which is an
area of tissue in the eye located around the base of the cornea through which aqueous humor
flows out of the eye, is used a the main characteristic for iris recognition systems [28].

Park et al. [29] proposed an iris authentication system for mobile users based on corneal
Specular Reflections (SRs). The proposed method demonstrated promising results on face
images with and without eye glasses. Experimental results with 400 face images captured
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from 100 persons with a mobile phone camera showed that the rate of correct iris detection
was 99.5% (for images without glasses) and 98.9% (for images with glasses or contact lenses).
The accuracy of iris authentication was 0.05% of the EER using the proposed method.

2.1.4 Face recognition

This authentication system uses face images or face videos captured by the front-facing
camera of the phone to validate the identity of the user. With advances in development
of inexpensive and high quality camera sensors, and deep learning-based recognition ap-
proaches, face recognition accuracy has boosted drastically, and is used by several smart
phone manufacturers.

Face features are extracted in different ways:

• Geometrical features: size, position, and shape of facial attribute are used for face
recognition.

• Three dimensional features: special cameras are used to capture three dimensional face
images.

• Skin texture: uses details in the skin of each user and extract features directly from
pixel representation without considering geometric features.

• deep features: deep learning techniques are employed to extract the most distinctive
face features by training a complicated network on giant datasets. To the date, this
technique is the most accurate feature extraction method for face recognition.

Deep learning method for feature extraction begun when AlexNet won the ImageNet com-
petition by a large margin in 2012 [30].Deep learning methods (i.e., convolutional neural
networks), use several layers of processing units for feature extraction and transformation.
They learn multiple levels of representations that correspond to different levels of abstrac-
tion. The levels form a hierarchy of concepts that are robust to the face pose, lighting, and
expression changes. In deep feature extraction networks, the first layers learn the features
designed for years or even decades, such as Gabor filter, and the later layers learn more
detailed features. Finally, the combination of these higher level abstraction represents facial
identity with unprecedented stability [31].

Well-known Convolutional Neural Network (CNN) architectures such as ResNet, VGGNet,
SENet are used as the baseline models for face recognition [32–34]. After a CNN network
is trained with a giant dataset and a right loss function, the feature extraction sub-network
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is used to extract features on a traget dataset, and test images to obtain a deep feature
representation. Once the deep features are extracted, similarity metric methods are used
to calculate the similarity between two features using euclidean distance or cosine similarity
metric. The Nearest Neighbor (NN) or thresholding techniques are used for verification
task. Moreover, some methods use Deep Neural Network (DNN), metric learning or Sparse-
Representation-based Classifier (SRC) to perform an efficient and accurate face matching.

The most successful architecture in deep face recognition starts with AlexNet in 2012.
AlexNet has an augmentation layer with 5 convolutional layers followed by relu and dropout
layers and 3 fully connected layers [30]. In 2015, VGGNet used an architecture with very
small convolutional filters (3 × 3). They also showed that increasing the network depth to
16-19 weight layers significantly improves the system performance [32]. In 2016, ResNet re-
formulated the layers as learning residual functions with reference to the layer inputs. They
showed that these residual networks are easier to optimize, and can achieve higher accu-
racy from considerably increased depth. They evaluated ResNet on ImageNet dataset with
network depth of 152 layers and achieved error rate of 3.57% with lower complexity [33].

These mainstream architectures are used in face recognition era afterwards. In 2014, Deep-
Face employed explicit three-dimensional face modeling, and derived a face representation
from a nine-layer DNN with several locally connected layers without weight sharing. The
proposed method reached an accuracy of 97.35% on the Labeled Faces in the Wild (LFW)
dataset [35]. In 2015, FaceNet used a large dataset to map the face image x into a com-
pact feature space Rd. FaceNet architecture consists of a deep CNN followed by L2 nor-
malization that produces face embedding f(x) ∈ Rd which embeds a face image into a
d-dimensional Euclidean space. Triplet loss is introduced during training that minimizes
the Euclidean distance between the anchor (xa

i ) and the images of same identity (xp
i ), and

maximizes the distance between the anchor and the images of different identity (xn
i ), that

is L = ∑N
i [‖f(xa

i )− f(xp
i )‖2

2 − ‖f(xa
i )− f(xn

i )‖2
2 + α]+ where, N is the number of samples

in the training set and α is a threshold between positive and negative samples. FaceNet
achieves accuracy of 99.63% on LFW dataset and 95.12% on YouTube Faces DB [36]. In
the same year, VGGFace collected about 2.6 M images of around 2.6 K people from the
Internet. Then, VGGNet architecture was trained on the obtained dataset using the same
loss function as FaceNet. It achieved an accuracy of 98.95% on the dataset [37]. In the
late 2017, VGGFace2 introduce a large dataset containing 3.31 M face images from 9.1 K
people. The dataset has large variations in pose, age, illumination, ethnicity and profession.
For evaluation, ResNet-50 is trained on VGGFace2, and MS-Celeb-1M [38], and showed that
training on VGGFace2 leads to improved recognition performance over pose and age [39].
Fig. 2.1 shows a general framework of deep face recognition systems.
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Figure 2.1 After face detection and alignment, an anti spoofing method is employed to verify
liveliness of the face. In the training phase, data augmentation methods are used to generate
more face image samples for CNN-based feature extraction, while in testing phase, methods
are used to generate one canonical face image from different non-frontal face images. Feature
extraction network outputs the most distinctive features using a defined loss function with
the augmented dataset. The trained model is used in testing (verification) as well, and a
matching function classifies a test image face as a legitimate or impostors [31].

With high quality front-facing cameras on recent smartphones, face recognition also shows
the potential to be use as a continuous authentication system where the front-facing cam-
era in static or dynamic time intervals captures face images of the user working with the
phone. The authentication engine in the background validates the identity of the user trans-
parently without interrupting the user’s interactions. The system only interrupts the user if
it detects an illegitimate usage of the device. The frequency of user verification, the feature
extraction, and data preprocessing should be considered carefully in order to keep low energy
consumption of the face-based active authentication on smartphones.

Fathy et al. [40] studied face-based active authentication on smartphones using a face videos
dataset captured by the device’s front camera in different illumination conditions. They eval-
uated recognition rate of different still-image-based methods and image-set-based methods
on different scenarios. Their study showed a significant drop in recognition rate when user
is enrolled in one session and verification is done on the other sessions.

Mahbub et al. [41] evaluated face-based active authentication on UMADD-02 dataset which
contains data collected form three sensors on the phone: front camera, touch sensors, and
location sensors. They compared different feature extraction methods for face and different
similarity metrics for face verification. They reported the best EER of 18.44% using DCNN
and Cosine similarity metric.
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Samangouei et al. [42] presented a method for face-based active authentication using facial
attributes. For each facial attribute, a set of features is extracted and a classifier is trained
on it. For user verification, extracted features of facial attributes are compared with those of
the legitimate user’s enrolled attributes. They evaluated their proposed method with Local
Binary Pattern (LBP)-based method using two publicly available datasets, and reported
that the fusion of LBP and attributes results better performance in terms of EER. They also
evaluated platform performance by implementing a simplified version of their method on a
real device.

McCool et al. [43] introduced a valuable publicly available audio-visual dataset for mobile
phones. For face verification, they calculated an average histogram of LBP features over all
frames with detected faces in the enrollment videos and the test video and a similarity score
is obtained. This score is compared to a threshold obtained from the validation set to decide
whether this sample comes from the identity it claims or not. They showed that fusion of
face and speaker improves the performance more than 25%.

Crouse et al. [44] proposed a face-based continuous authentication system. They fused cap-
tured face images with sensory data such as gyroscope, accelerometer, and magnetometer
data to correct face orientation. They extracted face features using Biologically Inspired
Model (BIM) and trained a Support Vector Machine (SVM) classifier on a person-specific
training dataset. Moreover, they introduced login score slogin which is updated periodically
as a new face image is captured every tsample, and the user is logged out of the system if slogin

is below a predefined threshold Tlogin.

Perera et al. [45] presented a method for face-based multiple user AA systems based on
Extremal Openset Rejection (EOR). For evaluation, they compared the proposed EOR-based
verification with different methods on three publicly- available datasets. They concluded that
EOR method results superior performance where number of users on the device varies.

2.2 Behavioral biometrics

Behavioral biometrics are good candidates for continuous authentication on mobile devices in
which the user is transparently and unobtrusively is authenticated in the background. This
technique increases the security of mobile users against possible attacks after the first login
and during an active session.

Most of active (continuous) authentication systems take advantage of the various sensors
available on smartphones to monitor the behavior of the user such as motion patterns [46–48],
touchscreen gestures, gait, keystroke dynamics, or profiling on the phone. These sensors
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include motion sensors (such as accelerometer, gravity, magnetometer, and gyroscope), posi-
tion sensors (such as compass or GPS), or environmental sensors (such as temperature, light,
barometer, and proximity). We discuss active authentication using behavioral biometrics in
the following categories:

2.2.1 Motion-based authentication

Motion sensors on smartphones give us enough information to study the behavior of mobile
users. Sensors such as accelerometer and gyroscope are available on modern smartphones.
Accelerometers in samrtphones are used to detect the orientation of the phone. The gyroscope
adds an additional dimension to the information supplied by the accelerometer by tracking
rotation or twist.

Ehatisham-ul-Haq et al. [46] presented a novel active authentication for smartphones which
recognizes mobile users based on their physical activity patterns using accelerometer, gy-
roscope, and magnetometer sensors. They also analyzed the system performance when the
user places the smartphone at different body locations. Among different machine learning
algorithms, SVM achieved the best results for user recognition with average accuracy of
97.95%.

Amini et al. [49] presented DeepAuth as a framework for re-authenticating mobile users. In
the proposed system, they used time and frequency domain features extracted from motion
sensors and a Long Short-Term Memory (LSTM) model with negative sampling to build
the framework. It is able to verify a user with 96.70% accuracy in 20-second authentication
window for a dataset of 47 subjects.

Regarding motion-based authentication, some researchers also studies eye movements for
continuous authentication. Zhang et al. [50] proposed to use eye movement to continuously
authenticate the current wearer of a Virtual Reality (VR) headset. They used an implicit
visual stimuli to evoke eye movements of the wearer without distracting her from the normal
activities. They evaluated their appraoch on a dataset of 30 subjects. They evaluated the
time stability of the proposed method by collecting eye movement data on two different days
that are two weeks apart. Their method achieved an EER of 6.9% if data for testing was
collected from the same day and 9.7% if data was collected from two weeks apart.

In another study, Zhang et al. [57] investigated a biometric method based on the saccadic eye
movement. Saccadic eye movement and gaze fixation between them can be applied to identify
users. They claimed that large saccades can reveal better differences between individuals. For
classifying saccades, they applied different classifiers namely, Linear Discriminant Analysis
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(LDA), SVM with linear, polynomial of the third degree and RBF, and Multilayer perceptron
(MLP) networks trained with eight nodes of one hidden layer. Their results showed TPR of
80-90% with polynomial SVM showing the best performance.

2.2.2 Gait-based authentication

Gait-based authentication verifies smartphone users by the manner of walking. In most of
gait recognition systems, the data is collected using floor sensors or wearable sensors. In
the first approach, especial sensors are located on the floor which learn the walking behavior
of the user by stepping on them. The latter approach, the smartphone sensors are used to
collect information about the way the user walks. Especially accelerometers sensor available
on mobile phones have been used for acceleration based gait authentication [51]. Gait-based
authentication consists of four phases. 1) data collection phase where the device is placed at
a right body location to collect walking information. 2) data preprocessing in which meth-
ods are used to remove the noise added during data collection phase due to environmental
and gravitational, the user’s wearable materials, or other factors. 3) walk detection phase
where cycle-based methods or machine learning algorithms are used to detect walk. Machine
learning techniques have shown more accuracy in walk detection where a model is developed
to detect walk. 4) analysis phase, time intervals or frequencies are studied. For acceleration
based gait authentication, Dynamic Time Warping (DTW) as distance metric between two
time series is usually used. For frequency analysis, wavelet transformations have been used
with non-cycle-based acceleration gait data [52].

Yeh et al. [53] proposed plantar biometrics for continuous authentication in IoT-based envi-
ronments with wearables. Raw bio-data are extracted by plantar pressure sensors embedded
into slippers. A Raspberry PI II platform collects the data and forwards them to the back-
end authentication server in a transparent manner. Machine learning techniques such as
Naïve Bayes (NB) and SVM with Gaussian radial basis function (SVM-GRBF) are used for
classification and individual verification.

Muaaz et al. [54] studied an approach to deal with recognition errors that come from the
continuously changing sensor orientation under a realistic scenario by using the magnitude
data of tri-axes accelerometer and wavelet based noise elimination modules. They obtained
the best performance result of EER 7.05% in a same-day scenario where reference and probe
cycles are a same session walk, with the phone placed in trouser pocket.

Gafurov et al. [55] attached sensors to the person’s body to collect motion activities of the
user. They analyzed acceleration signals from the foot, hip, pocket and arm. They used
several methods (features) on acceleration signals, the best EER obtained for foot-, pocket-,
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arm- and hip- based user authentication were 5%, 7.3%, 10% and 13%, respectively.

2.2.3 Touchscreen gesture-based authentication

Touchscreen gesture or stroke is a finger action on the screen from the time it touches the
screen until it is lifted. These actions can be swipes, taps [56], flicks [57, 58] and slides [59].
Using built-in smartphone sensors many discriminative features such as acceleration, velocity,
pressure, touch area, angle of the stroke, x-y coordinates can be extracted from each stroke.
These features show touchscreen behavior of the user and can be used to verify the legitimate
user with a high accuracy.

Shahzad et al. [1] proposed a behavior based authentication scheme for touch screen devices.
They used gestures and signature actions for user authentication. Then, they extracted
several types of features like velocity magnitude, device acceleration, stroke time, inter-stroke
time from the samples. The features of consistent values are selected, and a Support Vector
Distribution Estimation (SVDE) model is trained to verify legitimate users from impostors.

ShakeIn [60] is a user authentication scheme by shaking the smartphone. The fact behind the
shakeIn is that every person has consistent and distinguishing physiological and behavioral
characteristics when shaking. They extracted unique biometric features from the embedded
sensors in the devices and used them to train a SVM classifier. Later, the SVM classifier is
used to verify legitimate user form imposters.

Fierrez et al. [61] proposed a swipe gesture scheme for continuous user authentication. They
captured the stroke features during a normal activity of a user. Using two different classifiers,
i.e., SVM and Gaussian Mixture Model (GMM), similarity score is computed comparing it
to the selected templates. Using different datasets, they showed several interesting findings
about swipe gestures such as horizontal swipes are faster than vertical independently of
the device orientation, landscape orientation is more stable, and horizontal gestures are
more discriminative than vertical ones. Moreover, they also studied intra-session (a user is
enrolled and authenticated within the same day), inter-session (a user is enrolled in one day
and authenticated in another day two weeks apart), and mixed-session scenarios (the data
from both sessions are combined). The results showed that best EER is achieved in the
intra-session scenario.

Frank et al. [62] proposed a continuous authentication scheme relying on the way users
interact with the touchscreen device. They considered 30 different behavioral features such
as mid-stroke area covered, mid-stroke pressure, average velocity, average direction, stroke
duration, phone orientation among others to be extracted while the user is interacting with
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the device. During the enrollment phase, the classifier learns to create a profile of legitimate
users. In the continuous authentication phase, the classifier, based on the user’s interaction
with the touchscreen, decides whether he is a legitimate user or an imposter. Two different
classifiers k-nearest-neighbors (kNN) and SVM are used in their work. The proposed system
achieves EER of 0% in intra-session scenario, 2%-3% in inter-session scenario, and below
4% in a mixed-session scenario. Moreover, they also introduced multi-stroke authentication
where several strokes are used to verify the user. It helps to increase the accuracy of the
system. For a single stroke the EER is about 13% while at a level of 11 to 12 strokes, the
EER drops to a range between 2% and 3% and stays there up to 20 strokes.

Antal et al. [63] showed that users’ gestures on touch screen devices can be used to classify
users’ identity, gender, and experience level in using the device. They extracted several user
related features from each stroke, and by using three different machine learning algorithms,
i.e., SVM, k-NN, random forests, they depicted that identity, gender and experience level
prediction reach 95% accuracy from 10 or more strokes.

Serwadda et al. [64] evaluated ten classification algorithms using the same dataset they
gathered from 190 subjects, each subject participating in two sessions that were at least one
day apart. Among the algorithms, i.e., SVM, Naïve Bayes, Random Forest, Neural Network,
Logistic Regression, J48 tree, etc., Logistic Regression and J48 tree had the lowest and
highest mean EER respectively. Moreover, they used “failure to enroll” concept to improve
the system performance by preventing users whose mean EERs are above a certain threshold.

Shen et al. in [65] investigated the reliability and applicability of user’s behavior on touch-
screen to be used for continuous authentication on mobile devices. They analyzed users’
touchscreen interactions on a collected dataset of 71 participants with 134900 touchscreen
operations. Different scenarios, different touch operations, various application tasks, and var-
ious touch operation length, along with different classification techniques ( nearest neighbor,
neural network, support vector machine) are studied in their work. Their results revealed
that touchscreen gestures are discriminative, reliable and stable among mobile users, and
achieved EER of 1.72% with touch operation length of 11. Accuracy improves with long
touch operations and small time intervals between operations. Moreover, the accuracy is
higher in a specific task rather than in free tasks.

Miguel-Hurtado et al. [66] proposed the use of touchscreen gesture data for the prediction
of soft-biometrics, particularly the user’s sex. They evaluated the performance of different
classification techniques (naïve bayes, logistic regression, support vector machine and decision
tree). Their results showed that using a fusion of swipe direction-based decision with two
different swipe directions, the user’s sex can be predicted using her touchscreen interaction
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pattern by accuracy of 78%.

2.2.4 Behavior-based profiling authentication

This authentication technique aims to identify users based on the way they interact with
the services on their smartphones. During the authentication, the activities of the user such
as application usage, dialing numbers, activities on social networks, location, screen time,
and other user specific behaviors are collected and compared to the legitimate user’s profile
through a machine learning method.

Anjomshoa et al. [67] used social behavioral biometric for continuous authentication of users.
They extracted features from users’ interactions with five online social network services and
built-in sensors of a mobile device such as location of users, number and duration of interac-
tions with the social networks. Using cloud-based machine learning techniques a verification
model is trained, which is used for verifying the authenticity of the users.

Li et al. [68] proposed a novel behaviour-based profiling technique by using mobile application
usage pattern of the current user and detect abnormal mobile activities. MIT Reality dataset
was used for performance evaluation. They divided the dataset to three subsets; two intra-
application datasets compiled with telephone and message data; and an inter-application
dataset containing the rest of the mobile applications. A user’s profile was generated using
static and dynamic profiles. Using three sets of applications i.e., telephone call, text mes-
sage, and application-level applications, they reached the EER of 5.4%, 2.2% and 13.5%,
respectively.

Acien et al. [69] proposed an authentication system based on an ensemble of biometrics and
behavior-based profiling signals. They considered the fusion of seven different biometric
data: Touch dynamics (touch gestures and keystroking), accelerometer, gyroscope, WiFi,
GPS location and app usage. The biometric data were collected during the user interaction
with the smartphone. Moreover, they also studied both one-time authentication and contin-
uous authentication. Their results showed that the multimodal system increases the system
performance with accuracy ranging from 82.2% to 97.1% depending on the authentication
scenario.

2.3 Multimodal authentication

Multimodal authentication incorporate two or more biometric modalities in order to built
an authentication system with higher accuracy and security. Considering various sensors in
modern mobile devices and the sufficient processing resources on them, this technique tends
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to be a promising authentication method on smartphones.

Galdi et al. [70] combined recognition of the human face and smartphone fingerprint, with the
image processing capabilities of new smartphones, both the distinctive characteristics of the
face and of the device that captures the face image can be extracted from a single photo or
video frame and used for a double check of user identity. They proposed a method to identify
smartphones based on camera fingerprint. They claimed that sensors of different cameras
could be distinguished by analyzing the Sensor Pattern Noise (SPN). This method combined
with face recognition techniques using Histogram of Oriented Gradient (HOG) were used for
user authentication on a smartphone. Authentication based on smartphone identity resulted
in an EER of 0.3; however, combined with face recognition authentication their proposed
scheme reached an EER of 0.06.

Sultana et al. [71] proposed a multimodal biometric authentication scheme based on the fusion
of Social Behavior Biometric (SBB) with face and ear biometrics. Their study showed that
human social interaction with Online Social Networks (OSN) has a distinguishing pattern
that can be used to authenticate users. They used Twitter as the source for their social data.
Social behavior patterns extracted from user interaction with Twitter were fused with face and
ear biometrics using post-matching parallel score fusion of face, ear, and SBB information.
They showed that their scheme obtained a more reliable result compared to a unimodal
method using one of the three fused biometrics and increased the correct match accuracy to
around 99%.

Monwar et al. [72] introduced a multimodal biometric system based on the fusion of different
individual biometric matchers for face, ear, and signature. They presented an effective fusion
scheme that combines information presented by multiple domain experts based on the rank-
level fusion integration method. They showed that the fusion of individual modalities could
improve the overall performance of the biometric system. They used different rank-level
fusion methods namely, Highest rank, Borda count, and logistic regression. Based on the
ROC curve they showed that logistic regression method performs better than other methods,
also face recognition achieved higher accuracy compared to ear and signature.

Fox et al. [73] introduced a multi expert biometric system by combining the information from
face, mouth, and speech. Since the contribution from each source of information to the final
decision must be taken into account based on the reliability of the expert, they chose a score
level fusion based on the weighted sum rule. Using a subset of XM2VTS, their experiment
showed that the proposed multi expert system outperforms the individual experts by at least
19.9%.

Paul et al. [74] proposed a multimodal biometric system using Social Network Analysis (SNA)
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for improving the overall performance of three individual face, ear, and signature matchers
at different fusion levels. At the first level, SNA was used to improve the confidence score of
each classifier. At the second level, it was fused with the outcomes of the other individual
classifiers to obtain the final decision. Their result revealed that using the combination of
face, ear, signature, and SNA improves the performance of the biometric system by reaching
Genuine Acceptance Rate (GAR) of 100% with 5% FAR while other methods achieve it with
12% FAR.

Zhu et al. [75] introduced an authentication system called RiskCog that authenticates the
user transparently and in real-time manner using inertial sensors. RiskCog does not require
any user input and no requirement on the device placement and the user’s motion state.
RiskCog collects data from the acceleration sensor, gyroscope sensor and gravity sensor, and
uses SVM as a classifier. They evaluated their proposed system on a large dataset of 1,513
users. Their result showed an average system accuracy of 93.8% and 95.6% for steady and
moving users, respectively.

2.4 Privacy-preserving biometric authentication

The proliferation of biometric usage brings serious security and privacy concerns in user au-
thentication. Storing enrollment templates on the device or on cloud servers has a serious
security flaw that an attacker can steal the enrollment templates of the legitimate user which
allows him to have unauthorized access to services, sensitive personal or banking informa-
tion; moreover, it may cause identity theft due the long-lasting connection of biometric data
to the user’s identity. In traditional authentication systems, password are stored in crypto-
graphic hashes; however, since biometric information are noisy in nature, this method is not
suitable for privacy-preserving in biometric-based authentication. In this section, we present
an overview of privacy-preserving biometric-based authentication systems, also referred to
as secure biometrics. We can study privacy-preserving biometric systems in four categories:
fuzzy commitment, secure multiparty computation, cancelable biometrics, and match-on-card.

2.4.1 Fuzzy commitment

In a conventional bit commitment scheme, one player seals bit b for the second player by
encrypting bit b as y which is called blob. It is infeasible for the second player to find
the real value (b) for y, and only the first player can open the encrypted value in one-way.
Moreover, the first player cannot change value b while it is in hands of the second player.
A bit commitment scheme is said to be concealing if it is infeasible for the second player
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to guess b. Also, it is said to be binding if it is infeasible for the first player to decommit
the y with the incorrect bit, for example 1-b. In bit commitment, the first player can open
blob y with a witness value x. However, in fuzzy commitment blob y can be opened with
any witness x′ that is close to x, but not necessarily identical to x. Putting this definition in
biometric authentication context, in enrollment phase, the user presents biometric template x
to the authentication system S. S selects a code c for the user and computes the commitment
y = F (c, x) and stores it on the device or on a cloud storage. In authentication phase, the user
presents x′ to S. The system checks whether x′ can perform a successful decommitment [11].

Several methods are proposed in literature to bind code word c to biometric templates. One
method is to use Error Correcting Code (ECC) where the error correction codes is used to
mitigate the inherently noisy nature of biometric traits. Error correction would decode small
perturbation of a template into the template itself, solving the problem of noisy data. In
this way, the systems can get error-free biometric templates that will not affect the matching
biometric process [76], another method is to use Quantization Index Modulation (QIM) [77].
However, it has been shown that fuzzy commitment techniques leak private information [78].

2.4.2 Secure computation

This approach tries to compute the distance between enrollment templates and the probe in
an encrypted domain [79]. Public key Homomorphic Cryptosystems (HC) are mostly em-
ployed in this architecture. In homomorphic cryptosystems, operations in plaintext domain
can be carried out in ciphertext domain. In enrollment phase, feature vectors are encrypted
element wise using an additively homomorphic cryptosystem, and the result is stored locally
or on a remote database. In authentication phase, the user presents a feature vector probe,
and the system encrypts it with the public key. Then, the system computes the euclidean
distance between the enrollment template and the probe template in ciphertext domain [80].
The user is verified as a legitimate user if the distance is below the classification threshold.
Some studies also considered nearest neighbor computation [81, 82]. Fig. 2.2 illustrates a
secure biometric system using the homomorphic cryptosystem method. Another method is
Garbled Circuits (GC) that is a cryptographic technique that enables two entities to compute
a function and only reveal the output of the function. This technique show a high poten-
tial for privacy-preserving authentication. To the best of our knowledge, garbled circuits
is the most promising cryptographic tool to prevent template recovery attacks in biometric
systems [83].
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Figure 2.2 Homomorphic cryptosystems. Enrollment templates are encrypted with the
public-key and stored encrypted in a database. For authentication, the distance in the
encrypted domain is computed and compared with the threshold. The legitimate user has
the right private key to decrypt and process the decision result [79].

2.4.3 Cancelable biometrics

In order to protect the privacy of biometric templates, in cancelable biometric systems,
biometric signals are distorted before being stored on local or remote databases [84]. The
distorting function should be noninvertible and revocable which means that the transformed
enrollment templates can be revoked if any suspicious activity is detected. Distortion trans-
forms can be used in the signal domain or in the feature domain. Distortion methods in the
signal domain include gird morphing and block permutation. Fig. 2.3 shows different distor-
tion transforms in the signal domain. An example of a distortion transform in the feature
domain is a consequence of random perturbations of feature points. This can be done within
the same physical space as the original, or in a higher dimension space. The second case
provides more brute force strength [85]. Some research works also considered biohashing to
produce cancelable biometrics [86]. BioHashing is a new method for secure biometrics that
combines biometric features and a Tokenized Random Number (TRN) to hide the original
biometric features. It has four steps: 1) a set of pseudo-random vectors are generated based
on the seed. 2) the Gram–Schmidt process is applied to the pseudo-random vectors and
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obtain TRN, a set of orthonormal vectors. 3) the dot product of the feature vector and each
orthonormal vector is computed. 4) a biocode b is obtained by comparison with a defined
threshold in which bi is 0 if the dot product of step 3 is less than or equal to the threshold,
and is 1 otherwise, and computing quantized random projections of biometric feature vec-
tors [87]. There some works that have shown the vulnerability of canclable biometrics where
a one-way transform is analyzed and inverted successfully [88].

(a)

(b)

Figure 2.3 Distortion transform in cancelable biometrics [85]. (a) image morphing technique.
(b) block permutation technique.

2.4.4 Match-on-card authentication

Smart cards have many security characteristics that make them suitable for security ser-
vices that need protection of sensitive and confidential information such as financial infor-
mation (bank cards), mobile network information (SIM cards), identity information (e-ID,
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e-Passport), among many other applications. These applications started with e-purse sys-
tems that were used in mid 1990s. Introduction of smart cards in telecommunication systems
in 1990s for secure storage of GSM profiles was a turning point in the proliferation of smart
card usage. Among other applications, citizen cards, driver’s licences, and patient cards
are widespread. Contact-less smart cards are also successful in several applications such
as contact-less transit cards, monetary transactions that are used widely around the world.
Smart cards have all elements of a real computer in small scales, they embedded micropro-
cessor, ROM, EEPROM, and RAM. However, this technology is growing fast and today’s
smart cards have acceptable resources that make them good candidates for secure systems
even with high resource consumption demands. For example, most recent smart cards have
a 32-bit CPU, with 2MB of EEPROM, around 40 KB of RAM, and a crypto co-processor for
a fast hardware computation of cryptographic operations such as RSA, ECC, AES, or other
algorithms. The communication bandwidth with the outside world is 115 kbit/s in ISO 7816
contact mode, and up to 424 kbit/s in ISO 14443-B contact-less (RF) mode [89].

Smart cards not only can be used for secure storage of biometric templates, but also using
their processing resources, these devices can be used for secure user verification. Smart
card-based authentication systems can be studied in two approaches:

• Template-On-Card (TOC): in which only biometric templates are stored on the smart
card, and the verification phase is done outside the smart card, on the device or on a
remote server.

• Match-On-Card (MOC): in this architecture, not only biometric templates are stored
securely on the smart card, but also the user verification phase is performed on the
smart card as well. No biometric template is transferred to the outside world.

Most of the research efforts in this field, consider smart cards for secure biometric storage,
i.e., TOC approach. However, there are some few research works that have considered MOC
as a secure biometric authentication solution. We discuss them in the following sections.

Fingerprint-based match-on-card

In 2000, Noore [90] proposed a secure and reilable on-card biometric authentication by using
dual on-chip biometric fingerprint sensors that are integrated with the smart card archi-
tecture. The fingerprint sensor on the front of the card is based on DC capacitive sensor
technology and the biometric fingerprint sensor on the back of the card is based on AC elec-
tric field sensor technology. When a user holds the proposed smart card two fingerprints
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are simultaneously captured. Both sensors are capable of producing images with resolutions
greater than 500 dpi. Since the system uses two fingerprints and process them simultaneously,
the reliability of identifying the “true” owner of the card during its use is enhanced.

Seto [91] proposed two-step method for authetication over the Internet in which the smart
card itself is authenticated based on a Public Key Infrastructure (PKI), and the user is
authenticated using the fingerprint template stored in the smart card where the user is verified
using match-on-card technique. For on-card user authentication, the probe fingerprint is
legitimate if the number of the chip images (small images around the feature points) on the
fingerprint is above a threshold. To embed the chip matching function into a smart card, the
memory limitation on the card does not allow the storing of the entire fingerprint image in
the memory at one time. The on-card matching scheme uses a partial image of the captured
fingerprint that is transmitted to the smart card then matched to the chip image in turn.

Kumar and Ganesh [92] proposed the idea of integrating smart card and Gabor Filter method
for fingerprint with matching on card technique. Their system uses Gabor filters to capture
details in a fingerprint and present it as a compact fixed length FingerCode that will be stored
in the smart card. In authentication phase, when user inserts the card into the system, it will
ask for the user ID and a fingerprint probe. The matching-on-card module will be successful
only if the Euclidean distance between the FingerCode of the probe and stored FingerCode
of the smart card is equal to zero. They claimed that the system achieves greater accuracy,
faster verification, and is highly fool proof.

Bistarelli et al. [93] proposed a novel matching algorithm for fingerprint on smart cards. The
main feature of the algorithm is its asymmetric behaviour to the execution time, between
correct positive and negative matches. The matching algorithm calculates how similar is the
neighborhood of a minutiae in the probe template is similar to the neighborhood of each
minutiae in the galley set. Two templates are matched if the similarity score is above a
threshold. Their matching algorithm achieved the best EER of 0.48% on a Hybrid Database.
For a maximum minutiae occupation of 40 bytes, the on-card matching time is reported
about 1-8 seconds for nearly all of the matches.

Nedjah et al. [94] presented an efficient user authentication using finger print minutiae. Their
method is based on Skin Elasticity Tolerant Algorithm (SETA) for fingerprint comparison.
SETA requires large space for storing the results of translations and rotations. Therefore, in
order to implement their proposed method on smart cards, they subdivided the search space
into small sub-spaces.
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Face-based match-on-card

The first work on face-based authentication on smart cards was proposed in Li’s PhD thesis
[95] in 2000. He proposed Client Specific Linear Discriminant Analysis (CS-LDA) method
for an on-card face recognition system, and extensively studied the effect of system’s limited
capacity on the performance of the system.

Kittler et al. [96] proposed a one dimensional client specific fisher face representation for
personal identity verification. A distance to the client template, and a distance to the mean
of impostors is computed to find legitimate users from impostors. Using the public dataset
XM2VTS, they showed the simplicity of the training phase, and the possibility of enrollment
insulation which is suitable for smart cards. Moreover, the result showed that the speed
of verification is more than 2× faster than that achieved by conventional PCA and LDA
methods.

Czyz et al. [97] evaluated a face verification system based on Fisherfaces (Principal Com-
ponent Analysis and Linear Discriminant Analysis) for implementation on computationally
constrained devices such as smart cards. Their results on XM2VTS dataset showed that
reducing the image quality to 256 pixel gray images and model size to 20 real numbers (i.e.,
dimension of LDA subspace) do not degrade the performance of the verification system, and
reaches EER of 3.83%. For 64 pixel images, they suggested to use the model with another
biometric modality.

Lee and Byun [98] used SVM as a classifier for face authentication on memory-constrained
devices such as smart cards. They used Genetic algorithm (GA) to select most discriminating
features to achieve best classification performance and to have small size to be suitable
for implementation on smart cards. Finally, they tested their proposed MOC-based face
authentication system on different datasets and showed GA+SVM outperforms SVM in terms
of FPR/FNR.

Bourlai et al. [99] employed the CS-LDA technique for face verification on smart cards. After
image normalization and feature extraction, the distance between the probe image and the
user’s template is computed on the smart card and compared to the threshold to verify
whether the probe belongs to the legitimate user or an impostor. They also optimized the
verification system by reducing the spatial and grey-scale resolution of images.

Findling et al. [19] presented a MOC authentication approach using face biometrics. They
trained and simplified an offline model on a sever and the simplified model is migrated to the
smart card where authentication is done using the stored model on the card. On one hand,
performance is improved slightly using 32-bit cards compared to 16-bit cards. On the other
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hand, 32-bit cards perform more expensive computations that increases execution time on
the card. They reported an EER of 2.4%-5.4% for face biometrics.

Other biometrics for match-on-card

Except fingerprint and face bioemtrics that are mainly studied in the literature, other bio-
metrics are rarely considered for on-card implementation. In the following, we review some of
the key research works that have considered other biometrics with matching on card. Among
them only one of them studied match-on-card using behavioral biometrics.

Nedjah et al. [100] proposed an implementation of iris texture verification on smart cards us-
ing MOC technique. False Positive Rate (FPR) and False Negative Rate (FNR) are improved
using circular translations of the matched iris codes. They used segmentation, normalization
and binary code formation for iris feature extraction and, Hamming distance for comparison
of iris codes. Iris code is an array of 8 × 256 bits; however, Java card does not support
multi-dimensional array. Therefore, they stored the iris codes row by row. In order to reduce
the execution time on the card, they proposed acceptance threshold that is a predefined
proximity value from which the comparisons should be considered correct. Using acceptance
threshold FPR is about 0.42% while the FNR is about 15.95% and the average execution
time for authentic comparisons is 1210 ms, while the average time for false comparisons is
2430 ms.

Sabri et al. [101] proposed a multimodal biometric verification framework consisting of two
MOC fingerprints and one match-on-host (MOH) face system. They used a dynamic sequen-
tial score fusion algorithm to improve the accuracy of their authentication system. If the
quality of the current biometric trait is not good enough, the next classifier is used while
using the score of the first.

Choi et al. [102] proposed a speaker verification system based on SVM. They reduced the
number of features and implemented it on a 32-bit smart card. The proposed method 100×
reduces the required memory and can be executed in real-time. SVM shows higher accuracy
compared to DTW and Hidden Markov model (HMM) with TER of 1.76% (TER = FPR+
FNR). Moreover, they proposed a hardware design for the algorithm on FPGA platforms.

Nedjah et al. [100] implemented a palmprint verification on smart cards. They extracted
binary code (palm-code) from each palm-print image, and used Hamming distance for com-
parison. Upward, downward, leftward and rightward translations of the matched palm-codes
are proposed to improve systems’ FPR and FNR. They extracted an area of interest (ROI)
and used Gabor 2D filter for the extraction of the main palm-print features, then generated
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accurate binary codes. In order to reduce the execution time on smart cards, they introduced
an acceptance threshold to decrease the number of comparison on the card. They achieved
EER of 0% for comparisons with 2-bit translation, with the average execution time of 3725
ms and no acceptance threshold while it reduces to 1217 ms when the acceptance threshold
is imposed.

Findling et al. [103] presented an MMOC approach that uses offline training to obtain sim-
plified authentication models to enable their usage on smart cards. The obtained model was
used on the card without requiring retraining when enrolling individual users. They used the
proposed approach to acceleration based mobile gait recognition using 16 bit smart cards,
and evaluate authentication performance and computation time on the smart card using a
publicly available dataset. Their results showed that the approach is feasible with an equal
error rate of 11.4% and an execution time below 2 seconds on the smart card, including data
transmissions and computations.
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CHAPTER 3 APPROACH OF THE ENTIRE RESEARCH PROJECT

This thesis aims to design a biometric-based authentication system for smartphones to en-
hance the security and the privacy of users’ biometrics while reducing the resource consump-
tion. In order to achieve this main objective, three specific objectives have been defined in
section 1.4. These objectives were broken down into three main phases, each of which was the
subject of a scientific publication article that will be discussed in the next following chapters.
In this chapter, we present the approach of the entire research project by highlighting the
link between the defined objectives and the published or submitted articles obtained from
this research.

3.1 Phase 1: A secure architecture for active authentication

Recently, active authentication systems have attracted a considerable attention from the
academic community and the industry owing to their ability to protect users’ confidential
information more by continuously monitoring the current user in the system. However, these
systems suffer from: 1) well-known issues in biometric-based authentication such as secu-
rity and privacy of biometric templates, and 2) their specific issue of resource consumption.
Therefore, an active authentication system that addresses these issues is missing in the liter-
ature, and was the motivation for the first published article entitled «Mobile Match on Card
Active Authentication Using Touchscreen Biometric» presented in Chapter 4.

3.1.1 Cloud-assisted secure active authentication

While many research works in the literature, consider software solutions such as homomor-
phic encryption or cancelable biometrics to increase the security and privacy of the system,
we approach the security and privacy issue in biometric systems from hardware security per-
spective. The core of our architecture is mobile mach-on-card (MMOC) technique. This in a
new term used in this research work, where it uses SIM/eSIM card as a secure element (SE)
to protect users’ biometric information and verify users in a secure environment.

With extensive research efforts placed in neural networks and the high performance accuracy
gained from these algorithms, DNN-based solutions are replacing other machine learning
algorithms in many different applications. One of these applications that requires a higher
accuracy is the authentication system. These approaches need a large dataset for training
that requires high computation resources. However, these resources are not available on
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SIM/eSIM cards, nor on smartphones. Therefore, a cloud-assisted architecture is proposed
that takes advantage of cloud resources for model selection and training purposes.

3.1.2 DNN quantization scheme

Although the model training and the model selection are done using the cloud process-
ing power; however, the verification phase (network inference) should be implemented on
SIM/eSIM cards for high security and privacy. Therefore, a quantization scheme is proposed
to reduce the model size and make it implementable on resource constrained devices such
as SIM cards. This scheme is applied to model inputs and model internals as well. This
quantization scheme consists of off-card and on-card quantizations. The off-card quantiza-
tion tries to map floating-point real values of the model to a specific integer range supported
by the SIM card, while the on-card quantization tries to return these values to their closet
real valued integers. This scheme helps us to reduce the quantization error and keep the
system’s accuracy close to the original model. Moreover, we replace the ReLU activation
function with a clipped-ReLU function in order to prevent overflows caused by dot products
in the neural network layers.

3.1.3 Performance evaluation

Touchscreen biometrics demonstrate the behavior of the user while interacting with the touch-
screen through the finger movements on the screen such as swipes, taps, flicks, and slides.
This biometric authentication scheme shows high distinctiveness and high accuracy reaching
to 99% [15]. Moreover, most of the user’s interactions with the mobile device is through
the touch screen. Therefore, we concentrate our solution on an active authentication us-
ing touchscreen biometrics. We employed two publicly available datasets and evaluated our
proposed system in terms of its robustness against spoofing attacks, its performance from
different angles (i.e., EER, AUC, PRE, REC, F1), and its execution time on SIM cards. We
show that our system is robust against the main attack vector in biometric systems that is
spoofing attack. Moreover, it is also robust against adversarial attacks on machine learning
algorithms. In terms of accuracy, our system reaches EER of 2.6% (real-valued EER is 1.1%)
with real-time response of 650 ms. The results show the feasibility of implementing a secure
active authentication system using touchscreen on SIM cards even when a DNN model is
employed.
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3.2 Phase 2: Fully secure active authentication for biometrics with big tem-
plates

In section 3.1, we considered touchscreen biometric for active user authentication. Touch-
screen biometrcis are intrinsically lightweight bometric data with few number of features (i.e.,
around 30 features) and consequently the verification can be done in real-time on the card.
However, this situation is not always true for other biometrics in which they extract more
distinctive features and produce large feature vectors that makes their implementations a te-
dious task on SIM cards. One of these biometrics that is popular in the academic community
and the industry is face biometric that generally extracts many features from a face image for
a higher accuracy. With the high quality front-facing cameras available on almost all modern
smartphones, this biometric can also be used as an active authentication system. However,
this biometric due to its big template size brings more challenges for MMOC implementation.
Thanks to transfer learning, the face biometric can be modified for MMOC implementation
with low quantization error and even higher security. In the article entitled «Lightweight and
Secure Face-based Active Authentication for Mobile Users», discussed in chapter 5, a highly
secure and accurate face-based active authentication system is presented, and implemented
on real smartphones as well.

3.2.1 Full mobile match on card

Deep Feature extraction methods use DCNN with many layers to extract deep representation
of the face that is robust against face pose and illumination changes. On the other hand,
deep feature extraction methods require giant dataset for training that is not available in
every problem domains. It is where transfer learning comes to play an important role. In
transfer learning, DCNN-based models can be trained on a large dataset in one domain and
the learned knowledge can be transferred to another domain. In the era of face recognition,
transfer learning has boosted the recognition quality drastically, and several high accurate
architectures are already developed, that can be modified for other problem domains. One
of these successful architectures is FaceNet that has achieved accuracy of 99.63% on LFW
dataset with feature vector size of 128. Another interesting characteristic of transfer learning
is that the verification phase of the model can be reduced to comparison with the classification
threshold. These features pave the path for a full mobile match-on-card architecture where
both enrollment and verification are done off-line, and on the SIM card without relying on
any outside resources.



42

3.2.2 Performance evaluation

An extensive evaluation study has been conducted to assess the proposed system from differ-
ent aspects such as performance accuracy in terms of EER, AUC and FNR @ FPR. Moreover,
we evaluated our system under different verification scenarios such as single-platform and
cross-platform. Effect of model size on the system accuracy is studied as well. The system
shows EER of 0.1% under the single-platform scenario and EER of 0.2% under cross-platform
scenario. Results of full MMOC architecture are also comparable with the results obtained by
cloud-assisted MMOC, that shows a highly secure active authentication system using MMOC
technique is feasible. To show the effect of the model’s size on accuracy, we quantized our
model with different bit-widths ranging from 8 bits to 2 bits. Applying 2-bit quantization, we
gain about 93.75% reduction in memory footprint while keeping the system’s EER less than
5% (i.e., about 1.5%) that is the acceptable EER for a reliable system. Moreover, the effect
of quntization is more sensible for FPR< 0.1% where more precision is needed to satisfy these
strict FPRs. However, for FPR> 1% this quantization error is less than 0.2%. The main
bottle neck in the implantation of the full MMOC architecture is the enrollment phase, where
an appropriate classification threshold that satisfies a predefined FPR in the system should
be computed. Our results show that using 100 templates for thresholding, user enrollment
takes about 15.8 seconds on the card. However, since the enrollment is only done once in
the device setup phase, this delay will not affect the real-time verification response of the
proposed system.

3.2.3 Platform evaluation

An android application and two SIM applets are developed to realize the proposed MMOC
architecture on smartphones. By default, access to the SIM card is not granted to third
party applications by the Android OS. However, a special applet called Access Rule Applet
(ARA) can be developed on the SIM card with a list of privileged Android applications. The
Android OS reads this list and grants access to a specific Android application defined in ARA.
Therefore, we developed two SIM applets, one for enrollment and verification and another
one for ARA. Moreover, a back-end python code is developed for model training in cloud-
assisted MMOC. The Android application consists of MTCNN module for face recognition
and a frozen model of FaceNet. The application in the background every 10 seconds captures
an image and sends it to the SIM for active authentication. A phone-based version of the
system is also developed that encrypts model’s internals on the phone using AES algorithm.
Our test bed is a Samsung galaxy A20. The result shows a slight improvement in resource
consumption by using SIM-based solution. For instance, we gain 2% and 0.1% of CPU and
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battery usage reduction, respectively.

3.3 Phase 3: A generic model for mobile secure authentication

In section 3.2, we described high accuracy of authentication systems using transfer learning.
However, not all pre-trained models produce outputs that are implementable on constrained
devices. In general, the transfer learning are suitable for platform with enough processing
power. Therefore, in order to take advantage of the accuracy brought by this technique, we
need to modify the network architecture of the model to output features that are suitable in
size for SIM cards. Moreover, the classification sub-network of transfer learning consists of
one or two fully connected layers that initially are not implementable on SIM cards; therefore,
an on-card optimization technique is needed to compute the output of this sub-network in
real-time. How to resolve these issues are discussed in the third article entitled «A Generic
Model for Privacy-preserving Authentication on Smartphones», presented in chapter 6.

3.3.1 Transfer learning for MMOC authentication

A general model based on transfer learning is proposed to address the resource limitations on
SIM cards. This architecture adds a dimensionality reduction layer on the top of the feature
extraction network of transfer learning architecture. the reduction size is a hyperparameter in
the system and can be defined using the validation set, also is a trade-off between the system’s
accuracy and the system’s efficiency. Moreover, a quantization layer is added to the model’s
output in order to convert the real valued features to integers in a specific range, suitable for
processing on the card. The obtained model is fine-tuned on the target dataset and can be
frozen and used as a specialized feature extraction sub-network for MMOC authentication.

3.3.2 Optimization architecture

As mentioned in the beginning of section 3.3, classification sub-networks consist of one or two
fully connected networks. More precisely, the verification phase of the system is the forward
pass of the frozen fully connected network. However, this simple and fast computation on
desktop computers, is a tedious task on smart cards that leads to a non real-time response
of the authentication system. Therefore, an optimization architecture using the optimization
techniques in modern compiler design, is employed to reduce the forward pass time of the
classification sub-network on the card. Another, innovative solution is to use log quantization
in which real valued variables are transformed to log domain. This transformation helps us to
replace multiply-accumulate in vector dot product operation with bit-shift-accumulate that
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is faster in hardware. Applying these two techniques for computation of the forward pass, a
considerable speed-up gain is achieved that leads to a real-time secure authentication system.

3.3.3 Performance evaluation

We fine-tuned Resnet50 [33] trained on VGGFace2 [39]. The feature extraction sub-network
of the model generates 2048 deep face features from each image. This vector size leads to a
non real-time verification response on the card; therefore, in order to make it suitable for on-
card implementation, we reduce its dimension to 64. Our optimization architecture contains
4 loop blocks and 16 weight vectors are fed into each block. Each loop is unrolled with unroll
factor of 64. We also use ReLU-10 as layer activation function. We report the performance of
the proposed system in terms of AUC, EER, REC, PER, and more importantly, verification
time on the card for different classification sub-network size. The promising result comes from
the optimization architecture, where we gain about 60.71

1.37 ≈ 44.3× speed-up over the original
architecture using the optimized architecture with log quantization. In general, quantization
scheme reduces the performance accuracy of the system. For instance, in the worst case,
we see about 0.7% increase in EER. Moreover, reducing the classification sub-network size
decreases the accuracy of the system as well. In the worst case, it increases EER slightly for
0.8%. On the other hand, this reduction in the number of hidden layer nodes reduces the
verification time considerably by 500 ms.
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Abstract

With the wide use of personal consumer electronics devices such as smartphones, people
store sensitive and confidential information more on their devices. Active authentication
(AA) systems continuously authenticate users to reduce possible attacks after a successful
login on the device. In this paper, we propose match-on-card (MOC) approach for a secure
active authentication scheme using touchscreen for smartphones to enhance the security and
privacy and decrease the performance overhead on the consumer device. We train a Deep
Neural Network (DNN) model, and store the model on the smart card available on the device
for user authentication. To implement the user verification on smart cards, we quantize inputs
to the model and the model’s parameters. A speed-up technique is added to the verification
phase to improve the execution time. Evaluation results show that with a well configured
DNN model, our on-card authentication reaches an Equal Error Rate (EER) of 2.6% for 15
strokes and verification time of 0.65 second for each stroke. Considering the average user’s
stroke frequency of 1 stroke/s, our proposed scheme shows the potential for mobile MOC
active authentication using touchscreen gestures on consumer devices.

Keywords : Biometrics, Authentication, Touchscreen gesture recognition, Smart cards,
Neural networks.

4.1 Introduction

Increasing growth of personal consumer electronics (CE) devices usage such as smartphones,
these devices store many sensitive and confidential information and run payment or banking
applications. Therefore, an authentication scheme is required that only legitimate users can
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access the sensitive information stored on devices. Traditional authentication techniques such
as PIN/password or graphical patterns are prone to two types of security attacks known as
shoulder surfing attacks and smudge attacks [1].

Recently, a new category of user authentication scheme based on user biometrics has re-
ceived much attention. Biometric authentication uses physiological characteristics such as
fingerprint [104], face [37], iris [105], palmprint [26], among many others or behavioral charac-
teristics of user such as gait recognition [106], signature [1], gesture recognition on touchscreen
devices [62], to name a few or hybrid schemes that take advantage of the both systems. Sin-
gle entry point authentication systems only authenticate users at the beginning of a session
(i.e., time until the next unlock) and do not authenticate the user during the active ses-
sion. Therefore, an impostor may take control of the device during the session and access
the user’s sensitive information stored on the device. On the other hand, Active Authenti-
cation (AA) systems continuously and transparently authenticate users during the session
using biometric traits. Most of the user’s interactions with smartphones are through a touch-
screen. Moreover, people have consistent and distinguishing behavior of performing gestures
on touchscreens [1], [65]. These reasons plus the fact that no extra sensors are needed for
user authentication on the device, make touchscreen biometric a promising behavioral bio-
metric for active authentication on smartphones. Most mobile user authentication systems
store biometric data on cloud servers or on smartphones, both threaten the privacy and se-
curity of users’ identities. Adding to this, many consumers are unaware of attacks against
mobile platforms, make the security and privacy of biometric data big concerns in biometric
authentication systems [107]. Therefore, the implementation of an authentication system
should be isolated from the mobile OS. Device manufacturers use a Trusted Execution En-
vironment (TEE) for isolation of user verification. However, the TEE is not available on
almost all CE devices. Smart cards (SC) in the form of SIM (Subscriber Identity Module)
or eSIM (embedded SIM) cards available on almost all smartphones can be considered as a
dedicated TEE to implement a secure biometric authentication system. Using SIM cards, we
can securely store biometric templates, and do the user verification isolated from the mobile
OS. Storing biometric templates on smart cards, we can take advantage of Match-On-Card
(MOC) technique to enhance the security of the authentication system where matching (ver-
ification) is performed on-card and templates do not leave the card, which reduces the risk
of biometric data leakage. Moreover, low resource consumption of smart cards makes them
a good candidate for continuous authentication. However, smart card resource constraints
make the implementation of a MOC authentication system a big challenge.

To overcome this challenge, we take advantage of processing resources available off-device.
We train a Deep Neural Network (DNN) model on a cloud server and send the model’s
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parameters to the smart card on the consumer device through a secure channel. Moreover,
in order to reduce the memory footprint of verification on SC’s, we perform quantization on
biometric templates and the model’s parameters as well.

The main contribution of this work is to show the feasibility of implementing MOC active
authentication systems on smartphones. The proposed system uses touchscreen sensors and
SIM cards available on almost all smartphones while taking advantage of the security and
the privacy features and low resource consumption of the latter. Therefore, the system is
readily implementable on smartphones with no need of extra hardware on the device. The
verification engine on the SIM card consists of a simplified DNN model to reduce the memory
footprint, with a speed-up technique to improve the execution time on the SIM card. Most
DNN models are implemented on specially designed hardware for Neural Networks. However,
the proposed system implements a DNN model on off-the-shelf smart cards. Moreover, we
also consider the implementation of the system on the emerging eSIM technology which are
available on recent smartphones and smartwatches. We evaluate our proposed system on two
touchscreen datasets to show its reliability and real-time performance.

The remainder of this paper is organized as follows. Section 4.2 describes our trust and threat
models. Section 4.3 summarizes the related works on MOC authentication and touchscreen
active authentication. In section 4.4, we describe the proposed system. Section 4.5 evaluates
the system’s performance. Section 4.6 briefly discusses eSIM implementation. Finally, we
conclude our work in section 4.7.

4.2 Trust and Threat Models

4.2.1 Trust Model

In the proposed MOC authentication scheme, we trust the storage of biometric templates on
the SIM card and on the cloud server, and the data path between the entities on the system.
These assumptions are feasible in real implementations: 1) Access to SIM cards is restricted
by an Access Control Applet (ARA) that contains applications’ signatures that are allowed
to access a specific file or applet on the SIM [108]. Moreover, recent SIM cards are tamper
resistant and robust against side channel attacks. 2) A secure channel between on-card
entities and off-card entities can be established using the protocol proposed in [109]. This
channel can prevent Man In The Middle (MITM) and replay attacks in data transmission to
the SIM card. 3) A secure channel between the on-device application and the cloud server
is established to block possible attacks on the communication channel. The protocol design
of a secure channel is out of the scope of the present study; however, an efficient protocol
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is that both parties exchange their public key’s certificates to authenticate each other, then
using Elliptic Curve Diffie-Hellman (ECDH) protocol, an ephemeral session key is generated
that is later used by Advanced Encryption Standard (AES) to confidentially exchange data
between the application and the server. Moreover, the training dataset is stored encrypted
on the cloud server. Hardware Security Module (HSM) on the cloud server can be used to
protect the encryption key.

4.2.2 Threat Model

The main goal of the proposed system is to block any illegitimate usage of the consumer
device as soon as possible. Therefore, our threat scenario consists of an attacker who uses
the smartphone illegally in order to steal the owner’s confidential, sensitive, or personal
information stored on the device. The main attack we consider in this study is the spoofing
attack. We divide it into several attack vectors, and describe how we can defend them in our
system in section 4.5.

• Shoulder surfing attack: an attacker observes the device owner’s pattern while inter-
acting with the touchscreen.

• Physical access to the device: an attacker illegally accesses the biometric data stored
on the owner’s smartphone in order to impersonate the legitimate user.

• Software attack: an attacker runs a skilled software (e.g., a malware or a trojan) on the
owner’s device to capture user’s behavior on the device.

• Attacks on machine learning models: an attacker uses white box attacks where an
attacker has a knowledge of the model internals or its training data, or black box attacks
where an attacker only can observe the model’s output (i.e., predicted labels or the
scores) to generate adversarial samples and fool the classifier.

4.3 Related Work

4.3.1 Match-On-Card authentication

Most studies on MOC authentication are based on fingerprint biometric with minutiae-based
matching [93, 110]. Recently, Nedjah et al. [94] presented an efficient user authentication
using fingerprint. Their method is based on Skin Elasticity Tolerant Algorithm (SETA) for
fingerprint comparison. Some researchers, however, considered other physiological or behav-
ioral biometrics for MOC authentication. Lee and Byun [98] used Support Vector Machine
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(SVM) as a classifier for face authentication on memory-constrained devices such as smart
cards. They used Genetic Algorithm (GA) to select most discriminative features for im-
plementation on smart cards. Bourlai et al. [99] used Client Specific Linear Discriminant
Analysis (CSLDA) technique for feature extraction. They also proposed several techniques
to optimize their on-card verification system. Findling et al. [19] presented a MOC authenti-
cation approach using gait and face biometrics. They trained and simplified an offline model
on a server and the simplified model is migrated to the smart card. Nedjah et al. [100] pro-
posed an implementation of iris texture verification on smart cards using MOC technique.
They used segmentation, normalization and binary code formation for iris feature extraction
and, Hamming distance for comparison of iris codes. Choi et al. [102] proposed a speaker
verification system based on SVM. They proposed a hardware design for the algorithm on
FPGA platforms. Sabri et al. [101] proposed a multimodal biometric verification framework
consisting of two MOC fingerprints and one match-on-host (MOH) face systems. Nedjah et
al. [111] implemented a palm-print verification on smart cards. They extracted binary code
(palm-code) from each palm-print image, and used Hamming distance for comparison. Table
4.1 compares recent studies on MOC-based authentication systems.

These works confirm the potential of MOC technique for secure authentication systems.
This study differs from the current research efforts: (1) the existing works do not consider
the integration of MOC technique on smartphones, whereas we propose a secure solution for
smartphone authentication using SIM/eSIM cards; (2) the existing works investigate MOC
technique for single point entry authentication; however, this work studies MOC potential for
continuous authentication systems on smartphones; (3) the existing works use template-based
or a simple linear model-based authentication that are not applicable to other biometrics,
except the study by Findling et al. [19]. While their work uses some approaches similar to
ours such as off-device model training and model simplification; however, their simplification
scheme is not applicable on DNN model, whereas we implement a DNN model for user
verification on cards with a quantization scheme that is also applicable to other machine
learning models. Moreover, their proposed system is a single point authentication with gait
biometric for authentication; however, we propose an active authentication system using
touchscreen biometric.

Since smartphones are equipped with touchscreen sensors, this evolving biometric is consid-
ered as a primary method for active authentication. We review recent works in touchscreen
active authentication in the next section.
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Table 4.1 Comparison with MOC-based authentication studies

Study Year Biometric Type Matching Best execu-
tion

Card
type

Best result

Algorithm time (ms) (bit-
length)

Pan et al. [110] 2003 Fingerprint Physiological Distance metric 1600 32 -

Lee and Byun [98] 2003 Face Physiological GA+SVM - - FAR = 2.7%
FRR = 9.4%

Choi et al. [102] 2006 Voice Physiological SVM 58.7 32 TER = 1.76%

Bistarelli et
al. [93]

2006 Fingerprint Physiological Distance metric 300-8000 16 FAR = 0.1%

Bourlai et al. [99] 2010 Face Physiological CSLDA 397.3 - HTER = 1.8%

Nedjah et al. [111] 2017 Palm-print Physiological Hamming dis-
tance

1217 16 EER = 0%

Nedjah et al. [100] 2017 Iris Physiological Hamming dis-
tance

1210 16 EER = 2.39%

Findling et al. [19] 2018 Gait Behavioral CSLDA 824 16/32 EER = 11.4%

Nedjah et al. [94] 2019 Fingerprint Physiological SETA 2849 16 EER = 21.11%

Sabri et al. [101] 2019 Fingerprint+Face Physiological SVM 2640 16 EER = 0.7%

Our system 2020 Touchscreen Behavioral DNN 650 32 EER = 2.6%

4.3.2 touchscreen gesture active authentication

Frank et al. [62] proposed a continuous authentication scheme based on touchscreen gestures.
They extracted 30 different behavioral features while the user is interacting with the device.
Two different classifiers, k-nearest-neighbors (kNN) and SVM, are used in their work. They
reached an average equal error rate below 4% depending on the scenario and the classifier
used. Fierrez et al. [61] proposed a swipe gesture scheme for continuous user authentication.
They captured strokes’ features during a normal activity of a user. With SVM and Gaus-
sian Mixture Model (GMM), similarity scores are computed and using different datasets,
they evaluated the impact of different parameters such as number of swipes or number of
training samples. Shen et al. [65] analyzed user’s touch-interaction behavior for different
touch operation types, operation lengths, application tasks, and different usage scenarios.
The results showed that operations performed in small area on the screen are more reliable,
increasing touch operation length improves authentication accuracy and error rate converges
at 11 operation length . Antal et al. [63] showed that users’ gestures on touchscreen devices
can be used to classify users’ identity, gender, and experience level in using the device. They
depicted that identity, gender and experience level prediction reaches 95% accuracy with 10
or more strokes. Serwadda et al. [64] evaluated ten classification algorithms using the same
dataset they gathered from 190 subjects. Among the algorithms, Logistic Regression and
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J48 tree had the lowest and highest mean EER, respectively.

These studies show touchscreen biometric as a promising technique for active authentication
on smartphones. On the other hand, MOC technique has shown the potential for secure user
authentication. Therefore, integration of touchscreen biometric with MOC technique could
arise as a secure active authentication system for smartphones. In the proposed MOC ac-
tive authentication, computationally expensive operations are done off-card; therefore, same
approaches for preprocessing, feature extraction and model training proposed in the related
studies [62], [61] can be used in the MOC implementation. However, the verification phase
of the model should be modified to make it suitable for offline (no communication with the
outside world) real-time and accurate on-card user verification.

To the best of our knowledge this is the first work on MOC active authentication scheme
with DNN model for smartphones.

4.4 System Description

A stroke or gesture is the movement of finger when it touches the screen until it is lifted. Using
the available touchscreen device’s APIs, we can capture useful data from user interaction with
the touchscreen. Afterwards, we can exploit these data to extract distinguishing features for
training a classifier. The classifier, then, is used for active authentication of the logged in
user on SIM/eSIM cards.

4.4.1 Enrollment

During the enrollment phase, the authentication system collects enough touchscreen data
from the legitimate user, and extracts specific features from each stroke. Features such as
start and stop coordinates, stroke duration, average velocity, mid-stroke pressure, and etc.,
are extracted (see section 4.4.2). In order to increase the security of the proposed system,
each template is quantized using the quantization scheme (section 4.4.3), and stored on the
card. After sufficient number of strokes from the legitimate user is collected, templates are
retrieved from the card and are sent to the cloud server for model training through a secure
channel. To increase the security, during the enrollment, primary authentication method
such as fingerprint or password is active on the SIM. Fig. 4.1 shows the architecture of the
proposed biometric system.
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Figure 4.1 Architecture of the proposed MOC active authentication using touchscreen bio-
metric with a DNN model for smartphones. In the enrollment phase, adequate strokes are
collected, quantized and stored on the smart card. These templates are sent to the server for
training along with the impostor database. The obtained model’s parameters are sent to the
device for quantization. The flattener module on the device flattens the weights’ matrices to
APDU format and sends them to the smart card. In verification phase, after tdelay, sampling
starts, and the required number of strokes are sent to the smart card. For each sample, vector
dot product is computed, quantized, and the score is obtained. Sum rule is used to compute
the final verification decision. False conditions are shown by dashed lines in the figure.

4.4.2 Feature Extraction

Using the method described in [61], the most discriminative features of a stroke, to distinguish
the legitimate user, are extracted that build up a 28-dimensional feature vector for each touch
stroke. For instance, first-quartile, second-quartile, and third-quartile for velocity, accelera-
tion, pressure on the screen, and the covered area vectors are computed. Moreover, start and
stop coordinates, direct end-to-end distance, deviation form the striaght line, stroke duration
are calculated. Table 4.2 shows the list of extracted features. Features are normalized using
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tanh-estimators method [27].

4.4.3 Quantization scheme

As stated in section 1, smart cards have limited resources. Several challenges are:

• Communication between an off-card application and an on-card applet is a half-duplex
operation through Application Protocol Data Unit (APDU) that restricts data transfer
to 255-byte blocks (5 bytes for header and 250 bytes for data)

• Smart cards do not have Floating Point Unit (FPU). One-byte signed integer (int8)
and 2-byte signed integer (int16) are supported in all smart cards. Some smart cards,
however, support 4-byte signed integer (int32).

• Restricted resources on smart cards. For instance most smart cards’ processors have
efficiency below 2 DMIPS/Mhz1. Moreover, available storage on modern smart cards
is around 40 KB of RAM, and around 1MB of EEPROM/Flash.

Considering the above-mentioned restrictions of smart cards, especially the lack of floating
and fixed point arithmetic on smart cards, we quantize data that need to be transferred to
the smart card. In order to respect the limitations on the card, avoid overflow, and improve
inference (verification) time, real value data are quantized to 8-bit signed integer (int8) [112].
Assume that a floating point variable r in range (rmin, rmax) needs to be quantized to int8
which has 256 quantization levels, i.e., Qlevels = 2k, for k=8 we have Qlevels = 256. Real
value r is quantized to rq as follows.

rq = Clip

{
round

(
∆r + Γ

)
,−Λ,Λ− 1

}
(4.1)

where ∆, Λ, and Γ are defined as

∆ = Qlevels − 1
rmax − rmin

,

Λ = Qlevels/2,

Γ = −(Λ + ∆rmin) (4.2)
1Dhrystone MIPS (Million Instructions per Second)
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Table 4.2 Extracted features

Extracted features
Q1, Q2, Q3 area covered
Mean area covered
Standard deviation area covered
Q1, Q2, Q3 pressure
Mean pressure
Standard deviation pressure
Q1, Q2, Q3 pairwise velocity
Mean pairwise velocity
Standard deviation pairwise velocity
Q1, Q2, Q3 pairwise acceleration
Mean pairwise acceleration
Standard deviation pairwise acceleration
x coordinates (start and stop)
y coordinates (start and stop)
Direct end-to-end distance
Angle of the stroke
Stroke duration
Length of trajectory

round(x) stochastically rounds x to bxc

round(x) =

bxc w.p 1− (x− bxc)

bxc+ 1 w.p x− bxc
(4.3)

Clip function is defined as

Clip(x, a, b) = max(a,min(b, x)) (4.4)

Stochastic rounding is an unbiased rounding and has a nice property that E[round(x)] = x

[113]. Suppose r = −0.39, in range [-0.73, 0.55], needs to be quantized to int8. We have,
∆ = 199.2, Λ = 128, Γ = 17.4, and ∆r + Γ = −60.3. With probability of 0.7 it would
round to -60 and with probability of 0.3 it would round to -61, that is already in int8 range;
therefore, no clipping is applied. Although smart cards support signed short and int data
types, data are transferred to smart cards in int8. Transferring int16 or int32 data incurs the
casting cost on smart cards. Therefore, the extracted features of a stroke and the model’s
weights are quantized to int8 using Eq. (4.1). However, the model’s bias is converted to 16-bit
signed integer to retain the classification precision as much as possible in verification phase.
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It causes the casting cost on the smart card; but, it happens once for transmission of the
model’s bias, and does not have a big impact on the whole authentication phase. Moreover,
since the sign of the weights and the bias are important to determine that a probe belongs
to the positive class (legitimate) or the negative class (impostor), they are not shifted, i.e.,
Γ = 0 in Eq. (4.1).

4.4.4 Classifier

After feature quantization, we send the extracted feature vectors, collected during the specific
time interval, to the classifier on the cloud server through a secure channel. Among classifiers
we select DNN model.

Deep Neural Network iteratively adjusts the weights to minimize the network error function
in three steps. In feed-forward, the overall network function is computed. The input x is fed
into the network, and the primitive functions and their derivatives are evaluated at each node.
In back propagation step, the network is run backwards in order to evaluate the derivatives
of network function w.r.t x. Parameter update step computes gradient w.r.t each layer’s
parameters and makes adjustment to the parameters.

Model training

A verification system is a binary classification problem. The network function of a DNN
model to compute the prediction score, spred, can be written as

y(x) = σ

(
φ(x)(L+1)

)
(4.5)

where σ is the output activation function which squashes the prediction scores to [0,1], φ(x)
is the basis function that transforms the feature-space, and L is the total number of hidden
layers. In DNN, the basis function is a nonlinear function of linear combination of the
inputs [114]. That is

φ(x)(i) = h(i)
(
w(i) · h(i−1)(x) + b(i)

)
(4.6)

where h(.) is the layer activation function, h(0)(x) = x, (i) defines the hidden layer number,
and i = 1...L+ 1. Rectified Linear Unit (ReLU) is used as the layer activation function. For
binary classification, soft or hard sigmoid [115] is used as the output activation function. In
the proposed model, however, since the scores are later fused to reach the final verification
decision, we consider φ(x)(L+1) as prediction scores, spred, for score fusion, and no output
activation function is applied. On the server, an impostor database is used along with the
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legitimate user’s samples to train a user specific model. Finally, the model’s parameters for
the user is sent back to the smart card.

Model quantization

In the proposed scheme, the model is trained to obtain the full precision model’s parameters
that are quantized afterwards for the on-card inference. The inference of the network consists
of the feed-forward phase with several convolution layers; therefore, bit-width overflow should
be considered in intermediate computations. We quantize DNN model based on the following
rules:

• The feature vectors are quantized to int8 using Eq. (4.1). ∆features in (4.2) is com-
puted using minimum and maximum values among all feature vectors, and Γfeatures is
found accordingly. These values are calculated off-device and imported to the quantizer
module on the smartphone for precise quantization.

• the model’s weights and the bias are quantized in the same manner. However, since
the weights’ signs have key impacts on calculating matching scores, the model’s weights
and the bias are scaled but not shifted, that is, in Eq. (4.1) Γ = 0. The weights are
quantized to int8, Qlevels = 28, maximum and minimum of the weights are considered
as rmin and rmax to calculate ∆weights in (4.2). The precision of the model’s bias has a
great impact on the final decision. Therefore, in order to retain the model’s accuracy
close to the full precision model, we quantize the bias to int16, Qlevels = 216 in (4.1),
and scale it in the range of the weight vector, that is ∆bias = ∆weights.

• In the on-card inference module, the output of each layer is divided by ∆weights and
rounded down to the nearest integer in order to keep the quantized outputs close to the
real value outputs. Moreover, to avoid overflow of the intermediate multiply-addition
calculations in deeper layers, the output of layer activation function is clipped from
the first layer. Therefore, the next layer is calculated using the clipped output that
prevents overflowing. We use ReLU-n as the layer activation function, defined as

h(x) = max(min(x, 0), n) (4.7)

where −Qlevels/2 ≤ n ≤ Qlevels/2− 1 is obtained using validation set.
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4.4.5 Authentication

As the user interacts with the touchscreen, the gesture detection application in background
every sampling interval, tdelay, (e.g., every 30 seconds [44]) collects each stroke’s features,
quantizes them, and sends them to the smart card for authentication. In single stroke au-
thentication, only one stroke is used for user verification, and the user is legitimate if spred is
greater than a classification threshold. Here, zero is considered as the baseline classification
threshold; therefore, spred > 0 indicates the legitimate user.

It is shown that multi-stroke authentication improves the performance of a touchscreen au-
thentication system remarkably [62], [65], [63]. Therefore, the score of each individual stroke
is calculated, and a score fusion method is applied to reach the final authentication deci-
sion [116]. At each tdelay interval, the application captures, quantizes and sends the stroke’s
features to the SC for authentication. In the authentication phase on the SC, the prediction
score, spred, for the given template is calculated and stored. When all required strokes are
presented to the smart card, using sum rule, the final prediction score is computed. The
multi-stroke input belongs to the legitimate user if

K∑
k=1

spredk
> 0 (4.8)

where K is the total number of required strokes. if the total score is less than zero, the au-
thentication system consider the user as an impostor, and the primary authentication scheme
(e.g., knowledge-based authentication) on the SIM is activated to check the authenticity of
the user.

4.4.6 Verification speed-up

The most computationally expensive operation of the proposed method on the smart card
is the vector multiplication to compute the prediction (matching) score. Consider the mul-
tiplication of two d-dimensional vectors a and b with entries ai, bi, 0 ≤ i ≤ d− 1, the inner
product of the two vectors is defined as

c =
d−1∑
i=0

aibi (4.9)

A well-known method to improve the execution time of a loop is loop unrolling. A loop
that its body is replicated r times is called an unrolled loop with an unroll factor of r.
Loop unrolling reduces execution time by reducing the number of loop termination test and
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modifying the index variable fewer times. Moreover, the compiler can take advantage of
operation pipelining [117]. Applying loop unrolling, we can rewrite (4.9) as

c =
b d

r
c−1∑

i=0

r−1∑
j=0

ari+jbri+j︸ ︷︷ ︸
Main iterations

+
d−1∑

k=b d
r
c∗r

akbk

︸ ︷︷ ︸
Leftover iterations

(4.10)

For example, suppose a dot product of two 100-dimensional vectors, and r = 30. Using loop
unrolling, instead of checking loop termination and index modification 100 + 1 times, the
compiler interferes only 4 times, b100

30 c+ 1 = 4. We will have 30 main iterations (j = 0...29),
and 10 leftover iterations (k = b100

30 c ∗ 30 = 90...99). Fig. 4.2 shows the effect of loop
unrolling on the execution time for dot product of two 100-dimensional vectors. As seen
in the figure, by increasing the unroll factor the execution time decreases. Using unroll
factor of 50 , we achieve over 15× speedup on the vector dot product which is the main
bottleneck to implement verification phase of biometric systems with large template size on
cards. However, loop unrolling may have an adverse impact on the execution performance if
the instructions of the unrolled loop overflow the instruction cache. Therefore, unroll factor
should be selected carefully [118].

4.5 Performance evaluation

For evaluation, we use a SIM card with 1.5 MB of secure flash memory and 53 KB of RAM
running Java Card version 3.0.2 that supports 32-bit integers. It has a secure processor
and a secure OS which is tamper resistant and robust against side channel attacks and
fault injections [20]. We use T=0 protocol to communicate with the card through a contact
interface. We develop an applet on the SIM card for storing feature vectors, the model’s
parameters, and doing the verification (inference).

4.5.1 Evaluation datasets

We used two public touchscreen datasets available at TouchDB benchmark [61].

Frank dataset

Frank dataset [62] consists of touch data from 41 users collected in two sessions, one week
apart. An application designed for reading documents and viewing images. Using phone’s
API, raw features are recorded during the user’s interaction with the touchscreen (e.g., read-



59

Figure 4.2 Execution time improvement using loop unrolling for dot product of two 100-
dimensional vectors on smart cards.

ing the document or viewing images). Features such as time in ms of recorded action, where
an action could be touch down, touch up, or finger move, x- and y-coordinates of each action,
phone orientation (landscape or portrait), finger orientation, area covered by finger, and fin-
ger pressure on the touchscreen are extracted from each stroke. From the dataset analysis,
we see that only 22.5% of the subjects used the phone in landscape orientation. All the
subjects, however, used portrait orientation.

Serwadda dataset

Serwadda dataset [64] consists of touch data from 190 subjects in two session, one day apart.
Two mobile applications were developed to collect touch data while users should answer
to questions by scrolling/swiping between different screens. Vertical and horizontal strokes
are considered and for each stroke raw touch data are recorded: x- and y-coordinates of
points in the stroke, finger pressure on the screen, area covered by the finger, the time when
finger touched or left the screen, and phone orientation. Similar to Frank dataset, landscape
orientation is not used by all the subjects, and only 28% of the users interacted with the
phone in landscape orientation. However, about 70% of the subjects used the phone in
portrait mode.

4.5.2 Evaluation configuration

Features are extracted as stated in section 4.4.2. The datasets have data captured in two
separate sessions. However, intra-session data are used for experiments in this work, where
data from one session are used for model training and testing. Moreover, as discussed in



60

section 4.5.1, portrait orientation is dominating in both datasets; therefore, portrait mode
is used for evaluation. In addition, since horizontal strokes are more discriminative than
vertical strokes [61], only horizontal swipes are considered in our experiments. The dataset
is split to 80%-20% training and test sets. In verification systems, we are interested in
distinguishing a specific user (i.e., a legitimate user) from the other users (i.e., impostors).
Therefore, using one-vs-all classification [119], a separate person-specific binary classifier is
trained to distinguish the legitimate user form impostors. All stroke samples form the specific
user are considered as "one" class while the other samples in the dataset are considered as
"all" class. The person-specific model’s parameters are then transferred to the SIM card for
class prediction of unseen data in the test set. Applying one-vs-all method on the dataset,
an imbalanced dataset is generated that will affect the overall accuracy of the biometric
system [120]. In order to mitigate the effect of imbalanced dataset more weights are given
to the "one" class that causes the model to pay more attention to the legitimate user’s
class; therefore, we assign weights proportional to the size of the class, i.e., weightP = P +N

P

and weightN = P +N
N

where P and N are positive and negative classes, respectively. Table
4.3 shows the average rate of legitimate users in Frank and Serwadda datasets. Our DNN
model consists of one hidden layer of size 14 followed by a relu activation function, and
one-node output layer. The binary cross entropy loss is minimized by ADAM with learning
rate η of 10−3. Moreover, 20% of the training set is used as the validation set for early
stopping and model selection. We initialize the bias of the output layer such that it initially
predicts reflecting the legitimate:total sample ratio. Therefore, we set the bias of last layer as
b

(2)
init = − loge(N/P ). The batch size is 100, and to control bit-width overflow, using validation
set, we defined n = 10 in (4.7). Our evaluation metric consists of Equal Error Rate (EER),
and Area Under the Receiver Operating Characteristics Curve (AUC). Moreover, we also
report well-known threshold metrics, namely recall (REC= T P

T P +F N
), precision (PRE= T P

T P +F P
),

and F1 score (F1=2. P RE.REC
P RE+REC

) where TP, FP, and FN are the number of true positive, false
positive, and false negative samples for a given threshold, respectively.

4.5.3 Security analysis

In this section we describe how our proposed system is robust against the attacks we defined
in our threat model.

• Shoulder surfing attack: an attacker may conduct a shoulder surfing attack by capturing
a video while the user is working with the smartphone. It is possible that the attacker
learns the coordinates of strokes; however, many of the extracted features such as
pressure, acceleration, or velocity are hard to reproduce.
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Table 4.3 Average legitimate users in dataset. Standard deviation is shown in parentheses.

Dataset Average legitimate users (%)

Frank 2.4% (0.95)

Serwadda 0.7% (0.3)

• Physical access to the device: an attacker can access the stored legitimate biometric
templates on the device and later replay them to spoof the active authentication system.
However, our system defends this attack by using the MOC technique. Biometric
templates are securely stored on the SIM card, and no biometric template leaves the
SIM card for verification; therefore, the attacker does not have access to the biometric
templates.

• Software attack: an attacker running a malware can monitor the memory or the device’s
sensors to steal the biometric information in the enrollment or authentication phase and
replay them. Although the attacker obtains the legitimate user’s biometric templates,
he cannot impersonate the legitimate user in our system, because it is revealed that
the software is unauthentic in channel establishment and even by the on-card access
controller. Therefore, the attacker’s malware is not able to reach our authentication
module.

• Attacks on machine learning models: an attacker crafts adversarial samples in order
to fool the model. White box attacks are defendable in our system since our training
dataset and the model internals are securely stored. In case of the black box attacks,
the attacker may be able to iteratively modify his samples towards the legitimate sam-
ples by reading the model’s output from the running application. However, since the
model is protected by an ARA on the SIM card, untrustworthy entities are not allowed
to send inputs to the model; therefore, this attack needs code tampering or code injec-
tion techniques to modify the samples inside the trusted entity on the phone. In the
first case, modifying codes requires application re-signing that ARA on the SIM could
immediately detect it. However, in the latter case, the attacker injects the code directly
into the process memory to craft his biometric samples before transmission to the SIM
card. This highly sophisticated attack is feasible since modifying the memory content
does not change the application’s signature. Defence against black box attacks is out
of the scope of our current work. However, there are some obstacles in our system that
make this attack a hard task to accomplish: 1) the authentication module on the SIM



62

does not output prediction score to assist the attacker; 2) after K strokes, if the score
is below the threshold, the module activates the primary authentication method on the
SIM (e.g., password or fingerprint). If the attacker succeeds in these steps, a simple yet
efficient defence against this attack in our system is to revoke the application’s certifi-
cate on the ARA using over the air (OTA) channel of the network operator. This way,
we can block any communications of the suspected application with the authentication
module on the SIM.

4.5.4 Experimental results

We compare our DNN model with SVM classifier as used by Frank et al. [62] and Fierrez et
al. [61]. However, considering resource constraints of smart cards, we use SVM with linear
kernel (L-SVM) to compare its performance on smart cards with the proposed DNN model.
Using the validation set, the hyperparameter C is set to 10−5, and same quantization scheme
is applied for migrating the L-SVM model to the smart card.

Fig. 4.3 shows the verification time on the 32-bit SIM card for DNN and L-SVM models.
As can be seen, loop unrolling decreases the execution time on SIM for both models. In
Java Card, two dimensional arrays are not supported. In order to implement the matrix
multiplication needed for DNN inference, weight matrix is stored column-wise in the SIM’s
storage; then, vector dot product of the input vector with each column vector of the weight
matrix is computed and added together to obtain the final result. The unroll factor is set
to the length of vectors in dot product of each layer. Since we have 15 vector dot products
for each stroke (14 for the hidden layer and 1 for the output layer) in DNN, we observe a
considerable increase in computation time as the number of strokes increases comapred to
L-SVM. For example, using 15 strokes execution time goes to 56.2 s (std = 10.5 s), whereas it
is about 2.0 s (std = 0.2 s) in L-SVM. Using loop unrolling technique, however, the execution
time decreases by 82% where the execution time for 15 strokes drops to 10.1 s (std = 1.6 s)
in DNN. Please note that all strokes are not ready for verification at once. A median user
makes a stroke at least every 1.0 second [62]. Using the speed-up technique, an individual
stroke’s score is computed in about 650 ms (std = 25 ms) before the next stroke arrives,
and the final score is obtained using Eq. (4.8). Therefore, the inference execution time on
SIM does not affect the overall verification response. This duration includes transmission
of quantized stroke’s features using APDU communication, calculation of matching score
for each stroke, layer output quantization, and computing the verification result. In Java
Card, we have RAM and EEPROM/FLASH for storing data. EEPROM has physical write
limit, and the write time on EEPROM is more than thirty times slower than writing on
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(a) L-SVM

(b) DNN

Figure 4.3 Verification time on SIM card with and without speed-up for different number of
strokes.

RAM [121]. Therefore, in order to make a good use of the memory on chip and extending
the card’s lifetime, model’s parameters are stored in EEPROM once received form the server;
however, the probe’s template and prediction scores are stored in RAM.

Fig. 4.4 shows the effect of model quantization on EER for Frank and Serwadda datasets
with multiple strokes for authentication. In Frank dataset, using a single stroke, EER is
around 11.2% for DNN and 18.6% for L-SVM. Using more strokes for authentication the
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(a) Frank dataset

(b) Serwadda dataset

Figure 4.4 Effect of multi-stroke and quantization on EER using DNN and L-SVM classifiers.

EER decreases. After 10 strokes, the system is stabilized, and it reaches EER of around
3.5% afterwards. The best EER achieved with 15 strokes. Our DNN model performs better
on Serwadda dataset where it is stable from stroke 13, and mean EER decreases to 1.1%
for the real model, and to 2.6% for the quantized model, whereas it is about 10.1% for real
L-SVM and 12.3% for the quantized one. Moreover, multi-stroke improves system perfor-
mance more on Serwadda dataset than on Frank dataset, it can be seen in the figure where
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lines’ slopes connecting strokes are steeper on Serwadda dataset. The figure shows that the
quantization scheme affects our system’s accuracy; however, adding more strokes reduces
the quantization effect on model accuracy. The reason is that the fusion technique sums
several scores that results a robust final score (i.e., farther form the threshold); therefore,
quantization ruins the systems’ accuracy less in multi-stroke mode. As can be seen in the
figure, L-SVM performs worse than DNN due to the fact that the linear kernel degrades the
classifier accuracy compared to the RBF kernel proposed in [62] and [61]. Table 4.4 compares
the systems’ EER and AUC on different datasets.

Table 4.4 also reports the system’s performance in terms of PRE, REC, and F1 score for
different number of strokes. In authentication systems, identifying an impostor as a legitimate
user, i.e., false positive rate (FPR), is more vital than falsely classifying the smartphone’s
owner as an impostor, i.e., false negative rate (FNR). However, since we do not have many
of the legitimate user’s samples compared to the impostors’ samples in our dataset, we give
more weights to the positive class to mitigate the effect of imbalanced dataset. Our model
reports higher PER in the system while letting some positive samples falsely identified as an
impostor, i.e., lower REC. In both datasets, increasing the number of strokes increases REC
and PER accordingly. Moreover, in both dataset, the FPR is lower than FNR and we see
higher value for PER compared to REC. For the baseline threshold as 0 (see section 4.4.5),
in Frank dataset, the best results are achieved by 15 strokes with mean REC and PRE of
55.6 % and 93%, respectively. Likewise, in Serwadda dataset, the best results belong to 15
strokes with REC and PRE of 52.4% and 95.8 %, respectively. The table also reports the
corresponding F1 score for REC-PRE pairs in the dataset.

4.6 eSIM implementation

Embedded SIM cards (eSIMs) are the most recent evolution of SIM cards with a new form
factor. These devices unlike SIM cards are not transferable and are permanently soldered
directly into the device. ESIM acts as a container of several Mobile Network Operator’s
(MNO’s) profiles that contains information to authenticate subscribers on the network. They
may also contain applet for value-added services (VAS). This specification allows users to
change their network operator if they are not satisfied with the MNO’s services, and main-
tain connection with a SIM profile that has been added to the eSIM, without having to
remove the SIM from the field. Since eSIMs support Java Card technology [122], our active
authentication applet executable (.cap) file can be added to a SIM profile and downloaded
to the eSIM. Moreover, eSIM’s remote provisioning system enables us to transfer the MNO’s
profile and its content to a new device. However, if the user decides to switch to another
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Table 4.4 Evaluation results of the proposed MOC active authentication for Frank and Ser-
wadda datasets. Real values are depicted in square brackets. No quantization is applied to
obtain the real value results.

Dataset Strokes EER (%) AUC (%) PRE (%) REC (%) F1 (%)

Frank

1 22.5 [11.2] 84.2 [93.4] 74.2 [83.5] 16.7 [25.3] 27.3 [38.8]
3 15.1 [7.0] 91.2 [95.8] 85.7 [92.2] 30.5 [41.9] 44.9 [57.6]
5 10.4 [5.2] 93.0 [96.6] 89.1 [94.0] 37.1 [48.9] 52.4 [64.3]
7 9.4 [5.4] 94.1 [96.5] 89.9 [94.6] 42.3 [52.2] 57.5 [67.3]
9 6.9 [3.7] 95.8 [97.1] 91.2 [95.2] 46.9 [55.5] 61.9 [70.1]
11 6.3 [3.5] 96.0 [97.5] 92.3 [96.1] 51.9 [58.5] 66.4 [72.7]
13 6.2 [3.5] 96.0 [97.5] 92.5 [96.3] 53.7 [60.3] 68.0 [74.2]
15 5.9 [3.4] 96.1 [97.5] 93.0 [96.3] 55.6 [60.9] 69.6 [74.6]

Serwadda

1 20.0 [9.1] 86.2 [96.2] 74.5 [83.1] 12.3 [20.6] 21.1 [33.0]
3 12.1 [4.7] 92.7 [98.5] 85.9 [93.9] 24.0 [32.6] 37.5 [48.4]
5 8.0 [2.7] 95.2 [99.2] 90.3 [97.0] 36.2 [43.0] 51.6 [59.6]
7 5.1 [1.8] 96.6 [99.8] 91.7 [97.8] 46.0 [50.5] 61.3 [66.6]
9 3.5 [1.5] 97.5 [99.8] 93.1 [97.2] 50.1 [55.2] 65.1 [70.4]
11 2.9 [1.3] 98.1 [99.8] 93.4 [97.1] 51.4 [55.7] 66.3 [70.7]
13 2.8 [1.1] 98.2 [99.9] 95.3 [97.5] 52.2 [56.8] 67.5 [71.7]
15 2.6 [1.1] 98.6 [99.9] 95.8 [97.5] 52.4 [56.9] 67.7 [71.8]

operator by activating the profile, the authentication system does not respond if the module
is not accessible on the new profile when switching the profile, which requires a solution to
transfer applets and their contents between different profiles on eSIM.

4.7 Conclusion

In this paper, we studied a MOC active authentication scheme using touchscreen biometric for
smartphones. We trained a DNN model on a cloud server and migrated the model internals
to the SIM card. In order to make it feasible to implement the verification on the card and to
reduce the memory footprint, we applied a quantiaztion scheme. Using the quantized DNN
model, we reached the best EER of 2.6% on the card. A speed-up technique helped us to
gain up to 5.5× speed-up over the original computation. Furthermore, the results revealed
that single stroke verification time (0.65 second) is less than median user’s stroke frequency
(1 stroke/s); therefore, we can sequentially compute each stroke’s score and apply the sum
rule when all strokes are presented to the card, which shows that SIM execution does not
hinder active authentication process.

In conclusion, our results show that we can implement a lightweight and secure touchscreen
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active authentication on off-the-shelf SIM/eSIM cards. Furthermore, our study is the first
work that shows a quantized DNN model can be used in match-on-card biometric authen-
tication to improve the accuracy of the system where DNN performs better. In future, we
are going to improve the proposed model to implement deeper on-card neural networks with
lower execution time and lower quantization error.
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Abstract

Active Authentication (AA) systems continuously authenticate users on smartphones. With
high quality front-facing cameras available on recent smartphones, face-based active authen-
tication emerges as a good candidate for AA systems. On the other hand, secure authentica-
tion of mobile users is a big concern in biometric systems. Mobile match-on-card (MMOC)
technique takes advantage of SIM/eSIM card as a secure element (SE) to protect biometric
templates and verify users isolated from the smartphone’s environment. However, resource
limitations of smart cards make MMOC authentication hard to implement. In this paper,
we propose two system architectures for MMOC face-based AA systems. In Cloud-assisted
MMOC architecture (CA-MMOC), we use cloud resources for model selection and training.
Full MMOC architecture (F-MMOC) relies only on SIM/eSIM card’s resources for enrollment
and verification. A quantization scheme is proposed to make the authentication system im-
plementable on SIM cards, plus a speed-up technique to reduce on-card execution time. Using
a public mobile video dataset, we evaluate the proposed system. Our evaluation results show
that the proposed MMOC authentication achieves high accuracy in real-time with a small
memory footprint on SIM, and is suitable for cross-platform authentication. We also imple-
ment the CA-MMOC system on a real smartphone and evaluate the system’s performance
overhead in terms of power consumption, CPU and memory usage.

Keywords : Active authentication, Secure authentication, Face Biometric, SIM/eSIM, Mo-
bile device.
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5.1 Introduction

With the growing use of mobile devices, people use their smartphones for different services
such as social apps, shopping, or banking applications. Therefore, they store their credential
and banking information on their phones that require a secure authentication technique. Bio-
metric authentication is a new authentication scheme that uses physiological or behavioral
characteristics of a user for authentication. Traditional Authentication systems unlock the
device at the beginning of a session and lock the device as user closes the session or if the
device is idle for a certain amount of time. This gives an impostor an opportunity to take
control of the phone by stealing the phone and continuing the active session. Active Authen-
tication (AA) systems, on the other hand, continuously and unobtrusively authenticate users
during an active session that reduces the chance of unauthorized access to the phone after a
successful authentication. AA systems mostly rely on face ( [42], [45], [41], [43], [44]), touch-
screen gestures ( [123], [61], [62], [124]), or inertial sensors such as accelerometer, gyroscope,
and gravity sensor ( [46], [75], [47]) for transparent user authentication.

Privacy of biometric templates and secure verification of users’ identities are big concerns in
mobile platforms. Around 75% of users download applications from official repositories who
believe that downloaded applications from these repositories are secure [7]. However, studies
show that security control and application testing are not enabled in all official repositories or
are inadequate [8]. Moreover, due to the increasing number of applications, validation tech-
niques become more and more complex. On the other hand, not all users are knowledgeable
and even not aware of the consequences of installing a spyware or a trojan on their phones.
Interestingly, only 36% of smartphone users consider themselves as responsible for the secu-
rity of their devices and the sensitive information stored on them [7], [9]. McAfee reports
the increasing number of banking trojans that take advantage of Android vulnerabilities [10].
Since Android OS dominates the market share with more than 80%, most of cyberattacks
target Android OS [125]. These studies and many other studies show the untrustworthiness
of mobile platforms, which implies the necessity of a secure authentication scheme for mobile
users.

Most studies have considered software-based approaches to design a secure authentication
system. However, these approaches have shown limitations in secure authentication systems.
Cancelable biometrics [84] suffer from low verification accuracy, due to the template trans-
formations; fuzzy commitment [11] schemes have information leakage; and homomorphic
encryption [12] generates non real-time verification response, due to the expensive computa-
tions. Smart cards (available on smartphones) have good security characteristics that make
them suitable for security services. They can be used to implement an authentication system
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isolated from the mobile OS in a Secure Element (SE). A SE is a chip with a secure micro
controller running a secure OS. It ensures that data are stored and processed in a safe place
and only authorized applications or users are allowed to access it. There are three types of
SE on smartphones: 1) Embedded Secure Element (eSE) are integrated into smartphones
by device manufacturers and are used for storing payment information and key generation
in payment wallets such as Google Pay or Apple Pay, or for storing biometric data and user
verification. 2) SIM/eSIM as a secure element (SaaSE) takes advantage of SIM/eSIM cards
available on all smartphones (see section 5.2). This type of SE, in the hands of Mobile Net-
work Operators (MNOs), can be used for payment wallets, and also for biometric template
storage and matching on the card, which needs more attention with the growing use of wear-
able devices connected to mobile networks using eSIM technology. Throughout the paper, if
a specific consideration is needed, we use the specific term; otherwise, the term SIM is used
to refer to both SIM and eSIM technologies. 3) Host Card Emulation (HCE) is considered as
a secure cloud storage for mobile users, which is of interest to Cloud Operators (COs). They
are used for storing users’ payment information with an assumption of permanent secure
channel between client and server. The fact that eSE is not available on all smartphones,
and a secure communication channel is not permanently available for HCE, plus nice prop-
erties of SIM/eSIM cards such as security and privacy, availability, profile transferability,
low performance overhead, and inexpensiveness make the SaaSE a promising technology for
secure authentication on smartphones. Using SIM/eSIM cards, we can securely store biomet-
ric templates, and verify users isolated from the mobile environment. Only the verification
response is sent to the mobile OS. Access to the SIM/eSIM is very restricted, and only mobile
applications with right privileges can access it [14].

Using SIM cards for biometrics, a less secure solution known as Mobile Template-On-Card
(MTOC), is to use the SIM card only for secure storage of biometric templates, while match-
ing (user verification) is done outside the card by transferring the biometric templates outside
the SaaSE. In a more secure solution known as Mobile Match-On-Card (MMOC), template
storage and matching are done on the card; therefore, no biometric information leaks into the
untrustworthy mobile environment. However, SIM cards have restricted resources in terms of
processing power and memory, which make the MMOC implementation a challenging task.

In this paper, we propose an MMOC face-based active authentication system. A DCNN
model for distance metric learning is outsourced for training, and is used to extract the
most discriminative features of captured images on the device. These features are then
quantized for enrollment and verification on the card using our quantization scheme. We
propose two architectures for user authentication. In the first system, we train a machine
learning model on a cloud server with the quantized features, then store the quantized model
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on the SIM card for verification. In the second architecture, we use distance metrics to
learn the best classification threshold to distinguish legitimate users from impostors on the
card. No biometric template leaves the SIM card in the second model (see Fig. 5.1). With
the profile transferability feature of SIM/eSIM cards, the proposed system is suitable for
cross-platform authentication, where it can be trained on one device and used for verification
on other devices without requiring to retrain the model. In order to implement a real-
time verification on the card, we also introduce a speed-up technique to the authentication
system. The authentication system continuously captures images of the user interacting with
the device and sends them to the card for verification. On the card, a verification window
is defined which stores each image’s score and slides over the scores to compute the final
decision score. Average score fusion is applied to obtain the final score. If this score is below
the decision threshold, the current user is a legitimate user; otherwise, she is an impostor,
which triggers the primary authentication scheme on the card (e.g., PIN/password).

(a) Cloud-assisted MMOC architecture

(b) Full MMOC architecture

Figure 5.1 Overview of the proposed secure authentication systems.

This paper makes the following contributions:
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• We propose two architectures for MMOC face-based active authentication system using
SIM/eSIM cards available on smartphones: 1) an architecture that uses cloud resources
for enrollment and SIM/eSIM for verification; 2) an architecture that only relies on
SIM/eSIM card resources for enrollment and verification.

• We introduce a quantization scheme to reduce the model size up to 93.75% on the
SIM and a speed-up technique for real-time on-card responses that 8.5× improves the
enrollment time.

• We evaluate the performance of the proposed architectures with different classifiers and
different distance metrics on a publicly available mobile face dataset.

• We implement the MMOC face-based AA system on a real smartphone and evaluate
the platform overhead of the system. To the best of our knowledge, this is the first
implementation of MMOC face-based active authentication on real devices.

The remainder of this paper is organized as follows. Section 5.2 briefly introduces SIM and
eSIM technologies. Section 5.3 reviews MOC-based authentication systems. In section 5.4,
we describe two proposed MMOC face-based active authentication systems, the quanitzation
scheme, and the speed-up technique. Section 5.5 evaluates the proposed active authentica-
tion system in terms of accuracy and execution time. Section 5.6 implements the proposed
authentication scheme on an Android device and evaluates its performance overhead. We
discuss the advantages and disadvantages of the two proposed systems in section 5.7. Finally,
we conclude our work in section 5.8.

5.2 Overview of SIM/eSIM cards

A Subscriber Identity Module (SIM) card is used to securely store an MNO’s profile that
contains information to authenticate subscribers to the network, who are identified by in-
ternational mobile subscriber identity (IMSI). These modules resemble computers in small
scales; they have CPU, RAM, ROM, and EEPROM/Flash running a lightweight yet secure
OS. They may also contain applets for value-added services (VAS). These modules are trans-
ferable between different mobile devices. This feature of SIM cards is promising in designing
a secure and cross-platform authentication system. If a user decides to transfer her operator’s
profile to a new device, she easily inserts the SIM card into the new device. The profile and
all personal information are transferred to the new device.

An Embedded SIM (eSIM), the most recent evolution of SIM cards with a new form factor,
is permanently soldered directly into the device. eSIM acts as a container of several SIM
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Figure 5.2 eSIM profile transfer. The user decides to change her device. She needs to transfer
MNO A’s profile to the new device’s eSIM. Using a mobile application, she sends the request
to MNO A (step 1). MNO A sends DownloadProfile command to RSP (step 2). RSP
downloads the required information, installs, and enables MNO A’s profile on the device
(step 3). Personal data is directly transferred into the profile (step 4). It also deletes profile
A from the old device and notifies MNO A of the successful operation (steps 5 and 6).

profiles. They are managed remotely by a platform called remote SIM provisioning (RSP),
which enables storage and management of multiple MNO profiles [126]. This specification
allows users to change their network operators if an outage occurs in the network, or if the
network bandwidth is not satisfactory, and maintain the connection with a SIM profile that
has been added to the eSIM without having to remove the SIM from the field. Transferring
an eSIM profile and its content, in order to have a cross-platform authentication, is not an
easy manual task as in SIM cards, and it needs attention from the RSP to complete the
profile transfer. Fig. 5.2 shows the profile transfer process in eSIM technology.

Since an MNO’s profile information does not occupy a lot of space on SIM/eSIM cards, we
can take advantage of this opportunity to use these devices for secure and privacy-preserving
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authentication on smartphones.

5.3 Related Work

Most of studies have considered fingerprint for secure authentication on smart cards since
fingerprint templates are smaller and less information is processed by the card [90–94]. In
2000, Li in his Ph.D thesis proposed the first face-based authentication system on smart
cards. He proposed Client Specific Linear Discriminant Analysis (CS-LDA) method for an
on-card face recognition system. He showed the simplicity of the training phase, and the
possibility of enrollment insulation which is suitable for smart cards. Afterwards, researchers
paid more attention to low memory footprint matching algorithms and on-card real-time
verification. In 2003, Lee and Byun [98] proposed to use Genetic Algorithm (GA) for feature
extraction to reduce the amount of memory by storing less number of features while having
low error rate. Several year later, Bourlai et al. [99] studied the system optimization for
face authentication on smart cards. They evaluated the effect of image resolution reduction
and image compression on the system’s accuracy and real-time card response. Apparently,
reducing the image resolution drops the system’s accuracy.

The above-mentioned works were domain specific and a proposed method in one work is not
applicable to other biometrics. Findling et al. [19], in 2018, addressed this issue in MOC
authentication systems and proposed a generic approach for biometric MOC authentication.
A CSLDAmodel was trained off-line, and the simplified model was migrated to the smart card
for authentication. They applied the proposed method to face authentication and acceleration
based gait authentication. They achieved 11.4% and 2.4-5.4% EER for gait respectively face
authentication, with 2 s respectively 1 s for computation on SCs. However, they did not
evaluate their method on a real challenging mobile face dataset with varying poses and
illuminations.

Biometrics other than fingerprint and face have been less investigated in the literature. In
2017, Nedjah et al. [100] implemented an iris texture verification on smart cards. They used
Hamming distance for iris code comparison. To decrease the execution time on smart cards,
they proposed an acceptance threshold that terminates the execution when the comparison
reaches the threshold. In another work, they implemented an efficient palm-print verification
on smart cards [111]. They extracted binary code representing each palm-print image, then
using Hamming distance, they compared the palm-print probe with the templates enrolled
in the system.

Face-based Active authentication has been investigated in several works. In 2012, McCool
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et al. [43] introduced a valuable publicly available audio-visual dataset for mobile phones.
Later in 2015, Crouse et al. [44] proposed a face-based continuous authentication system.
They fused captured face images with sensory data such as gyroscope, accelerometer, and
magnetometer. They introduced login score slogin which is updated periodically as a new
face image is captured every tsample. In the same year, Fathy et al. [40] studied face-based
active authentication on smartphones using a face video dataset captured by the device’s
front camera. Their study showed a significant drop in recognition rate when user is enrolled
in one session and verification is done on other sessions. In the next year, Mahbub et
al. [41] evaluated face-based active authentication on UMADD-02 dataset which contains
data collected from three sensors on the phone: front camera, touch sensors, and location
sensors. They reported the best Equal Error Rate (EER) of 18.44%. In 2017, Samangouei et
al. [42] presented a method for face-based active authentication using facial attributes. For
each facial attribute, a set of features is extracted and a classifier is trained on it. Recently,
Perera et al. [45] presented a method for face-based multiple user AA systems based on
Extremal Openset Rejection (EOR).

Securing active authentication has not been investigated in the literature. These systems
require real-time response, in a way that verification processing does not affect the verification
frequency. Moreover, energy consumption management is crucial in active authentication.
The software-based solutions due to their own limitations (discussed earlier in section 5.1)
do not show the feasibility for securing active authentication systems. In 2016, Findling et
al. [103] presented an MOC approach for acceleration based mobile gait recognition using 16-
bit smart cards. The obtained model can be used on smart cards without requiring retraining.
Although gait biometric can be used for active authentication, the authors did not proposed a
model for it and only used it in single-point authentication. Recently, Keykhaie and Pierre [6]
showed the feasibility of MOC-based secure active authentication using touchscreen biometric
with small template size. In their work, they employed a simplified DNN model for on-card
active authentication.

5.4 MMOC face-based active authentication

5.4.1 Image preprocessing and feature extraction

The key point in a good face verification system is the feature extraction technique. Con-
sidering the resource constraints of SIM cards, we should offload the heavy computations
from SIM cards, and use this SE for secure verification and template storage. Therefore,
we extract features off the card and on the device. Moreover, in order to have an accurate
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face authentication system, we need to preprocess captured face images before extracting
features. We detect the user face (if multiple faces are detected, the closet one is selected as
the user face), and crop it to the right size before the feature extraction.

Deep feature extraction methods such as OpenFace [127] and FaceNet [36] using Deep con-
volutional neural networks (DCNN) with multiple layers, output a deep representation of
the face that is robust against face pose and illumination changes. A loss function such as
Euclidean-distance-based or cosine-margin-based loss is introduced in the network to make
features more discriminative. In general, the network is trained on a giant dataset with many
identities that tries to learn deep feature vectors using the loss function. Since people have
similar face shapes and colors, the representation learned on the network can be applied for
real world face recognition [128]. In this paper, we use Facenet to extract deep features for
on-card verification.

FaceNet maps the face image x into a compact feature space Rd. FaceNet architecture consists
of a deep CNN followed by L2 normalization that produces face embedding f(x) ∈ Rd, which
embeds a face image into a d-dimensional Euclidean space. Triplet loss is introduced during
training that minimizes the Euclidean distance between the anchor (xa

i ) and the images
of same identity (xp

i ), and maximizes the distance between the anchor and the images of
different identity (xn

i ). It is defined as

L =
N∑
i

[
‖f(xa

i )− f(xp
i )‖2

2 − ‖f(xa
i )− f(xn

i )‖2
2 + α

]
+

(5.1)

whereN is the number of samples in the training set and α is a threshold between positive and
negative samples. In [36], d (Face embedding dimension) is 128. FaceNet achieves accuracy
of 99.63% on Labeled Faces in the Wild (LFW) dataset and 95.12% on YouTube Faces DB.

The verification can be done using linear classifiers or threshold comparison, which promises
the feasibility of an accurate, real-time, and secure mobile authentication using MMOC
technique even without relying on the outside resources.

5.4.2 Quantization

Smart cards have resource constraints that make MOC based authentication systems hard
to implement:

• Data type: smart cards do not support floating point arithmetic. Only signed integers
are supported on smart cards. All smart cards support 8-bit (int8) and 16-bit signed
integers (int16). Int32 is also supported on some platforms.
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• Communication channel: communication between the smart card and the outside world
is restricted to a half-duplex serial communication through Application Protocol Data
Unit (APDU) protocol transferring data to smart cards in 255-byte blocks ( 5 bytes for
header and 250 bytes for data). This limits the maximum transfer rate to 115 kbps [99].

• Resources on smart cards: smart cards have restricted resources. New ARM secure core
has CPU clock frequency up to 25MHz [13]. Moreover, available storage on modern
smart cards is around 40kB of RAM, and around 1MB of EEPROM/Flash [129].

Considering the aforementioned restrictions on smart cards, especially the supported data
types, we need to quantize data before transferring them to smart cards. Suppose that a
floating point variable r in range [rmin, rmax] needs to be quantized to a k-bit signed integer
(intk) ranging from−2(k−1) to 2(k−1)−1 with 2k quantization levels, Qlevels = 2k. For example,
int8 is in range [-128,127] with Qlevels = 256. However, in order to save more bit space, we
consider symmetric range in our quantization scheme, e.g., [-127,127] for int8. Real-valued r
is quantized to rq as follows [6].

rq = Clip

{
round(∆r),−(Λ− 1),Λ− 1

}
(5.2)

where ∆ and Λ are defined as

∆ = Qlevels − 1
rmax − rmin

,

Λ = Qlevels

2 (5.3)

round(x) stochastically rounds x to bxc. It has the desired property that the expected
rounding error is zero.

round(x) =

bxc w.p 1− (x− bxc)

bxc+ 1 w.p x− bxc
(5.4)

For instance, 1.3 is rounded to 1 with probability of 0.7 and is rounded to 2 with probability
of 0.3.
Clip is a saturation function that clips unbounded values to [−(Λ− 1),Λ− 1]. It is defined
as

Clip(x, a, b) = max(a,min(b, x)) (5.5)
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(a)

(b)

(c)

Figure 5.3 Flow chart of the proposed architectures. (a) shows the enrollment process in
Cloud-assisted MMOC architecture. (b) shows the enrollment process in Full MMOC archi-
tecture. A subset of a public face image dataset is used to build an impostor dataset in both
architectures. (c) shows the on-card active authentication process. Every tsample a face image
is captured and is sent to the SIM card. The average of the verification window is compared
against the classification threshold, and the primary authentication method is triggered if
the average goes above the threshold.
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5.4.3 User authentication

We propose two user authentication schemes for our MMOC face authentication system.

Cloud-assisted MMOC authentication

In this scheme, which is a model-based authentication scheme, we capture the legitimate
user’s face images, preprocess, extract features, quantize, and store them on the card. This
way, we take advantage of a secure and portable biometric storage. After required number
of templates are stored on the card, templates are sent to a cloud server for training. On
the server, an impostor dataset is used along with the legitimate user’s templates to train a
person-specific model. A subset of a public face image dataset is used to build an impostor
dataset. The person-specific model’s parameters are then quantized and transferred to the
SIM card for user verification (see Fig. 5.3a). Considering resource limitations on smart
cards, we select linear classifiers among available classifiers. For a linear classifier, the decision
function is defined as

y(x) = wTx + b (5.6)

where x is an input vector (i.e., the extracted features), w is the weight vector, and b

is the bias. The input vector x is assigned to class C1 if y(x) ≥ threshold and to class C2

otherwise [130]. In verification systems, we have legitimate user (positive) class and impostor
(negative) class. In the proposed model, Eq. (5.6) (user verification) is done on the card;
therefore, we need to quantize all the equation’s variables (i.e., x, w and b). We compare the
performance of three well-known linear classifiers, namely Linear Support Vector Machine
(L-SVM), Linear Discriminant Analysis (LDA), and Logistic Regression (LR):

• Support Vector Machine [131]: SVM separates data points belonging to two different
classes with an optimal hyperplane that maximizes the margin (i.e., the distance be-
tween the nearest data points of either classes and the hyperplane). For non-linear
separable data points, using kernel functions, SVM projects data points to a higher-
dimension space where they are linearly separable. Regarding the smart cards resource
limitations, non-linear kernel functions such as radial basis function (RBF) can not be
applied to the model. Therefore, a linear SVM is used for training the model on the
server and authentication on the card. The hyper-parameter C > 0 controls the trade-
off between misclassification penalty and the margin. We use a 10-fold cross validation
on the training set for tuning the C parameter.

• Linear Discriminant Analysis [132]: LDA is a linear classification by using dimension-
ality reduction. It projects the data points to a lower dimension. In order to avoid
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overlapping in one dimension, by adjusting the component of the weight vector, it se-
lects the projection that maximizes the separation between the projected class means
while minimizing the intra-class variance.

• Logistic Regression [130]: LR, a member of Generalized Linear Models (GLM), predicts
the probability of certain class in binary classification; however, it can be extended to
multi-class problems as well. In fact, it uses the logistic sigmoid function to calculate
the posterior probability of class C1:

P (C1|x) = y(x) = σ(wTx + b) (5.7)

where σ(.) is the logistic sigmoid function defined as

σ(x) = 1
1 + e−x

(5.8)

In order to migrate the verification process to the SIM card, we need to quantize the model
to make it implementable on the card. Most of the quantization is done off the card; however,
a post-quantization process is done on the card to retain the precision of on-card model close
to the real model.
Off-card quantization: we apply the following rules to the input and the model’s parameters,
i.e., x, w, and b in Eq. (5.6), before sending them to the SIM card.

• Input (template) are quantized to int8 using Eq. (5.2). Using the training set, we find
the minimum and maximum values to calculate ∆template. We train our model with
the quantized templates. Therefore, the decision function of the trained model can be
written as

yq(xQ) ' wT∆templatex + b (5.9)

where xQ is the quantized input vector and yq(.) is the intermediate quantized decision
function.

• The model’s weights are quantized to int8 using Eq. (5.2). Minimum and maximum
values of the weight vector, obtained by training the model on the quantized templates,
are used to calculate ∆weight.

• The model’s bias is quantized using Eq. (5.2) with ∆weight. Since the model’s bias has
a larger magnitude than the weights, quantizing it to lower number of bits drops the
accuracy of the system; therefore, we assign a wider range to the model’s bias compared
to the input and the model’s weights in order to clip fewer values at lower and upper
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bounds. It helps us to keep the accuracy close to the real-valued model. Moreover, it
does not affect the execution time on the SIM noticeably.

On-card quantization: after applying the off-card rules, we store the model on the card and
compute the decision function yQ(.). It is

yQ(xQ) ' ∆weightwT∆templatex + ∆weightb. (5.10)

In order to minimize the quantization error, we divide yQ(.) by ∆weight on the card to return
back to Eq. (5.9). Therefore, we obtain decision scores on the card close to decision scores
obtained in the trained model.

Full MMOC authentication

In this scheme, which is a template-based authentication scheme, after preprocessing, feature
extraction, and quantization, features are stored on the SIM card for enrollment. After
required number of templates stored on the card, the learning process starts. The impostors’
templates, preloaded on the card, along with the captured images of the legitimate user are
used for threshold tuning purpose. In this process, we first compute the distance between the
anchor legitimate template and other legitimate/impostor templates, then we find the best
classification threshold that satisfies the given False Positive Rate (FPR). This threshold is
stored on the card for verification process (see Fig. 5.3b). We use distance metrics that are
implementable on SIMs with low computational overhead. We select Minkowski distance [133]
of order 1, 2, ∞, and evaluate the verification accuracy and the execution time on the SIM
card. Suppose that e ∈ Rd, where d is the number of extracted features, is the anchor
template vector and v ∈ Rd is a legitimate/impostor template vector. We have the following
distances:

L1 = ‖e− v‖1 =
d∑

i=1
(| ei − vi |) (5.11)

L2 = ‖e− v‖2 =

√√√√ d∑
i=1

(ei − vi)2 (5.12)

L∞ = max
i

(| ei − vi |) (5.13)

Smart cards do not support square root function; therefore, in order to calculate L2 distance,
we use Newton-Raphson method [134] to approximate the square root in Eq. (5.12). Its
fast convergence makes it suitable for implementation on constrained devices such as smart
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cards. Algorithm 1 shows Newton-Raphson method to compute integer root square on the
card. For template-based verification, since we do not have any model’s parameters, only
templates are quantized and used for validation and test purpose. Therefore, we quantize
templates to int8 using Eq. (5.2). We find ∆template using the minimum and maximum values
from the training set, as we did in the model-based verification.

Algorithm 1: Newton-Raphson algorithm for square root on the SIM card
input : n
output: square root of n
x0 ← n;
x1 ← b1

2(x0 + 1)c;
while x1 < x0 do

x0 ← x1;
x1 ← b1

2(x0 + n
x0

)c;
end
x1 is square root of n

5.4.4 Bit-width analysis

In order to avoid bit-width overflow in on-card computations, we should study bit-width
requirements of the inputs to the verification module. In the following sections, we analyse
the worst case scenario in both CA-MMOC and F-MMOC architectures. These worst cases
are immensely rare and do not happen in normal conditions. For instance in real experiment,
having all extracted features and the model’s weights set to the lower bound or the upper
bound is meaningless. However, we should consider these cases to prevent any smart card
malfunctionings in real implementations.

The worst case in CA-MMOC

In CA-MMOC architecture, the worst case for yQ(xQ) happens when all quantized values are
saturated to the lower bound or the upper bound in the vector inner product calculation;
therefore, it requires blog2(d∗(Λ−1)2)c+2 bits, where d is the vector length and Λ is defined
in Eq. (5.3). One extra bit is added for the sign bit. For 16-bit smart card implementations,
we should fit this value in int16 (16-bit signed integer). Therefore, we quantize templates
and the model’s weights to int4, we need blog2(128 ∗ 72)c + 2 = 14 bits for the vector inner
product. This assignment gives us a wider range for the model’s bias. We do not need to clip
the quantized bias, which helps us to obtain more accurate scores for binary classification.
The model’s bias can be in range [−214, 214]. For 32-bit cards, templates and model’s weights
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are quantized to int8, we need blog2(128 ∗ 1272)c + 2 = 22 bits for the inner product result.
Considering the bit-length of int32 (i.e., 31 bits for data), the model’s bias can take a value
from [−230, 230].

The worst case in F-MMOC

The bit-width requirement in this architecture is as follows. Maximum number of bits for L1

metric is blog2(2∗d∗(Λ−1))c+2 bits, where all templates at same positions take the opposite
bounds, and the maximum absolute difference is twice the upper bound value. Using int8 (8-
bit signed integer) quantization, we require blog2(2∗128∗127)c+2 = 16 bits to store the result
of L1. This value nicely fits int16 and is implementable on 16- and 32-bit smart cards. For
L2 distance, in the worst case, we require blog2(d∗ (2 ∗ (Λ− 1))2)c+2 bits to store the result.
For 16-bit smart cards, we quantize templates to int4 (4-bit signed integer), we will have
blog2(128 ∗ (2 ∗ 7)2)c+ 2 = 16 bits that nicely fits int16. 32-bit cards give us more bit-width
for computation and we quantize the templates to int8. Therefore, 16 bits are required for the
squared maximum absolute difference. We will need, blog2(128∗ (2 ∗ 127)2)c+2 = 24 bits for
L2 distance and assign int32 to it. L∞ distance only requires blog2(2∗(Λ−1))c+2 bits for the
maximum absolute difference. Quantizing templates to int8 requires blog2(2 ∗ 127)c+ 2 = 9
bits that can be implemented on both 16- and 32-bit smart cards.

5.4.5 Active authentication on SIM/eSIM

An AA system continuously and unobtrusively monitors the current user to reduce the risk
of system’s control take-over. In the proposed AA system, the front-facing camera captures
images every tsample. After preprocessing, feature extraction, and quantization, the feature
vector is sent to the SIM for verification. On the card, we define a verification window to
compute the final decision score. The score/distance of the newly captured images are stored
chronologically in a buffer on the SIM. The window size, n, defines how many image scores
are fused to obtain the final score. In other words, it shows how confident the system is in
making classification decision. Larger window size reduces the false negative rate and false
positive rate; however, it gives more time to an impostor if an attack happens in the initial
stage (until all n scores are available). The window slides k slots when the required number
of images are present in the buffer. It defines how fast the system is in detecting impostors
after the initial stage. We need to store n− 1 previous scores to compute the final score. We
apply the average score fusion rule to obtain the final decision score. Fig. 5.3c shows the
flow chart of active authentication on the SIM/eSIM card.
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5.4.6 Execution speed-up

Even simple calculations on mobile devices are tedious tasks on SIM cards. In the following,
two mechanisms are employed to reduce the execution time on the card.

Loop optimization

The main instruction in verification phase on the card is a for loop to compute the two vec-
tors dot product or the distance between them. Using a regular for instruction, i.e., for(int
i=0; i<d; i++), only one operation is calculated at a time; moreover, for each iteration the
compiler checks the loop termination and index modification. However, using the unrolled
format of the for instruction with unroll factor of r, the compiler can take advantage of
operation pipelining and interferes less in loop execution by reducing the number of loop
termination checks and index modifications to bd

r
c+ 1. We replace

for(int i=0; i<d; i++){
y+=w[i]◦x[i];

}
with
for(int i=0; i<bd

r
c ∗ r; i+=r){

y+=w[i]◦x[i]+w[i+1]◦x[i+1]+....
+w[i+r-1]◦x[i+r-1];

}
y+=w[bd

r
c ∗ r]◦x[bd

r
c ∗ r]+...+w[d-1]◦x[d-1];

where symbol ◦ means different mathematical operations. The last line, which is called
peeled loop, is added when bd

r
c ∗ r < d, to ◦-add the remaining entries from bd

r
c ∗ r to d− 1.

However, this loop transformation increases the program code size and may cause instruction
cache overflow.

Memory management

SIM cards have EEPROM/Flash and RAM for data storage. EEPROM/Flash offers more
storage space compared to RAM. On the other hand, writing on EEPROM/Flash is more
than 30 times slower than RAM [121]. Moreover, EEPROM/Flash has limited write cycles.
Writing many times on EEPROM/Flash would damage the card’s memory. Card OS does not
include memory management; therefore, in order to have a better use of the card’s memory
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and improve the execution time, we should manage the memory manually. The model’s
parameters are initially stored in EEPROM/Flash for later use in verification phase. When
a feature vector is transferred to the card, we store it in RAM; moreover, in order to reduce
the memory access time, we fetch the model’s parameters manually from EEPROM/Flash to
RAM before going through the multiply-accumulate calculation (MAC). This way, we keep
EEPROM/Flash healthy and decrease on-card execution time.

5.5 Performance evaluation

5.5.1 Evaluation dataset

For evaluation purpose we use MOBIO dataset [43]. The MOBIO dataset consists of video
and audio data captured from 152 subjects during around two years and from 5 different
countries at 6 different sites 1. Data were collected in two phases each consists of 6 sessions
where people being asked different number of questions while recording their video and audio
with a NOKIA N93i mobile or a standard 2008 MacBook. First session consists of face videos
captured by the laptop while the 11 remaining sessions consist of videos from mobile phone.
Sample images from this dataset are shown in Fig. 5.4.

5.5.2 Evaluation configuration

Transferability and platform independence feature of SIM cards make the MMOC system
a good candidate for cross-platform authentication. In order to show the robustness of the
system to platform changes, we evaluate it in single platform and cross platform scenarios.
For single platform evaluation, we use videos captured by the mobile device from one session
for training and validation purpose and the remaining sessions are used for testing. For cross
platform evaluation, videos captured by the laptop is used for training and validation while
other (mobile) sessions are used for testing. "One-vs-all" method [119] is used to train a
person-specific model, where images from the legitimate user is considered as "one" class and
other images are seen as "all" class. Applying one-vs-all method, an imbalanced dataset is
generated that will affect the overall accuracy of the biometric system. It needs threshold
tuning [120]. 20% of the training set is used as validation set for model selection and threshold
tuning. Using cross-validation, we set the hyperparameter C to 10−5 in L-SVM. For feature
extraction, FaceNet model trained on MS-Celeb-1M dataset [38] containing over 10 million

1The data was recorded at the following sites: the Brno University of Technology (BUT), Idiap Research
Institute (IDIAP), University of Avignon (LIA), University of Manchester (UMAN), University of Surrey
(UNIS) and University of Oulu (OULU).
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Figure 5.4 Sample images from MOBIO dataset. Each row shows a specific user in different
conditions.

face images of nearly 100,000 individuals is used. Active authentication on SIM is performed
with tsample = 10 seconds, n = 1, and the verification window slides one slot at a time, k = 1.

We develop an applet for biometric template storage and user verification on the SIM card.
We use a SIM card running Java Card version 3.0.4 classic that supports 32-bit integer2 with
a secure core processor that is tamper resistant and robust against side channel and fault
injection attacks3 [20]. It has 1.5 MB of Flash and 53 KB of RAM. Since eSIMs also support
Java Card technology, this applet can be added to a profile on eSIM [122]. We disable 32-bit
integer on the card to evaluate the system on 16-bit SIM cards as well. T=0 protocol is used
to communicate with the card through a contact interface.

5.5.3 Evaluation results

We report the performance of the proposed MMOC active authentication systems in terms
of on-card execution time, Area Under Curve (AUC), Equal Error Rate (EER), and False
Negative Rate (FNR) at a given False Positive Rate (FPR). EER is an error rate where FPR
= FNR. Moreover, we compare the proposed systems with the most relevant work to ours
conducted recently by Findling et al. [19], named D-CSLDA.

2https://www.samsung.com/semiconductor/security/sim-esim/S3FV9RP_SIM-ESIM/
3https://www.arm.com/products/silicon-ip-cpu/securcore/sc300/

https://www.samsung.com/semiconductor/security/sim-esim/S3FV9RP_SIM-ESIM/
https://www.arm.com/products/silicon-ip-cpu/securcore/sc300/
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Authentication accuracy

Table 5.1 shows the evaluation results in terms of EER in single platform and cross platform
scenarios on MOBIO dataset. In single platform scenario, among model-based methods,
LDA performs worse, where LR and L-SVM perform almost equally on different dataset sites.
On the other hand, among template-based methods, L2 and L1 outperform L∞ method on
all sites. In cross platform scenario, LDA’s performance degrades remarkably on different
sites compared to the other model-based methods. L-SVM and LR perform similar to the
single platform scenario with LR performing slightly better. We see a slight increase in
EER on IDIAP and UOULU sites. Laptop sessions of these two sites contain partial face
images, face images far from the camera, images with multiple faces almost at the same
distance, and images with no legitimate users, which cause the performance degradation.
Among template-based methods, the results remain consistent as in single platform scenario
with the exception on IDIAP and UOULU sites that we explained the reason above. D-
CSLDA shows the worst EER compared to CA-MMOC and F-MMOC. D-CSLDA uses 2D
discrete wavelet transformation (2D-DWT) with a Daubechies Least-Asymmetric that does
not perform well under varying face poses and illuminations; moreover, the authors converted
the image quality to gray-scale, reduced the image size to 32× 32, and decreased the feature
vector size from 1365 features to 75 features in order to control the on-card execution time.
Therefore, we see a significant increase in EER for D-CSLDA. This situation is worse in
cross-platform scenario, where we see up to 31% of EER in the system while the worst EER
in our systems belongs to L∞ with EER of 6.8%. Although the authors proposed to perform
32 comparisons between the enrollment set and the probe to increase the accuracy; however,
we evaluated the scenario of one comparison (as used in our systems) in order to have a fair
comparison between the systems.

Fig. 5.5 illustrates AUC of each system under different platform scenarios on the whole
dataset. In single platform scenario, as can be seen, CA-MMOC and F-MMOC perform
similarly and reach the highest AUC of 99.83% (Q-LSVM), while D-CSLDA reaches AUC of
90.46%. In cross platform scenario, the image quality variation has remarkably affected the
system performance and we see an AUC decrease in all systems, where D-SCLDA shows the
worst performance with 10% reduction in AUC. In general, Minkowski distance metrics and
LDA (or CSLDA) are more vulnerable to image quality variations in cross platform scenario.
Moreover, reducing image size, quality, and the number of features affect system performance
harder in cross platform scenario.

These results show that MMOC authentication can be considered as a secure transferable
verification system in which the model can be trained on one device, and the stored verifi-
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Table 5.1 Evaluation results in single platform and cross platform scenarios with standard
deviation in parentheses and real values in square brackets.

Mean EER (std)

Site MMOC Alg. Single Platform Cross Platform
architecture

BUT

CA-MMOC L-SVM 0.1 (0.4) [0.1 (0.3)] 0.2 (0.4) [0.2 (0.4)]
LDA 0.3 (0.4) [0.3 (0.4)] 3.5 (3.1) [2.9 (2.6)]
LR 0.1 (0.4) [0.1 (0.4)] 0.2 (0.4) [0.2 (0.4)]

F-MMOC
L1 0.1 (0.2) [0.1 (0.1)] 0.1 (0.2) [0.1 (0.1)]
L2 0.1 (0.1) [0.1 (0.0)] 0.1 (0.1) [0.1 (0.1)]
L∞ 0.8 (1.6) [0.7 (1.4)] 0.9 (1.0) [0.7 (0.7)]

D-CSLDA [19] CSLDA 13.5 (4.2) [13.1 (4.3)] 21.9 (5.2) [20.2 (6.6)]

IDIAP

CA-MMOC L-SVM 0.0 (0.0) [0.0 (0.0)] 0.5 (0.8) [0.3 (0.5)]
LDA 0.2 (0.2) [0.1 (0.1)] 11.5 (12.3) [3.6 (4.1)]
LR 0.0 (0.0) [0.0 (0.0)] 0.3 (0.4) [0.2 (0.3)]

F-MMOC
L1 0.1 (0.1) [0.1 (0.1)] 2.6 (9.1) [2.5 (8.8)]
L2 0.1 (0.1) [0.1 (0.1)] 2.4 (8.9) [2.1 (8.1)]
L∞ 0.2 (0.1) [0.2 (0.1)] 2.8 (2.1) [2.4 (1.1)]

D-CSLDA [19] CSLDA 12.8 (6.2) [12.3 (5.1)] 28.1 (10.2) [25.6 (9.1)]

LIA

CA-MMOC L-SVM 1.4 (4.2) [1.4 (3.4)] 1.5 (3.2) [1.5 (3.4)]
LDA 1.6 (3.0) [1.4 (3.0)] 2.1 (3.2) [1.8 (3.8)]
LR 1.4 (3.8) [1.4 (4.0)] 1.5 (3.0) [1.4 (3.4)]

F-MMOC
L1 1.2 (2.5) [1.0 (2.4)] 1.3 (2.3) [1.2 (2.2)]
L2 1.1 (3.0) [1.0 (2.2)] 1.2 (2.9) [1.1 (2.3)]
L∞ 1.3 (2.6) [1.0 (2.6)] 1.4 (2.6) [1.2 (3.6)]

D-CSLDA [19] CSLDA 19.1 (8.2) [18.7 (8.5)] 24.7 (8.7) [23.1 (10.2)]

UMAN

CA-MMOC L-SVM 0.1 (0.1) [0.0 (0.0)] 0.1 (0.2) [0.1 (0.2)]
LDA 0.4 (0.4) [0.0 (0.1)] 3.0 (2.7) [2.6 (2.3)]
LR 0.1 (0.1) [0.0 (0.1)] 0.1 (0.2) [0.1 (0.1)]

F-MMOC
L1 0.1 (0.2) [0.1 (0.1)] 0.1 (0.1) [0.1 (0.1)]
L2 0.1 (0.1) [0.1 (0.0)] 0.1 (0.1) [0.1 (0.2)]
L∞ 0.7 (1.3) [0.7 (1.2)] 1.1 (1.1) [0.7 (1.2)]

D-CSLDA [19] CSLDA 16.1 (4.6) [15.6 (5.9)] 23.1 (10.2) [21.1 (10.8)]

UNIS

CA-MMOC L-SVM 0.1 (0.2) [0.1 (0.2)] 0.1 (0.2) [0.1 (0.1)]
LDA 0.4 (0.4) [0.1 (0.2)] 0.3 (0.4) [0.1 (0.3)]
LR 0.1 (0.2) [0.1 (0.2)] 0.1 (0.2) [0.1 (0.2)]

F-MMOC
L1 0.3 (0.3) [0.2 (0.3)] 0.5 (0.8) [0.2 (0.9)]
L2 0.2 (0.2) [0.1 (0.2)] 0.4 (0.7) [0.2 (0.5)]
L∞ 0.7 (1.1) [0.5 (0.8)] 1.0 (1.1) [0.5 (0.6)]

D-CSLDA [19] CSLDA 15.1 (7.1) [14.8 (7.1)] 21.0 (8.4) [20.5 (9.6)]

UOULU

CA-MMOC L-SVM 0.1 (0.1) [0.0 (0.0)] 0.8 (0.6) [0.5 (0.7)]
LDA 0.6 (0.4) [0.3 (0.4)] 9.3 (6.5) [8.5 (7.4)]
LR 0.1 (0.1) [0.1 (0.1)] 0.5 (0.9) [0.3 (0.3)]

F-MMOC
L1 0.2 (0.1) [0.2 (0.1)] 7.3 (11.1) [6.3 (10.1)]
L2 0.1 (0.1) [0.1 (0.1)] 6.8 (13.1) [5.5 (12.2)]
L∞ 0.5 (0.6) [0.4 (0.6)] 7.1 (10.8) [6.2 (10.6)]

D-CSLDA [19] CSLDA 22.5 (9.2) [22.3 (9.3)] 31.1 (11.5) [29.3 (13.4)]
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cation model on the SIM can be used for user verification on different devices. In the case
of eSIM, the card is soldered into the device; however, RSP enables us to transfer the eSIM
profile to a new device and use the verification module on that device [135] (see section 5.2).

(a)

(b)

Figure 5.5 System’s AUC in different platform scenarios. (a) is the single platform scenario,
and (b) is the cross-platform scenario.

Table 5.2 depicts the effect of quantization bit-width on the accuracy of the system in terms
of EER. Q-LSVM and Q-L2 are selected for comparison of model-based and template-based
methods. The result shows that the authentication accuracy drops slightly by reducing num-
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Table 5.2 Effect of quantization bit-width on the system’s performance.

Quantization
bits

Quantization
level

Integer
range

Method Mean EER
(std)

2-bits 3 [-1,1] Q-LSVM 1.5% (1.6)
Q-L2 0.8% (1.1)

3-bits 7 [-3,3] Q-LSVM 0.6% (0.8)
Q-L2 0.5% (0.9)

4-bits 15 [-7,7] Q-LSVM 0.5% (0.7)
Q-L2 0.4% (0.9)

5-bits 31 [-15,15] Q-LSVM 0.5% (0.8)
Q-L2 0.4% (0.8)

6-bits 63 [-31,31] Q-LSVM 0.4% (0.7)
Q-L2 0.3% (0.7)

7-bits 127 [-63,63] Q-LSVM 0.4% (0.7)
Q-L2 0.3% (0.6)

8-bits 255 [-127,127] Q-LSVM 0.3% (0.6)
Q-L2 0.3% (0.5)

ber of quantization level. Q-L2 performs better than Q-LSVM specially in 2-bit quantization,
where its mean EER is about 0.8 %, while Q-LSVM’s EER increases to 1.5%. This promising
result shows that we can greatly reduce the systems’ memory footprint up to 75% on the SIM
card, and in total, up to 93.75% of the original implementation (floating point arithmetic)
with a small reduction in the systems’ performance. Storing 100 templates in floating point
format requires 51.2 KB, in int8 format needs 12.8 KB of memory; however, applying 2-bit
quantization, it requires 3.2 KB while keeping the system’s EER less than 5%, which is the
acceptable EER for a reliable system.

Fig. 5.6 shows FNR @ FPR < 1%. Using the validation set, we find the best threshold
for a given FPR, then it is used to obtain the corresponding FNR on the test set. For
comparison, we select L-SVM and L2 that showed the best results in single platform scenario
on the dataset (see table 5.1). Although we see a larger quantization error in L-SVM than
L2, L-SVM (model-based verification) performs better than L2 (template-based verification)
at different FPR values. The reason for this gap is that in L2 we only have templates for
quantization, while in L-SVM we also need to quantize the model’s parameters. The effect of
this quntization is more sensible for FPR< 0.1%, where more precision is needed to satisfy
these strict FPRs. However, for FPR> 1% the quantization error is less than 0.2%.

F-MMOC enrollment includes threshold tuning. Therefore, considering memory and pro-
cessing limitations of SIM cards, the minimum number of templates to load on the card that
satisfies a given FPR should be determined in order to have a reasonable response time for
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Figure 5.6 Fnr @ fpr < 1% for MOBIO dataset. L-SVM and L2 is used for CA-MMOC and
F-MMOC, respectively.

the enrollment. Fig. 5.7 shows the effect of number of samples on the system’s FNR. FPR
is set to 1% and Q-L2 metric is used to compute the coresponding FNR for different number
of samples on different MOBIO sites. As the results show, increasing the number of samples
reduces the system’s FNR. On all sites, FNR stabilizes at around 100 samples and adding
more samples does not decrease the FNR significantly (around 0.1%). UNIS and LIA sites
show the worst FNR while IDIAP has the best FNR @FPR= 1%.

Execution time on SIM

Fig. 5.8 shows the verification time on 16- and 32-bit SIM cards for different verification
methods with and without speed-up technique. This duration contains feature transmission,
score (distance) computation, comparison with the classification threshold and sending out
the decision. Since linear models use a same concept to calculate the score, we depict "Score"
in the figure for all linear classifiers used here. As can be seen in the figure, for distance-based
verification methods, since L∞ distance needs less computation, it has the best execution time
compared to the other methods. On 32-bit cards, it achieves 121.3 ms (std=10.6 ms) and
118.6 ms (std=10.7 ms) on 16-bit cards. In contrast, L2 requires more computation and it
has the worst execution time which is 138.6 ms (std=17.4 ms) and 134.3 (std=15.1 ms) on
32- and 16-bit cards, respectively. On the other hand, for score-based methods, the vector
dot product takes 107.4 ms (std=12.2 ms) on 32-bit cards and 105.3 ms (std=10.7 ms) on
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Figure 5.7 Fnr @ fpr = 1% for different MOBIO’s sites and different number of samples with
Q-L2 metric.

16-bit cards that is the best execution time among the two architectures. Applying the
loop unrolling technique does not decrease the execution time for distance-based methods;
however, in score-based verification we see 15% decrease on the execution time resulting 92.7
ms (10.4 ms) and 95.2 ms (10.2 ms) execution time on 16- and 32-bit SIM cards, respectively.
The reason for this SIM’s behavior is that using loop unrolling, Java Card compiler takes
advantage of pipelining which is really useful in computing vector dot product. The figure
also illustrates that D-CSLDA [19] has the least execution time compared to the proposed
systems. A Face template in D-CSLDA has 75 features which is fewer than the template
size in our systems (128 features). Therefore, template transmission and score computation
is faster on the card. The results also show that the execution is slightly faster (about 2%)
on 16-bit cards than on 32-bit cards.

Fig. 5.9 shows the amount of time required for user enrollment in F-MMOC for differ-
ent number of samples. The enrollment phase consists of transferring samples to the card,
computing distance between the anchor template and positive (legitimate) and negative (im-
postor) templates, and finding the best threshold that satisfies the given FPR (here, we set
FPR to 1%). Of total number of loaded samples for enrollment on the card, 20% of them
are positive samples, while others are negative samples. We apply the loop unrolling tech-
nique to improve the execution time on the card. Since the original implementation takes a
considerable time on the card, it is not depicted in the figure. For example, for 100 samples,
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Figure 5.8 Verification time on 16- and 32-bit SIM cards.

the original implementation takes roughly 133.9 s (std = 2.7 s) to enroll a user and compute
the best threshold, which emphasises the need of a technique to reduce the execution time
and improve the overall system’s performance. We apply loop unrolling and evaluate it on
different number of samples with different unroll factor, r. We select r in the form of 2n in
order to eliminate the peeled loop and decrease the duration on the card (see section 5.4.6).
As can be seen in the figure, increasing the unroll factor reduces the enrollment time on the
card. For 100 samples, r=64 decreases execution time 35% compared to unroll factor 16 and
15% compared to r=32. However, considering code buffer limitation on the card, we cannot
apply large unroll factors for heavy computations on the card. The results show that for
r=64, the code buffer overflows at sample 58 and at sample 86 for r=32, whereas we can use
125 samples for on-card threshold tuning using r=16. Considering the discussion in Fig. 5.7,
we saw that FNR stabilizes at around 100 samples; therefore, Fig. 5.9 says that we can train
our template-based authentication system on the card with 100 samples and r=16 in about
15.8 seconds (std = 0.9 s). We gain 133.9

15.8 ≈ 8.5× speed-up over the original implementation.

The user enrollment phase happens only once and its duration will not impact the real-
time active authentication. The user verification is done below 0.15 second on the card (see
Fig. 5.8). During the enrollment phase, the primary on-card authentication method such as
fingerprint, password, or PIN is activated to verify the legitimate user.
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Figure 5.9 Enrollment time on the SIM card

5.6 Platform implementation

We implement the CA-MMOC active authentication on a real Android device in order to
evaluate its performance overhead. This authentication system consists of three modules
that we discuss in the following sections.

5.6.1 Cloud server

A python code running on Amazon Web Services (AWS) [136] is developed for model training
purpose. Moreover, in order to train a "one-vs-all" classifier, we use samples from a public face
dataset. For this implementation, we use sample images from MOBIO dataset to train a L-
SVM classifier for the legitimate user. No model parameters or legitimate user’s face samples
are stored on the server. As soon as the model is trained, the parameters are sent back to the
mobile application through an established secure channel. Design of the Authentication and
Key Agreement (AKA) protocol is out of the scope of the current work. Briefly, it works as
follows. First, the mobile application and the server authenticate each other using a proposed
protocol. Then, if both parties are authentic, using Elliptic Curve Diffie-Hellman (ECDH)
protocol [137], a shared secret is generated that later is used to exchange data (e.g., biometric
templates and the model’s parameters) securely using Advanced Encryption Standard (AES)
on both sides.
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5.6.2 Android application

The Android application is only used for computationally heavy tasks that currently are not
feasible to be executed on SIM cards, such as image preprocessing and feature extraction.
The application has two phases:

• Enrollment: In the enrollment phase, the application captures 30 images of the legiti-
mate user. For each captured image, a Thread is created to handle image preprocessing,
and feature extraction, quantization, and template storage on the SIM card. In order to
have a high accuracy verification, FaceNet needs cropped face images of size 160× 160
with face landmarks in the center. We used Multitask Cascaded Convolutional Net-
works (MTCNN) [138] for preprocessing. We load the model in MappedByteBuffer to
initialize Interpreter class [139] and use run() method of TensorFlow Lite [140] for
inference, to extract a 128-dimensional float vector from each image. Each vector is
quantized using Eq. (5.2), converted to APDU format, and sent to the SIM for secure
storage and authentication phase. These templates are fetched from the SIM and sent
to the cloud application for model training through the established secure channel.

• Authentication: In this phase, one image is captured every 10 seconds, preprocessed,
feature are extracted, and the quantized features are sent to the SIM card for verifica-
tion. Fig. 5.10 shows the screenshots of the Android application.

5.6.3 SIM/eSIM applet

A SIM applet is developed to store the quantized 128-dimensional feature vector of each
image, and verify the image sent by the application in authentication phase. It has two
methods: enroll() method in CA-MMOC is only used for template storage; however, in
F-MMOC architecture is used to store the legitimate user’s templates and to find the classifi-
cation threshold. activeAuthenticate() method consists of obtaining the decision score by
computing the inner product of the model’s weights and the probe’s vector plus the model’s
bias in CA-MMOC. It also computes the average score of the verification window, compares
it with the threshold, slides the window, and sends the verification decision to the Android
application.

For communication between the application and the applet, first, we need to open a commu-
nication channel between the Android application and the SIM’s applet. TelephonyManager
class [141] of Android provides a method called iccOpenLogicalChannel() for opening a
channel with a SIM applet. iccTransmitApduLogicalChannel() method is used to transmit
APDU data to the applet. To use this class the application should haveMODIFY_PHONE_STATE
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permission that is not granted to third party applications, or the application should have the
carrier privileges which means that hasCarrierPrivileges() call should return true. In or-
der to obtain the carrier privilages, an Access Rule Applet (ARA) with application identifier
(AID) A00000015141434C00 is developed to grant carrier privileges to our Android applica-
tion [142]. ARA stores signatures of applications allowed to access a specific applet on the
card. Android platform checks this applet and grants permission to the applications signed
by the certificates declared in ARA. We can manage ARA rules using over-the-air (OTA)
platform for SIMs and RSP platform for eSIMs, in case malicious activities are reported.

5.6.4 Platform overhead

We use Android Profiler4 to capture information about memory, cpu and battery usage, while
running the application. Our testbed is a Samsung Galaxy A20 with a 6.4-inch display, an
octa-core cpu (2x1.6 GHz + 6x1.35 GHz), 3 GB of memory, and 32 GB of internal storage
running Android 9 pie. For devices running Android 8 and above, due to enhanced An-
droid security, third party applications can not gather information about other applications’
resource usage; therefore, we use the built-in tool in Android Studio to monitor cpu and
memory usage. Battery and storage usage information are collected using a built-in Android
application5. We let the legitimate user to work with the device while the AA system captures
his face images automatically every 10 seconds. The user interacts with the phone for about
30 minutes (session duration) before he logs off the phone. For comparison, we also develop
a simple version of the application without using a SIM card. However, in order to provide
a basic protection of the model’s parameters stored on the device, these data are encrypted
using AES with the shared secret obtained in the AKA phase. When a new face image is
captured, the AA system reads the encrypted model’s parameters, decrypt them, computes
the score and the final authentication result. Table 5.3 shows the measured overhead of
the CA-MMOC active authentication and the simple secure active authentication with AES
encryption. As can be seen in the figure, in the secure AA with AES, since the application
stores the intermediate scores in the memory we see 10% increase in the app memory usage.
Moreover, since the model’s parameters are stored encrypted, more cpu processing is needed
for decryption, and we see about 2% increase in cpu usage compared to the CA-MMOC AA
system. CA-MMOC AA system needs only 132 bytes (128 bytes for the weight vector and 4
bytes for the bias) to store the model’s parameters in SIM’s Flash; however, the secure AA
system with AES uses up about 0.2 MB of storage for the encrypted model’s parameters. Fi-

4https://developer.android.com/studio/profile/android-profiler
5https://play.google.com/store/apps/details?id=com.samsung.android.lool&hl=en_

CAhttps://play.google.com/store/apps/device-care

https://developer.android.com/studio/profile/android-profiler
https://play.google.com/store/apps/details?id=com.samsung.android.lool&hl=en_CA
https://play.google.com/store/apps/details?id=com.samsung.android.lool&hl=en_CA


97

(a)

(b)

(c) (d) (e) (f)

Figure 5.10 Screenshots of the Android application. (a) shows the process of adding the
applets to an MNO’s profile on the SIM card. (b) is the enrollment phase. Total time consists
of face detection time, image preprocessing time, feature extraction time, and transmission
time to the SIM card. (c)-(f) show an active authentication scenario. In (c), the user is
working with an in-app web browser while the front-facing camera captures face images
every 10 seconds for a session of 30 minutes. (d) shows an impostor taking over the phone.
In (e), the authentication module on the SIM detects an illegitimate face image. Access to
the application is denied in (f).

nally, MMOC system consumes less battery power compared to the encrypted authentication
system, where they use 1% and 1.1% of the battery in 30 minutes, respectively.
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Table 5.3 Resource consumption of CA-MMOC AA and AA with AES.

AA system Memory
(MB)

Storage CPU Battery

MMOC AA 33.8 0 B 12% 1%

AA with AES 37.2 195.5 KB 14% 1.1%

5.7 Comparison of the two systems

Although the two systems take advantage of hardware security characteristics of SIM/eSIM
cards to increase the privacy of biometric templates and security of the verification phase,
they have their own pros and cons that are discussed in this section.

In CA-MMOC, the machine learning model is trained on a cloud server. Although the
enrollment phase is fast in this architecture, we should consider the possible information
leakage in communication channel if no secure channel is established, or in the cloud service
if no security attack countermeasure is employed.

On the other hand, in F-MMOC, no information leaves the SIM/eSIM card in enrollment
phase, which promises a higher secure solution compared to CA-MMOC architecture. How-
ever, the enrollment phase that includes threshold tuning is multiple of magnitude slower than
the enrollment in CA-MMOC. Moreover, if we desire a highly secure system that satisfies a
lower FPR, this process takes more time on the SIM, which requires a more sophisticated
on-card optimization technique to reduce the execution time.

Summarizing, These architectures show a trade-off between real-time user enrollment (CA-
MMOC architecture) and privacy-preserving authentication system (F-MMOC architecture).
To enhance the privacy of the system, we should consider the second architecture; however,
it will skew the system towards a non real-time enrollment phase, which may affect the
user experience in the system. Likewise, in order to improve the enrollment time, the first
architecture is a better choice; however, it decreases the privacy of the system. We must
make sure a communication channel between the device and the cloud service exists, and
trust the communication channel and the cloud service itself as well. Moreover, we should
not forget the deployment expenses of the first architecture. Therefore, since the accuracy of
F-MMOC is comarable to CA-MMOC, and considering the higher privacy of this architecture,
F-MMOC is a more reliable system for secure active authentication on smartphones. We can
apply several methods to mitigate the effect of enrollment time on the system: 1) SIM card
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is an independent module, we can hide this phase in the system’s initial configuration steps,
where the user configures the device while the enrollment is in progress in the background
on the SIM. 2) Improve the on-card optimization technique to reduce the enrollment time.
3) Use the baseline threshold to eliminate threshold tuning on the card (it affects system’s
security).

5.8 Conclusion

In this paper, a Mobile Match-on-Card (MMOC) face-based active authentication system
for smartphones was presented. We proposed two architectures for the MMOC system.
In the model-based architecture, we took advantage of cloud resources to train a machine
learning model and migrate the model to the SIM/eSIM card for a real-time on-card user
verification. The second architecture only relies on SIM/eSIM card resources for enrollment
and verification. Using a good quantization scheme, we showed that the accuracy of the
proposed MMOC system is comparable to the original model, while we can reduce its size
up to 93.75%. On-card user verification takes less than 130 ms, which does not impact the
active authentication process even with high verification frequency. The second architecture
is more secure than the first one since no biometric templates leaves the card. The burden
of this architecture lays on the enrollment phase, where it takes about 15 seconds to find the
decision threshold on the card using 100 face templates. However, since the enrollment mostly
happens at the system initialization phase, it does not affect the real-time on-card verification.
We also showed the robustness of the model-based and template-based methods in cross-
platform scenario, where the model-based method performed slightly better. This shows the
potential of MMOC technique for cross-platform authentication. Finally, we implemented
our active authentication system on a real device and showed the platform overhead reduction
compared to a simple encrypted-biometric method. In the future, we aim to study techniques
to decrease on-card execution time in order to enroll users in near real-time. Moreover, the
fusion of face-based active authentication with other biometric schemes on the card is of our
interests.
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Abstract

With the increasing use of biometrics for user authentication especially on mobile devices, its
privacy and resource requirements are becoming big challenges to consider. In this paper, we
propose a generic model for privacy-preserving yet accurate authentication on smartphones
using the mobile matching on card (MMOC) technique and transfer learning. MMOC tech-
nique takes advantage of SIM cards as a secure element (SE) on smartphones to increase
the security and privacy of user verification with low performance overhead. In order to
improve the performance accuracy of the system, we use transfer learning and fine-tune a
network suitable for implementation on off-the-shelf SIM cards available on smartphones.
The classification sub-network is migrated to the SIM card for a lightweight and secure user
verification. However, the implementation of classification sub-network on constrained re-
source smart cards with high accuracy and efficiency is a challenging task. We propose log
quantization scheme and an on-card optimization architecture to speed-up the forward pass
of the sub-network and retain the system’s accuracy close to the original model with low
memory footprint and real-time verification response. Using a public mobile face dataset,
we evaluate our privacy-preserving verification system. Our results show that the proposed
system achieves Equal Error Rate (EER) of 0.4%-2% in real-time, with response time of 1.5
seconds.

Keywords : Authentication, face biometric, transfer learning, smart cards, privacy
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6.1 Introduction

Biometrics are increasingly used for user authentication especially on smartphones. They
use physiological (such as fingerprint, face, iris, etc.) or behavioral (such as gait, signature,
touchscreen strokes, etc.) traits to authenticate users in a single point entry authentication
or a continuous authentication (CA). In a single point entry authentication, users are au-
thenticated only at the beginning of a session (from the login to the logout). However, in a
CA system, users are continuously and transparently monitored during a session. Biometric
templates are unique and long-lasting characteristics of their owners, and unlike traditional
authentication methods such as PIN/password or graphical patterns, cannot be changed if
compromised. Therefore, security and privacy of them is crucial to be a successful game
changer in mobile authentication systems. Cancelable bioemtrics [84] or homomorphic en-
cryption [12] are mostly proposed to store biometric templates securely on mobile devices. In
the first approach, the verification accuracy would degrade due to template transformation.
In the latter method, computing the matching score on encrypted templates using homo-
morphic encryption affects the real-time response of the authentication system owing to the
heavy computation on ciphertext space.

Subscriber Identity Module (SIM) cards available on almost all smartphones can be used
as a secure element (SE) on mobile devices to store biometric templates securely and verify
users in an isolated secure environment. SIM cards can be used in two ways to increase the
security and privacy of mobile authentication systems. In the first approach, which we call it
mobile template on card (MTOC), only biometric templates are stored on the SIM card while
the matching (verification) process is done outside the SIM card. The communication with
the outside world can increase the probability of eavesdropping and the leakage of biometric
information. In the latter approach which is called mobile match on card (MMOC), in
addition to the secure storage of biometric templates on the SIM card, matching is also
done on the card which enhances the security and privacy of the authentication system.
However, the resource limitations of SIM cards such as a low performance processor, low data
bandwidth or low memory capacity, makes the implementation of this approach a challenging
task.

In this paper, we propose a generic secure and privacy-preserving authentication system for
mobile users using MMOC technique, that can be used for different biometrics such as face,
fingerprint, voice, etc. In order to improve the performance accuracy of the system, we use
transfer learning, modify the network architecture, and fine-tune the model for on-card user
verification. We reduce the dimensionality of the feature extraction network to extract less
but discriminative features for the on-card classification sub-network. Moreover, we apply a
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quantization scheme to the model’s internals and a log quantization to the model’s input to
convert multiply-accumulate operations to a faster bit-shift-accumulate operations along with
an on-card optimization architecture to speed-up forward pass while keeping the performance
accuracy high on the smart card.

This paper makes the following contributions:

• A generic privacy-preserving authentication system using transfer learning is proposed
that can use different biometrics for authentication.

• We implement classification sub-network of a fine-tuned model on SIM cards in order
to have a privacy-preserving authentication system with high performance accuracy.

• We propose log quantization scheme to speed-up forward pass of Deep Neural Network
(DNN) on the card.

• We design an on-card optimization architecture for real-time verification that 44.3×
improves the execution time.

The remainder of the paper is orgonized as follows. In Section 6.2, we review several related
works. Section 6.3 describes the proposed MMOC privacy-preserving authentication system.
Section 6.4 shows our experimental results. Finally, we conclude the paper in section 6.5.

6.2 Related Work

Most MOC-based authentication studies have used fingerprint in their works [93,94,110,143].
Other biometrics such as iris, palm-print, face or behavioral traits are rarely considered in
MOC systems. Lee and Byun [98] proposed an on-card face authentication system. They
extracted the most discriminating features of a face using Genetic Algorithm (GA), followed
by a Support Vector Machine (SVM) for user verification on the smart card. Their results
show a performance improvement even with fewer face features.

Li in his PhD thesis [95], Linear Discriminant Analysis (LDA) method for an on-card face
recognition system. Moreover, he investigated the effect of resource limitations such as mem-
ory capacity in the performance and efficiency of the system.

Czyz et al. [97] used Fisherfaces for face verification on smart cards. They showed the trade-
off between the performance and the verification model’s size on the smart card. With images
size down to 256 pixels and the model’ size (i.e., dimension of LDA subspace) of 25, the error
rate stay equal. However, more reduction in image size and the model size increase the error
rate noticeably.
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Bourlai et al. [99] employed a client specific linear discriminant analysis (CS-LDA) technique
for face verification on smart cards. After image normalization and feature extraction, the
distance between the probe image and the user’s template is computed on the smart card
and thresholded to verify whether the probe belongs to the legitimate user or an impostor.
They also optimized the verification system by reducing the spatial and grey-scale resolution
of images.

Findling et al. [19] created an off-line model for gait recognition on smart cards. The obtained
model is simplified and stored on the smart card. For verification, an absolute distance
between the gait probe and the enrolled template is computed and the dot-product with the
model’s weights are compared to the model’s bias to make the authentication decision. They
evaluated their method on 16- and 32-bit smart cards, and showed that the system achieves
11.4% EER for gait authentication with transmission and computation duration on smart
cards in the range of 2 seconds.

Keykhaie and Pierre [6] proposed a secure active authentication system for touchscreen
authentication using match-on-card technique. A quantized deep neural network (DNN),
trained on a cloud server, is migrated to the smart card for accurate continuous user authen-
tication. In order to reduce the execution time on the smart card, an optimization technique
is employed. They results showed EER of 2.6% for 15 strokes.

6.3 System Description

Considering the security features of smart cards, MMOC technique shows a great potential
for a secure and privacy-preserving authentication system. However, resource constraints of
smart cards affect the performance and real-time response of the MMOC system. Therefore,
in order to address these challenges, we propose to off-load the heavy computation parts of
the verification system to the mobile device and use the smart card only for secure storage
and verification.

6.3.1 Deep Feature extraction

Deep learning-based approaches have drastically boosted the performance of recognition sys-
tems. In the heart of these methods, a deep convolutional neural network (CNN) with many
layers is used for feature extraction. One important feature of these models is that they
learn hierarchical feature representations. This means that first layers generate global fea-
tures that can be transferred to another domain, while the last layers produce specialised
features that belong to a certain domain. On the other hand, deep learning approaches need
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(a)

(b)

Figure 6.1 Overview of the proposed MMOC authentication system. (a) shows the model
fine-tuning, and (b) shows the verification phase of the MMOC system.

a large dataset with many labels that is not available in every problem domains, or is a time
consuming process. In transfer learning, a model is trained on a large dataset in one domain
and the learned knowledge can used as a generic model to improve the optimization in an-
other domain. Therefore, instead of training the model from the scratch, we customize the
model by modifying the last layers of feature extraction network and adding our classification
layers on top of it, then fine-tune the model by training a few top layers of feature extraction
network and the classification layers.

Figure 6.1 shows the overview of the proposed method. Our fine-tune architecture consists
of the following layers:

• One-to-many augmentation layer (A): Deep learning based approaches need large dataset.
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However, most target datasets are small and may cause overfitting while fine-tuning
the trained model. Therefore, a one-to-many augmentation layer is added to augment
the training and the test data.

• Frozen sub-network (Ef ): First layers of the pre-trained model are frozen, and are not
learned during the fine-tune process.

• Learning sub-network (El): Unfrozen top layers of the pre-trained model to extract
specialized features from the target dataset.

• Dimensionality reduction layer (d): Basically, the feature extraction network of trained
models generates large feature vector from each image. However, the limited bandwidth
to the SIM and constrained resources on the SIM, affect the real-time response of the
proposed MOC-based system. Therefore we add a dimensionality reduction layer to
reduce the size of the extracted feature vector.

• Classification sub-network (F): One or more fully connected layers are added on top of
the network for classification.

This network is then trained end-to-end on the target dataset, and the feature extraction
network is used to extract features for on-card user verification.

6.3.2 On-card user verification

For the on-card user verification, the feature extraction network is used to extract features
from the test image. A quantization layer is employed to reduce the size of the model and
the feature vector for user verification on the card. The frozen classification sub-network
is quantized and migrated to the SIM card for verification. The classification sub-network
outputs a score for the presented test image. This score is compared with the classification
threshold to verify the legitimacy of the user. Fig 6.1b shows the on-card verification phase.

6.3.3 Quantization

Smart cards do not support floating point arithmetic, they only support signed integers,
int-k, where k= 1,...,32. Therefore, we need a quantization scheme (Qt) to convert floating
point data to k-bitwidth signed integers. In this section, we propose a scheme to quantize
the extracted features (i.e., quantization layer) and the classification sub-network to migrate
them to the smart card. Suppose that a floating point variable r in range [rmin, rmax] needs
to be quantized to int-k with 2k quantization levels, Qlevels = 2k, in range [−2k−1, 2k−1 − 1].
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For int-8 we have Qlevels = 256 in range [-128, 127]. Real-valued r is quantized to rq as
follows [6].

rq = Clip

{
round

(
∆r + Γ

)
,−Λ,Λ− 1

}
(6.1)

where ∆, Λ, and Γ are defined as

∆ = Qlevels − 1
rmax − rmin

,

Λ = Qlevels/2,

Γ = −(Λ + ∆rmin) (6.2)

round(x) stochastically rounds x to bxc

round(x) =

bxc w.p 1− (x− bxc)

bxc+ 1 w.p x− bxc
(6.3)

Clip function is defined as

Clip(x, a, b) = max(a,min(b, x)) (6.4)

Extracted feature are quantized to int-8 by passing through the quantization layer that
applies Eq. (6.1) to the output of the feature extraction sub-network. In Eq. (6.1), we can
also consider a symmetric range to save more bit space in intermediate operations, that is
rq = clip{round(∆r + Γ), (−Λ − 1),Λ − 1}; however, it does not impact the quantization
accuracy. Considering the complexity of the classification sub-network, its quantization needs
more careful attention that we discuss it in the next section.

Classification sub-network quantization

The frozen classification sub-network is, in fact, the feed-forward phase of the fully connected
layers given by

y(x) = σ

(
φ(x)(L+1)

)
(6.5)
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where σ is the output activation function which squashes the prediction scores to [0,1], φ(x)
is the basis function that transforms the feature-space, and L is the total number of hidden
layers. The basis function is a nonlinear function of linear combination of the inputs [130].
That is

φ(x)(i) = h(i)
(
w(i) · h(i−1)(x) + b(i)

)
(6.6)

where h(.) is the layer activation function, h(0)(x) = x, (i) defines the hidden layer number,
and i = 1...L + 1. Rectified Linear Unit (ReLU) is used as the layer activation function.
Since verification is a binary classification problem, soft or hard sigmoid [115] is used as the
output activation function.

In the fine-tuning process, the model is trained end-to-end and then is frozen to obtain the
model’s parameters. Th parameters are quantized afterwards for the on-card verification.
We quantize the feed-forward phase based on the following rules:

• Off-card quantization: the model’s weights and the bias are quantized using Eq. (6.1).
However, the model’s weights and the bias are scaled but not shifted to keep the
verification accuracy, that is, Γ = 0. The weights are quantized to int-8, Qlevels = 28,
maximum and minimum of the weights are considered as rmin and rmax to calculate
∆weights in (6.2). We assign a wider range to the model’s bias compared to the model’s
weight to keep the performance accuracy close to the original model. Therefore, we
quantize the bias to int-16, Qlevels = 216 in (6.1), and scale it in the range of the
weight vector, that is ∆bias = ∆weights. Inputs to the model are quantized using Log-Qt
method described in section 6.3.4.

• On-card quantization: To avoid overflow of the intermediate multiply-accumulate cal-
culations in deeper layers, the output of layer activation function is clipped from the
first layer. We use ReLU-n as the layer activation function, defined as

h(x) = max(min(x, 0), n) (6.7)

where −Qlevels/2 ≤ n ≤ Qlevels/2− 1 is obtained using validation set.
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6.3.4 On-card Optimization

The main performance bottleneck in on-card verification is the multiply-accumulate calcula-
tion (MAC) in the forward pass in the form of

o = wTx =
d−1∑
i=0

wi × xi (6.8)

where wi and xi, 0 ≤ i ≤ d − 1 are the entries of weight and input vectors of length d,
respectively. As d increases MAC takes more time on the card which affects the real-time
functionality of the on-card verification system. Therefore, we log-quantize (Log-Qt) the
input vector as follows

r̃q = round(log2(|rq|)) (6.9)

where rq is obtained using Eq. (6.1), and round(x) is round to the nearest integer or Eq.
(6.3). Then, we can rewrite Eq. (6.8) as

o '
d−1∑
i=0

sign(xi).(wi � x̃iq) (6.10)

where a� b shifts a, b bits to the left, and

sign(x) =

−1, if x < 0.

1, otherwise.
(6.11)

xiq in Eq. (6.10) is obtained using Eq. (6.1) where ∆features and Γfeatures are calculated with
rmax and rmin among all input vectors in the training set.

The implementation of Eq. (6.8) or Eq. (6.10) is a simple loop instruction of order O(n).
However, as the size of input vectors increases the execution of the loop increases noticeably
on the card leading to a non real-time authentication system. Therefore, we propose an
optimization architecture based on loop optimization techniques used in modern compiler
design [144] to improve the on-card MAC time. We employ the following techniques in our
optimization architecture.

1. Loop fission is a compiler optimization technique in which a loop is split into multiple
loops. This technique, especially for loops with large bodies, is used to achieve better
utilization of locality of reference.

2. Loop unrolling in compiler optimization, replicates the loop body for multiple times.
This method, improves the loop performance by reducing the overhead for loop index
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increment and loop-exit condition test, and minimizing branch penalties. However, this
loop transformation increases the program code size which arises a new implementation
challenge [118].

3. Loop peeling splits the remainder of the loop iterations from the previous step, and
performs them outside of the loop body.

4. Loop fusion combines several loops in a single loop. It improves the locality of reference
especially when common data is accessed among distributed loops.

Fig. 6.2 compares the optimized on-card feed-forward phase with the original one.

Memory management

Smart cards have EEPROM and RAM for data storage. EEPROM offers more storage
space compared to RAM. On the other hand, writing on EEPROM is more than 30 times
slower than RAM [121]; moreover, EEPROM has limited write cycle. Writing many times
on EEPROM would damage the card’s EEPROM. Smart card OS does not handle memory
management; therefore, in order to have a better use of the card’s memory and improve
the execution time, we should manage the memory manually. Layers’ weights and biases
are initially stored in EEPROM to be used in verification phase, when a feature vector is
transmitted to the card, we store them in RAM; moreover, we fetch the model’s internals
manually from EEPROM to RAM before going through the classification sub-network in
order to reduce memory access time. This way, we keep EEPROM healthy and decrease the
on-card execution time.

6.4 Performance Evaluation

6.4.1 MOBIO face dataset

MOBIO dataset [43] contains videos and audios of 152 subjects from 5 different countries at
6 different sites1. The data were collected in 2 phases where each phase consists of 6 sessions.
A NOKIA N93i mobile phone and a standard 2008 MacBook laptop computer were used
to capture videos and audios. Session 1 consists of videos recorded by the laptop computer
while the remaining 11 sessions contain the recorded data from the mobile phone. Fig. 6.3

1The data was recorded at the following sites: the Brno University of Technology (BUT), Idiap Research
Institute (IDIAP), University of Avignon (LIA), University of Manchester (UMAN), University of Surrey
(UNIS) and University of Oulu (OULU).



110

(a)

(b)

Figure 6.2 Classification sub-network. (a) is the original sub-network. (b) is the optimized
version for on-card verification. The main loop with size n is split to multiple loops with size
s. The weight matrix is vectorized and s vectors are fed into each loop block. Each loop is
unrolled with unroll factor r. The remaining iterations are performed outside the main loop
(peeled loops). The outputs of the first layer are fused in one loop in the second layer with
loop unrolling and loop peeling.

shows samples from the MOBIO dataset. In our experiments we only use the mobile sessions
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of the dataset. One mobile session is used for model training, one as a validation set, and
the remaining sessions are used as a test set.

Figure 6.3 Subject’s images from MOBIO dataset.

6.4.2 Evaluation configuration

For the evaluation purpose, we use Resnet50 [33] trained on VGGFace2 dataset [39]. VG-
GFace2 dataset contains 3.31 million images of 9131 subjects, with an average of 362.6 images
for each subject. We fine-tune the trained model for our target dataset. Input images are
of size 224 × 224 × 3. The augmentation layer augments the input by flipping and rotat-
ing the input images. We use one-vs-all classification [119] to train a person-specific binary
classifier for each subject. All images from the specific user are considered as "one" and
the other samples in the set are "all" class. This approach leads to an imbalanced dataset;
therefore, we apply over sampling technique to mitigate the imbalanced dataset effect on the
performance evaluation [120]. For the end-to-end training, we minimize binary cross entropy
by Adam optimizer with learning rate η of 10−4. However, for fine-tuning, we reduce the
learning rate by 10 to avoid model overfitting. The feature extraction sub-network of the
model outputs 2048 deep features from each image. In order to make it suitable for on-card
implementation, we reduce its dimension to 64. Out classification sub-network consists of
two fully connected layer. First layer has 64 nodes followed by relu-n activation function,
and the second layer is one node layer with sigmoid function to classify the input as a legiti-
mate or an impostor. For on-card verification module, we first flatten the first layer weight
matrix column-wise and transfer it to the smart card. On the card, we vectorize the flatten
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weight matrix column-wise. The optimization scheme splits the main loop to 4 loop blocks
and 16 weight vectors are fed into each block. Each loop is unrolled with unroll factor of 64,
r = 64. Moreover, we use ReLU-10 as layer activation function. A SIM card with 1 MB of
Flash and 40 KB of RAM with a secure processor running Java Card version 3.0.2 classic is
used for performance evaluation. The SIM card also supports 32-bit integers. We use T=0
protocol for communication with the SIM card through a contact interface. We report the
performance of the proposed system in Area Under Curve (AUC), Equal Error Rate (EER).
EER is an error rate where False Positive Rate (FPR) equals False Negative Rate (FNR).
We also report threshold metrics, recall (REC= T P

T P +F N
), precision (PRE= T P

T P +F P
) where TP,

FP, and FN are the number of true positive, false positive, and false negative samples for a
given threshold, respectively.

Fig. 6.4 shows the on-card execution time for user verification in original sub-network and
the optimized architecture. Using the original sub-network (Fig. 6.2a), the verification takes
60.71 seconds (std = 1.75 s) in a sub-network with 64 nodes in the second layer. Using the
optimized architecture (Fig. 6.2b) it drops to 2.13 seconds (std = 0.76 s). However, when
we apply Log-Q to the model’s input, the verification times decreases more and it outputs
the decision in 1.37 seconds (std = 0.54 s). We gain about 60.71

2.13 ≈ 28.5× speed-up over
the original architecture using the optimized architecture and 60.71

1.37 ≈ 44.3× speed-up using
the optimized architecture with Log-Q. Moreover, the mean quantization error 1

N
‖xQ − x‖1

where xQ is quantized input vector x is less in Log-Qt scheme using Eq. (6.9) than in Qt
quantization scheme using Eq. (6.1) by around 25% in the test dataset. It also depicts that
the model transfer time is unchanged in both implementations. The main bottle neck in
model transfer is the transmission of first layer’s bias vectors. We quantize the model’s bias
to a wider range (16-bit signed integers) in order to keep the performance accuracy; however,
the communication channel to smart cards is a byte stream. Therefore, we need to convert
bias vector to 8-bit integers on the device and convert them back to 16-bit integers on the
card which increases the transfer time as the vector size increases. Obviously, as can be
seen in the figure, the model transfer time is independent of the architecture (optimized or
original) and increases as the number of nodes increases in the second layer.
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Figure 6.4 Execution time for different sub-network size.

Table 6.1 Performance accuracy of the proposed generic MMOC authentication system. Real-
valued results are depicted in square brackets (no quantization is applied to obtain the real-
valued results).

Site Nodes EER (%) AUC (%) PRE (%) REC (%)

BUT
64 0.9 [0.4] 99.2 [99.5] 98.3 [99.1] 97.0 [97.8]
48 1.0 [0.5] 99.0 [99.4] 98.3 [99.0] 96.9 [97.7]
32 1.3 [0.6] 98.6 [99.2] 97.9 [98.9] 96.1 [97.4]

IDIAP
64 0.4 [0.1] 99.7 [99.8] 99.7 [99.8] 97.1 [97.6]
48 0.4 [0.1] 99.7 [99.8] 99.7 [99.8] 97.0 [97.6]
32 0.4 [0.1] 99.7 [99.8] 99.7 [99.8] 97.1 [97.6]

LIA
64 1.4 [0.8] 98.8 [99.2] 98.6 [99.1] 95.7 [96.5]
48 1.7 [1.1] 98.5 [98.9] 98.1 [98.6] 95.5 [96.1]
32 2.2 [1.6] 98.0 [98.6] 98.0 [98.5] 94.8 [95.8]

UMAN
64 0.5 [0.2] 99.5 [99.7] 99.5 [99.7] 96.8 [97.2]
48 0.5 [0.2] 99.5 [99.7] 99.4 [99.7] 96.7 [97.0]
32 0.6 [0.3] 99.1 [99.5] 99.1 [99.5] 96.2 [96.7]

UNIS
64 0.4 [0.2] 99.4 [99.6] 99.5 [99.7] 96.6 [97.3]
48 0.5 [0.2] 99.4 [99.6] 99.4 [99.7] 96.5 [96.9]
32 0.7 [0.3] 99.0 [99.4] 98.8 [99.3] 96.2 [96.5]

UOULU
64 0.4 [0.1] 99.7 [99.8] 99.7 [99.8] 97.1 [97.6]
64 0.4 [0.1] 99.6 [99.8] 99.7 [99.8] 97.0 [97.6]
32 0.5 [0.2] 99.5 [99.7] 99.5 [99.7] 96.8 [97.2]
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Table 6.1 shows the system’s performance accuracy on different MOBIO dataset sites. Ap-
plying the quantization scheme increases the EER of the system. In the worst case (i.e., LIA
site), EER increases to 1.4%; however, this value is still less than 5% that is the acceptable
EER for a reliable system [41]. On the other hand, decreasing the number of first layer’s
nodes affects the system’s accuracy slightly. For example, in LIA site, decreasing the number
of nodes to 32 increases the system’s EER to 2.2% while decreases the execution time to
about 500 ms. This depicts that we can improve the execution time by carefully cutting
down the number of nodes in hidden layers while keeping the performance accuracy at an
acceptable level. In authentication systems, false positive rate (FPR) is more crucial than
false negative rate (FNR), and a good authentication system tries to keep the FPR as low
as possible. This means that higher PER is more desired than REC. As can be seen in the
table, the proposed system, thanks to the transfer learning, has both PRE and REC in an
acceptable percentage (above 95%) with PRE slightly dominating REC .

6.5 Conclusion

In this paper, we proposed a generic model for privacy-preserving authentication systems
using Mobile Match-on-card (MMOC) technique that can be used for various biometrics
using transfer learning. We fine-tuned Resnet50 trained on VGGFace2 and modified the
feature extraction network and classification sub-network to make the model suitable for
on-card implementation. Moreover, we applied quantiation schemes (Qt and Log-Qt) to the
model’s internals and the input along with an on-card optimization architecture. The first
one helped us to keep the performance accuracy close to the real-valued model by reducing the
quantization error (EER of 0.4%-2%); moreover, it decreased the on-card memory foot-print
and sped up the forward pass by converting multiply-accumulate to bit-shift-accumulate.
The latter assisted us to reduce the on-card verification time drastically where we gained
44.3× speed-up over the original architecture. Our results showed the potential of MMOC
as a privacy-preserving authentication system with high performance accuracy, low memory
foot-print and real-time response even using resource consuming classification methods such
as DNN.



115

CHAPTER 7 GENERAL DISCUSSION

In this chapter, we summarize our results with respect to the research objectives set in section
1.4. After that, we will take a look at the methodological approach that we followed. Finally,
we will end this chapter with an analysis of the overall results that we have obtained in order
to show the potential of the proposed system for implementation on real smartphones.

7.1 Summary of results

The main objective of this thesis was to design a lightweight and secure biometric-based
authentication system for smartphones. We defined three research phases in order to tackle
the related issues, and fulfill the main objective of this research project.

In the first phase, a secure active authentication system for mobile users was proposed. In
order to increase the security and the privacy of users’ biometric information, the use of
SIM card as a secure element was proposed. Touchscreen biometric that is the main means
of interaction with smartphones was investigated in this phase. A DNN classifier has been
employed that significantly improved the accuracy of authentication systems, and has shown
promising accuracy in touchscreen biometric-based authentication. A cloud-assisted archi-
tecture was proposed with a SIM card in the heart of the system where the cloud part was
used for model training and model selection. The model, then, is migrated to SIM card for
secure authentication. Although smart cards show high security in many applications such
as telecommunication, transportation, banking, and etc., their resource limitations hinder
their successful presence in biometric systems with computationally expensive operations
(i.e., large feature vectors and complicated classifiers such as DNN). We addressed this chal-
lenging task in MMOC authentication by proposing a quantization scheme for deep neural
networks on smart cards. Moreover, we also introduced a speed-up technique to decrease the
network inference (verification) time on the card. Multi-stroke authentication uses several
touchscreen gestures (strokes) such as swipes, flicks, slides to improve the accuracy of the
system. Therefore, a score fusion technique was also employed on the SIM card to achieve
higher on-card accuracy.

In the second phase, we extended our research towards a more generalized privacy-preserving
authentication by considering biometrics with big template size, particularly face biometric
that is popular among the research community and the industry as well. Transfer learning
has shown a prominent success in model-based object recognition systems by transferring



116

knowledge between domains. These networks can extract most discriminative features of
objects in the target domain. An accurate and lightweight model based on transfer learning
was introduced in this phase. Owing to the accuracy of the extracted features from the pre-
trained model, the verification can be done on the card by a threshold comparison technique
that shows a higher security compared to the first phase. Euclidean distance is used for
thresholding. However, this simple operation is not possible on the card; therefore, we
employed a numerical approach to implement this distance metric on the card. Quantization
scheme and optimization technique were borrowed from phase 1 to make inputs and model’s
internals understandable for SIM cards. Finally, the proposed architecture was implemented
on real Android devices in order to compare resource overhead of MMOC authentication
with a simple encryption version of the system.

In the last phase, we proposed a generic secure authentication system based on MMOC
technique that can be applied to different biometric systems that take advantage of transfer
learning. In this architecture, we modified the network layers of the reference model to
produce outputs that are suitable for smart cards, plus an extra quantization layer to convert
model’s output to an appropriate integer range for smart cards. The classification sub-
network consisting of one or two fully connected layers were migrated to the SIM card for
secure verification. However, feed forward phase of a DNN is a heavy computation for smart
cards. Therefore, a quantization scheme and an optimization architecture were proposed to
reduce forward pass time on the card and achieve real-time authentication response. A log
quantization scheme was introduced to transform multiply-accumulate in vector dot product
to bitshift-accumulate that can be done faster in hardware. In addition, using compiler
optimization techniques, a new architecture for expensive on-card loop operations that are
used in vector dot product calculations, was presented that reduced the execution time
drastically.

7.2 Experimental environment

In order to evaluate the performance of the proposed system on the card, we built a test bed
that consists of the following modules (software and hardware):

• A laptop computer with Core i7-5600U @ 2.60GHz CPU, and 16 GB of memory running
Windows 10 Pro.

• A smartphone with a 6.4-inch display, an octa-core CPU (2x1.6 GHz + 6x1.35 GHz),
3 GB of memory, and 32 GB of internal storage running Android 9 pie.
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• A SIM/eSIM with ARM SC300 secure core processor that is tamper resistant and
robust against side channel and fault injection attacks, with 1.5 MB of Flash and 53
KB of RAM running Java Card version 3.0.4 classic.

• A SIM/eSIM card with 1 MB of Flash and 40 KB of RAM with ARM secure core
processor running Java Card version 3.0.2 classic.

• Smart Card reader with bandwidth of 115 kbps.

• PC application written in Java for communication with the smart card.

• LOGOS TBII emulation environment for injecting applets into MNO’s profile.

• SIM applets written in Java card (v3.0.2 or v3.0.4).

• Tensorflow and Tensorflow Lite for model training and transfer learning.

Using this test bed, we reported different performance metrics such as execution time, EER,
AUC, REC, PRE, FNR@FPR to show the potential of the system as a secure authentication
system for mobile users.

7.3 Results analysis

The conducted research shedded light on less discovered potentials of smart cards for secure
authentication systems. Our results revealed that although smart cards do not have sufficient
resources to implement a complete authentication system, they can be used as a secure
element to store biometric templates to increase the privacy of users and to verify users
in a secure and isolated environment. Smart cards do not support floating point values;
therefore, the first step toward the MMOC implementation is a quantization scheme that
results a performance accuracy close to the original model. The results showed that the
proposed quantization scheme produces low quantization error and we saw that the results
on the card are close to the real valued results.

In the touchscreen active authentication system that used a simplified on-card DNN inference
for user verification, a multi-stroke fusion technique and a loop unrolling technique helped us
to demonstrate the feasibility of continuous authentication system even when the frequency
of sampling is low (i.e., around 1 sample/second), and an expensive classifier such as DNN
is implemented on the card.
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Then, we studied an MMOC active authentication system using more challenging biometrics
such as face. The results showed that we can implement a full face-based active authenti-
cation system using template-based approach on smart cards without relying on the outside
resources, with the enrollment and the verification phases completely implemented on the
card. User on-card verification takes less than 130 ms which does not impact the active
authentication process. The enrollment takes about 15 seconds to determine the decision
threshold on the card using 100 face templates; however, it does not affect the real-time
on-card verification. We implemented our active authentication system on a real device and
showed the platform overhead reduction compared to a simple biometric encryption method.
Moreover, the effect of quantization bit-width on performance accuracy revealed that we can
reduce the memory footprint on the card drastically while keeping the system’s accuracy at
an acceptable level.

Finally, an optimization architecture proposed to reduce the inference time for biometric
systems that rely on DNN classifiers such as those that use transfer learning. Our results
revealed that using a sophisticated quantization scheme (log quantization) and a loop op-
timization technique to improve the locality of reference in accessing memory such as loop
unrolling, loop fission and loop fusion, we can gain up to 45× speed up in forward pass
time, leading to a real-time authentication system, even with a DNN model that has more
parameters and needs more computation. Moreover, reducing the size of the classification
sub-network gave us more gain in reducing the execution time on the card than increasing
the EER of the system.

7.3.1 Cross-platform authentication

From privacy point of view, when users change their devices, they need to enroll their bio-
metric templates (such as fingerprint or face) on the new device. This is tedious task for
the user and more importantly it increases the risk of identity theft, spoofing attacks, and
unauthorized access to the services. SIM cards have platform independency and potability
features. This means that the user can enroll in one device, then she can insert her SIM card
containing the biometric templates and the verification engine into another device and use
the authentication system without re-enrolling the biometric templates, and not revealing
any data to third parties. The results showed that the MMOC face biometric system is
robust against platform changes, and can be used on different platforms.
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7.3.2 eSIM implementation

eSIM technology as the emerging SIM card is gradually going to be used in new smartphones
and smartwatches. This technology also supports Java Card technology that is used to
develop applets for SIM cards. However, eSIM supports Java Card version 3.0.4. Therefore,
any applet compatible with Java Card 3.0.4 can also be used in eSIM. Unlike SIM cards
that are personalized (i.e., the MNO’s profile with proprietary applets loaded into cards)
in the production phase, in eSIM cards the personalization is carried out over the air using
remote SIM provisioning (RSP) platform that loads the profile into the eSIM using transport
protocols such as https or SMS. Moreover, RSP also supports profile portability which means
that the user can request to transfer her MNO’s profile with the applets to a new device.
Therefore, our cross-platform authentication solution is also applicable to smart devices with
eSIM cards. Since many IOT devices will be equipped with eSIM in future, our proposed
MMOC system is a promising solution for IOT devices as well.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

This chapter provides a summary of the research work presented in this thesis. First, we
present the main contributions of the thesis. After that, the limitations of the work will be
discussed. We will finalize the thesis by several recommendations to show directions for the
future works.

8.1 Summary of works

This thesis aimed to design a secure biometric-based authentication system for mobile users.
This is a challenging task because increasing the security and privacy of an authentication
system affects other properties of the system. More precisely, increasing the security will
decrease the system’s performance (i.e., increases EER) and will decrease the efficiency (i.e.,
increases the verification response time). To address these challenges, a Mobile Match On
Card (MMOC) authentication system was proposed. Two system architectures were pro-
posed to evaluate the system under different processing loads, namely using model-based
authentication by employing a DNN classifier and a template-based authentication by apply-
ing distance metric thresholding. To address performance issues, a quantization scheme was
proposed to keep the system accuracy close to the original model even on smart cards. To
improve the system’s efficiency, an optimization architecture was introduced that helped us to
decrease the verification time drastically on the card. Moreover, the system was implemented
on real Android devices to evaluate its resource consumption compared to encryption-based
methods. This thesis made the following contributions, most of them are among the first
works in the field of biometric-base authentication systems for constrained devices:

1. Design a secure system for authentication on smartphones: two architectures
for a secure biometric-based active authentication system were proposed. A cloud-
assisted architecture, a model-based authentication system, that used cloud resources
for model training and model selection which has a faster but less secure enrollment
phase. A full MMOC architecture, a template-based authentication system, that only
relies on card resources. This architecture has a slower enrollment but is a more secure
architecture.

2. Quantization scheme: we introduced a quantization scheme to make inputs readable
for smart cards. This quantization scheme should be designed in a way that produces
low quantization error in order to keep the system’s performance comparable to the
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original model. This quanitzation scheme was also applied to the model’s internals in
the cloud-assisted architecture.

3. On-card deep neural network classifier: we proposed a DNN-based on-card veri-
fication system. Considering the resource limitations of smart cards, the original DNN
model is not implemented on the card. Since only the inference of the network is mi-
grated to the smart card, we qunatized the feed forward of the network by considering
the nature of the model’s internals and inputs and bit-width overflow of intermediate
computations.

4. Design a generic model for MMOC using transfer learning: we designed a
generic model for MMOC authentication using transfer learning. Deep learning-based
approaches have made a significant improvement in recognition problems. These sys-
tems show high recognition accuracy by extracting deep representation of the given
object. This technique can also improve user verification in biometric systems. How-
ever, this method is not readily implementable on smart cards. Therefore, we proposed
a generic model to modify the network architecture and make it suitable for MMOC
systems.

5. Optimization architecture: an optimization architecture using compiler optimiza-
tion techniques was presented to decrease the execution time on the card. This opti-
miazation technique is really crucial especially when the verification phase is a deep
neural network inference. This helped us to make MMOC authentication a feasible
solution for secure authentication on smartphones.

6. Platform implementation: we implemented an MMOC face-based active authenti-
cation system on real Android devices. The challenge in the implementation is granting
access to the SIM card from the Android OS. This needs development of an access con-
troller applet on the SIM. The results revealed a slight performance gain compared to
encryption-based biometric protection solutions.

8.2 Limitations

Despite the aforementioned contributions, the work carried out within the framework of this
thesis still has certain limitations:

• Resource limitations: The main limitation of this research study is related to the re-
source limitations of smart cards. Smart cards do not have high processing power and



122

high memory capacity. The feasibility of implementing a specific system should be
studied prior. SIM cards are basically used to store an MNO’s profile that needs small
memory to run. Therefore, the proposed solution to store biometric templates privately
on SIM cards may not work on SIM cards with low memory capacity. Another limita-
tion is the channel bandwidth for smart card’s contact interface which is roughly 115
kbps. It can cause a higher delay in transferring large biometric templates to the SIM
card.

• Security flaws: The proposed solution uses the SIM/eSIM card as a secure element for
secure authentication. Most of the modern SIM/eSIM cards are robust against attacks
on smart cards such as side channel attacks or fault injection attacks. However, the
system will be vulnerable to these attacks if the card OS does not implement appropriate
mechanisms to defeat these attacks. Moreover, the communication channel between the
application on the phone with the applet on the card is not a secure channel. Although
eavesdropping the communication channel needs a sophisticated attack, this issue can
be resolved by establishing a secure channel to the SIM card. Moreover, if a secure
channel between the phone and the cloud server is not establish, the system will be
exposed to man in the middle (MITM) attacks as well.

• DNN implementation limitation: The proposed model-based authentication system
with on-card DNN inference uses a network with two hidden layers with the maximum
of 4224 parameters. This network configuration gives high performance accuracy in a
real-time manner using our proposed optimization solution. However, increasing the
input vector size and the number of hidden layers, makes the applet oversized and affects
the efficiency of the system. Moreover, since 2-dimensional arrays are not supported
in smart cards, matrix inner product should be split into separate vector dot products
increasing the total inference time.

• Carrier privilege: The proposed secure solution is a solution in the hands of mobile
network operators. In fact, MNOs lock the SIM cards in the field to prevent any
potential attacks to the subscribers’ information, and even if the smartphone’s OS
grants access to the SIM, the SIM’s OS blocks any communications from the outside
world. Therefore, the implementation on real and in the field SIM cards needs the
carrier privilege that is not granted to untrustworthy third party developers.

• eSIM implementation limitation: Although eSIMs support Java Card technology used
in SIM cards, and we implemented our solution on the version of Java Card compatible
with eSIM; however, the real device implementation was done on the SIM card. The
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main limitation on eSIM implementation is that eSIM is soldered into the device and
conventional personalization process is not possible for eSIM. A remote SIM provision-
ing (RSP) system is required to download the profile and the applet into the eSIM
which was not available at the time of implementation. Moreover, profile portability of
eSIMs are dependent on the RSP platform to support this functionality.

• Generic model limitation: The generic model presented in section 6 is based on transfer
learning method. Therefore, it is applicable to any biometric system that has a pre-
trained model on a large and relevant dataset. If a specific biometric system does
not have any pre-trained models, the proposed model is not a good solution for it.
However, other components of the system such as quantization or on-card optimization
are generic to all MOC-based authentication systems.

8.3 Future Work

We end this thesis by suggesting several research directions than can lighten the path for
further research works in this interesting research topic, also can tackle the limitations listed
above that we encountered during this research.

• Quantization scheme is the key part to improve the performance of an authentication
system on the card. A wiser quantization mechanism with a more innovative idea can
be proposed to build an authentication system with close to zero quantization error
even when quantizing the model with fewer number of bits (e.g., 2-bit quantization)

• The core of verification phase in DNN-based verification is a vector dot product which
is an expensive computation on smart cards. Therefore, a good optimization technique
is crucial to make a real-time authentication system even when the number of hidden
layers are increased and more parameters are in the network. Low level programming
and taking advantage of hardware implementations are encouraged to address this issue.

• The implementation of the proposed method on eSIMs and integrated SIM (iSIM), the
future of SIM cards, is also an interesting research direction. iSIM enables hardware
Original Equipment Manufacturers (OEMs) and processor design companies to design
system-on-a-chip (SOC) architectures that integrate SIM functionality with an existing,
onboard processor and cellular modem.

• In chapter 4, we successfully fused multi strokes to decrease the recognition error.
We can extend the fusion technique to integrate two or more biometrics such as face,
fingerprint, or behavioral biometrics, as another research line.
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• With many built-in sensors in modern smartphones such as camera, microphone, ac-
celerometer, and gyroscope, the sensor-based authentication systems are becoming more
popular in mobile user authentication. However, security of this newly emerged authen-
tication is not studied enough in the literature, which needs more attention from the
academic community.

• Throughout the thesis, we showed the feasibility of implementation of deep neural
network on smart cards. Some problem domains may need more specialized neural net-
works. Therefore, study of implementation feasibility of other types of neural network
such as convolutional neural network (CNN) or recurrent neural network (RNN) on
smart cards also brings up a new challenging research line.

• Proliferation of IOT devices and wearables in our personal lives is undeniable which
requires a reliable authentication solution. Although our proposed method is also ap-
plicable to other resource constrained devices, biometric authentication on IOT devices
can be studied within a new research work, to assess its performance and to show its
limitations.
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