1,076 research outputs found

    Tecnologias IoT para pastoreio e controlo de postura animal

    Get PDF
    The unwanted and adverse weeds that are constantly growing in vineyards, force wine producers to repeatedly remove them through the use of mechanical and chemical methods. These methods include machinery such as plows and brushcutters, and chemicals as herbicides to remove and prevent the growth of weeds both in the inter-row and under-vine areas. Nonetheless, such methods are considered very aggressive for vines, and, in the second case, harmful for the public health, since chemicals may remain in the environment and hence contaminate water lines. Moreover, such processes have to be repeated over the year, making it extremely expensive and toilsome. Using animals, usually ovines, is an ancient practice used around the world. Animals, grazing in vineyards, feed from the unwanted weeds and fertilize the soil, in an inexpensive, ecological and sustainable way. However, sheep may be dangerous to vines since they tend to feed on grapes and on the lower branches of the vines, which causes enormous production losses. To overcome that issue, sheep were traditionally used to weed vineyards only before the beginning of the growth cycle of grapevines, thus still requiring the use of mechanical and/or chemical methods during the remainder of the production cycle. To mitigate the problems above, a new technological solution was investigated under the scope of the SheepIT project and developed in the scope of this thesis. The system monitors sheep during grazing periods on vineyards and implements a posture control mechanism to instruct them to feed only from the undesired weeds. This mechanism is based on an IoT architecture, being designed to be compact and energy efficient, allowing it to be carried by sheep while attaining an autonomy of weeks. In this context, the thesis herein sustained states that it is possible to design an IoT-based system capable of monitoring and conditioning sheep’s posture, enabling a safe weeding process in vineyards. Moreover, we support such thesis in three main pillars that match the main contributions of this work and that are duly explored and validated, namely: the IoT architecture design and required communications, a posture control mechanism and the support for a low-cost and low-power localization mechanism. The system architecture is validated mainly in simulation context while the posture control mechanism is validated both in simulations and field experiments. Furthermore, we demonstrate the feasibility of the system and the contribution of this work towards the first commercial version of the system.O constante crescimento de ervas infestantes obriga os produtores a manter um processo contínuo de remoção das mesmas com recurso a mecanismos mecânicos e/ou químicos. Entre os mais populares, destacam-se o uso de arados e roçadores no primeiro grupo, e o uso de herbicidas no segundo grupo. No entanto, estes mecanismos são considerados agressivos para as videiras, assim como no segundo caso perigosos para a saúde pública, visto que os químicos podem permanecer no ambiente, contaminando frutos e linhas de água. Adicionalmente, estes processos são caros e exigem mão de obra que escasseia nos dias de hoje, agravado pela necessidade destes processos necessitarem de serem repetidos mais do que uma vez ao longo do ano. O uso de animais, particularmente ovelhas, para controlar o crescimento de infestantes é uma prática ancestral usada em todo o mundo. As ovelhas, enquanto pastam, controlam o crescimento das ervas infestantes, ao mesmo tempo que fertilizam o solo de forma gratuita, ecológica e sustentável. Não obstante, este método foi sendo abandonado visto que os animais também se alimentam da rama, rebentos e frutos da videira, provocando naturais estragos e prejuízos produtivos. Para mitigar este problema, uma nova solução baseada em tecnologias de Internet das Coisas é proposta no âmbito do projeto SheepIT, cuja espinha dorsal foi construída no âmbito desta tese. O sistema monitoriza as ovelhas enquanto estas pastoreiam nas vinhas, e implementam um mecanismo de controlo de postura que condiciona o seu comportamento de forma a que se alimentem apenas das ervas infestantes. O sistema foi incorporado numa infraestrutura de Internet das Coisas com comunicações sem fios de baixo consumo para recolha de dados e que permite semanas de autonomia, mantendo os dispositivos com um tamanho adequado aos animais. Neste contexto, a tese suportada neste trabalho defende que é possível projetar uma sistema baseado em tecnologias de Internet das Coisas, capaz de monitorizar e condicionar a postura de ovelhas, permitindo que estas pastem em vinhas sem comprometer as videiras e as uvas. A tese é suportada em três pilares fundamentais que se refletem nos principais contributos do trabalho, particularmente: a arquitetura do sistema e respetivo sistema de comunicações; o mecanismo de controlo de postura; e o suporte para implementação de um sistema de localização de baixo custo e baixo consumo energético. A arquitetura é validada em contexto de simulação, e o mecanismo de controlo de postura em contexto de simulação e de experiências em campo. É também demonstrado o funcionamento do sistema e o contributo deste trabalho para a conceção da primeira versão comercial do sistema.Programa Doutoral em Informátic

    Internet of things for monitoring environmental conditions in greenhouses: a case of Kiambu County

    Get PDF
    Efficient management of greenhouse farming is a challenge to ensure high yield production. This is a great challenge to farmers who do not have a reliable mechanism to ensure the optimum environmental conditions for their crops. Farmers are opting to look for solutions from technologies such as Machine to Machine and Internet of Things. Machine to Machine Communication refers to solutions that allow communication between devices of the same type and a specific application through wired or wireless communication networks. Moreover, Internet of Things is a connection of physical things to the internet which makes it possible to access remote data and control the physical world from a distance. These types of solutions allow end-users to capture data about events and transfer it to other devices but they do not allow broad sharing of data or connection of the devices directly to the Internet. In this thesis, the researcher investigated the use of machine to machine communication by having small electronic devices equipped with sensors that when deployed in a farm they can record the environmental conditions and communicates the information to the farmers. Moreover, the different types of crops grown in greenhouses at Kiambu County. Thereafter, the information was analyzed and sent to relevant end users such as the farmer and a metrological department that will enable them to monitor and adapt to the environmental conditions. The research used applied method of research, interviews and questionnaires to gather data. Therefore, an IoT prototype was developed to gather the critical environmental conditions in a greenhouse. The recorded data was transmitted by wireless networks using machine to machine (M2M) technologies from the sensors to the cloud platform, Intel IoT analytics dashboard, for real-time predictive analysis of the environmental parameters. An email notification was sent to alert the farmers when the parameters exceeded the threshold which were preset. This IoT prototype was used in small to large commercial indoor operations as well as small personal gardens

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Internet of Things. Information Processing in an Increasingly Connected World

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First IFIP International Cross-Domain Conference on Internet of Things, IFIPIoT 2018, held at the 24th IFIP World Computer Congress, WCC 2018, in Poznan, Poland, in September 2018. The 12 full papers presented were carefully reviewed and selected from 24 submissions. Also included in this volume are 4 WCC 2018 plenary contributions, an invited talk and a position paper from the IFIP domain committee on IoT. The papers cover a wide range of topics from a technology to a business perspective and include among others hardware, software and management aspects, process innovation, privacy, power consumption, architecture, applications

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Low-power wide-area networks : design goals, architecture, suitability to use cases and research challenges

    Get PDF
    Previous survey articles on Low-Powered Wide-Area Networks (LPWANs) lack a systematic analysis of the design goals of LPWAN and the design decisions adopted by various commercially available and emerging LPWAN technologies, and no study has analysed how their design decisions impact their ability to meet design goals. Assessing a technology's ability to meet design goals is essential in determining suitable technologies for a given application. To address these gaps, we have analysed six prominent design goals and identified the design decisions used to meet each goal in the eight LPWAN technologies, ranging from technical consideration to business model, and determined which specific technique in a design decision will help meet each goal to the greatest extent. System architecture and specifications are presented for those LPWAN solutions, and their ability to meet each design goal is evaluated. We outline seventeen use cases across twelve domains that require large low power network infrastructure and prioritise each design goal's importance to those applications as Low, Moderate, or High. Using these priorities and each technology's suitability for meeting design goals, we suggest appropriate LPWAN technologies for each use case. Finally, a number of research challenges are presented for current and future technologies. © 2013 IEEE

    Reducing Scope 3 Emissions By Investing In Regenerative Agriculture In Supply Chains

    Get PDF
    The agricultural industry has an opportunity to shift to a more sustainable practice that helps restore vital topsoil, improve water quality, reduce environmental impact, and sequester atmospheric carbon into the vast soil carbon pool. However, to implement these practices at considerable scale, agricultural producers require access to resources and capital they rarely have and can be difficult to acquire. As a company, investing in regenerative agriculture in supply chains can lead to reduced Scope 3 emissions, more resilient supply chains, and better marketability as an investment fund, an employer, and a brand. Insetting regenerative agriculture can protect supply chains against climate risks and productivity loss, as well as serve as a more secure alternative to carbon credit offsets. Four successful companies, General Mills, Organic Valley, Nestlé, and Nespresso, have been shown to benefit from investing in regenerative agriculture as part of their evolution towards reaching net zero emissions. Based on their strategies, this paper has developed a recommended framework for programming investments for insetting regenerative agriculture. The recommendations rest on six pillars: 1) determining impact, 2) providing direct support to farmers, 3) place-specific strategies, 4) collaboration through partnerships, 5) scalable programming, and 6) educate consumers. Together, these represent a comprehensive approach to insetting that will provide long-term benefits to businesses, suppliers, and the planet
    corecore