69,194 research outputs found

    Critical Transitions In a Model of a Genetic Regulatory System

    Full text link
    We consider a model for substrate-depletion oscillations in genetic systems, based on a stochastic differential equation with a slowly evolving external signal. We show the existence of critical transitions in the system. We apply two methods to numerically test the synthetic time series generated by the system for early indicators of critical transitions: a detrended fluctuation analysis method, and a novel method based on topological data analysis (persistence diagrams).Comment: 19 pages, 8 figure

    Detecting clinically meaningful biomarkers with repeated measurements in an Electronic Health Record

    Full text link
    Electronic health record (EHR) data are becoming an increasingly common data source for understanding clinical risk of acute events. While their longitudinal nature presents opportunities to observe changing risk over time, these analyses are complicated by the sparse and irregular measurements of many of the clinical metrics making typical statistical methods unsuitable for these data. In this paper, we present an analytic procedure to both sample from an EHR and analyze the data to detect clinically meaningful markers of acute myocardial infarction (MI). Using an EHR from a large national dialysis organization we abstracted the records of 64,318 individuals and identified 5,314 people that had an MI during the study period. We describe a nested case-control design to sample appropriate controls and an analytic approach using regression splines. Fitting a mixed-model with truncated power splines we perform a series of goodness-of-fit tests to determine whether any of 11 regularly collected laboratory markers are useful clinical predictors. We test the clinical utility of each marker using an independent test set. The results suggest that EHR data can be easily used to detect markers of clinically acute events. Special software or analytic tools are not needed, even with irregular EHR data.Comment: 23 pages, 3 figure

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Learning to Respond: The Use of Heuristics in Dynamic Games

    Get PDF
    While many learning models have been proposed in the game theoretic literature to track individuals’ behavior, surprisingly little research has focused on how well these models describe human adaptation in changing dynamic environments. Analysis of human behavior demonstrates that people are often remarkably responsive to changes in their environment, on time scales ranging from millennia (evolution) to milliseconds (reflex). The goal of this paper is to evaluate several prominent learning models in light of a laboratory experiment on responsiveness in a lowinformation dynamic game subject to changes in its underlying structure. While history-dependent reinforcement learning models track convergence of play well in repeated games, it is shown that they are ill suited to these environments, in which sastisficing models accurately predict behavior. A further objective is to determine which heuristics, or “rules of thumb,” when incorporated into learning models, are responsible for accurately capturing responsiveness. Reference points and a particular type of experimentation are found to be important in both describing and predicting play.learning, limited information, dynamic games

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Rotorcraft handling-qualities design criteria development

    Get PDF
    Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics
    • …
    corecore