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Abstract  
 
While many learning models have been proposed in the game theoretic literature to track 

individuals’ behavior, surprisingly little research has focused on how well these models describe 

human adaptation in changing dynamic environments. Analysis of human behavior demonstrates 

that people are often remarkably responsive to changes in their environment, on time scales 

ranging from millennia (evolution) to milliseconds (reflex). The goal of this paper is to evaluate 

several prominent learning models in light of a laboratory experiment on responsiveness in a low-

information dynamic game subject to changes in its underlying structure. While history-dependent 

reinforcement learning models track convergence of play well in repeated games, it is shown that 

they are ill suited to these environments, in which sastisficing models accurately predict behavior. 

A further objective is to determine which heuristics, or “rules of thumb,” when incorporated into 

learning models, are responsible for accurately capturing responsiveness. Reference points and a 

particular type of experimentation are found to be important in both describing and predicting 

play. 
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1. Introduction 

Human responsiveness to changing environments has been well-studied in many disciplines. 

Psychologists have long analyzed human and animal adaptation to environmental variations. 

Computer scientists have applied principles of responsiveness both to the design of “intelligent” 

software and to the design of software and networks responsive to human learning. Sociologists 

have analyzed adaptive group behavior, an inquiry applied to organizational theory and 

institutional decision making in business settings (Dooley, 1997; Carley and Lee, 1998; Levitt and 

March, 1988). The notion of the “learning organization” (Hayes, Wheelwright, and Clark, 1988) 

emphasizes the responsiveness of business units to changes in their market environment. 

The historical economic approach to decision making, rooted in the rational actor paradigm 

and assuming unbounded cognitive ability is quite separated from the psychologists’ perspective 

on human learning. A recent literature, concerned with building learning models rooted in classic 

psychological principles such as the law of effect (Roth and Erev, 1995), bounded rationality 

(Simon, 1957), and aspirations (Selten 1991, Karandikar, Mookherjee, Ray, and Vega-Redondo, 

1998) has led toward a unification of psychological principles with the economic view of an agent. 

While many authors have evaluated the ability of learning models to explain observed 

human behavior in repeated games,2 surprisingly little research has focused on how well these 

models track individuals’ adaptation in dynamic settings in which the underlying payoff matrix 

changes over time. Empirical research on adaptive behavior demonstrates that people are often 

remarkably responsive to changes in their environment (Payne, Bettman, and Johnson, 1993; 

Schunn and Reder, 1998). The goal of this paper is to analyze some common learning models in 

light of laboratory experiments on responsiveness in low-information dynamic games. A further 

objective is to determine which heuristics of these various models help capture responsiveness. 

Heuristics are “rules of thumb” representing principles for deciding among competing 

alternatives. Since heuristics incorporate only general principles of behavior, they are tactics for 

approaching a problem, not fully represented strategies (see Pearl, 1984, for a review). Thus, while 

heuristic-based approaches are likely to select better actions among competing strategies, they do 

not do so necessarily in an optimal fashion. As any person knows from personal experience, 

people are subject to the same fault. 

                                                 
2 See, for example Mookherjee and Sopher, 1994; Roth and Erev, 1995; Van Huyck, Battalio, and Rankin, 1996; and 
Erev and Roth, 1998. 
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 The experiments considered here (from Friedman, Shor, Shenker, and Sopher, 2000) 

isolate responsiveness from other behaviors by instituting a very simple learning environment. 

Subjects participate in a real-time monopoly quantity-setting game. A change in the demand curve 

during the experiment is unobservable to subjects except through its payoff effects. In agreement 

with the psychological literature, subjects react quickly to the change in the payoff function. The 

learning models we consider, including reinforcement learning, evolving aspirations, satisficing, 

and responsive learning automata, however, differ in how well they capture this adaptability. 

 This paper proceeds as follows. In the following section, section 2, results of the 

experiment on learning in a low-information dynamic setting are discussed. Next, in section 3, the 

heuristics implied by these results motivate the selection of learning models to be analyzed. 

Section 4 contains a comparison of the performance of these learning models, both in closeness of 

fit to the observed data, and in prediction of subjects’ behavior in a similar experiment. Section 5 

contains concluding thoughts and implications for the design of learning models. 

 

2. Experiments 

The data come from an experiment by Friedman, et. al. (2000) on dynamic decision making in 

low-information environments. Design features of the experiment included very limited 

information, a dynamic, changing real-time setting, and a simple, noise-free environment. Subjects 

were given no information about the structure of the game, the underlying payoff function, the 

number of players, or the stability of the environment. Subjects were not informed of what a 

“reasonable” payoff was, nor did they know the bounds on the payoff function at any given time. 

Further, while they were aware that the payoff function may change during the experiment, 

subjects were not informed of the source or timing of these changes. 

The experiments were computerized, run within web browsers, and in real time. Short 

periods, one second in length, and variations in the underlying payoffs provided a changing, 

dynamic setting. A subject’s selected action would remain in effect until changed, which could be 

done at any time. Actions were chosen from a grid of 101 strategies, {0,1,…,100}, by moving a 

slider provided on screen. Payoff information was presented every second, and a history of payoffs 

was also provided on the user interface. The length of the experiment was ten minutes, not 

including instructions. While a seemingly short time, the experiment permitted 600 periods, which 
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is substantially more than other individual decision-making experiments known to the author. 

Further, the short length avoids boredom, which may lead to excessive experimentation.3 

 The underlying game was a simple quantity-setting monopoly game with linear demand. A 

subject’s strategy choice was mapped into payoffs according to the payoff function 
2
ttt bqaq −=Π  where qt is the action chosen at time t. Two different treatments were run. In each 

treatment, the game began with the same values of a and b and then the payoff function changed 

once, at seven minutes for the first treatment, and at five minutes for the second treatment (Table 

1). The major difference between the two treatments is whether the change in the payoff function 

is noticeable to the subject, i.e. if it changes a subject’s payoffs at equilibrium. In Treatment 1, a 

subject playing the optimal strategy of 40 before the change will instantly see her payoffs rise 

from 60 to 88 at seven minutes when the payoff function changes. On the other hand, in Treatment 

2, a subject playing her equilibrium strategy will see no change in her payoffs when the payoff 

function changes. Only by sufficiently exploring the strategy space (playing a strategy above 45) 

can the change in the payoff function be recognized. Hence, the two treatments differentiate 

between how people recognize changes in their environment, solely through changes in current 

payoffs, or through experimentation. 

 A total of 56 subjects participated in the first treatment, and 22 subjects in Treatment 2. 

Subjects were very responsive in both treatments (Figure 1). In Treatment 1, the median player 

recognized the change in the payoff function, and quickly learned the new equilibrium (within 100 

seconds). In Treatment 2, the path of play was similar, with a slightly longer delay after the payoff 

change, due to the fact that the change was not noticeable until a subject experimented. 

 The data suggest a number of characteristics of play. First, experimentation was quite 

common. Subjects spent a substantial proportion of time trying suboptimal strategies well after 

learning the equilibrium. Second, experimentation was not, in general, an occasional deviation 

from the optimal strategy. Instead, subjects would enter “experimentation phases” in which they 

would sample the entire strategy space. Friedman, et. al. termed a common pattern of 

experimentation “arrhythmic heartbeat patterns,” as equilibrium play was occasionally disturbed 

by a period of experimentation in which subjects would sample the full strategy space below the 

equilibrium, and then above (or vice versa) resembling heartbeats when plotted against time. 

                                                 
3 Instructions were provided on screen and took an average of eight minutes. While the experiment discussed here 
lasted ten minutes, subjects continued participating for a total of fifty minutes in a related experiment. See Friedman, 
et. al. (2000). This continued participation beyond the game reported here avoids endgame effects. 
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Hence, experimentation is autocorrelated, and not controlled by an independent random draw in 

each period, as most commonly modeled in the learning literature.  

In informal post-experiment interviews, subjects indicated that learning consisted of 

discovering what constituted a good payoff and then attempting to maintain payoffs in that range, 

suggesting satisficing behavior (Karandikar, et. al., 1998). Further, when the notion of a “good” 

payoff changed, subjects assumed that the environment was different and reinitiated the learning 

process. Interestingly, subjects suggested that they did not pay much attention to historical payoffs 

when it became clear that the payoff structure changed. Hence, selective use of history, aspirations 

or reference points, and the nature of experimentation all may be relevant traits for analyzing 

subjects’ play, and are a primary motivation for selecting the models to consider in this analysis. 

 

3. Learning Models 

Given the low-information design of the experiment and the nature of this investigation, models 

rooted in rational optimization are not considered. The fact that subjects are not privy to the 

underlying structure of the game nor have any information about the payoff matrix implies that 

forward-looking learning models may not applicable, and learning should occur through some 

adaptive, or backward-looking mechanism. Further, in light of experimental support for such 

“myopic” learning (see note 2), the analysis of backward-looking learning models is interesting in 

its own right. Hence, we selected models of learning representing a variety of assumptions about 

the heuristics, or behavioral patterns, that subjects may exhibit. Table 2 surveys the models 

considered, and the heuristics they incorporate. These are discussed in more detail below. 

 

3.1 Heuristics 

A cornerstone of the psychological learning literature holds that if people are motivated by past 

events, then they should react positively to good outcomes and negatively to poor ones. Hence, the 

models considered here all incorporate Thorndike's classic law of effect (Thorndike, 1898, 

Broadbent, 1961). Generally termed reinforcement learning, Thorndike’s principle may be 

summarized as follows: an action which performs well, or results in high payoffs, will be used 

more often, while an action which performs poorly will be used with less frequency in the future. 

 Reinforcement models of learning all capture the notion that people learn from the 

rewards, or payoffs, received and attributed to a particular action. While it is generally accepted 

that any learning model in low-information settings should incorporate Thorndike’s law of effect 
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in some form, learning models may still be differentiated on at least three levels: the roles of 

history, reference points, and experimentation. We consider each of these in turn. 

 

3.1.1 History or memory.  The role of history in learning is rooted in Thorndike’s second 

principle, the law of exercise. Closely related to frequency (Watson, 1914) and the power law of 

practice (Blackburn, 1936), the law of exercise holds that actions used more often will carry 

stronger reinforcement. This has an important implication for responsiveness as learning is 

initially quite fast, but eventually becomes more sluggish. As the “weight of history” becomes 

greater, it becomes harder to change a strategy that has been performing well historically. 

For example, consider Roth and Erev’s (1995) basic one-parameter model of reinforcement 

learning. Each strategy is assigned a “propensity” which is simply the sum of all payoffs received 

from that strategy over the course of the game, plus some initial value. The probability of using a 

strategy in any period is proportional to its propensity. Suppose that a player has only two 

strategies, A and B, and that payoffs range from 0 to 1. After a few periods, if the propensity of 

strategy A is 4 and of strategy B is 1, then the probability of playing strategy A in the next period is 

0.8. However, a few periods of achieving high payoffs from B can easily shift these probabilities. 

If after some time, the propensities for A and B are 400 and 100, respectively, the probability of 

strategy A is still 0.8, but it will remain near 0.8 for many periods to come regardless of the 

relative performance of the two strategies. 

Consider a player’s probability distribution over her pure strategies in period t. History 

dependence of a learning model may be determined by considering whether the transition from the 

tth period to the probability distribution in the t+1th period depends only on the last payoff 

received, or on time-dependent parameters. If the probability distribution over actions at time t 

depends only on the probability distribution, action, and outcome at time t-1, then learning is not 

dependent on history, or is memoryless. Hence, the formulation pt=f(pt-1,at,π t;θ), with p, a,and π 

representing the probability distribution, action taken, and payoff received, and θ a set of 

parameters, implies a Markovian property, with the transition from one probability distribution to 

another depending only on last period’s play. If a model depends on time explicitly (for example, 

incorporating a learning term which diminishes over time), or implicitly, as in the previous 

example, by having probabilities reflect the whole of past experience, then such models will be 

termed history dependent. In this sense, all variants of the Roth-Erev reinforcement learning 
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model are history dependent, due to the construction of propensities.4 The other learning models 

under consideration perturb the probability distribution over strategies directly by incorporating 

the payoff from the last period, and hence are not history dependent.  

 

3.1.2 Reference Points. While all of the models considered generate higher probabilities for 

strategies with “good” outcomes and lower probabilities for strategies resulting in “bad” 

outcomes, the notion of a good or bad outcome is not absolute, and depends on one’s point of 

reference. New employees of a company might consider a $1,000 bonus at year’s end a positive 

reinforcement, leading to greater loyalty. The CEO receiving the same compensation will certainly 

view the bonus as a bad reinforcement. 

Reference points were introduced to economics as a representation of bounded rationality 

in the form of satisficing (Simon, 1955, 1957). Referring specifically to environments in which 

agents may have little information about possible payoffs, Simon suggests that people may 

develop aspirations and evaluate strategies based upon whether they yield payoffs higher or lower 

than this satisficing level.5 In general, the probability of repeating a certain action decreases if the 

resulting payoff is less than the aspiration. This notion was operationalized into a learning model 

by Karandikar, et. al. (1998).  

 Reference points are incorporated more broadly than satisficing models. In some 

formulations of the Roth-Erev model, the payoff used for updating propensities is the realized 

payoff minus some reference point. In this sense, reference points simply scale payoffs downward, 

implying that even if all payoffs in the game are positive, relatively low payoffs may be negative 

reinforcements. Roth and Erev also consider variable reference points, which evolve as the game 

progresses. Similarly Karandikar, et. al. (1999) allow aspiration levels to evolve in the direction of 

realized payoffs. This captures the idea first put forward by Tinkelepaugh (1928, in an 

experimental study of monkeys), that “individuals” learn not only about the payoff implications of 

various actions as the game progresses, but also learn what a “good” payoff is. 

 

                                                 
4 In fact, the role of history can be made much stronger by incorporating the “extinction in finite time” principle of 
Roth and Erev’s basic model (1995), which truncates low probabilities to zero, preventing the strategies from ever 
being used unless experimentation is explicitly incorporated. 
 
5 For a discussion of satisficing, see Gigerenzer and Todd, 1999. 
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3.1.3 Experimentation. At the heart of learning is a struggle between loss from intentionally 

playing sub-optimally in order to gain potentially valuable information, and using strategies 

currently believed to be optimal to reap maximum benefit in the short term. Responsiveness to an 

environmental variation is closely linked to experimentation. Faced with uncertain environments, 

people occasionally deviate from actions that they believe to be optimal in order to explore the 

strategy space. This notion of learning (the exploration versus exploitation dilemma), highlights 

the tradeoff between acquiring information about one’s environment, and taking advantage of the 

information already acquired. Adaptation requires experimentation in any dynamic environment 

from control theory (Thrun, 1992a) to organizational learning (March, 1991). While all of the 

learning models considered incorporate experimentation in some form (since “trial and error” is a 

fundamental learning method), they differ in how it is modeled. 

 In computer science and artificial intelligence research, a distinction is drawn between 

directed and undirected experimentation. Undirected experimentation is achieved by admitting 

randomness into strategy selection by superimposing a probability distribution on the learning 

process. Such probabilities are often uniform, implying an equal chance of trying any strategy, or 

utility-driven, selecting strategies proportional to their expected utilities, or a combination.6  

In contrast, directed exploration (see Thrun, 1992a, 1992b for a survey) implies using 

strategies that contribute most to the estimates of the underlying payoff function. Directed 

exploration incorporates experimentation in order to gain particular knowledge about the 

environment. Further, directed exploration implies that a learning model keeps track of the 

experimentation process as well as the learning process. Psychologists, in stark contrast to 

economists, almost exclusively imply the directed approach when referring to human 

experimentation. Two popular approaches to directed experimentation may be borrowed from the 

field of artificial intelligence: recency and full sampling.7 Recency-based exploration8 (Sutton, 

1990) assumes that knowledge about the world decays, or decreases in informational value with 

                                                 
6 A variant of the Roth-Erev reinforcement learning model, for example, adopts the combination approach, with 
strategies played in proportion to past payoffs, with an additional uniform experimentation probability. 
 
7 A third approach, error-based exploration, in which one experiments by playing strategies with the highest error or 
payoff variance, is not relevant in our environment with deterministic payoffs. 
 
8 A number of methods have been proposed for estimating the “exploration bonus” of a strategy based on recency. See 
Barto, Sutton and Watkins (1989) and Watkins (1989). Note that “recency” in this setting is quite opposite from the 
recency discussed in Roth and Erev (1995). While in their model, recency implies that more recently used strategies 
have a higher probability of being played, here we imply the opposite for experimentation. The more recently a 
strategy was used, the less informative value it has in exploration.  
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time. The longer the interval since an action has been tried, the more playing the action is expected 

to contribute to a decision maker’s understanding of her environment. 

Full sampling implies that decision makers initiate an experimentation phase in which 

enough of the action space is explored to gain good estimates of the payoff function. These 

estimates are then used to exploit the environment, or play a “best” strategy, until another period 

of experimentation is commenced. This is reflected in the analysis of Friedman, et. al. (2000), who 

find that subject experimentation is autocorrelated, not independent in each period. The authors 

present data characterized by “arrhythmic heartbeat patterns” which depict precisely the notion of 

full sampling. Many subjects embarked on periods of experimentation in which they sampled a 

broad portion of the strategy space. 

Some of the learning models considered in this paper contain the “flavor” of directed 

experimentation through appropriate parameterization, though no model in economics appear to 

incorporate these exploration techniques directly. In the Roth-Erev reinforcement learning models 

with reference points, high initial propensities and high initial reference points can lead to recency 

exploration. Initially, as actions are tried, corresponding propensities decrease, making unexplored 

strategies relatively attractive. This method of directed exploration based simply on overestimating 

propensities was proposed by Kaelbling (1993) and is in the spirit of Gilboa and Schmeidler 

(1996) who show that overestimating aspirations can lead to optimization in the long run.  

Gilboa and Schmeidler also suggest that long-run utility maximization may be achieved 

through occasional upward shocks to one’s aspiration level. These “trembles” incorporated into 

the satisficing model of Karandikar, et. al. (1998) have a different effect on experimentation. An 

upward shock to one’s reference point results in all strategies looking relatively bad to the decision 

maker until the reference point again settles down to a reasonable level. Hence, shocks in 

aspiration levels produce occasional periods of experimentation in the spirit of full sampling. 

 

3.2 Models 

3.2.1 Roth-Erev Reinforcement Learning. The initial formulation of Roth and Erev (1995) 

intended to incorporate the law of effect and power law of practice into a simple learning model. 

Proposed variants of the model (Roth and Erev, 1995; Erev and Roth, 1998) incorporated 

reference points, experimentation, and forgetfulness. Each strategy i in every period t has an 

associated propensity ρt(i). Propensities are updated in the following manner. If, in period t, the 

player uses strategy i and receives payoff πt(i), then 
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 ρt(i)  = (1-γ)ρt-1(i) + (1-ε)(πt(i)-αt-1)     

 ρt(j)  = (1-γ)ρt-1(i) + (ε/S)(πt(i)-αt-1)    j≠i 

where S is the number of pure strategies, γ is a forgetfulness or recency parameter, ε is the 

probability of experimentation, and αt is a reference point.9 The reference points, αt, evolve 

according to the following rule: 

 αt = λαt-1 +(1-λ)πt(i) [Eq. 1] 

where λ is the persistence of reference points. Lastly, the probability of playing a strategy i in 

period t is given by: 

 pt(i) = ρt-1(i) / Σρt-1(j)     

While the model above consists of a total of five parameters, ε, γ, λ, and two initial conditions ρ0, 

α0, we consider six subsets of the parameter set. 

  

Model   Parameters Included___________ 

Basic   ρ0  ε = γ = αt = λ = 0   

Forgetfulness  ρ0, γ  ε = αt = λ = 0 

Experimentation ρ0, ε  γ = αt = λ = 0 

Full model  ρ0, γ, ε  αt = λ = 0 

Fixed reference ρ0, α  ε = γ = 0, αt = α 

Evolving reference ρ0, α0, λ ε = γ = 0 

 

3.2.2 Two-Stage World Resetting. Concocted after discussions with some of the subjects that 

participated in the experiment, this model is an extension of the basic Roth-Erev reinforcement 

learning procedure. Its construction is motivated by subjects informing the experimentalist that 

upon recognizing a shift in the world, they “reset” their learning, or do not consider historical 

payoffs. It is, in effect, the Roth-Erev basic model described above, incorporating a test of model 

fitness. A hypothesized subject maintains in memory not only propensities for each strategy but 

also estimates of the payoff function. When realized payoffs begin to differ substantially from the 

estimated, expected payoffs, the model resets the propensities to the initial value, ρ0. While a 

                                                 
9 Roth and Erev conjecture that payoffs might only need be generalized to the nearest strategies, such that ρt(j) = (1-
γ)ρt-1(i) + (ε/2)(πt-1(i)-αt), j=i±1. In some preliminary simulations, this formulation made little difference in the 
models’ predictions. 
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number of criteria exist for such resetting (e.g. Vulkan and Preist, 2000), the experimental setting 

does not provide much discrimination between these criteria. Since the payoffs in the experiment 

do not involve any noise or randomness in the payoffs, it is clear to most subjects when a change 

in the payoff function has occurred. 

For the purpose of exposition, consider the following example construction. Payoff 

expectations for a strategy i are given by: 



 −+
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where πt is the payoff in period t, a superscript e denotes expectation, and φ measures the 

persistence of expectations, so that expected payoffs are simply a weighted average of all payoffs 

received from that strategy. A world is understood if 

 tsktss tttt
e
t  periodin  used  },,...,{    )()( ττεππ −∈∀<−  [Eq. 2] 

i.e., if it predicts accurately for k consecutive periods. Once understood, a world is changed if  

 { }   periodin  used  r, )()(| tssst tttt
e
t ≥>− εππ  

that is, if the prediction is substantially wrong in r periods. When the world changes, the model 

“resets.” All parameters revert to the initial values as if the person begins learning a different task. 

 In our experimental setting, these parameters are not relevant. Without noise in the payoffs, 

either through the introduction of stochastic terms or interaction with other subjects, any value of 

φ would yield the same result since each strategy consistently results in the same payoffs, except 

during a singular change in the underlying payoff function. Similarly, any positive ε would have 

the same implications in this experimental design since the difference in [Eq. 2] would 

consistently equal 0 until the change in the payoff function occurs. The only parameter of import 

is r which determines how many periods after the change a subject will reset the learning model. 

For our purposes, any value of r between 1 and 30 yield very similar results in terms of model 

fitting and estimation. The results presented in the next section are for r=5.  

While this model has a single parameter, ρ0, for our purposes, it is not the intention to 

suggest that this model is “simple.” In fact, for most purposeful applications, a criterion for change 

in the world would require a number of parameters, on top of the parameters inherent in the 

learning process itself. Even the simple procedure above requires four parameters just to judge the 

stability of the world. However, for the purposes of determining the role of history or memory in 



11 

learning in dynamic settings, this model provides a useful benchmark for the performance of 

reinforcement learning models. 

 

3.2.3 Responsive Learning Automata. Learning automata were originally simple, one-period 

memory systems modeled after biological processes, and designed for solving control problems 

(Tsetlin, 1946; for a survey, see Narendra and Thatcher, 1989). One such simple learner for 

dynamic settings, the Responsive Learning Automata (Friedman and Shenker, 1996) preserves the 

low-memory, or no history-dependence property. Unlike the Roth-Erev model in which a 

dependence on history exists in the updating of propensities, the responsive learning automata’s 

memory is encoded solely in the probability distribution over strategies. If, in period t, the player 

uses strategy i and receives payoff πt(i), then probability updating is governed by 
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and β is a scaling parameter that captures the speed of learning. The probability of experimenting 

is denoted by ε, and again S is the number of pure strategies. The probability of playing the same 

strategy as in the previous period increases with the payoff received. All other strategies decrease 

in probability proportionally. However, no probability of any strategy is allowed to drop below 

some threshhold, ε/S, guaranteeing that experimentation is always possible. 

  

3.2.4 Aspirations. Aspiration models incorporate the no-memory property of responsive learning 

automata with a reference-point based behavioral assumption. These models assume that in light 

of little information about the game and its attainable payoffs, people develop aspirations. A 

strategy is played more often if the resulting payoff exceeds this aspiration level, and less often 

otherwise. Further, aspirations may evolve in the direction of realized payoffs.  

 Aspiration-based learning models have received much attention since Selten (1991).  

Karandikar, et. al. (1998) propose a model in which a strategy is repeated as long as payoffs 

exceed aspirations. If payoffs fall short of aspirations, the strategy is repeated with some 

probability that is decreasing with the magnitude of the disappointment, or difference between the 
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aspiration and received payoff. Further, aspirations are subject to occasional trembles, which is the 

source of experimentation in the model.  

 With probability (1-ε) aspirations evolve according to Eq. 1, equivalent to the updating of 

reference points in Roth and Erev. However, in each period, with probability ε, the aspiration αt 

“trembles,” and is drawn from a uniform distribution over the feasible payoff space.10 When a 

payoff does not exceed the aspiration level, probability updating is governed by the following rule 

(again, if strategy i is played at time t): 

 If αt>πt: 
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When the learner is satisfied, implied by the received payoff exceeding the aspiration level, two 

different models are considered. The first, due to Karandikar, et. al. (1998), revises probabilities 

only in the case of disappointment. If payoffs are above aspirations, 

If αt≤πt pt+1(i)=1,  pt+1(j)=0     j≠i [Eq. 4] 

The probability distribution over actions is only altered after a disappointment. Since the decision 

maker is not affected by the magnitude of the payoffs as long as payoffs exceed aspirations, this 

model captures satisficing behavior. Hence, the updating of probabilities according to [Eq. 3] and 

[Eq. 4], along with the trembling aspirations assumption, will be referred to as the satisficing 

model in the sequel. Borgers and Sarin (1995) consider a similar model, but an action in a given 

period is always a purely mixed strategy. The probability of playing a strategy not only decreases 

with the level of disappointment, but also increases with the level of surprise when payoffs exceed 

aspirations. Incorporating this notion into the above model, we replace [Eq. 4] with:  

 If αt≤πt: 
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This formulation, consisting of [Eq. 3] and [Eq. 5], as well as the aspirations updating with 

trembles, is termed the evolving aspirations model of learning in the sequel. It is similar in spirit to 

the Roth-Erev reinforcement learning model with reference points, since aspirations serve as a 

determinant of whether a strategy’s probability should be revised upward or downward. In this 

sense, decision makers do not satisfice, since they react to ever greater payoffs. However, the 

                                                 
10 In Karandikar, et. al., discussion focuses on aspirations assumed to “tremble” locally. However, with deterministic 
payoffs, this implies that a strategy chosen in the first few periods would be repeated throughout the 600 periods of the 
experiment with probability close to 1, as local trembles would rarely lead to disappointment.  
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model is substantially distinct from the reinforcement models since it has no memory, and, with 

the inclusion of trembles in aspirations, it allows for full sampling experimentation. 

 

4. Model Performance 

The experimental design accommodated 101 possible actions in each period. Since the payoff 

function is continuous in strategies, subjects learned to generalize, or associate realized payoffs 

with strategies close to the strategy actually used. It is not apparent, however, how this 

generalization occurs.11 Since the models considered in this paper do not generalize, but instead 

treat each strategy as entirely distinct, for the purpose of fitting and simulating the models, the 

game is reduced to ten strategies, {10,20,…,100}, and the experimental data is aggregated by 

mapping players’ strategies into the next highest among the ten available.12 To find the best 

parameters for each model, the mean squared deviation criterion (MSD) is used (Simon, 1956).13 

A total of 10,000 simulations over 1,000 sets of parameters were run for each model and for each 

of 56 subjects. For details of the simulation methodology, see the appendix. 

Each model was fit to the data from Treatment 1 in two ways. Learning models were fit to 

the play of each individual subject, as well as to all of the data simultaneously. While a model that 

requires fitting parameters to each individual subject is perhaps of little relevance to economic 

forecasting, there is a pedagogical purpose for the exercise. Psychologists disagree about the 

source of variation in individual decision making. People may differ in the heuristics, or rules of 

thumb, that they employ. Alternatively, individuals might employ similar heuristics, but differ in 

particular learning or adaptation parameters.14 Recognizing if learning models perform well on an 

individual level allows us to determine if these models represents heuristics common to most 

subjects, even if the exact value of the parameters representing that heuristic differ from person to 

                                                 
11 For some of generalization methods, see Shepard (1987) and Staddon and Reid (1990). These studies do not provide 
functional forms for generalization, instead suggesting how like strategies are evaluated on a metric in “psychological 
space." (Shepard, 1987). Considering the myriad applications of generalization (e.g., auditory tasks, speech, visual 
problems) and numerous proposed mental processes (e.g., attributing realized payoffs to neighboring strategies, curve 
fitting, interpolation), any simple functional form of generalization is probably too specific to be globally useful.  
 
12 Early simulations using all 101 strategies demonstrate that none of the models track the data well over the 600 
periods. Given a larger number of periods, however, the models act similarly to the results presented, but take 
substantially greater time to converge and react to changes in the payoff function. 
 
13 The probability distribution over actions is denoted by a vector p. If strategy i was used,  
MSD = (1-pi)2

+Σj≠i pj
2

. For a discussion of some desirable properties of MSD, see Selten (1998) 
14 For example, Schunn and Reder (1998) study responsiveness in an experimental dynamic environment (air traffic 
control). They find that people employ similar strategies, but individual variations in inductive reasoning skill result in 
differences in values of parameters such as speed of adaptability. 
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person. Further, we may be able to distinguish between models of learning with good normative 

properties, and models that reflect the heuristics of actual decision-making.  

 The mean squared deviation scores for each model are presented in two forms (Table 3). 

Column A contains the lowest average MSD for each model when fit to each subject individually, 

while column B presents the MSD when each model is simultaneously fit to all of the data. 

Benchmark MSD scores are presented for the equilibrium prediction and for a random choice 

model, which assumes that each player selects each action with equal probability in every period.  

 

4.1 Individual Fit 

All of the models perform substantially better than either the equilibrium or random choice 

benchmark. However, comparing the models fit separately to each individual subject (Table 3, 

column A) the aspirations-based models appear to do quite well, followed by responsive learning 

automata and two variants of reinforcement learning, the Roth-Erev full model and the two-stage 

world resetting learner. 

 To compare the performance of the models, we inquire about the proportion of subjects for 

whom one model performs better than another (Table 4). Each entry in Table 4 is the proportion of 

subjects for whom the model in the row predicts better (in terms of lower MSD) than the model in 

the column. All learning models outperformed the random choice benchmark for every subject and 

most models substantially outperform the equilibrium prediction. Given that even one parameter 

models outperform the equilibrium for over 2/3 of the subjects, this may be more an affirmation of 

bounded rationality in low-information games than an endorsement of any particular model. 

 To gain insight into the heuristics being employed by subjects, the learning models in 

Table 4 are ordered by the number of competing models that they surpass in the accuracy of their 

fit for a majority of subjects (column “best”). For example, the first entry in the table, the 

satisficing model, obtains a lower MSD score than any other model for a majority of subjects. 

Interestingly, none of the top four models is history dependent, while the bottom six learning 

models incorporate propensities. Further, each of the top four models performs at least as well as 

each of the lower six. This suggests that history dependence is not an applicable heuristic for some 

real-time changing environments. 

 The two aspirations-based models perform substantially better than the rest. In fact, 

satisicing results in a lower MSD for at least three-fourths of all subjects, when compared to any 

non-aspirations-based model. This performance of the aspirations models is consistent with 
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“strategies” expressed by experimental subjects in informal interviews, many of whom suggested 

that they learn to be content with their current payoff, but every now and then wish to see if they 

can do better, reflecting both satisficing behavior and trembles in aspiration formation. 

 

4.2 Aggregate Fit 

Each model was fit to data from Treatment 1, using the play of all subjects simultaneously. For 

each model, the set of parameters that minimized the average MSD over all subjects was selected. 

Unlike the individual fits, which allow a different set of parameters for each subject, aggregate 

model fitting does not capture individual idiosyncrasies in learning, but provide a single set of 

parameters that may encapsulate general behavior. These parameters then may be used to predict 

play in similar games. This ability of a model with a particular set of parameters to explain 

subsequent play in a variety of experiments was demonstrated by Roth and Erev (1995). 

 When fit to aggregate data, one would expect a given model to perform substantially worse 

than when fit to individuals. Given the 56 subjects in Treatment 1, a two-parameter model, for 

example, in effect uses 112 parameters when fit to individual data. While each model when fit to 

aggregate data still outperforms both benchmarks, the MSD scores of the models are substantially 

worse than the scores from individual fits (Table 3). The average model’s best fitted MSD score 

increases by 25.6%. However, the ordering of the models remains largely unchanged.15 

Reinforcement learning models are the worst performing. Inclusion of reference points improves 

the fit of the models. Again, the best performing model is satisficing, which not only incorporates 

reference points, but is also not history dependent, and allows for experimentation in stages by an 

occasional tremble in aspiration levels. Analysis of both individually fit and aggregate data 

suggests that history-dependent learning models do not explain the data well.  

Evaluation of models with varying formulations is important for assessing the relative 

value of different parameters and incorporated assumptions. We can compare the fit of the 

different Roth-Erev models, and the contribution of each parameter to the model’s explanatory 

power (Figure 2). Beginning with the basic 1-parameter model, the arrows in Figure 2 show the 

improvement in mean squared deviation from the inclusion of additional parameters. Dotted lines 

lead to comparable memoryless models. 

 An observation that may be drawn is that γ, representing “forgetfulness” in the context of 

the Roth-Erev reinforcement model, contributes little explanatory power. The addition of γ to the 
                                                 
15 This may suggest that people are rather idiosyncratic, but employ similar heuristics at different rates. 



16 

basic model decreases MSD by about 0.3%. Similarly, the addition of γ to a model already 

incorporating experimentation decreases MSD by about 0.2%. Experimentation, on the other hand, 

contributes greater explanatory power to both the basic model and a model with forgetfulness. 

However, the parameter contributing the most explanatory power to the basic model is a fixed 

reference point, lowering MSD by twice as much as experimentation. Reference points appear to 

play an important role in both the decision making process of subjects and the normative value of 

a model. After incorporating reference points into the model, additional explanatory power results 

from allowing those reference points to evolve. Finally, incorporating disappointment-based 

satisficing behavior causes the largest change in MSD, from 0.794 to 0.757. 

 We can compare the history-dependent models with models without memory of equal 

complexity, measured by the number of parameters. The dotted lines (Figure 2) reflect similar 

models that consist of the same number of parameters, do not incorporate history dependence, yet 

explain the data better. The two-parameter reinforcement learning model with experimentation 

may be compared to the responsive learning automata. Both incorporate experimentation as a 

minimum probability bound on each strategy, but responsive learning automata replaces a history-

based parameter with a parameter representing the speed of learning. Despite an equal number of 

parameters, the responsive learning automata model generates a superior fit. 

 Numerical comparisons of models using the MSD criterion do not provide an adequate 

picture of how well the models describe subject behavior qualitatively. The path of play as 

predicted by each learning model was simulated using the parameters that minimize MSD (Figure 

3). Numerically, both Roth-Erev models with reference points achieve lower MSD scores for 

aggregate fits. Yet, among all of the formulations of the reinforcement learning model (Figs. 3b-

3g), only the full (three-parameter) model demonstrates responsive to the payoff change 

comparable to the data. This seeming paradox between quantitative and qualitative model 

comparisons can be explained by the inherent tradeoff between experimentation and exploitation. 

A model that does not incorporate a high degree of experimentation will be unable to respond well 

to environmental variations. However, since little time is spent exploring the strategy space, 

convergence is swifter and more robust. For this reason, the models with reference points quickly 

converge in both mean and median to the equilibrium strategy of four, while the full Roth-Erev 

model is affected by constant experimentation, pulling average play towards the central strategy. 

Since seven of the ten minutes of the experiment occur before any change to the payoff function, 



17 

the MSD score favors models which accurately track convergence over those that track the 

responsiveness in the last three minutes. 

 The remaining learning models all display both convergence to the equilibrium and 

responsiveness to the change in the payoff function (Figs. 3h-3k). The tradeoff inherent in any 

model of learning between strong convergence to the currently optimal strategy and 

experimentation significant enough to recognize changes in the environment may be examined by 

decomposing the MSD score into two time intervals (Table 5). A model with a relatively low 

MSD before the change in payoffs accurately tracks subjects’ convergence, while a low MSD 

score after the change reflects a good fit to subjects’ adaptation to the change. The basic, one 

parameter Roth-Erev model is comparable to the full model in performance prior to the change. 

However, the distinction between the basic (one parameter) and full (three parameter) models is 

quite stark if considering the post-change MSD score, where the one parameter model fails to 

predict better than even the random choice benchmark. Similarly, the addition of reference points 

to the basic Roth-Erev model, whether fixed or evolving, leads to very strong convergence 

initially, but the poorest responsiveness of any of the models considered.  

Interestingly, the performance of the basic Roth-Erev model is benefited most not by the 

inclusion of experimentation parameters but through a notion of world-resetting. If the basic 

model “throws out” built-up propensities when the underlying payoffs change, its descriptive 

power rises considerably post-change, and even is a better descriptor of the data before the change 

in payoffs. The latter may sound counterintuitive; why should the two-stage world-resetting model 

perform better in the first part of the experiment when it is, up to the change in payoffs, equivalent 

to the basic model? Experimentation in the basic model is driven largely by the value of initial 

propensities. If a high amount of experimentation must persist in order to recognize environmental 

variations even after a good amount of time has elapsed, then the best-fitting estimated initial 

propensities must be large (ρ0=300). The tradeoff is that large initial propensities will lead to 

slower convergence. Since the two-stage world resetting model is not hindered in this fashion, 

lower initial propensities provide a better fit (ρ0=125).  

Again, the intention is not to suggest that the two-stage world resetting model is a fair 

competitor, since its application in less simple settings would require a theory of how people 

perceive change, and a number of additional parameters to incorporate that notion. Further, the 

model was developed after the author was privy to the data and subjects’ sentiments. Ironically, 

while its fabrication was driven by the results, it does not perform well when compared with 
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aspiration-based learning models (Figures 3i-3k). Both aspiration-based models track the data well 

throughout, but the satisficing model is the only model to accurately describe the dispersion of 

play. While indicating what the average player would do is an important task for any learning 

model, describing the dispersion of play is as important if not more so for many applications, 

especially if the efficiency or total payoffs in a game fall off substantially as players move away 

from equilibrium. The inner quartile of play, both in the experiment and that simulated by the 

satisficing model, is quite broad initially but quickly converges on the equilibrium strategy. 

Shortly after the change in payoffs, simulated and actual play once more becomes more volatile 

but again soon converge on the new equilibrium. 

 

4.3 Model prediction 

To assess the normative value of the learning models, we evaluate the predictive power of the 

parameters fit to Treatment 1. Two approaches for testing the predictive power of models have 

been adopted. The first, termed in sample (sometimes post hoc or cross-validation; see Mosier, 

1951), uses parameter values estimated from a population of subjects in a given experiment to 

predict the behavior of a different population in the same experiment. In sample is useful for 

evaluating a model’s stability - if a model calibrated to one population predicts well the behavior 

of another population in the same task then we might conclude that people are learning in similar 

ways when faced with this task. Busemeyer and Wang, (2000) suggest a methodological drawback 

to the in sample approach. Given that the data distributions across two populations faced with the 

same task are expected to be similar, the same models should perform well in both populations, 

hence not providing an adequate challenge to the models’ predictive abilities.16  

If a model is to have normative value, it should be able to provide some insight into how 

different players would perform in a task different from the one used to fit the parameters. The 

approach adopted in this paper, out of sample prediction, compares simulated data using the 

models appropriately fit to Treatment 1 to actual data from Treatment 2, which incorporates a 

different experimental design. The primary distinction, in terms of responsiveness, is that a player 

selecting the equilibrium action in Treatment 1 will notice a change in payoffs from that strategy 

when the environment changes, while a player in Treatment 2 will not. Another distinction is that 

in Treatment 2, the change in payoffs occurs halfway through the experiment, hence balancing the 

                                                 
16 This is further complicated by the fact that models with more free parameters will generally fit better, and nested 
models will necessarily favor more parameters. Hence, the in sample approach will favor more complicated models. 
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relative weighing of initial convergence and responsiveness in the mean squared deviation scores 

whereas in Treatment 1, seventy percent of play occurred before the change. 

The measure of how well the models predicted play in Treatment 2 was decomposed into 

predictive power before and after the change in payoffs (Table 6). The prediction of all of the 

models in Treatment 2 is systematically worse than the fit to Treatment 1. This certainly is not 

surprising given that for Treatment 2, a parameter-free out of sample comparison is used. Prior to 

the change in the payoff function, models involving aspirations or reference points all do well. The 

best prediction for initial play in Treatment 2 is derived from the fixed and evolving reference 

variants of reinforcement learning. However, these models again fail to capture responsiveness. 

With the exception of the full reinforcement learning model, the history-dependent learning 

models perform similar to or worse than the random choice benchmark after the change in the 

payoff function. Of the non-history dependent models, the worst performing is the responsive 

learning automata, the only memoryless model incorporating undirected, random experimentation.  

In general, we can compare how well the models predict play both before and after the 

change in the payoff function in Treatment 2, given that the length of the experiment was the same 

on either side of the environmental change. All of the history dependent models have much higher 

MSD scores for the post-change part of the experiment than pre change (an average of 13% 

higher). For the responsive learning automata, the increase is five percent. In contrast, the two-

stage world resetting, evolving aspirations, and satisficing models increase less than one percent in 

mean squared deviation, suggesting that they predict the initial convergence of subjects’ play 

about as well as the responsiveness of subjects to the environmental change. 

Models with higher MSDs than random choice after the change in parameters are the same 

models that showed little or no responsiveness in Treatment 1. In a graphical comparison 

restricted to models that surpass the random choice benchmark after the change in parameters 

(Figure 4), all of the models displayed initially converge to the equilibrium in median strategy and 

then eventually respond to the change in payoffs. However, while subjects’ play again shows 

convergent behavior, in the sense that the inner quartile closes in on the equilibrium, most models 

do not track this behavior well, instead overestimating the variance of play. Only the satisficing 

model (Fig. 4f) displays comparable convergent behavior. 

From visual inspection, the responsive learning automata model (Fig. 4d) appears to 

require the longest time to react to the change in the payoff function. The value of the fitted 

parameter, β, representing the speed of learning, is 0.0005, indicating slower adjustment times. 
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Even after initial reaction, the responsive learning automata model appears to stabilize on strategy 

5 and only towards the end of the 600 periods begins to move towards the post-change equilibrium 

strategy of 6. Similar stepwise movement towards the new equilibrium is apparent in the evolving 

aspirations model (Fig. 4e) and, to a lesser degree, in the full Roth-Erev model (Fig 4b). Before 

the change in the payoff function, all of the models are placing greater probability on strategies 

near the equilibrium since these strategies result in higher payoffs. Hence, after the change in the 

payoff function, experimentation is more likely to occur with strategies near the former 

equilibrium, leading to an initial bias in favor of these strategies.  

The two-stage world resetting model was introduced to capture the notion that subjects do 

not carry over history from one environment to the next, and that experimentation is a periodic 

phenomenon and not a random event in each period. Motivating this was the discovery that each 

of the four “learning opportunities” (two payoff functions in each treatment) appears to follow the 

same path of play. The average strategies used by experimental subjects for each of the four 

“learning opportunities,” the first three minutes of each treatment, and the first three minutes after 

the parameter change in each treatment are presented (Figure 5). The closeness of the bottom two 

lines, representing the first three minutes of each treatment, is not surprising. Both treatments 

started identically. However, the comparison between the treatments after the change in the payoff 

function suggests that the learning process was similar, despite differences in the timing of the 

change, how noticeable the change was, and the payoff at the post change equilibrium. Further, the 

lower two lines appear as mirror images of the upper lines, suggesting that the process of learning 

did not change during the experiment. Subjects learned the first equilibrium following essentially 

the same path of play as the second. Strategic persistence is not observed, nor is the role of 

memory or history evident. The main distinction is that in Treatment 1, players reacted faster 

(began to move upwards earlier) to the change in payoffs. This, however, is due to the inability of 

players to notice the change in the environment until experimentation, in some form, occurred. 

It is evident that aspirations-based models perform the best in both describing and 

predicting play in this dynamic experiment. Specifically, a variant of the model introduced by 

Karandikar, et. al. (1998) obtains the lowest MSD scores in descriptive and predictive roles, as 

well as qualitatively describes and predicts the aggregate path of play and its dispersion. An 

interesting question raised about this class of models is whether learning is benefited by 

occasional trembles in the aspiration level. Gilboa and Schmeidler (1996), in the context of a 

model with long-term memory, suggest that learning is improved through occasional upward 
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shocks as such shocks induce experimentation. Borgers and Sarin (1995), however, propose that in 

a model without history, trembles may lead to volatile, non-convergent play. To test the robustness 

of the satisficing model, one can investigate if subjects with higher tremble probabilities do in fact 

exhibit more volatile play or if the added experimentation leads to faster learning. 

Given the parameter estimates for each individual subject for the satisficing model, the 

empirical distribution of aspiration tremble probabilities may be calculated (Figure 6). 

Interestingly, the distribution of tremble probabilities in the population of subjects is not 

significantly different from a uniform distribution on the interval [0,0.055] (Kolmogorv-Smirnov 

test yields a critical value of 80%). Subjects are separated into two groups, low experimentation 

and high experimentation, based on whether their tremble probabilities are above or below the 

empirical median value of 0.025. A graphical representation of median play for each subject group 

(Figure 7) demonstrates that more robust convergence is obtained for the low experimentation 

group, although both are comparable in responsiveness to change. This lends support to the 

argument that high tremble probabilities may decrease the robustness of convergence. 

 

5. Conclusion 

History-based models of learning have performed quite well, explaining data from a variety of 

repeated games experiments (Roth and Erev, 1995). However, in real-time dynamic games, they 

appear ill suited. Subjects may be able to recognize a change in their environment, which leads to 

discarding much of what has been learned, as it may be inappropriate for the new setting. 

Nevertheless, evidence of persistence in strategy selection exists outside of this experiment. For 

example, corporate leaders often maintain a strategy that was successful in the past despite the 

strategy being suboptimal following an environmental shift (Audia, Locke, and  Smith, 2000). 

Strategy persistence, therefore, may rely crucially on the beliefs of the decision makers. While in 

the experimental environment, subjects had little basis to believe that they could influence their 

environment, businesses may display greater persistence due to beliefs held by managers about 

their interrelationship with their environment.17 

The incorporation of reference points provided the greatest contribution to explanatory and 

predictive power of the models considered. However, fixed reference points hinder responsiveness 

in dynamic environments. A critical limitation of fixed reference points is that they do not permit 
                                                 
17 Such biases have been well documented. For example, self-serving biases (Heider, 1958) lead managers to attribute 
higher profits to their own ability, rather than environmental conditions, and fundamental attribution biases (Rotter, 
1966) cause people to overestimate their ability to control the environment. 
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experimentation unless an environmental shift decreases the payoff at the former equilibrium. If 

the environment changes such that payoffs at the former equilibrium rise, then the model evaluates 

the strategy as “even better than before,” further reinforcing that strategy and hindering adaptation.  

In the field of artificial intelligence, practitioners have long realized that random, 

occasional deviations from the optimal strategy lead to slower learning than more directed 

experimentation techniques. Not surprisingly, nature may have learned this lesson well before the 

theoretician. However, modeling of human learners in economics generally maintains this 

assumption. That people’s experimentation is not independent from one period to the next, nor as 

rare as often assumed in the literature was shown by Friedman, et. al. (2000). Instead, 

experimentation is often performed in stages, and models incorporating such experimentation 

outperform those that do not. What brings about such patterns may be referred to as “optimism in 

the face of uncertainty.” High initial propensities, for example, suggest that untried, and hence 

uncertain strategies are played with high probability in early periods. Alternately, occasional 

upward shocks to one’s aspiration or reference point beyond what currently is obtainable reflect an 

optimism, or a hope, that some other strategies may outperform what currently seems best. 

 A well-known maxim provides that a model is only as good as the assumptions that guide 

it, its extrapolation to novel situations, and the data that populate it. This paper has addressed the 

first two elements, differentiating the heuristic assumptions of a number of learning models, and 

evaluating both their ex post and ex ante descriptive power. However, while the experiment 

isolated responsiveness in a low-information, real-time dynamic framework, in most settings 

decision makers must discern between more subtle environmental variations, as well as distinguish 

between noisy payoff functions. Satisficing, directed experimentation, and lack of history 

dependence are necessary components of learning models which hope to accurately predict play in 

dynamic settings. However, the construction of such models flexible enough to be of normative 

use in economic theory requires a continuing fusion of psychology, control theory, and economics. 
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Appendix – Simulation Methodology 

 

A1. Estimating Parameter Values 

 

Simulations were run using the updating rules prescribed by each model, the actual payoff 

functions from the experiment, and the mean squared deviation (MSD) criterion. Parameters were 

chosen using an iterative grid procedure. For each model, a broad grid was chosen to permit 250 

sets of values of the parameters. Specifically, for each parameter which is logically constrained 

(experimentation probability cannot be greater than one, for example), the initial grid covered the 

entire range of possible values. For other parameters with no logical ceiling (such as initial 

propensities) a maximum value was chosen large enough so that the highest two values of the grid 

would not minimize MSD for any subject. After this initial run, the inner quartile of the actual 

values which minimized subjects’ MSD was used for the new bounds on the grid in the next 

iteration. A total of four iterations were used for each model, for a total of 1000 sets of parameter 

values. At each value, 10 simulations were run for each subject, and the MSD was averaged 

among them. Hence, a total of 10,000 simulations were used per subject, yielding 560,000 total 

simulations per learning model, to find the best parameters for each model. 

 

A2. Generating Figures 

 

Once the parameter values representing the best fit were found for each model, 1000 players were 

simulated for each treatment using those values. This data was used for the figures. 

 

A3. Comparisons to Treatment 2 

 

The parameters obtained from the above procedure were used to simulate players to compare to 

the behavior of subjects in the second treatment. A total of 1000 simulations were run for each 

model, each was compared to the actual data, and the mean absolute deviations presented are the 

average over the 1000 simulations. 
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Figure 1. Subject data for experimental treatments  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Comparison of reinforcement learning models and the contribution of certain 
parameters to the models’ descriptive power.  
Dashed lines and boxes represent comparable models. 
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Figure 3. Simulated Play for Treatment 1. 
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3b. Roth-Erev RL Basic (1 parameter) Model. 3c. RL Basic Model with Experimentation.
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Figure 3 (cont). Simulated Play for Treatment 1. 
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3h. Responsive Learning Automata. 3i. Two-Stage World Resetting. 
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Figure 4. Simulated Play for Treatment 2. 
 
 
 
 
 
 

  

0

10

20

30

40

50

60

70

80

90

0 60 120 180 240 300 360 420 480 540 600

period

st
ra

te
gy

0
1
2
3
4
5
6
7
8
9

0 60 120 180 240 300 360 420 480 540 600
period

st
ra

te
gy

0
1
2
3
4
5
6
7
8
9

0 60 120 180 240 300 360 420 480 540 600
period

st
ra

te
gy

0
1
2
3
4
5
6
7
8
9

0 60 120 180 240 300 360 420 480 540 600
period

st
ra

te
gy

0
1
2
3
4
5
6
7
8
9

0 60 120 180 240 300 360 420 480 540 600
period

st
ra

te
gy

0
1
2
3
4
5
6
7
8
9

0 60 120 180 240 300 360 420 480 540 600
period

st
ra

te
gy

4.4a. Experimental Data for Treatment 2. 4.4b. Roth-Erev Full  (3 Parameter) Model. 
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 4.4e. Evolving Aspirations. 4.4f. Satisficing. 

mean strategy inner quartile payoff change median strategy

4a. Experimental Data for Treatment 2. 4b. Roth-Erev Full (3 Parameter) Model. 

4c. Two-Stage World Resetting. 4d. Responsive Learning Automata. 

4e. Evolving Aspirations. 4f. Satisficing. 



31 

Figure 5. Comparison of Learning Paths. Upper two graphs represent post-parameter change 
play (right axis). Lower two graphs represent pre-parameter change play (left axis). All paths 
represent the average strategy choice across all subjects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 6. Distribution of Tremble Probabilities.           Figure 7. Median Play of Subjects in Treatment 1 
     by Level of Aspiration Tremble Probability. 
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Table 1. Treatments and changes in underlying payoff functions.  
 
Time Treatment 1 Treatment 2 

  0 

 
 
 

 

5 

 

7 

 
 

 

10   
Both treatments began with the same payoff functions. At seven minutes for Treatment 1 and five 
minutes for Treatment 2, payoffs changed. Starred variables represent equilibrium strategies and 
payoffs. 

 
 
 

Table 2. Incorporation of heuristics in learning models. 
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R-E Reinforcement with Reference Points Yes  Period Recency 
 Fixed reference  Fixed 
 Evolving reference   Evolving   

Two-stage World Resetting  Resettable No Stage Recency,  
Full sampling 

Responsive Learning Automata  No No Period Undirected 
Aspirations Models No Evolving Stage Full sampling 
 Satisficing  
 Evolving Aspirations      
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Table 3. Mean squared deviations (MSD) for best fitting parameters fit to treatment 1.  
 

A B 

Model Params Fit to 
Individual 

Data 

Fit to 
Aggregate 

Data 
Roth-Erev Reinforcement Learning   
 Basic ρ0 0.817 0.852 
 Forgetfulness ρ0, γ 0.676 0.849 
 Experimentation ρ0, ε 0.725 0.838 
 Full model ρ0, γ,ε 0.620 0.836 
R-E Reinforcement with Reference Points   
 Fixed reference ρ0, α 0.693 0.824 
 Evolving reference ρ0, α0, γ 0.695 0.794 
Two-stage World Resetting α0 0.624 0.834 
Responsive Learning Automata ε,β 0.615 0.824 
Aspirations Models   
 Satisficing γ,β, ε 0.554 0.757 
 Evolving Aspirations γ,β, ε 0.575 0.795 
Benchmark Models    
 Random Choice  0.900 0.900 
 Equilibrium  0.970 0.970 

Models were fit to each individual separately (and MSDs averaged across subjects) as well as to the 
entire data set, assuming a common set of parameters for all subjects. MSD scores shown are for the 
parameters that minimized MSD in each case. Lower MSD implies better fit. 

 
 

Table 4. Comparison of model fits to individual data.  
 

# Model 1 2 3 4 5 6 7 8 9 10 11 12 best
1 Satisficing   .64 .75 .75 .77 .79 .82 .80 .82 .86 1.0 1.0 9 
2 Evolving Aspirations .39  .68 .77 .68 .82 .79 .86 .89 .93 .98 1.0 8 
3 Responsive LA  .25 .32  .46 .59 .80 .80 .82 .96 .98 .84 1.0 6 
4 Two-stage World Resetting  .25 .23 .54  .50 .75 .77 .80 .89 .95 .91 1.0 6 
5 R-E Full model  .23 .32 .41 .50  .71 .82 .80 .93 1.0 .91 1.0 5 
6 R-E Forgetfulness .21 .18 .20 .25 .29  .50 .68 .77 .89 .79 1.0 3 
7 R-E Evolving reference .18 .21 .20 .23 .18 .50  .54 .79 1.0 .75 1.0 3 
8 R-E Fixed reference .20 .14 .18 .20 .20 .32 .46  .64 .91 .80 1.0 2 
9 R-E Experimentation .18 .11 .04 .11 .14 .23 .21 .36  1.0 .73 1.0 1 
10 R-E Basic .14 .07 .02 .05 .07 .11 .00 .09 .14  .68 1.0 0 
11 Equilibrium  .00 .02 .16 .09 .09 .21 .25 .20 .27 .32  .41 0 
12 Random Choice .07 .04 .00 .00 .00 .00 .00 .00 .00 .00 .59  0 

Each number reflects the proportion of subjects for whom the model in the row predicted at least as well as 
the model in the column. The final column, labeled “best” reflects the number of other models the model in 
the row “beat,” in the sense of predicting better for a majority of individuals. 
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Table 5. Decomposed mean squared deviations (MSD) for parameters best fitting treatment 1 data.  
 

Model Params Pre 
change 

Post 
change 

Roth-Erev Reinforcement Learning   
 Basic ρ0 0.829 0.906 
 Forgetfulness ρ0, γ 0.840 0.871 
 Experimentation ρ0, ε 0.818 0.883 
 Full model ρ0, γ,ε 0.826 0.859 
R-E Reinforcement with Reference Points   
 Fixed reference ρ0, α 0.759 0.976 
 Evolving reference ρ0, α0, γ 0.725 0.955 
Two-stage World Resetting α0 0.822 0.861 
Responsive Learning Automata ε,β 0.802 0.876 
Aspirations Models   
 Satisficing γ,β, ε 0.705 0.879 
 Evolving Aspirations γ,β, ε 0.776 0.838 
Benchmark Models    
 Random Choice  0.900 0.900 
 Equilibrium  0.938 1.044 

MSD is reported for the first seven minutes (pre change) and last three minutes (post change). 
 

 
 
Table 6. Decomposed mean squared deviations (MSD) for prediction of treatment 2 data.  

 

Model Params Overall Pre 
change 

Post 
change 

Roth-Erev Reinforcement Learning    
 Basic ρ0 0.879 0.841 0.918 
 Forgetfulness ρ0, γ 0.876 0.849 0.904 
 Experimentation ρ0, ε 0.878 0.846 0.911 
 Full model ρ0, γ,ε 0.861 0.851 0.871 
R-E Reinforcement with Reference Points    
 Fixed reference ρ0, α 0.900 0.804 0.996 
 Evolving reference ρ0, α0, γ 0.914 0.805 1.024 
Two-stage World Resetting α0 0.863 0.861 0.865 
Responsive Learning Automata ε,β 0.880 0.861 0.899 
Aspirations Models    
 Satisficing γ,β, ε 0.816 0.815 0.818 
 Evolving Aspirations γ,β, ε 0.829 0.828 0.829 
Benchmark Models     
 Random Choice  0.900 0.900 0.900 
 Equilibrium  1.388 1.441 1.336 

MSD is reported for the first five minutes(pre change) and last five minutes (post change). 


