2,183 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    CUPS : Secure Opportunistic Cloud of Things Framework based on Attribute Based Encryption Scheme Supporting Access Policy Update

    Get PDF
    The ever‐growing number of internet connected devices, coupled with the new computing trends, namely within emerging opportunistic networks, engenders several security concerns. Most of the exchanged data between the internet of things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute‐based encryption is a promising cryptographic mechanism suitable for distributed environments, providing flexible access control to encrypted data contents. However, it imposes high decryption costs, and does not support access policy update, for highly dynamic environments. This paper presents CUPS, an ABE‐based framework for opportunistic cloud of things applications, that securely outsources data decryption process to edge nodes in order to reduce the computation overhead on the user side. CUPS allows end‐users to offload most of the decryption overhead to an edge node and verify the correctness of the received partially decrypted data from the edge node. Moreover, CUPS provides the access policy update feature with neither involving a proxy‐server, nor re‐encrypting the enciphered data contents and re‐distributing the users' secret keys. The access policy update feature in CUPS does not affect the size of the message received by the end‐user, which reduces the bandwidth and the storage usage. Our comprehensive theoretical analysis proves that CUPS outperforms existing schemes in terms of functionality, communication and computation overheads

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    A Secured Proxy-Based Data Sharing Module in IoT Environments Using Blockchain

    Get PDF
    Access and utilization of data are central to the cloud computing paradigm. With the advent of the Internet of Things (IoT), the tendency of data sharing on the cloud has seen enormous growth. With data sharing comes numerous security and privacy issues. In the process of ensuring data confidentiality and fine-grained access control to data in the cloud, several studies have proposed Attribute-Based Encryption (ABE) schemes, with Key Policy-ABE (KP-ABE) being the prominent one. Recent works have however suggested that the confidentiality of data is violated through collusion attacks between a revoked user and the cloud server. We present a secured and efficient Proxy Re-Encryption (PRE) scheme that incorporates an Inner-Product Encryption (IPE) scheme in which decryption of data is possible if the inner product of the private key, associated with a set of attributes specified by the data owner, and the associated ciphertext is equal to zero 0 . We utilize a blockchain network whose processing node acts as the proxy server and performs re-encryption on the data. In ensuring data confidentiality and preventing collusion attacks, the data are divided into two, with one part stored on the blockchain network and the other part stored on the cloud. Our approach also achieves fine-grained access control
    corecore