418 research outputs found

    A survey on software testability

    Full text link
    Context: Software testability is the degree to which a software system or a unit under test supports its own testing. To predict and improve software testability, a large number of techniques and metrics have been proposed by both practitioners and researchers in the last several decades. Reviewing and getting an overview of the entire state-of-the-art and state-of-the-practice in this area is often challenging for a practitioner or a new researcher. Objective: Our objective is to summarize the body of knowledge in this area and to benefit the readers (both practitioners and researchers) in preparing, measuring and improving software testability. Method: To address the above need, the authors conducted a survey in the form of a systematic literature mapping (classification) to find out what we as a community know about this topic. After compiling an initial pool of 303 papers, and applying a set of inclusion/exclusion criteria, our final pool included 208 papers. Results: The area of software testability has been comprehensively studied by researchers and practitioners. Approaches for measurement of testability and improvement of testability are the most-frequently addressed in the papers. The two most often mentioned factors affecting testability are observability and controllability. Common ways to improve testability are testability transformation, improving observability, adding assertions, and improving controllability. Conclusion: This paper serves for both researchers and practitioners as an "index" to the vast body of knowledge in the area of testability. The results could help practitioners measure and improve software testability in their projects

    Survey of source code metrics for evaluating testability of object oriented systems

    No full text
    Software testing is costly in terms of time and funds. Testability is a software characteristic that aims at producing systems easy to test. Several metrics have been proposed to identify the testability weaknesses. But it is sometimes difficult to be convinced that those metrics are really related with testability. This article is a critical survey of the source-code based metrics proposed in the literature for object-oriented software testability. It underlines the necessity to provide testability metrics that are proved to be intuitive and adequate for the testing cost prediction

    A Fault-Based Model of Fault Localization Techniques

    Get PDF
    Every day, ordinary people depend on software working properly. We take it for granted; from banking software, to railroad switching software, to flight control software, to software that controls medical devices such as pacemakers or even gas pumps, our lives are touched by software that we expect to work. It is well known that the main technique/activity used to ensure the quality of software is testing. Often it is the only quality assurance activity undertaken, making it that much more important. In a typical experiment studying these techniques, a researcher will intentionally seed a fault (intentionally breaking the functionality of some source code) with the hopes that the automated techniques under study will be able to identify the fault\u27s location in the source code. These faults are picked arbitrarily; there is potential for bias in the selection of the faults. Previous researchers have established an ontology for understanding or expressing this bias called fault size. This research captures the fault size ontology in the form of a probabilistic model. The results of applying this model to measure fault size suggest that many faults generated through program mutation (the systematic replacement of source code operators to create faults) are very large and easily found. Secondary measures generated in the assessment of the model suggest a new static analysis method, called testability, for predicting the likelihood that code will contain a fault in the future. While software testing researchers are not statisticians, they nonetheless make extensive use of statistics in their experiments to assess fault localization techniques. Researchers often select their statistical techniques without justification. This is a very worrisome situation because it can lead to incorrect conclusions about the significance of research. This research introduces an algorithm, MeansTest, which helps automate some aspects of the selection of appropriate statistical techniques. The results of an evaluation of MeansTest suggest that MeansTest performs well relative to its peers. This research then surveys recent work in software testing using MeansTest to evaluate the significance of researchers\u27 work. The results of the survey indicate that software testing researchers are underreporting the significance of their work

    Oracle Assessment, Improvement and Placement

    Get PDF
    The oracle problem remains one of the key challenges in software testing, for which little automated support has been developed so far. This thesis analyses the prevalence of failed error propagation in programs with real faults to address the oracle placement problem and introduces an approach for iterative assessment and improvement of the oracles. To analyse failed error propagation in programs with real faults, we have conducted an empirical study, considering Defects4J, a benchmark of Java programs, of which we used all 6 projects available, 384 real bugs and 528 methods fixed to correct such bugs. The results indicate that the prevalence of failed error propagation is negligible. Moreover, the results on real faults differ from the results on mutants, indicating that if failed error propagation is taken into account, mutants are not a good surrogate of real faults. When measuring failed error propagation, for each method we use the strongest possible oracle as postcondition, which checks all externally observable program variables. The low prevalence of failed error propagation is caused by the presence of such a strong oracle, which usually is not available in practice. Therefore, there is a need for a technique to assess and improve existing weaker oracles. We propose a technique for assessing and improving test oracles, which necessarily places the human tester in the loop and is based on reducing the incidence of both false positives and false negatives. A proof showing that this approach results in an increase in the mutual information between the actual and perfect oracles is provided. The application of the approach to five real-world subjects shows that the fault detection rate of the oracles after improvement increases, on average, by 48.6%. The further evaluation with 39 participants assessed the ability of humans to detect false positives and false negatives manually, without any tool support. The correct classification rate achieved by humans in this case is poor (29%) indicating how helpful our automated approach can be for developers. The comparison of humans’ ability to improve oracles with and without the tool in a study with 29 other participants also empirically validates the effectiveness of the approach

    Automated Unit Testing of Evolving Software

    Get PDF
    As software programs evolve, developers need to ensure that new changes do not affect the originally intended functionality of the program. To increase their confidence, developers commonly write unit tests along with the program, and execute them after a change is made. However, manually writing these unit-tests is difficult and time-consuming, and as their number increases, so does the cost of executing and maintaining them. Automated test generation techniques have been proposed in the literature to assist developers in the endeavour of writing these tests. However, it remains an open question how well these tools can help with fault finding in practice, and maintaining these automatically generated tests may require extra effort compared to human written ones. This thesis evaluates the effectiveness of a number of existing automatic unit test generation techniques at detecting real faults, and explores how these techniques can be improved. In particular, we present a novel multi-objective search-based approach for generating tests that reveal changes across two versions of a program. We then investigate whether these tests can be used such that no maintenance effort is necessary. Our results show that overall, state-of-the-art test generation tools can indeed be effective at detecting real faults: collectively, the tools revealed more than half of the bugs we studied. We also show that our proposed alternative technique that is better suited to the problem of revealing changes, can detect more faults, and does so more frequently. However, we also find that for a majority of object-oriented programs, even a random search can achieve good results. Finally, we show that such change-revealing tests can be generated on demand in practice, without requiring them to be maintained over time

    How we refactor and how we document it? On the use of supervised machine learning algorithms to classify refactoring documentation

    Get PDF
    Refactoring is the art of improving the structural design of a software system without altering its external behavior. Today, refactoring has become a well-established and disciplined software engineering practice that has attracted a significant amount of research presuming that refactoring is primarily motivated by the need to improve system structures. However, recent studies have shown that developers may incorporate refactoring strategies in other development-related activities that go beyond improving the design especially with the emerging challenges in contemporary software engineering. Unfortunately, these studies are limited to developer interviews and a reduced set of projects. To cope with the above-mentioned limitations, we aim to better understand what motivates developers to apply a refactoring by mining and automatically classifying a large set of 111,884 commits containing refactoring activities, extracted from 800 open source Java projects. We trained a multi-class classifier to categorize these commits into three categories, namely, Internal Quality Attribute, External Quality Attribute, and Code Smell Resolution, along with the traditional Bug Fix and Functional categories. This classification challenges the original definition of refactoring, being exclusive to improving software design and fixing code smells. Furthermore, to better understand our classification results, we qualitatively analyzed commit messages to extract textual patterns that developers regularly use to describe their refactoring activities. The results of our empirical investigation show that (1) fixing code smells is not the main driver for developers to refactoring their code bases. Refactoring is solicited for a wide variety of reasons, going beyond its traditional definition; (2) the distribution of refactoring operations differs between production and test files; (3) developers use a variety of patterns to purposefully target refactoring-related activities; (4) the textual patterns, extracted from commit messages, provide better coverage for how developers document their refactorings

    Automated web application testing using search based software engineering

    Full text link
    • …
    corecore