
The University of Sheffield
Department of Computer Science

Automated Unit Testing of
Evolving Software

Sina Shamshiri

Supervisors: Gordon Fraser & Phil McMinn

This dissertation is submitted for the degree of
Doctor of Philosophy

Faculty of Engineering October 2016

Abstract

As software programs evolve, developers need to ensure that new changes do
not affect the originally intended functionality of the program. To increase their
confidence, developers commonly write unit tests along with the program, and
execute them after a change is made. However, manually writing these unit-tests
is difficult and time-consuming, and as their number increases, so does the cost
of executing and maintaining them.

Automated test generation techniques have been proposed in the literature
to assist developers in the endeavour of writing these tests. However, it remains
an open question how well these tools can help with fault finding in practice,
and maintaining these automatically generated tests may require extra effort
compared to human written ones.

This thesis evaluates the effectiveness of a number of existing automatic
unit test generation techniques at detecting real faults, and explores how these
techniques can be improved. In particular, we present a novel multi-objective
search-based approach for generating tests that reveal changes across two versions
of a program. We then investigate whether these tests can be used such that no
maintenance effort is necessary.

Our results show that overall, state-of-the-art test generation tools can indeed
be effective at detecting real faults: collectively, the tools revealed more than half
of the bugs we studied. We also show that our proposed alternative technique
that is better suited to the problem of revealing changes, can detect more faults,
and does so more frequently. However, we also find that for a majority of object-
oriented programs, even a random search can achieve good results. Finally, we
show that such change-revealing tests can be generated on demand in practice,
without requiring them to be maintained over time.

Acknowledgements

First and foremost, my deep gratitude goes to my supervisors Gordon Fraser and
Phil McMinn for their tireless support, mentorship, and patience throughout the
course of this PhD. In particular, the achievements of this work may have not
been possible without their wisdom, expertise and thoughtful discussions. I also
want to thank Guy Brown for his advice and encouragement during both my
undergraduate and postgraduate studies.

Special thanks are due to my collaborators José Campos, José Miguel Rojas,
René Just, Andrea Arcuri, and Alessandro Orso. I would like to also thank all
members of my research group and laboratory (Verification and Testing) for their
moral and personal support. In addition, I am thankful to Chris Wright, Ciprian
Dragomir, and Mathew Hall for their help and the enjoyable conversations,
during the early part of my PhD.

Finally, I am grateful and eternally indebted to my parents for their love,
encouragement, and endless support during all the years.

Declaration and Publications

This thesis contains original work undertaken at the University of Sheffield
between October 2012 and September 2016, parts of which have been published
or are currently under review.

• Sina Shamshiri, Gordon Fraser, Phil McMinn, and Alessandro Orso (2013).
Search-Based Propagation of Regression Faults in Automated Regression
Testing. In Proceedings of the ICST International Workshop on Regression
Testing, pages 396–399. IEEE

• Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn (2015).
Random or Genetic Algorithm Search for Object-Oriented Test Suite
Generation?. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 1367–1374 . ACM (Winner of the Best
Paper award for the SBSE-SS track)

• Sina Shamshiri (2015). Automated unit test generation for evolving soft-
ware. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), Doctoral Symposium, pages 1038–1041. ACM

• Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil McMinn,
and Andrea Arcuri (2015). Do Automatically Generated Unit Tests Find
Real Faults? An Empirical Study of Effectiveness and Challenges. In
Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 201–211. IEEE (Winner of the
ACM Distinguished Paper award)

viii

• Sina Shamshiri, José Campos, Gordon Fraser, and Phil McMinn (2017).
Disposable Testing: Avoiding Maintenance of Generated Unit Tests by
Throwing Them Away. In Proceedings of the International Conference on
Software Engineering (ICSE), Poster Track, IEEE

Sina Shamshiri
October 2016

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Overview . 1

1.2 Regression Testing . 2

1.2.1 Motivation for Automated Regression Testing 3

1.2.2 Summary . 5

1.3 Structure and Contributions of this Thesis 6

2 Literature Review 11

2.1 Software Testing . 11

2.1.1 Test Adequacy Criteria . 12

2.1.2 Automated Test Generation 17

2.1.3 Random Testing . 18

2.1.4 Testing Using Symbolic Execution 19

2.1.5 Testing Using Search Based Software Engineering 20

2.1.6 Summary . 30

x Table of contents

2.2 Regression Testing . 31

2.2.1 Test Minimisation, Selection and Prioritisation 32

2.2.2 Test Suite Augmentation . 35

2.2.3 Automated Regression Test Generation 40

2.2.4 Differential Testing . 43

2.2.5 Regression Verification . 47

2.2.6 The Oracle Problem . 48

2.2.7 Maintaining Regression Test Suites 49

2.2.8 Summary . 50

3 Evaluating Automated Unit Test Generation Tools Using Real
Faults 51

3.1 Introduction . 51

3.2 Methodology . 53

3.2.1 Subject Programs . 53

3.2.2 Automated Unit Test Generation Tools 54

3.2.3 Experiment Procedure . 56

3.2.4 Threats to Validity . 60

3.3 Do Automated Unit Test Generation Tools Find Real Bugs? . . . 61

3.3.1 How Many Usable Tests Are Generated? 61

3.3.2 How Many Bugs Are Found? 62

3.3.3 How Are the Bugs Found? 64

3.3.4 Are Bugs That Are Covered Usually Found? 67

3.4 How Can the Tools Be Improved? 68

3.4.1 Improving Coverage . 69

3.4.2 Improving Propagation and Detection 73

3.4.3 Flaky Tests . 75

Table of contents xi

3.4.4 False Positives . 76

3.5 Related Work . 79

3.6 Conclusions . 79

4 Differential Testing Using a Search-Based Approach 81

4.1 Introduction . 81

4.2 Search-based Regression Test Generation 83

4.2.1 Representation and Fitness Function 83

4.2.2 Generating Assertions . 95

4.2.3 Isolation of Changes . 96

4.3 Evaluation of the Search Objectives 97

4.3.1 Research Questions . 98

4.3.2 Subject Programs . 99

4.3.3 Evaluated Techniques . 100

4.3.4 Experiment Procedure . 101

4.3.5 Experiment setup . 103

4.3.6 Data Collection . 103

4.3.7 Threats to Validity . 105

4.3.8 Results . 107

4.4 Summary . 112

5 Random vs. GA Search for Generating High-Coverage Test
Suites 115

5.1 Introduction . 115

5.2 Types of Branches in Java Bytecode 117

5.2.1 “Integer-Integer” Branches 119

5.2.2 “Integer-Zero” Branches . 120

5.2.3 “Reference-Reference” branches 121

xii Table of contents

5.2.4 “Reference-Null” branches 122

5.2.5 Summary . 122

5.3 Experimental Setup . 122

5.3.1 Subjects . 123

5.3.2 Collation of Branch Type Statistics 124

5.3.3 Experimental Procedure . 124

5.3.4 Threats to Validity . 125

5.4 Random or Genetic Algorithm Search for Test Suite Generation? 126

5.4.1 RQ5.1: Coverage Effectiveness. 126

5.4.2 RQ5.3: Effects of the Time Allowed For the Search. . . . 130

5.5 The Impact of Branch Types . 132

5.6 Related Work . 133

5.7 Conclusion and Future Work . 134

6 Disposable Testing 137

6.1 Introduction . 137

6.2 Methodology . 140

6.2.1 Test Generation Techniques 140

6.2.2 Subject Programs . 141

6.2.3 Experiment Procedure . 142

6.2.4 Experiment Analysis . 145

6.2.5 Threats to Validity . 146

6.3 Answers to RQ6.1 (Detection of Changes To Classes) 148

6.3.1 The Influence of Testing Pairs of Classes 149

6.3.2 Influence of Optimization for Coverage 152

6.4 Answers to RQ6.2 (Detection of Subsequent Changes) 155

6.4.1 RQ6.2-M: Detection of Mutants 156

Table of contents xiii

6.4.2 RQ6.2-D: Detection of Developer Changes 158

6.5 Answers to RQ6.3 (Comparison of the Maintenance Overhead) . 163

6.6 Conclusions . 165

7 Conclusions and Future Work 167

7.1 Summary of Contributions and Achievements 167

7.1.1 Effectiveness of Tools on Detecting Real Faults 168

7.1.2 Search-Based Differential Testing 169

7.1.3 Random or GA for Search-Based Test Generation 170

7.1.4 Maintaining Automatically Generated Tests 171

7.2 Future Work . 172

7.2.1 Human Study of Disposable Testing 172

7.2.2 Test Readability . 173

7.2.3 Detecting Non-Functional Regressions using Diff. Testing 174

7.2.4 Addressing State Infection in Differential Testing 174

7.2.5 Hyper-heuristics Search and Adaptive Approaches 176

7.3 Final Remarks . 176

References 179

Appendix A Generating Differential Test Suites Using EvosuiteR197

A.1 Introduction . 197

A.1.1 Requirements . 197

A.2 Command-line and Configuration Options 198

A.3 Differential Test Suite Generation 200

A.4 Generating Test Suites for Whole Projects 201

A.5 Visualisation of the Search Outcome 202

A.6 Summary . 202

List of figures

2.1 A population of test suite chromosomes 27

2.2 The search operators crossover and mutation 29

3.1 Overview of the experimental setup 53

3.2 Ratio of bugs that were detected by an assertion or an exception 66

3.3 Code coverage ratios for generated test suites that found a bug
and generated test suites that did not 67

4.1 Overview of the EvosuiteR approach 84

4.2 Credit Card example class . 88

4.3 Example test suite for the CreditCard class 90

4.4 Comparing the effectiveness of EvoSuiteR using the combined
fitness against individual measurements 108

4.5 Comparing the effectiveness of EvoSuiteR to evaluate CFD . . 109

4.6 Comparing EvoSuiteR using random search, against
EvoSuiteR using GA-Comb . 110

4.7 Comparing the effectiveness of EvoSuiteR using random search,
against using GA with individual fitness measurements 111

4.8 Comparing the effectiveness of EvoSuiteR using GA-Comb,
against three state-of-the-art test generation techniques 112

xvi List of figures

5.1 Examples of different branch types and their effect on the fitness
landscape . 118

5.2 An example of handling a double comparison 121

5.3 Comparing GA performance with Pure Random and Random+
over the 980 SourceForge classes. 126

5.4 Comparing the performance of GA with Random+: p-values and
effet size. 127

5.5 Numbers of different branch types in the classes under test. . . . 129

5.6 Comparing GA performance with Random+ for different types of
branch and with branchless methods. 131

5.7 Branch coverage comparison between GA vs. Random+ over 10
minutes . 132

5.8 Comparing branch coverage performance of GA against Random+
using an extended search budget of 10 minutes 132

6.1 Comparing CT → and differential testing in regard to their effec-
tiveness at revealing changes . 148

6.2 Comparing CT → and CT ← in regard to their effectiveness at
revealing changes . 149

6.3 Comparing CT ← and differential testing in regard to their effec-
tiveness at revealing changes . 152

6.4 Comparing coverage-driven testing and differential testing tests
evolved over 9 commits in regard to their effectiveness at detecting
changes . 159

6.5 The average number of covered branches at each commit when
evolving test suites using coverage-driven testing and differential
testing. 163

6.6 Comparing coverage-driven testing (maintained) and differential
testing (disposable) with regards to the number of tests developers
need to inspect, for changes found by both techniques 164

List of tables

3.1 Overall outcome of the test generation and execution process. . . 59

3.2 The percentage of detected bugs, categorized by how the bug was
detected . 64

3.3 Summary of bug-finding results for each bug, tool, and execution 65

3.4 Bug coverage of test suites that did not detect the bug 67

4.1 Internal variable changes over time 89

4.2 Numbers of bugs in each project in Defects4J, along with the
number of bugs used in this study 99

4.3 List of tracked measures during the search 104

5.1 Statistics for the sample of 980 classes. 123

6.1 The total number of bugs in each Defects4J project and the
number applicable to and used in each research question 141

6.2 Coverage of the changed area of the code, based on the outcome
of the test suite . 153

6.3 Overall outcome of test generation and execution 156

6.4 Mutation outcome of the fault revealing test suites generated by
each technique per project . 158

xviii List of tables

A.1 Configuration options for EvoSuiteR’s Genetic Algorithm . . . 200

A.2 Optional feature flags on EvoSuiteR 201

Chapter 1
Introduction

1.1 Overview

“Software is eating the world.”, claims Marc Andreessen [7]. After the computer
revolution, over the past decades more and more industries and businesses rely
on software programs to provide service to their customers. With the ubiquity
of personal computers and smartphones – which is predicted to reach over 6
Billion people by 2020 – people around the world rely on modern programs
every day. Even if people try to avoid having any digital devices, their lives will
nevertheless be affected by software if they travel, bank, visit a hospital, and so
forth. Therefore, ensuring the reliability of software programs is essential to our
everyday lives.

Rarely is it the case that a program is written once, and then forgotten.
Software programs evolve over time as developers introduce many changes
throughout the life-cycle of the program. These changes often range from small
refactorings to the addition of large new features. However, some of these changes
may affect the originally intended functionality of the software, by unintentionally
introducing bugs – also known as regression faults or regression bugs. To avoid
regressions in the functionality, engineers write tests along with the software,
and after making changes they execute the tests to assess whether the intended
functionality of the software is intact. This practice is better known as regression
testing and is commonly used in industry.

2 Introduction

1.2 Regression Testing

While regression testing can help with early detection of regression faults, devel-
opers face several challenges when applying the technique. As the number of
tests grows, execution of all tests after every single change can become expensive
and impractical. This problem has been well studied in the literature [198] and
many techniques such as test selection, prioritization and minimization have
been proposed to address the problem.

The challenges however are not limited to the growing cost of regression
testing. Even if all tests are always executed, three main problems remain:
1) an existing set of tests is required, 2) the tests are often written without
foreseeing future changes, and 3) the effectiveness of the tests in finding regression
faults depends on the quality of the written tests. These challenges give way to
techniques (preferably automated), that can help developers with their regression
testing efforts by improving the existing set of tests and/or generating new ones.

In order to reveal a fault, a test has to first execute the code that contains
a fault; secondly the execution should result in a change in the internal state
of the program (infection), which then leads to an observable faulty behaviour
(propagation) [174]. While several techniques exist for augmenting existing test
suites to improve them (e.g., [148, 196]) and generating regression tests (e.g.,
[163, 164, 123, 23]), they suffer drawbacks such as focusing on reaching the
fault, yet the number of paths to propagate the infected state to the output can
explode, which may impose a limit on the scalability of the approach [28]. Other
techniques also exist which either rely on existing tests [101] or do not generate
test inputs with sequences of method calls [27].

In this thesis, we investigate techniques for automatically testing programs
as they evolve, without requiring access to an existing set of tests. We explore
different techniques – and propose our own – for automatically generating unit
tests such that they can reveal changes across two versions of a program (i.e.,
after a developer makes a change to a program, two versions of the program
can be considered: the one before the change, and the one after the change was
applied). In the following section, we motivate how such techniques can work in
practice, and how they can benefit developers.

1.2 Regression Testing 3

1.2.1 Motivation for Automated Regression Testing

Consider a self-driving car which automatically goes to the factory once it
requires maintenance. The engineers of this car have designed to it to visit
the factory once the car has driven at least 5000 miles since the last checkup,
and also that the maintenance-free period has ended – that is, the current year
has passed the year the car will require maintenance (e.g., the engineers of the
car may think that a car built in 2020 may not need maintenance until 2024).
Therefore, the engineers have written the code below to check for whether or
not the car should go to the factory for maintenance.

1 public class AutomatedMaintenance {

2 private CentralDatabase db = new CentralDatabase();

3 public boolean shouldGotoFactory(int mileage, int year){

4 if (mileage >= 5000 && year >= db.get("year_maintenance_starts"))

5 return true;

6

7 return false;

8 }

9 }

After a while, a new developer joins the team and decides to refactor the long
conditional statement on line 4 into separate conditions to increase the clarity of
the code.

1 public class AutomatedMaintenance {

2 private CentralDatabase db = new CentralDatabase();

3 public boolean shouldGotoFactory(int mileage, int year){

4 if(year <= db.get("year_maintenance_starts"))

5 return false;

6

7 if (mileage >= 5000)

8 return true;

9

10 return false;

11 }

12 }

4 Introduction

However, as highlighted above, the developer makes a mistake when inverting
the condition on line 4, and uses a <= operator instead of using <. And so,
this mistake results in a regression in the functionality such that the car will
potentially visit the factory one year late. To prevent such regressions, developers
of the program should have written tests to validate the behaviour of the
shouldGotoFactory() method. However, despite the simplicity of the toy
example above, even if the developers have written tests covering all statements
and branches in the program – which are proxy measures commonly used by
developers in the industry to assess the quality of their tests – the tests may
not be adequate to find the fault. That is, in this case, developers should have
tested for boundary values as well.

Although testing for boundary values along with many other testing tech-
niques are well-studied and are even taught in most software testing textbooks,
putting additional constraints on testing requirements will only increase the
time and cost of creating, maintaining, and executing test sets. For instance,
in our example, testing for boundary values will result in the following tests
(assertTrue and assertFalse are assertions that check whether the output of
the method is respectively true or false, and prompt a failure if the check does
not hold):

1 AutomatedMaintenance am = new AutomatedMaintenance();

2 int maintenanceStarts = db.get("year_maintenance_starts");

3 assertFalse(am.shouldGotoFactory(4999, maintenanceStarts));

4 assertFalse(am.shouldGotoFactory(4999, maintenanceStarts + 1));

5 assertFalse(am.shouldGotoFactory(4999, maintenanceStarts - 1));

6 assertTrue(am.shouldGotoFactory(5000, maintenanceStarts));

7 assertTrue(am.shouldGotoFactory(5000, maintenanceStarts + 1));

8 assertFalse(am.shouldGotoFactory(5000, maintenanceStarts - 1));

9 assertTrue(am.shouldGotoFactory(5001, maintenanceStarts));

10 assertTrue(am.shouldGotoFactory(5001, maintenanceStarts + 1));

11 assertFalse(am.shouldGotoFactory(5001, maintenanceStarts - 1));

Of the large number of checks above, when executed on the faulty program,
only two of the assertions will fail (lines 6 and 9). This means that developers have
to create comprehensive and sensitive test suites (i.e., set of tests), continuously
execute them after making changes, and maintain these tests over time. For

1.2 Regression Testing 5

some, this leads to the question of whether the effort can be automated – fully or
even partially – such that developers can spend more time on the development
of the software.

For example, a partially automated technique could take the first 3 lines of the
test above as input, and augment it by deriving lines 4–11. A fully automated tech-
nique on the other hand could take the class under test (AutomatedMaintenance)
as input, and generate the whole test above. Alternatively, in a regression testing
scenario where no tests are available, a program could take the two versions
of the class under test as input, and return with the following small test case,
highlighting the observed behavioural difference between the two programs:

1 AutomatedMaintenance am = new AutomatedMaintenance();

2 int maintenanceStarts = db.get("year_maintenance_starts");

3 // [change detected] Original version: true | New version: false

4 assertTrue(am.shouldGotoFactory(5000, maintenanceStarts));

Using the test case above, the developer can then investigate whether or not
the new behaviour is as expected, and if not, proceed to fix the new program. In
fact, creating – either automatically or manually – and maintaining regression
unit tests may not even be necessary, if such tests as above can be generated
on demand reliably and automatically. In this thesis we review and investigate
techniques that can help developers automatically test their programs as they
evolve.

1.2.2 Summary

Given that as systems grow more complex, writing good regression tests becomes
increasingly more difficult and time consuming, it would be inherently desirable
if such tests could be generated automatically. Even when developers have
unlimited resources and can afford to rigorously test their programs – i.e., the
difficulty and time consumption are not considered as problems – the number
of tests will grow over time, such that the cost of maintaining and executing
these tests may eventually exceed the cost of damages caused by not testing at
all. As we will discuss in depth in Chapter 2, researchers have been actively
working on tackling many problems in regression testing. Automated techniques
have been developed to augment existing set of tests, or even generate new

6 Introduction

ones. Nevertheless, these techniques come with limitations such as requiring
existing tests, not being suitable for finding regression faults, or having further
implications on maintenance costs.

Therefore, in this work, we look at the problem of automatically generating
regression test suites, without requiring an existing set of tests. We evaluate
several existing state-of-the-art techniques and algorithms for test generation
and detection of real faults, and propose our own techniques. We also look at
practical implications and the effectiveness of using these techniques over time
when used in addition to/instead of existing manual testing efforts.

1.3 Structure and Contributions of this Thesis

This section outlines the structure of this thesis, alongside presenting the key
novel contributions of this work:

Chapter 2: “Literature Review” presents a survey of the literature relating
to the topics explored in this thesis. The chapter begins with describing a set of
terminologies and definitions on software testing relevant to this work. Manual
and automated testing techniques are then described. In particular, we broadly
look at automated test generation approaches, as well as automated regression-
testing techniques in the literature. A number of challenges faced by existing
work are also presented in this chapter. One important gap we identified was
the lack of a clear comparison between the automated techniques for detecting
real faults, which enables the evaluation of the rest of the work presented in this
thesis. The next chapter aims to address this.

Chapter 3: “Evaluating Automated Unit Test Generation Tools Using
Real Faults” investigates the effectiveness of three state-of-the-art automated
test generation tools for detecting real-faults. While many different automated
test generation tools and techniques exist, these techniques have often been
evaluated on different sets of artefacts using different methodologies. We present
a methodology and framework for generating, filtering (e.g., removing false
positives), and evaluating the effectiveness of generated tests at detecting changes.

1.3 Structure and Contributions of this Thesis 7

To achieve the objective of this chapter, a large-scale empirical evaluation was
conducted using three state of the art test generation tools – two open source and
one commercial – on 357 real faults taken from open-source repositories. Using
the result of our evaluation, we then present a detailed analysis of the effectiveness
of the generated tests at revealing the faults. To guide the development and
research in automated test generation tools, we present the result of our in-depth
qualitative investigation into the shortcomings and individual advancements of
existing state-of-the-art techniques.

Contribution 1: Developing a methodology and framework for evaluating the
effectiveness of tests generated using automated unit test generation techniques
at detecting faults, along with insights into the current state-of-the-art and how

it can be further improved

Equipped with insights into shortcomings of existing approaches, and also
a framework to evaluate future techniques with, next we propose our own
alternative technique.

Chapter 4: “Differential Testing Using a Search-based Approach”
proposes a search-based unit-test generation tool with the aim of finding be-
havioural differences – which can be either intended changes or regression faults
– given two versions of a program. We present the first search-based technique
for automatically generating regression unit test suites. We achieve this using a
novel multi-objective fitness function for generating regression tests which simul-
taneously maximises code coverage, state differences between the two programs,
and divergence in the control-flow of the program.

Using the framework described in Chapter 3, we then conduct a large-scale
empirical evaluation of our search-based regression test generation technique
at detecting real faults, as well as evaluating individual components of the
fitness function. We also compare our results with the ones obtained by the
state-of-the-art tools in Chapter 3.

Contribution 2 Developing a novel search based approach for generating
differential regression test suites, accompanied with with a large-scale empirical

evaluation using real faults

8 Introduction

During the evaluation of our search-based approach, we made an interesting
observation that for a majority of classes, using a complex search algorithm may
not be necessary, and simple random search may be good enough. To clarify
whether this is limited to differential testing, Chapter 5 provides an in-depth
investigation to find the underlying reasons.

Chapter 5: “Comparing Random and Genetic Algorithm Search for
Generating High-coverage Test Suites” conducts an investigation based
on an observation we made in Chapter 4. In particular, for a large number
of subjects, random-testing and search-based testing performed equally well,
while at the same time, for a small number of subjects random testing was
significantly more effective than our proposed GA. In this section we explore
whether our observation was limited to the domain of differential/regression
testing, or whether it is a broader behaviour which applies to search-based testing
in general when testing object-oriented programs. In particular, we conduct a
large-scale empirical comparison of GA and random search for coverage-driven
test suite generation using 1,000 real-world Java classes

The types of branching conditions found in object-oriented programs – as
opposed to procedural programs – can have a direct impact on the effectiveness of
search based techniques. That is, given that search-based approaches often guide
the search using insights from covered or uncovered branches, can we extract
useful information from all branches of different natures to guide the search? We
present an in-depth investigation on the influence of the nature of branches in
object-oriented programs, on search-based test generation techniques. We also
investigate the impact of the search budget on the outcome of the techniques,
when generating coverage-driven tests using GA and random search.

Contribution 3 A large-scale empirical comparison of GA and random
search for coverage-driven test suite generation, with an in-depth investigation

into the challenges of the search landscape created by the types of branches
prevalent in object-oriented programs

Using the insights gained so far, in Chapter 6 we propose a practical approach
for using automated test generation tools to prevent regression faults.

1.3 Structure and Contributions of this Thesis 9

Chapter 6: “Disposable Testing: Detecting Changes during Software
Evolution without Keeping and Maintaining Generated Test Suite”
presents disposable testing as an alternative to the traditional generate-and-
maintain approaches where tests are generated and then kept and maintained
along with program code to be executed as the program evolves. Instead, this
approach suggests generating change-revealing tests – such as when applying
differential testing – and throwing the tests away after inspecting them.

We evaluate this approach using differential-testing – based on the most
effective technique evaluated in Chapter 4 – as a means to apply this approach in
practice. As such, we present the first large-scale evaluation of coverage-driven
(as an example of a traditional generate-and-maintain approach) and differential
testing at finding real faults. Moreover, we answer whether or not tests generated
using differential testing should be kept or disposed of by investigating their
effectiveness at revealing subsequent changes, using mutants and real faults.

Although disposable-testing removes the cost of maintaining the tests, the
inspection cost remains – that is, as with any other regression test suite, a
developer needs to inspect whether a test failure is due to a bug (regression) or
an intended change. As such, we investigate whether or not applying disposable
testing has a negative implication on the overall maintenance efforts (i.e., do
developers need to inspect more tests as a result?).

Contribution 4 Creating and empirically evaluating a new approach named
“disposable testing” as a practical way to use automated unit test generation

techniques during software development

We conclude this work in the final chapter.

Chapter 7: “Conclusions and Future Work” summarises our findings
and the contributions of this thesis. We also present future research directions
in the area based on the work presented in the prior chapters.

Chapter 2
Literature Review

2.1 Software Testing

According to Beizer [20], software maintenance often accounts for as much as two-
thirds of the software production cost. With programs becoming more complex,
the possibility of having software bugs increases, and therefore programs need to
be tested in order to ensure that the functionality of the program is as intended.
This activity has become so important that over 50% of the total development
time and cost of software projects often gets allocated to testing [119].

Software testing is the activity of executing a given program P with
sample inputs selected from the input space for P, to try to reveal
failures in the program. (Harrold et al. [79])

Following this definition, developers create tests that evaluate the behaviour
of the program given certain test inputs. They also use test oracles – which are
checks validating the output/behaviour of the program, implemented normally
using assertions – to assess whether the program is working as intended. These
set of inputs and oracles are often implemented together in a test case, where the
program is first invoked using the test inputs, and then the resulting output is
validated. If executing any of these test cases leads to an unexpected outcome, it
can indicate a fault (also referred to as a bug or defect). A defect is often revealed
by a test through a failure – a program behaviour contrary to its specification

12 Literature Review

is detected, e.g., a test oracle observes an unexpected output – or through an
error – an unexpected behaviour occurring within the system bounds, such as
reaching an unexpected system state, often not detectable by a simple assertion.

To simplify the terminology used in this thesis, we may use failure to refer
to both cases of errors and failures. While the term bug is often known to have
multiple definitions referring to both a fault (defect) and failure, we normally
use this term interchangeably with the former. Moreover, we may use the terms
test and test case interchangeably, in which case we normally intend the latter.
Furthermore, this thesis mainly focuses on the concept and method of “unit-
testing”, where a test case often involves a sequence of program invocations with
test inputs, to test the correctness of a program unit. Each “unit” normally
refers to a small – or even the smallest – separate testable module of the program,
although conflicting ideas exist among developers regarding the scale of each
unit [145]. In procedural programming a unit may span from a single procedure
to an entire module, while in object-oriented programming it can range from
testing a single method to an entire class. While we do review techniques that
target testing procedural programs, the focus of this thesis is more on the latter
case.

After we as developers start to write such tests, we may face the question of
when our testing is sufficient? How can we measure the quality of the tests we
have written so far? If the input space is large (or practically infinite), how can
we know that the right inputs are being used to test the program? How can we
make sure that the inputs used are more likely to reveal a fault? Over the past
decades, much work has been done to answer these questions. The next section
looks at some of these works and the existing challenges.

2.1.1 Test Adequacy Criteria

Researchers have proposed many different criteria to measure the quality of a test
suite (i.e., a set of tests), such as adherence of the program to a certain model,
coverage of different characteristics of the program (e.g., program statements,
data-flow dependencies, behavioural response [161], structure, execution paths,
etc.), and mutation score. We discuss the two most common criteria below.

2.1 Software Testing 13

2.1.1.1 Coverage Criteria

Given that the input space to a program can often be infinitely large, developers
seek a quantifiable way to determine the effectiveness of their test suites. Coverage
criteria provide an actionable metric that can provide a target to the developers.
The simplest and most common of these criteria are the structural coverage
criteria which set the target to covering the whole structure of the program [5].
A structural coverage criterion defines some structural items of the source code,
and each of these items needs to be executed by at least one test, and then the
ratio of covered items is the coverage value (or coverage ratio). A simple yet
common example of these criteria is statement coverage, requiring all statements
in the program to be executed. However, simply executing all statements in the
program does not necessarily cover the structure of the program. For instance,
only covering one side of a conditional statement may be enough to cover all
statements.

To improve on the effectiveness of statement coverage, branch coverage – also
known as decision coverage, but not to be confused with condition coverage –
aims to cover all branches in the program resulted from conditional statements.
Therefore, by covering all branches in the program, the code under test will
be covered. To further improve upon this, conditional coverage requires all
sub-expressions of a conditional statement to be covered. For instance, in a
conditional statement if(a>b || b<c), if either (a>b) or (b<c) evaluate to
true, the true branch of the program will be covered. Conditional coverage
requires both sides of these sub expressions – 4 possible outcomes in total –
should be covered. Other coverage criteria also exist that necessitate more
rigorous testing of the program [202]. For instance, data-flow coverage requires
the values to be carried from their points of definition, to all points they were
used, which can be particularly important for testing object-oriented programs.

2.1.1.2 Propagation Problem

Achieving coverage alone however is believed to be insufficient for detecting
faults [83]. Marinescu et al. [104] even show that bugs are often introduced
on real open-source projects despite the existence of high-coverage test suites.
According to the PIE model [174], in order to detect a fault in a program, a

14 Literature Review

test should be able to first, reach and execute the fault. Secondly, the execution
should result in a change, thus infecting the state of the program. Finally,
it should propagate to an observable result in the output. Therefore, simply
executing the program under test does necessarily mean that the fault can be
propagated to the output. Developers generally have to manually write test cases
in order to test software programs, however, creating test suites (sets of test
cases) that can cover the structure of the program and achieve such propagations
is known to be difficult and time-consuming.

The problem of propagation in particular has been deeply studied in the
literature, and still remains as a challenge in software testing. In 1991, Freedman
[57] proposed domain testability, as a measure of input-output consistency. Voas
and Miller [175] later suggested the domain/range ratio (DRR), which is the ratio
of the possible inputs to the range of possible outputs. They proposed that by
increasing the DRR, there is a higher chance of detecting faults during the testing
process. These approaches focused on the testability of programs in general, both
from the implementation aspect as well as the program specifications. While
the approach by Voas and Miller focused more on increasing the testability
of the program, Freedman centred the work around modifications that can
make the behaviour of the software observable and controllable. Woodward
and Al-Khanjari [184] in a study focused on the connection that exists between
these two approaches which aim to help with increasing software testability, and
established a mathematical link between them.

Since these studies focused on faults remaining hidden to the testing process,
many studies focused on increasing testability and ensuring fault propagation
to the output. Clark and Hierons [34] proposed a measure named squeeziness,
as an information theoretic measure to prevent fault masking. They suggest an
approach of ranking execution paths with the aim of increasing the dependencies.
The results of their study suggested that there exists a strong correlation between
their proposed measurement and the likelihood of the fault being identified. To
tackle the problem of fault finding with coverage metrics, recent ideas have been
proposed to guide coverage criteria using databases of real faults [111].

2.1 Software Testing 15

2.1.1.3 Mutation Testing and Analysis

Given that, as discussed in the previous section, coverage criteria may be
insufficient to determine the actual effectiveness of a set of tests, an alternative
is to actually simulate the possible faults that may occur. This helps developers
quantify – to some extent — the effectiveness of their tests at revealing bugs.
Mutation testing is a technique that makes such a quantification possible, and
has been commonly used for evaluating the adequacy of the existing tests.

Since its first introduction in the 1970s, much research has been done in the
area, with the aim of making it an approach that can be practically used in
the industry. Principally, mutation testing works by creating mutated versions
of a program, where mutations are faults that are deliberately added to the
program, that are similar to the ones that developers can make. After creating
these mutated versions (also known as mutants), the existing tests are executed
against the mutants, and their adequacy is assessed by their ability to identify
the faults in the mutated versions. The outcome of this process is the ratio of
the number of detected faults over the number of mutations, which is known as
the mutation score.

Mutation testing is widely used in other applications such as test data
generation, regression testing, and also to assist with test suite minimisation [87].
The main underlying reason for the big appeal of mutation testing is the fact
that mutants can be automatically and systematically generated, and exercised,
with the aim of representing a large number of potential faults that can happen
in the program.

In contrast to the previously discussed coverage criteria, mutation testing
aims to provide a proxy to the set of real faults that a test suite can discover.
However, this may lead to the question of whether these sets of mutants can
– at least to some extent – represent real faults [8]. In a study by Just et al.
[90], the authors aim to answer this. In particular, they conduct a large-scale
study using 357 real faults, and measure the correlation between detection of
mutants and detection of real faults. Their results show that on the one hand
there exists a general correlation between finding mutants and real faults, on
the other hand, they observe that for 27% of bugs (i.e., real faults), such a
correlation does not exist, thus pointing to the limitations of the technique. The

16 Literature Review

authors however note that a number of these cases can be addressed by creating
stronger or new mutation operators (i.e., a mutation operator applies a specific
mutation to a program, for instance, negating all equality operators == to !=).
Nevertheless, for 17% of the bugs, they observe that the faults cannot be coupled
to mutants. These cases include faults that relate to incorrect implementation
of algorithms, extra code that should have been removed, incorrect method calls
due to similarity of the names of the methods, understanding of the context,
and so forth.

Although the results of the study by Just et al. were supportive of using
mutation testing as a proxy for a majority of faults, the challenges with using the
technique are not limited to the limitations discussed earlier. The mutation score
for instance may not always be actionable. This is mainly due to the fact that a)
a large number of mutants need to be generated and evaluated, b) some mutants
can be equivalent. An equivalent mutant is created when the functionality of
the program remains semantically the same. For instance, consider the simple
example below:

1 public boolean isMathsWorking(){

2 return (2 + 2 == 4);

3 }

The same program can be written as follows, by changing the addition
operator + to a multiplication operator ∗:

1 public boolean isMathsWorking(){

2 return (2 * 2 == 4);

3 }

In this case, although a mutation has been applied to the program, the two
programs are semantically equivalent. Therefore, simply achieving a certain
mutation ratio does not necessitate that the uncovered mutants are actually
feasible. Similarly, not achieving a high mutation ratio does not necessitate
that the uncovered mutants were infeasible to kill. Although some equivalent
mutants can be detected using mathematical models and symbolic techniques,
the problem of detecting equivalent mutants is undecidable [5]. In addition to
equivalent mutants, generating and exercising a large number of mutants can be
expensive, and may therefore limit the adoption of the technique in practice.

2.1 Software Testing 17

2.1.2 Automated Test Generation

Despite software testing taking a majority of the costs of software development,
in 2002 it was reported that the lack of robust infrastructure for software testing
has an annual cost of $22.5–$59.5 billion to the US economy [166]. Techniques
for automating the generation of software tests aim to lower the cost of the
testing process, while at the same time trying to be equally or more effective
than the traditional approaches. Although many approaches exist for automated
testing (or to aid with software testing efforts), they generally fall under the
categories of a) random techniques: randomly generated test data is used to test
the program, b) static techniques: test inputs are generated without executing
the program; developers can then use these test inputs to test their program,
and c) dynamic techniques: the program is executed during the testing process.

The techniques are however not limited to three categories; for instance, model-
based test generation techniques use a model or specification to validate the
system under test, and combinatorial testing aims to test all input combinations
while at the same time reducing the input space. Algebraic and exhaustive
approaches – as opposed to random ones – have also been proposed, which aim
to test the program systematically using a combination of automatically inferred
specifications and hints provided by developers (e.g., TACCLE [30], JWalk [160]).
JWalk [160] for instance incrementally explores and learns algebraic properties
and program specifications lazily with the help of the developer. This enables the
approach to search for maximally changed object states and to reach new states
during the testing process. These approaches however require – or significantly
benefit from – user interactions with the tool to either validate the states or to
guide the exploration, and so, are not fully automated or the expected manual
inspection effort makes them less practical.

In the following sections, we review three of the most common techniques for
test generation: random techniques, techniques relying on symbolic execution,
and search based techniques.

18 Literature Review

2.1.3 Random Testing

The most basic form of test generation is random testing. By generating random
inputs and passing them to the program and observing the output, the program
can tested. This can be useful if the specification is incomplete, or when
the developers are looking for unexpected security problems (such as in fuzz
testing [62]). In the context of unit testing of object oriented classes, where
test cases involve sequences of calls on interacting objects, a popular approach
is to generate these sequences randomly (e.g., [124, 35, 132, 121, 9, 103, 147]).
An example of this is Randoop [124], which is commonly used in studies and
industry.

Randoop takes a slightly different spin on pure random testing by using a
simple feedback-directed approach. The tool operates by incrementally generating
method sequences – where new methods calls are selected randomly – and
then executing such method sequences. The execution results are then used
as feedback for the test generation to a) avoid illegal (e.g., causing runtime
exceptions) or redundant statements, b) detect contract violations, and c) for
generating assertions that can help detect future changes (i.e., when performing
regression testing). An example of a test case generated by Randoop for the
code snippet in Section 2.1.4 is shown below. Notice that Randoop generates
the assertions (Line 6-8) based on the execution results of the foo() method
(Line 3-5).

1 public void test001() throws Throwable {

2 Bar bar0 = new Bar();

3 boolean b2 = bar0.foo((int) (short) -1);

4 boolean b4 = bar0.foo((int) (byte) 0);

5 boolean b6 = bar0.foo((int) ’4’);

6 org.junit.Assert.assertTrue(b2 == false);

7 org.junit.Assert.assertTrue(b4 == false);

8 org.junit.Assert.assertTrue(b6 == true);

9 }

To improve random testing, researchers suggest that the randomly generated
test inputs should be evenly spread across the input domain. As a result, adaptive
random testing (ART) was proposed [32] to guide the test generation. ART has
been studied as a popular testing methods and has been shown as an effective

2.1 Software Testing 19

alternative to random testing. However, using a large empirical study, Arcuri
and Briand [12] argue that ART may not be cost effective in comparison to
random testing. Overall, while a large number of random tests can be generated
cheaply, executing and manually evaluating them can become impractical, and
the tests may struggle to reach parts of the code that require complex scenarios
to be generated, thus limiting the practicality of these approaches [15].

2.1.4 Testing Using Symbolic Execution

Symbolic execution [93] is another popular approach, which uses symbolic
input values – as opposed to concrete input values – and executes the program
symbolically [6]. To better illustrate the idea, consider the following code:

1 public boolean foo(int x){

2 x = x + 2;

3 if(x > 7)

4 return true;

5 else

6 return false;

7 }

In the code above, if we consider the input value x as a symbolic value, after
the execution of line 2, the value of x in the conditional statement in line 3 is
x + 2. Therefore, the evaluated condition on line 3 is if (x > 5). Using this
information, we simply need to generate two values – a task which is often done
using a constraint solver such as Z3 [38] – for x such that the condition evaluates
to true and false (e.g., respectively for input values 5 and 6). Concolic testing
(also referred to as dynamic symbolic execution), combines the static approach we
observed above, with dynamic testing. This can be necessary since the program
may interact with external dependencies, or that sometimes the conditional
constraint cannot be solved.

Some approaches relying on symbolic execution include the use of dy-
namic symbolic execution on the basis of developer-written parameterised unit
tests [169], or derived techniques that aim to explore relevant sequences of calls
[168, 188]. In Section 2.2 we look at some of these techniques that are more
closely related to the topic of this thesis.

20 Literature Review

Although techniques based on symbolic execution can be effective at gen-
erating high-coverage tests, as well as deriving inputs to solve mathematical
constraints [26], when applied to the problem of unit-testing, particularly when
generating a sequence of statements invoking and interacting with the program,
these techniques face a number of challenges – especially when applied to object-
oriented programs. For example, if the state of the program needs to be modified
by a sequence of calls to the public API rather than by setting the state using
the input values directly, this may be particularly challenging to achieve using
symbolic execution techniques. Additionally, scalability of symbolic techniques
creates another challenge, given that as the complexity of the program increases
(e.g., increase in the number of branches), the number of paths to explore in-
creases with it [28]. Therefore, these challenges make symbolic execution less
suitable for generating sequences of calls when unit-testing object-oriented pro-
grams. For example, symbolic techniques excel well when a method is called
with a certain input value that is expected to reach a faulty area of code (so
that it can generate a certain input that would lead to the fault), as opposed
to when a method call with no input values has to be called several times for a
faulty behaviour to be propagated to the output (see Chapter 4).

2.1.5 Testing Using Search Based Software Engineering

Use of metaheuristic search techniques is one of the most recent dynamic tech-
niques for automated test generation [40]. These techniques aim to apply a
search-based optimisation to generate test inputs [76].

In 2001, Harman and Jones [75] claimed that a new field is emerging in
software engineering research, named search-based software engineering. This
area of software engineering mainly looks at the use of metaheuristic search
techniques that can be applied to a large number of areas. The simplest form
of a search based algorithm is random search. However, without a guidance,
the findings produced by random searching are poor [110]. Such guidance
is often provided by a fitness function – further discussed in the rest of this
section – which evaluates individual solutions based on their closeness to the
ultimate solution. The set of all fitness values form a landscape of possible
solutions and their respective fitness score. Guided search-based techniques

2.1 Software Testing 21

employ different strategies for exploring this landscape. Three main metaheuristic
search algorithms exist that use guidance measurements, and are widely used in
different areas. These techniques are presented in the following sections.

2.1.5.1 Guided Algorithms

Hill Climbing

Hill climbing techniques choose a random position in the search space at
the start. Based on the position of the candidate, during each iteration, the
candidate will be compared to its neighbours. In case any of the neighbours
are found to have better fitness values, a move will be made to that neighbour.
Therefore, as a result, the candidate solution is expected to improve over time,
and as the search continues, the chosen candidate will have better fitness. Once
no better neighbours can be found, then the search has found an optimum
solution/fitness (i.e., potentially the best solution).

A problem associated with hill climbing techniques is the fact that the search
space is not always linear or unimodal. Therefore, for instance, the hill climbing
may improve the chosen candidate until it hits a maximum, and it would be
expected that the candidate is the fittest individual in the search space. However,
the chosen candidate may be within a local maximum and may be significantly
poorer compared to the global maximum in the search space. One way used
by researchers to address this issue is to restart the search multiple times at
different initial locations in order to create a better understanding of the search
space [70].

While using hill climbing is not best suited to find global optima, they can
be ideal candidates for local search. A popular and well-studied example of
this is Korel’s Alternating Variable Method [95], for test data generation. This
technique performs the search by adjusting input values and using different values
in turn, that is, an exploratory move is made and the fitness of the solution is
calculated. This continues until no variable changes improve the fitness value.
The technique was shown to be effective at performing local search, and also to
improve the effectiveness of other search-based techniques [76]. However, when
applied in isolation, it may not be effective at global search.

22 Literature Review

Simulated Annealing

With the starting position having a high impact on the outcome of hill
climbing techniques, simulated annealing aims to rely less on the initial position.
To achieve this, this techniques works in a similar manner compared to hill
climbing, however with a difference that it can probabilistically accept poorer
solutions. Simulated annealing is given a control parameter named temperature,
and the higher this control parameter be, the more freedom the currently chosen
solution will have to move around the search space.

Inspired by annealing in nature, the search first starts with a high-temperature.
Then, as the search continues, the temperature is cooled down (i.e., decreased),
thus giving the selected subject less and less chance of movement. This enables
the search to initially explore a large portion of the search space and afterwards
follow a more linear hill-climbing approach around the chosen local search space.
However, if the cool-down is done at a rapid pace, the search may only explore a
small portion of the search space, and thus get stuck in a local optimum similar
to hill climbing techniques [109].

Genetic Algorithms

Genetic algorithms use a different approach compared to the previous tech-
niques. Inspired by natural selection, this technique simulates evolution as a
search strategy. This technique considers solutions in the search space as indi-
viduals or “chromosomes”. Similar to natural evolution, a population of these
chromosomes is first created (often randomly) and during the search, mutation
and recombinations of these individuals will occur. With iterations being called
“generations”, and the population of each generation having chromosomes as their
members, on each generation, the chromosomes evolve using the following search
operators: a) mutation operator, which randomly modifies the chromosome, and
b) crossover operator, which recombines certain members of the population, or
creates offspring chromosomes by taking two parent chromosomes. In order to
make sure that only better individuals in the population make it to the next
generation, and to guide the evolution, a “fitness function” is defined. The
ultimate goal of the fitness function is to measure how close each individual is
from a perfect solution. Individuals with better fitness get a higher chance of
being included in the next generation, and as a result, the search will be guided

2.1 Software Testing 23

by the fitness function. Genetic algorithms are by far the most widely applied
search technique in search based software engineering [109, 70].

2.1.5.2 Application in Testing

One of the application areas of search-based software engineering is search-
based software testing (SBST). This area focuses on using search-based software
engineering to automate software testing. To achieve this, different optimisation
processes are defined in the form of a fitness function which aims to solve specific
challenges, often simultaneously. This approach can be used to generate test
inputs with multiple objectives, such as achieving a high code coverage across
the whole program [110], which is a powerful aspect of search-based techniques
in general. It has also been shown that multi-objective optimisation techniques
can be even used to better tackle single objective problems [77]. This section
discusses some of the application areas of this approach.

Temporal testing: This area aims to find best-case and worst-case execution
times. Using a search-based approach, the search can look for the input data
that can result in the shortest and longest execution times. Finding such input
values using static analysis cannot be done accurately, since execution of the
code with the given input values may be necessary [110].

Functional Testing: Testing the logical behaviour of the system according
to its specification is another area of search based testing. In this area, the use
of search-based techniques in testing the overall functionality of the system is
explored. Different studies have been performed, namely a study of an automated
parking system, in which a search based approach was used to automatically park
a car [24]. Given the success of their technique, the authors aim to additionally
expand the use of evolutionary algorithms in other aspects of vehicles such as
the emergency brake system and intelligent speed controls.

Structural Testing: The main and most active area of search-based tech-
niques is structural testing. This area targets the execution paths in the software,
and input data is generated to target specific structural testing aspects. These

24 Literature Review

aspects often include branch and data flow coverage. Common approaches target-
ing branch coverage aim to generate test inputs with the objective of maximising
branch coverage [110].

2.1.5.3 Search-Based Unit Test Generation

Search-based techniques search for candidates that most closely represent the
ultimate solution. As such, the representation of the problem can vary. This
characteristic makes them particularly suited for the problem of generating unit
tests. In this section we look at different approaches in the literature that applied
these techniques.

Random Search for Test Generation

One strategy for finding branch-covering test cases is simply to generate sequences
of statements to the class under test at random, coupled with randomly-generated
inputs. If a randomly-generated test case covers new branches that have not
been executed before, it is added to the CUT’s test suite, else it can be discarded.
One disadvantage of this approach is the size of the resulting test suite, which
can be very large and therefore carry a high execution cost.

A further problem is finding inputs that need to be certain “magic” values
required to execute certain branches, such as constant values, specific strings,
etc. that are unlikely to be generated by chance. One way of circumventing this
problem is to enhance the algorithm through seeding.

Seeding

The process of seeding involves biasing the search process towards certain input
values that are likely to improve the chances of executing more coverage goals [3,
49, 112]. Fraser and Arcuri [49] propose obtaining seeds both statically and
dynamically, and present an implementation of it in the tool EvoSuite. The
static approach takes place before test generation: EvoSuite collects all literal
primitive and string values that appear in the Java bytecode of the class under
test. Then, while tests are being generated, literals that are encountered at
runtime may also be dynamically added to the pool of seeds. Some of these

2.1 Software Testing 25

seeds are specially computed, according to a set of predefined rules. For instance,
if the test case includes the statement “foo.startsWith(bar)”, involving the
strings foo and bar, the concatenation bar + foo will be added to the seed pool.
During the search process, EvoSuite will then choose to use a seed from the
pool instead of generating a fresh value, according to a certain probability.

To distinguish between random search with and without seeding enabled,
we refer to the enhanced version of random search incorporating seeding as
Random+, and the basic implementation without seeding as Pure Random.

Evolutionary Search for Test Suite Generation

While random search relies on encountering solutions by chance, guided searches
aim to find solutions more directly by using a problem-specific “fitness function”.
A fitness function scores better potential solutions to the problem with better
fitness values. A good fitness function will provide a gradient of fitness values
so that the search can follow a “path” to increasingly better solutions that are
increasingly fit for purpose. With a good fitness function, guided search-based
approaches are capable of finding suitable solutions in extremely large or infinite
search spaces (such as the space of all possible test cases for a class as considered
in this work).

Genetic Algorithms (GAs) are one example of a directed search technique that
uses simulated natural evolution as a search strategy. GAs evolve solutions to a
problem based on their fitness, often by evolving several candidate solutions at
once in a “population”. The initial population of candidate solutions is generated
randomly. Each iteration of the algorithm seeks to adapt these solutions to ones
with an increased fitness by using search functions: “Crossover” works to splice
two solutions to form a new “offspring”, while “mutation” randomly changes a
component of a solution. The new solutions generated are taken forward to the
next iteration depending on their fitness.

Algorithm 1 is an example of using a GA for search-based testing – as used in
EvoSuite [51]. As shown, the GA first creates an initial population of solutions
randomly (Line 2). Then, using rank selection, it selects two parents P1 and P2

(Line 6) and crosses them over (Line 7-10). With a certain probability, the GA
applies the mutation operator on the resulting offspring O1 and O2 (Line 11),

26 Literature Review

Algorithm 1 A genetic algorithm as used in search-based tool EvoSuite [51].
1: seeds← initialize seeds with collected static literals from bytecode
2: current_population← generate random population using seeds
3: repeat
4: Z ← elite of current_population
5: while ∣Z ∣ ≠ ∣current_population∣ do
6: P1, P2 ← rank selection from current_population
7: if crossover probability then
8: O1, O2 ← crossover P1, P2
9: else

10: O1, O2 ← P1, P2

11: mutate O1 and O2 ▷ The seeds pool may be used
12: fP =min(fitness(P1), f itness(P2))
13: fO =min(fitness(O1), f itness(O2))
14: seeds ← update seeds with collected dynamic seeds from fitness

evaluations
15: if fO ≤ fP then
16: Z ← Z ∪ {O1, O2}
17: else
18: Z ← Z ∪ {P1, P2}
19: current_population← Z
20: until solution found or maximum resources spent

and then compares the fitness value of parents and their offspring to determine
which one will be carried over to the next generation Z (Line 15-18). The GA
repeats this process until a solution is found or the search budget is exhausted.
During this process, to enhance the effectiveness of the generated solutions, the
GA collects seeds statically and dynamically and uses them for the generation
of new or mutated solutions (Line 1 and 14).

Early work in this area used genetic algorithms for generating test data,
with the aim of achieving statement and branch coverage [127] . In this case,
the fitness function guided the search to reach (i.e., cover) certain structural
points by maximising the number of branching nodes that were executed as
intended (i.e., been on the correct path to the intended point in the structure).
As such, there was no guidance as to how any of these branches should be covered.
Other work such as the one by Baresel et al. [17] have tried to improve upon
the fitness function used for evolutionary test data generation, by for instance,
using branch distance – that is, how far a conditional branch is from becoming

2.1 Software Testing 27

Test Case
i nt i nt 0 = 42;

Fi el dUt i l s . add(i nt 0, l ong0) ;

. .
 .

Test Case

.
.

.

l ong l ong0 = - 213L;

50
Chr omosomes

Fig. 2.1 A population of test suite chromosomes for whole test suite optimisation
(i.e., as used in EvoSuite). The test statements on the right hand side are
generated randomly.

true or false – to better guide the search. Much of these approaches however
focused on procedural code, where the chromosomes are simplistic: they often
involve a sequence of input values that are passed to the program. Tonella [170]
applied a genetic algorithm for automated generation of unit tests, for testing
object-oriented classes. The accompanied tool named eToc generated targeted
tests for covering coverage goals (e.g., branches) individually, and then combined
them into a single test suite. Therefore, the size of the test suite, as well as
the test-generation time may grow out of hand for large subjects. Additionally,
assertions were required to be added manually to the tests as part of the test
process.

Fraser and Arcuri [51] propose using a GA for generating and optimizing
whole test suites, and present an implementation of it in their tool EvoSuite.
With EvoSuite’s GA, a “solution” (i.e., chromosome) is a whole test suite,
consisting of a series of test cases, which in turn contain a number of test
statements. From a natural evolution point of view, these statements form the
genome of the individuals, which are then executed on the class under tests.
Therefore, the phenotype is the resulting execution traces which are then passed
to the fitness function [143].

After the search budget is exhausted – unless an optimum solution is found
earlier – the generated tests are embedded with assertions based on the existing
behaviour (i.e., output) of the program. That is, the tool assumes that the current
behaviour of the program is correct, and the developers can check whether the
program is behaving correctly by validating the generated oracles. Since many
different types of assertions can be created based on the different type of output

28 Literature Review

values, to increase test readability, different approaches have been proposed to
reduce the number of produced assertions (e.g., [55, 56]). The following code
snippet shows an example of a test-suite generated by EvoSuite for the sample
program in Section 2.1.4:

1 public void test0() throws Throwable {

2 Bar bar0 = new Bar();

3 boolean boolean0 = bar0.foo(5);

4 assertFalse(boolean0);

5 }

6

7 public void test1() throws Throwable {

8 Bar bar0 = new Bar();

9 boolean boolean0 = bar0.foo(7);

10 assertTrue(boolean0);

11 }

12

13 public void test2() throws Throwable {

14 Bar bar0 = new Bar();

15 boolean boolean0 = bar0.foo(1);

16 assertFalse(boolean0);

17 }

Whenever a new test case is generated – as with the construction of the initial
population, illustrated in Figure 2.1 – it is done so randomly as described in the
previous section, with seeding enabled. An initial population of 50 chromosomes
(test suites) is first generated. The population is then evolved using the two
search functions crossover and mutation, as illustrated in Figure 2.2 and described
in Algorithm 1. Crossover involves recombining test cases across two test suites
while mutation works at two levels: at a test case level and the test suite level. At
the test case level, the mutation operator either randomly adds new statements,
removes existing ones, or modifies them and their parameters. At the test suite
level, it adds a fresh, randomly-generated test case to an existing test suite.

To guide the search towards achieving a high coverage test suite, the fitness
value can be calculated based on the number of covered goals. However, as
mentioned earlier, a fitness function based solely on the number of covered goals
provides no guidance to goals that remain uncovered. As with previous works

2.1 Software Testing 29

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

Test Case

PARENTS CHILDREN

? = 0.5

(a) Test Suite Crossover

a()

b()

c()

d()

a()

b()

c()

d()

a()

c()

d()

e()

c()

e()

d()

a()

(b) Test Case Mutation

Fig. 2.2 The search operators crossover and mutation, as applied in EvoSuite
(a) single-point crossover is performed: an α is chosen randomly between [0,1]
to divide the parent test suites, and the opposite portions of the test suites are
combined to form the offspring (children), (b) a number of mutations are applied
to a test suite, such as statement removal (indicated by a cross), statement
addition, or statement mutation (highlighted).

in search-based test generation [109], EvoSuite incorporates branch distance
metrics, which indicate how “far” a branch is from being executed. For example,
if a conditional “if (a == b)” is to be executed as true, the “raw” distance
can be computed as “∣a − b∣”. In this way, the closer the values of a and b are
to one another, the lower the branch distance is, and the closer the search is to
covering the goal.

Since EvoSuite aims to evolve test suites where each test case covers as
many branches as possible, the fitness function involves adding the distance
value d(b, T) for each branch b within a test suite T , computed as follows [51]:

d(b, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if the branch has been covered,

ν(dmin(b, T)) if the predicate has been
executed at least twice,

1 otherwise.

(2.1)

where dmin(b, T) is the minimum raw distance value for the b for T , and ν is
a function that normalises a distance value between 0 and 1. Since the test
suite must cover both the true and false outcomes of each individual branch,
a distance value is not computed until the conditional is executed to return

30 Literature Review

both true and false by the test suite. This is so that the initial execution of the
predicate, with some specific true/false evaluation, is not lost in the process of
pursuing the alternative outcome.

As longer test suites require more memory and execution time, controlling
the length of the test suite can improve search performance [50]. Therefore,
when deciding which test suites should proceed into the population for the next
iteration of the search, EvoSuite prefers shorter test suites to test suites with
the same fitness but are composed of a higher number of statements.

Rojas et al. [138] also find that the effectiveness and performance of whole
test suite generation can be increased by keeping a record of testing goals, and
focusing the search on the ones that are still uncovered. Other work has also been
done by creating hybrid approaches combining GAs effectiveness on global search
with local search techniques to increase effectiveness on covering branches [18, 53],
or by using symbolic execution to generate input data for uncovered conditional
paths that are difficult to solve by the GA [58]. Nevertheless, to what extent
these advanced evolutionary techniques are beneficial to generate a high-coverage
test suite is unknown – see Chapter 5.

2.1.6 Summary

In this section we broadly looked at software testing. In particular, we discussed
several basic concepts and definitions in this domain, in addition to a brief survey
of the literature on techniques for automatically generating tests for software
programs.

In the following section we look at a specific type of software testing related to
software evolution. That is, we provide answers from the literature to questions
such as: How do developers test their program as they evolve? How can they
make sure that making changes does not break existing functionality? How can
they find unintended consequences caused by the modifications they have made
to the program? When new tests are added as the program evolves, how can the
growing cost of testing be reduced? Specifically, we look at several approaches
and techniques in the literature which aim to tackle these problems.

2.2 Regression Testing 31

2.2 Regression Testing

As software programs evolve, developers add, remove, or enhance the software,
and along with these changes, they may introduce unintended side-effects (i.e.,
bugs) that affect the original functionality of the program. Therefore, developers
need to ensure that their changes have not affected the functionality of the
program. To gain confidence that the originally intended functionality of the
program is intact, developers create tests and execute the set of tests – also
known as the regression test suite – after changes are made. Any failing tests can
indicate a regression in the functionality, unless the test is obsolete and needs to
be repaired or removed. This practice, also referred to as regression testing [198],
helps developers to detect regressions in the functionality of the program before
releasing the new changes to the software, and has been widely adopted in the
industry (e.g., [120], [43]).

However, simply by adding new tests and re-executing all tests after each
change, the cost of regression testing keeps growing, which has lead a majority
of research in the literature on regression testing to look at reducing this cost.
Over the past decades, a large number of studies and experiments have been
conducted in this field. Initially, due to the high cost of having to re-run existing
tests after every modification, regression test selection solutions were suggested
in order to run a partial subset of the test suites. Some other approaches in
the area considered adding new test cases – or improving existing ones – to
cover the code elements that were affected by the changes, or to increase the
effectiveness of the test suite at finding faults. Newer approaches in the area look
at automating the regression testing process using external (e.g., third-party)
or randomly generated test suites. In this section, a survey of the previous
approaches in the area is presented and discussed.

It is worth noting that the regression problems and work in this area are not
limited to those discussed in this chapter, but also expand to Graphical User
Interface (GUI) regression problems (e.g., [115, 178, 114, 113, 68]), web-related
problems with interfaces, sessions, services, dynamic behaviour, and so forth
(e.g, [191, 71, 39, 134]), software-component related problems (e.g., [122]), and
so forth. We also do not cover model-driven regression testing approaches (e.g.,
[98, 97, 190]) since in this thesis we assume that developers may not have the time

32 Literature Review

and resources to produce such models, especially considering that maintenance
of the model along with the program can exacerbate the problem, particularly
for rapidly evolving programs.

2.2.1 Test Minimisation, Selection and Prioritisation

Much research has been done for making a better use of existing test suites. The
following sections look at different approaches towards running test suites more
efficiently, and ways to find the regression faults more quickly.

2.2.1.1 Minimisation Techniques

One of the main arguments against rerunning all the tests on the System Under
Test (SUT), is that some tests are redundant, and all regression faults they may
be able to identify can also be found by other test cases. Test suite minimisation
techniques propose identifying such tests within the test suite and removing them.
As such, these techniques lower the cost of regression testing by reducing the size
of the test suite. The biggest challenge associated with these techniques is to
not discard a test case that could detect a new fault if it was not removed [198].

If developers rely on other means to generate the tests such as random test
generation (Section 2.1.3), often individual test cases contain statements that are
duplicate or unnecessary to detecting a fault. When such a test fails, statements
unrelated to the failure can hinder the debugging effort. Therefore, techniques
have also been proposed to minimise the length of individual tests – as opposed to
minimising the size of the test suite. For example, the work by Leitner et al. [99]
which targeted shortening individual test cases while maintaining their ability
to reproduce the failure.

Due to minimisation being an NP-complete problem, many different heuristics
were suggested in order to minimise test suites. While most approaches relied on
reaching high level of code or structural coverage, few others looked at alternative
metrics. Marré and Bertolino [107] created a compact form of Control Flow
Graph (CFG) and their minimisation technique relied on finding a set of tests
that can span over their graph. Other alternative approaches in the area included

2.2 Regression Testing 33

using a Model-based test suite minimisation, by analysing dependencies and
automatically modelling the modifications [96].

To measure the effect of such techniques, a large number of empirical studies
were conducted. In two major studies conducted by Wong et el. referred to as
WHLM [182] and WHLP [180], test suite minimisation was effective in reducing
the size of the test suite by a rate of 1% up to 44%, in test suites with respectively
50% and above coverage. However, the effectiveness of the test suites in detecting
the regression faults were reduced by an average of less than 7.28%. On the other
hand, studies conducted by Rothermel et al. [140, 141] contradicted the previous
results, and found a reduction in effectiveness of over 50% and sometimes even
reaching 100%. The reason for this contradiction is considered to be due to using
a larger case study and having coverage-adequate test suites. It is suggested
that minimisation techniques that allow higher levels of redundancy such as
vector-based reduction have negligible effect on the effectiveness of the test
suite [199].

2.2.1.2 Regression Test Selection

Similar to test suite minimisation, test case selection techniques try to reduce
the size of the test-suite that needs to be executed for regression testing purposes
(i.e., creating a subset). The main difference in this case is that, selection
techniques use the changes made to the SUT in order to make the selection –
that is, select a subset of the tests that are most relevant to the change to detect
regressions. Minimisation techniques in comparison generally target code or
structural coverage of the SUT, rather than taking advantage of the changes [198].

A wide range of test case selection approaches were suggested over the
past decades. A technique suggested by Harrold and Souffa [78] analysed the
data-flow of the program in order to identify changes in the program, and
selected test cases that covered these changes. An issue associated with data-flow
analysis techniques, is the lack of support for considering changes that do not
use variables or do not cause data-flow changes. A different approach used by
Yau and Kishimoto [197] applied symbolic execution in order to select a subset
of the test suite. Their complex algorithm initially analysed the code to identify
input partitions, afterwards it generated and symbolically executed test cases

34 Literature Review

based on the modified parts of the code. Finally, it matched the CFG of the
execution with the real test cases, and selected the tests based on the matchings.
The technique however was found to be very expensive, and therefore insufficient
to tackle the problem of reducing the cost of executing the whole test suite.

Given that approaches such as data-flow analysis and test suite minimi-
sation could lead to omitting fault-revealing tests, researchers proposed safe
techniques [65]. Despite being less effective in reducing the size of the test suite,
these safe regression testing approaches select every test case that is able to reveal
a regression fault. Harrold et al. [79] proposed a control-flow based approach,
which generated a CFG of the classes under test and identified modified edges in
the graph. Later, it selected all the test cases that exercised the identified modi-
fications. Their approach achieved a varied success rate across test suites from
different object-oriented programs. Other test selection approaches include, but
are not limited to dynamic execution slicing of the program, textual comparison
of the SUTs, and model-based comparison techniques [198].

2.2.1.3 Prioritisation Techniques

In contrast to techniques that aim to reduce the size of the test suite, some
researchers suggested reordering the test cases, so that the test suite execution
would reveal the faults quicker and provide faster feedback. Many techniques
in this area focused on prioritising test cases according to structural coverage,
and therefore aim to reach the highest coverage as soon as possible. Rothermel
et al. [142] and Elbaum et al. [42] described several objectives and techniques
for prioritisation of test cases. Some of the objectives included prioritising tests
with highest rate of fault detection, and structural coverage. These techniques
included different coverage criteria, such as prioritising based on coverage of
branches and statements, as well as prioritising based on probability of fault
exposure. The result of the study found significant improvement in rate of fault
detection in all the heuristics.

Although it is not the objective of prioritisation techniques to lower the cost
of test execution (as opposed to minimisation and selection approaches), it tries
to maximise the cost of overall testing efforts. For instance, an earlier detection
of a fault could save the time that a developer would normally spend waiting

2.2 Regression Testing 35

for the tests to be executed. Moreover, an early detection (a failing test) could
be used as a halting point for test execution. Walcott et al. [176] proposed a
time-aware prioritisation technique that would reorder the test cases in order to
achieve the highest rate of fault detection while not exceeding a time budget.
The technique relied on using a genetic algorithm, with the fitness function
optimising for coverage while considering the time constraints. The study found
significant improvement in terms of effectiveness over the time, compared to
other techniques. However, a significant issue associated with this technique is
that more time is required to perform this prioritisation than the execution of
the whole test suite. Although, it can be argued that the prioritised test suite
can be re-used in the future.

2.2.2 Test Suite Augmentation

While much work in the area of regression testing has focused on making a better
use of existing tests by reducing the execution costs and increasing efficiency,
when software changes involve new behaviour, there may be simply no tests
to exercise the new behaviour [159]. As a result, even considering the case of
rerunning all the existing test cases, some modified or new behaviour of the
software may not be visible to these tests [148]. Extending existing test sets with
new or updated tests after the program under test has been modified is known
as test suite augmentation. Test suite augmentation techniques aim to address
this problem, so that new tests are added – or existing ones are improved – in
order to increase the effectiveness of the test suite. In this section, we look at a
number of different approaches taken towards augmenting existing test suites.

2.2.2.1 Assisting Manual Test Suite Augmentation

Apiwattanapong et al. [11] proposed an approach named MATRIX for test suite
augmentation which created a set of test requirements based on the analysis of
the changes between two versions of a program. Using these set of requirements,
developers could assess the effectiveness of their existing testing efforts, in order
to decide how to further improve the tests. The analysis performed by MATRIX
involved multiple steps and components. In the first step, the approach computed
the differences between the two program versions by finding the new, modified

36 Literature Review

and deleted statements. Secondly, based on the change information, a set of
requirements were generated for the modified part of the programs. In the next
step, the existing test suite minimised by a safe regression test selection tool
would be executed on the new version of the software, while being guided by the
previously produced requirements. Afterwards, the result of the execution and
the level of coverage would be analysed and compared with the requirements.
Finally, manual test generation was required to provide test cases that can
satisfy the unsatisfied requirements. The process would then repeat from the
execution step with the augmented test suite, and would continue until either a
specified percentage or all of the requirements would be satisfied. The limitation
of MATRIX however was within the analysis step, which required symbolic
execution to derive information related to the program state, and therefore a
certain depth limit had to be imposed. Additionally, only a single change could
be handled by the technique at a time.

Aiming to further improve and explore the technique implemented in MA-
TRIX, Santelices et al. [148] proposed a full implementation of the technique,
further enhancements in the approach, as well as an empirical evaluation of the
technique using few open source projects. The tool named MATRIX Reloaded
used symbolic execution of the pair of program versions, to gather information
such as control and data dependencies. Improving on the original approach,
this technique analysed propagation chains and compared symbolic states of the
corresponding positions between the two versions of the program, at the end of
each propagation chain. Afterwards, the state requirements for the chains would
be computed, and the test suite would be analysed with regards to the generated
requirements. Similar to MATRIX, this approach did not generate new tests
to augment the test suite. Furthermore, due to using symbolic execution, it
still suffered from scalability limitations. However, this limitation was different
from the previous approach, as it was limited to the complexity of the changes
and not the complexity of the programs. Because of this difference, it was more
effective and flexible than the earlier technique. Nevertheless, these approaches
required manual effort from developers.

2.2 Regression Testing 37

2.2.2.2 Augmentation by Generating New Tests

Xu and Rothermel [196] introduced DTSA as a test suite augmentation solution,
which was able to add new test cases to the existing test suite in order to create a
coverage-adequate test suite for the modified version of the program. To achieve
this, their approach initially used a safe regression test selection tool named
Dejavu [139] to identify uncovered code by the existing test suite, and used
dynamic symbolic execution to generate test cases that can reach those parts of
the code. The approach was found to have two main limitations of a) limited
scalability due to using dynamic symbolic execution; and b) the generation of
new test cases relying heavily on existing test cases. Aiming to resolve such
limitations, Xu et al. [195] conducted a further study into the factors that can
affect the effectiveness and efficiency of such techniques. Additionally, they
explored the effectiveness and possible benefits of using a new genetic-algorithm
based test generation method. Their large empirical study had several findings
in terms of the ordering of test cases, the benefit of using old test cases, and the
effectiveness of different test generation techniques. It was found that overall,
prioritising some of the existing test cases would not affect the effectiveness of
the approach, while it may increase the efficiency of genetic-algorithm based
test generation. In terms of the benefit of using old test cases in addition to the
newly generated ones, it was found to have a significant improvement on the
effectiveness of the approach, whereas the trade-off being a significant increase
in costs. Comparing the effectiveness of genetic-algorithm and dynamic symbolic
execution test generation techniques, dynamic symbolic execution was found to
be effective on simple subjects, while genetic algorithms were more flexible and
managed to be more effective in almost every subject in their study.

2.2.2.3 Continuous Test Suite Augmentation

Whereas automated test generation techniques often look at a single version of
the program, there typically exist many versions throughout software evolution.
Accordingly, as mentioned earlier, test sets need to be maintained, tests may
need to be updated [37, 116, 117], and new tests need to be added to satisfy the
requirements placed on the test set (e.g., level of code coverage). Approaches to
automatically generate new tests for test suite augmentation have been proposed

38 Literature Review

using dynamic symbolic execution [196], search-based approaches [195, 193],
as well as hybrid approaches [194]. Most of these approaches aim to maintain
code coverage throughout software evolution, although some approaches try
to complement existing tests with new behaviour related to past interesting
tests [105]. However, should techniques start from scratch each time when these
techniques are being applied to the same program repeatedly? Can we use
knowledge gained during this process to lower the cost and improve effectiveness?

A tight integration of this coverage-based test generation with continuous
integration has been proposed in the context of continuous test generation
(CTG) [29] and continuous test suite augmentation [192], where test generation
is triggered at every commit to a repository, and executed on a continuous
integration server. This repeated application increases the effectiveness of
the test generator, and allows it to distribute computational resources across
multiple invocations. Applying test suite augmentation with new tests in practice
is not limited to one class of the program under test, but rather involves a
whole program. Moreover, simply applying test suite augmentation after each
commit to a repository does not take advantage of the knowledge gained during
augmentation in earlier commits. Campos et al. [29] aim to address these through
their CTG technique, in which during continuous integration after a change is
made to the program, they take advantage of information learned from earlier
commits.

In their proposed approach, they first attempt to better allocate resources
(e.g., search budget) to classes of the program that are more difficult to test.
Second, the order in which classes of the program are tested can be important,
given that a test case generated for one class may help with testing another class.
And finally, tests generated for earlier commits can provide a better starting point
for testing the newly changed program. The authors evaluated their technique
on several open source and industrial projects and report a gain of up to 58%
in the level of coverage achieved, while at the same time reducing the time
spent on test generation by up to 83%. This suggests that such optimizations
based on information learned during the lifetime of CTG can not only reduce
the time required for testing, but also increase the effectiveness of the approach.
Continuous augmentation of test suites has also been applied in other domains
such as in a software product line (SPL) [192]. The authors propose a technique

2.2 Regression Testing 39

where rather than generating tests for products in the product line individually,
they perform this in an order that can take advantage of tests generated for
products which were tested earlier. Similar to the findings of Campos et al. an
evaluation of their approach showed it to be more effective and efficient than
augmentation based on individual products.

2.2.2.4 Propagating Regression Faults

Most approaches in this area focus on reaching and executing the changes,
yet reaching a fault does not guarantee the propagation of the fault to the
output. Previous techniques for addressing fault-propagation (such as MATRIX),
used symbolic execution which has limited scalability due to computation costs.
Symbolic execution requires dynamically calculating all execution paths leading
to the fault, as well as finding propagation paths after reaching the fault. Hence,
as the complexity of the program increases, the number of possible execution
paths may exponentially grow, therefore, a boundary has to be defined. Santelices
and Harrold [149] proposed an approach for propagation-based regression testing.
The main objective of their study was finding an optimised solution to the
significant limitation of symbolic execution in the previous approaches. To
achieve this, their approach analysed dependencies and state differences during
the execution (dynamically), as opposed to statically computing test requirements
in advance. This enabled them to avoid generating dependency requirements
using symbolic execution and resulted in a more efficient test suite augmentation
approach, where the end result was more effective than earlier techniques at
revealing differences. The result of the study also shows that propagation-based
strategies are more effective for revealing differences, as opposed to coverage-
based strategies. Their technique however was not fully automated, and test
inputs needed to be provided by testers.

2.2.2.5 Enhancing Fault-finding Ability

When developers create comprehensive and well-written manual tests, these tests
are often written with certain scenarios in mind which have perhaps the highest
business priority. Therefore, given the time constraints of developers, they often
test using a limited set of inputs, resulting in a limited set of execution paths.

40 Literature Review

Marinescu and Cadar [105] argue that these tests can be taken advantage of
by further enhancing their ability at revealing future faults. Their approach,
implemented in a tool called ZESTI, explores additional execution paths around
sensitive parts of the system under test using a light-weight symbolic execution
approach. The approach considers the execution of all possible input values that
could be provided to sensitive instructions. While the technique can be applied
automatically, and was able to detect previously unknown bugs in open source
programs, there remain a few shortcomings. First, execution of the technique
can be expensive and scalability of the approach may be limited, and second, an
existing set of high-quality tests should be provided as input.

2.2.2.6 Test Suite Augmentation – Summary

Test suite augmentation techniques reviewed so far looked at providing require-
ments for testers to augment their test suites, and some considered automatically
generating such tests. While most approaches focused on adding test cases
to achieve better coverage and reaching the fault, others aimed to tackle the
propagation of these faults. However, the approaches often require existing tests,
suffer from either scalability limitations of symbolic execution, or do not consider
faults that may result from executing a sequence of method calls. As such, while
these approaches aim to address the effectiveness of regression suites, they have
shortcomings in terms of efficiency, and add additional analysis costs to the
existing “re-test all” testing costs. Moreover, augmentation techniques often rely
on an existing set of tests – preferably written manually – which can be time
consuming to create. Even with access to such tests, the quality of the tests
would affect the outcome of these techniques. Thus, in the next section we look
at automated techniques for generating regression tests from scratch.

2.2.3 Automated Regression Test Generation

While augmentation techniques aim to augment an existing test suite, such tests
are expensive to create, and may be simply not available. Another common
assumption is that high quality tests already exist that can be enhanced to test
new functionality. However, access to such tests can often be a luxury, and can
take a significant portion of the development time. Automated test generation

2.2 Regression Testing 41

techniques aim to tackle this problem, and when applied in a regression testing
scenario, they aim to reveal potential regressions. In this section we summarise
work in the area which aim to generate regression tests automatically.

2.2.3.1 Use of Third-party Random Test Generators

Orso and Xie [123] presented BERT as an automated test generation tool for
regression testing. The technique aimed to identify behavioural differences
between two versions of a software. BERT operated in three stages of initially
generating a large number of test cases, secondly running the tests over both the
old and new versions of the class under the test while capturing their outcome,
and finally analysing the observed behavioural differences and presenting the
result back to the user. The initial step was achieved by using third-party
test generation tools such as Agitar’s JUnit Factory[2], and Randoop [124].
Afterwards, for the second stage, BERT ran the test cases created in the first
stage on both versions of the software, and for each executed test case it logged
three main outcomes: 1) State of the instance, 2) Return values and 3) Output of
the test. While logging the outcomes, BERT compared the values and recorded
any found differences. In the end, at the third stage, the refined and analysed
output would be displayed to the developer. Despite the limited empirical study
on only one subject, the results of the study were encouraging, and BERT
managed to find actual regression faults between two versions of the subject
program. The approach is however limited, due to relying on the quality of the
automatically generated tests. Since no guidance exists for the test production,
the quality of the provided tests would ultimately determine the power of BERT
– this further motivates our approach in Chapter 4. The technique however
informs the user when it detects a difference in state differences between two
versions of a program, even if the generated tests result in the same output. The
approach used by this tool also relates closely to differential testing approaches
that we expand on later in Section 2.2.4.

A similar approach taken by Taneja and Xie [163] named DiffGen, synthesised
its own test driver that would try to execute the structure of both versions of
the program. The method added missing branches between the versions to make
the branches equally testable. To generate this test driver, initially a textual
differentiation analysis between the versions would choose the methods that have

42 Literature Review

been modified. In the next step, for each changed method, a method would
be added to the test driver class, which would compare the execution result
of the changed method. To perform this comparison, the test driver method
received the result of running the method on the old version of the software, and
would run and store the result of the execution of the changed method. After
executing the new version of the method, the execution state and objects would
be compared. Afterwards, it used automated test generated tools in order to
create a high coverage test suite for the synthesised test driver. Observing the
state differences during the execution, the differences were recorded and were
reported back to the developers. While the approach showed promising results
in terms of fault finding, DiffGen has internal limitations, such as being unable
to correctly compare object states if a field is modified, added or removed in the
new version of the software. Additionally, any refactoring on method names or
their signature would make them incomparable.

2.2.3.2 Generating Tests Systematically

While the approaches reviewed in the previous section attempted to find re-
gression faults between the two versions automatically, they mainly relied on
randomly generated or externally provided test suites. Therefore the quality of
the provided tests would be the determinant of their power in regression testing.

Qi et al. [133] proposed an automated test generation tool that aimed to
execute the changes as well as propagating these changes to the output. To
achieve this, dynamic symbolic execution was exercised to find the execution
path to reach the change. Afterwards, test cases were generated to reach these
changes. Finally, the approach looks at modifying and tuning the inputs of the
generated tests so that they can propagate the state infections caused by the
changes to the output.

The test generation phase of this technique relies on first, running an existing
or generated test suite created for the old version of the program on the new
version and collects the execution paths. If the execution successfully reaches the
change, the corresponding test would be returned. Otherwise, the execution path
of the test case will be modified to have a closer reaching point to the change,
and this step will continue until the test becomes able to reach the change. Once

2.2 Regression Testing 43

the change is reached by the test, the technique will aim to propagate the test
result to an observable difference in the output between the two versions. This
step first checks whether the currently generated test input propagates to the
output. If not, the propagation path of the previous execution will be analysed
and the program computes a propagation path to decide how to propagate the
change. Afterwards the input will be modified based on the analysis so that the
test reaches the change and propagates it to the output. Several limitations were
associated with this approach including being limited to independent changes in
the software, as well as failing to address scenarios where a sequence of method
calls are required to propagate the changes to the output.

2.2.4 Differential Testing

In 1998, McKeeman [108] suggested using a form of random testing named differ-
ential testing, as a way to complement existing regression testing practices. The
technique requires taking at least two comparable programs that are available to
the tester, and the author proposes that if an input propagates to different out-
comes (e.g., different output, crash or infinite loop on one version, etc.) between
two of the program, it can indicate a potential regression in the functionality.
Given that a majority of large software systems are already accompanied with
an exhaustive set of tests, these tests can be used as a starting point for input
data that can reach deep areas in the program.

The author measured the effectiveness of the technique on C compilers. To
achieve this, they used the existing set of test suites and generated mutated
versions of the tests in order to have neighbourhood test suites, and executed
them on different compilers. Although the author reported on several bugs
they managed to identify using the technique, he discusses several challenges
faced when using the technique in practice. For instance, an important barrier
towards the adoption of the technique is the overhead that may be imposed
on the developers. If the developers already have a backlog of real bugs, an
automated system reporting potential bugs may not be desirable among the
developers. Other challenges include creating high quality tests, minimization of
the size of these tests, and presentation of the differential testing outcome. As a

44 Literature Review

result, while the technique was shown to be an effective way to find real faults,
adoption of the technique in practice faces several challenges.

However, in spite of the challenges, developers used differential testing in
the industry at DIGITAL and Compaq (later acquired by Hewlett-Packard) to
detect bugs in their C compiler, and they report that the technique helped them
to identify and fix several bugs. While it was originally applied to C compilers,
McKeeman suggests that same technique can be extended to testing Java API
across different platforms. Although differential testing was originally proposed
to test comparable programs to check whether they achieve the same goal (e.g.,
different compilers of the C language, Java API across different platforms), or
to test the same program across different environments, Evans and Savoia [45]
propose a similar technique under the same terminology, for testing different
versions of the same program, in order to identify changes.

The authors propose a simple technique for applying differential testing
in the context of regression testing. Given an original and modified version
of a program, taking advantage of automated test generation techniques, the
approach is to generate unit tests based on each version of the program, and
to execute it on the other version of the software. This enables developers to
identify unexpected functional changes across the two versions of the program.
The technique was evaluated on 3 versions of an open source program JTopas,
where the authors seeded 38 faults in each version, and performed differential
testing between the original and faulty programs. The results showed that
21-34% of the seeded faults were detected using the technique. Given that the
technique can be applied completely automatically, it has potential to be used by
developers to detect regression faults automatically. However, as the technique
only reveals changes across the two versions of a program, it becomes the duty
of the developer to decide whether the change in the functionality was expected,
or is an unwanted side-effect.

So far we have looked at differential testing applied in the context of test-
ing different-but-comparable programs (e.g., compilers of C language) or the
same program in different environments [108], or for the purpose of unit-test
generation [45, 123]. Other approaches have looked at annotations [189] and
instrumentation [163] to execute different versions of program methods simulta-
neously with the help of third-party test generation tools, while some techniques

2.2 Regression Testing 45

have looked at solutions to guide the execution towards paths that can lead to
the changes [164]. Compared to the earlier techniques, a different and interest-
ing application of differential testing in the industry is the technique proposed
by Groce et al. [69], using which they aimed to detect and address possible
but rare hardware failures in space missions. Given the hostile condition in
space such as the high level of radiation, rare hardware failures – for instance
on the storage device of a Mars Rover – are more likely to occur. In order
to increase the tolerance of their software for detecting of such changes, the
authors injected faults into the hardware simulation to create a faulty version of
the software. Using this, they compared execution results of randomly selected
POSIX operations on the two version of the hardware, and kept track of cases in
which the hardware failure resulted in unexpected output or produced different
output. Using this technique the authors automatically generated 255 tests
within the first 25 weeks of testing, where each test revealed a different fault.
While the authors mention that this type of continuous random testing does not
prove the correctness of the software, it can help with establishing confidence.

2.2.4.1 Automated Testing of Code Patches

Software programs undergo new changes over time. In general, each change to a
program’s code can be considered as a set of additions and a set of deletions –
while modifications involve deletion and additions. This information on the set
of applied changes can be unified into a single patch, and can be applied on the
pre-change version of the program to create the new version. This means that all
changes applied to a program over its lifetime can be considered as code-patches,
and one can construct the final version of the program by taking the first version
of this program and apply all intermediate changes. An example of a patch in
the form of a unified-diff is shown below:

1 @@ -745,2 +745,2 @@

2 - return len > 0;

3 + return len > 0 && s.charAt(0) != ’0’;

Code patches that are applied during the development life-cycle of the
software program can also contain a bugfix or a security fix that users can take
and directly apply to their programs. While software patches are mostly aimed

46 Literature Review

at fixing existing bugs, or extending the current functionality, they can result in
unexpected side-effects, and therefore result in regressions.

Marinescu and Cadar [106] propose a technique which uses symbolic execution
and dynamic analysis to automatically test code patches. Their technique
implemented in a tool named KATCH aims at reaching the code of the patch to
cover the changes. To achieve this, in their technique they first use the set of
manually-written test suites by the developers and execute the program using
the test inputs. Then, the inputs closest to the location of the change (patch) are
selected (as seed) for the symbolic execution stage. Using different heuristics, the
technique then aims to reach the uncovered parts of the patch. On a high-level,
the technique explores paths that lead to the patch, and does so cleverly by
choosing the sides of branches that are more likely to lead to the changed code
(based on the distance to the change). If during this exploration, a selected
path is infeasible or data-dependency exists, an alternative path is regenerated.
During this process, for branches that cannot be solved symbolically, concrete
execution is used. The technique also takes advantage of definitions in the
program structure to generate alternative input definitions that can help with
reaching the desired targets.

Similar to several other techniques relying on symbolic execution presented
earlier, while KATCH was found to be effective on real world programs (e.g.,
GNU diffutils, binutils, findutils), it mainly targets reaching the change
and does not target propagation. Additionally, the technique relies on an existing
set of unit tests and the quality of tests can directly affect the effectiveness of
the technique.

While most of the aforementioned symbolic execution based techniques aim
at generating tests that reach (cover) the patch, Palikareva et al. [125] look at
generating test inputs that can lead to behavioural differences across the two
versions of the program (i.e., taking a differential testing approach towards this
problem). The authors present a technique named Shadow, which executes two
versions of a program (i.e., the old and the new version) in the same symbolic
execution environment, with the objective of generating inputs that propagate to
different behaviours in the output, and to create divergences between the control
flow of the two versions of the program. To achieve this, first the two versions of
the program should be unified into one version using manual annotations. Then,

2.2 Regression Testing 47

after executing the existing test suite of the program, the test inputs that reach
the patch area are selected. If the inputs do not reach the patch, the closest
inputs to the patch are selected and using KATCH (as described earlier), they
generate inputs that can reach the patch.

Using inputs that reach the patch as starting point, the technique then uses
dynamic symbolic execution to create divergences in the control flow across the
two versions. Additionally, it aims to propagate the divergences to the output
using bounded symbolic execution. Finally, the output values/behaviours are
compared across the two versions. The authors evaluated the technique on 18
regression faults taken from the CoreUtils project, and demonstrate that the
technique can be effective at creating both divergences and detecting some of
the faults. However, Shadow suffers few limitations such as requiring an existing
set of tests, and additionally a manual overhead is imposed on the developers to
annotate the patches.

2.2.5 Regression Verification

In contrast to differential testing approaches, where the objective is to reveal
differences, regression verification tries to verify that two similar programs are
equivalent: ensure that the new version of the program is at least “as correct” as
the older version [63]. This area tries to combine regression testing and formal
verification, to validate the equivalence of similar programs, given a definition of
equivalence.

An example of this is the work by Böhme et al. [23]. They suggest an
approach where subsets of the input space (also known as input partitions) are
separately and gradually verified. This can be beneficial, given that verifying
the equivalence of two programs using all inputs from the input space can be
simply infeasible. Moreover, if the execution of the technique is stopped at any
point in time, one can be certain that for the partitions that have been verified
so far, no different behaviour exists. The approach named PRV starts with
random inputs, and then using symbolic execution it explores the common input
space between the two versions of the program that lead to the same behaviour
(either the behaviour of the two programs is identical, or a behavioural difference
is observed). The approach was evaluated on a small number of open-source

48 Literature Review

programs, and was shown to be effective at revealing differences. Compared to
other symbolic approaches, PRV relies on random inputs and re-execution of
the program in order to continue its exploration, which may limit the scalability
of the tool on large subjects.

2.2.6 The Oracle Problem

The ugliest problem in testing is evaluating the result of a test.
(McKeeman [108])

After a test is executed, as McKeeman states, determining whether the
behaviour of the program was correct is a challenging problem. This is mainly
due to the fact that an oracle needs to validate the behaviour of the program. Test
oracles (assertions) are created to validate the behaviour of the program based
on the expected behaviour. This expectation can be taken from the specifications
of the program, or derived from other sources such as documentation, earlier
versions, the system under test itself, and so forth. The oracles may also be
implicit, such that a segfault for instance is most likely a fault. Using these,
developers can manually add oracles in their test, or sanity checks/validations
inside the program code to automate the decision on whether or not the program
is behaving as intended.

However, during debugging, adding such oracles is not the only time consum-
ing part of the process. When a failure occurs, a developer needs to make the
final judgement on whether or not the program is behaving correctly. The next
challenge is deciding what parts of the program state and behaviour need to be
validated. Should developers write all possible assertions to validate the state of
the program? While developers can often decide the important aspects of the
program to test and validate, this can be significantly more challenging for auto-
mated techniques. Without knowing the original intention of the developers, and
without knowing the correct behaviour of the software, constructing a sensitive –
and yet not excessive – set of oracles is difficult for an automated tool. Although
researchers have proposed different techniques such as keeping only tests that
are more effective at killing mutants, this remains an open problem [19].

2.2 Regression Testing 49

In the context of regression testing, one way to approach this problem is to
assume that the behaviour of the current version of the program is correct, and
set the objective to avoid behavioural changes by validating the new version’s
behaviour against the old one (e.g., as is assumed by some of the techniques
reviewed earlier in Section 2.2.3 and Section 2.2.4). Xie [186] propose such an
approach to augment existing regression tests with more assertions to increase
their effectiveness at detecting future behavioural changes. However, applying
such techniques can have negative consequences on execution time, debugging
time (developers need to spend more time inspecting failing tests), and so forth.
Moreover, as mentioned earlier, this approach can lead to creation of an excessive
set of oracles. An alternative approach by Fraser and Zeller [56] uses mutation
testing to derive a better subset of oracles that are effective at revealing defects.
However, this may still lead to more failing tests that originate from the same
code-changes, thus leading to wasted efforts on inspection and maintenance –
see Section 4.2.3 and Chapter 6.

2.2.7 Maintaining Regression Test Suites

As a program evolves, regression tests need to evolve with it. Forming the
majority of test changes are new tests which are added to test new functionality,
test changed parts and bug fixes, or to increase coverage. Close to a third of
test changes involve modifications of the tests, part of which involve repairing
existing failing tests (e.g., when the expected behaviour of the system under test
has changed), or other reasons such as improving the quality and effectiveness
of existing tests. Tests can also be deleted as they become obsolete. Therefore,
significant effort is required to maintain test suites along with the programs [130].
Maintaining automatically generated tests is even more time consuming than
maintaining those written manually [162].

To help with maintenance efforts involving test repairs, work has been done
in the literature to automate this process. Daniel et al. [37] present a technique
to suggest how a failing test should be repaired, accompanied by a tool which
allows developers to achieve this with a single click. Their approach involves first,
instrumenting the program under test and then locating where the test needs
to be repaired. Then using a strategy that is most adequate for the particular

50 Literature Review

change — which is based on different models of unit test failures – the repair is
suggested based on the new behaviour of the program. Mirzaaghaei et al. [117]
propose an alternative approach, such that existing failing tests are repaired
by adapting them to the new behaviour of the program. In their approach,
existing tests are evolved based on information available in the test, such that
new passing tests are created to replace the failing ones. While these approaches
– and other work on test repair – show promising result, their effect on test suite
maintenance in the best case scenario can be minimal. As Pinto et al. [130]
report, in practice, only 22% of test modifications involve repairing failing tests.
Moreover, this does not reduce the time a developer has to spend inspecting
the failing tests. Chapter 6 investigates whether automated test generation
techniques can help with reducing these maintenance costs.

2.2.8 Summary

In this section, we looked at the problem of regression testing in software testing.
In particular, we described the increasing cost of regression testing over time
and some proposed approaches that can tackle the problem. We also looked at
alternative techniques for generating and augmenting test suites, either using
existing set of tests or by generating them from scratch. Furthermore, we
discussed some of the challenges faced by the existing techniques.

Although much work has been done in this area to aid developers, a majority
of the approaches either rely on existing manual testing effort, or suffer scalability
issues. Moreover, while many techniques have been proposed to generate tests
automatically such that they can be used for regression testing, whether the
generated test suites are effective at finding real bugs remains an open question.
Therefore, to better understand the state-of-the-art in automated test generation
to detect real faults, we investigate this question in the next chapter.

Chapter 3
Evaluating Automated Unit Test
Generation Tools Using Real
Faults

The content of this chapter is based on work undertaken during this PhD
by the author, which has been published elsewhere [156] © 2015 IEEE.

3.1 Introduction

In the previous chapters we discussed the benefits of automated unit test gen-
eration techniques and reviewed a number of different efforts towards this end
in the literature. However, while a majority of papers proposing these works
include a set of experiments evaluating the accompanied techniques, it is unclear
how they compare with each other, and where the state-of-the-art techniques
stand in terms of automatically generating tests that can detect real faults.

Moreover, automated unit test generation techniques are often evaluated
against code-coverage criteria – where even achieving high levels of code coverage
does not imply that the test will be effective at fault finding, for instance
automatically generated unit tests can reach even higher coverage levels than
those written by developers, yet they are less effective than manual tests [54]
– or using mutation score as a proxy – where finding seeded faults does not

52 Evaluating Automated Unit Test Generation Tools Using Real Faults

necessitate that they can detect faults that developers make. Therefore, a large-
scale comparison of the state-of-the-art tools on their effectiveness at detecting
real faults and a framework to do so is lacking from the literature. Additionally,
access to such a framework is essential to evaluating our own proposed technique
and approach which are presented later in Chapter 4 and Chapter 6. This
chapter provides such a framework.

In this chapter, we empirically evaluate automatic unit test generation
using the Defects4J dataset, which contains 357 real faults from open source
projects [89]. We applied three state-of-the-art unit test generation tools for
Java, Randoop [124], EvoSuite [51], and AgitarOne [167], on the Defects4J
dataset, and investigated whether the resulting test suites can find the faults.
Specifically, we aim to answer a) How do automated unit test generators perform
at finding faults? and b) How do automated unit test generators need to be
improved to find more faults? The answer to these two questions enables us
to derive insights to support the research and development of automated test
generation tools, and addresses some of the previously discussed shortcomings
in the literature.

In particular, the contributions of this chapter are as follows:

• A framework for evaluating the effectiveness of tests generated using
automated techniques at detecting changes

• A large-scale experiment, applying three state-of-the-art automated unit
test generators for Java to the 357 faults in the Defects4J dataset.

• A detailed analysis of how well the generated suites performed at detecting
the faults in the dataset.

• The presentation of a series of insights gained from the study as to how
the test generators could be improved to support better fault discovery in
the future.

The rest of this chapter is structured as follows: First in Section 3.2 we
describe our methodology and the framework we implemented to conduct this
study. We discuss the subject programs, the automated test generation tools
used to test these programs, our strategy to filter and evaluate the generated

3.2 Methodology 53

randoop
Random test generation

Test Suite

Test Suite

Test Suite

Defects4J

Buggy
version

Defects4J

Fixed
version

or

or

or

Executed on

Executed on

Executed on Generates

Generates

Generates

Fig. 3.1 Overview of the experimental setup. For each fault, the Defects4J dataset
provides a buggy (i.e., faulty) and a fixed version. Test suites are generated with
all tools on the fixed version, and executed on the buggy version. © 2015 IEEE

tests, and the threats to validity inherent to this study. Next, we detail our
results and answer to our research questions respectively in sections 3.3 and
3.4. In Section 3.5 we compare our work to related work in the area, and finally
conclude this chapter in Section 3.6.

3.2 Methodology

In order to answer our research questions, we designed an experiment according
to the high-level methodology shown in Figure 3.1. We considered Defects4J,
a database of known, real faults, where each fault is represented by a buggy
and a fixed program version. We applied three automated test generation tools
(AgitarOne, EvoSuite, and Randoop) on the fixed version, and executed
each generated test suite on the buggy version to determine whether it detects
the fault – that is, whether it fails on the buggy version. This means that we
are considering a regression testing scenario, where a developer would apply test
generation to guard against future faults. We then analysed in detail which
faults were detected and how, and which faults were not detected, and why. This
section describes the experimental setup in detail.

3.2.1 Subject Programs

The Defects4J [89] dataset consists of 357 real faults from five open source
projects: JFreeChart (26 faults), Google Closure compiler (133 faults), Apache
Commons Lang (65 faults), Apache Commons Math (106 faults), and Joda Time
(27 faults). Defects4J makes analysing real faults easy: For each fault, it

54 Evaluating Automated Unit Test Generation Tools Using Real Faults

provides 1) commands to access the buggy and the fixed program version, which
differ by a minimized change that represents the isolated bug fix, 2) a developer-
written test suite containing at least one test case that can expose the fault, and
3) a list of classes relevant to the fault – that is, all classes modified by the bug
fix. As per the regression testing scenario (i.e., guarding against future faults in
modified code), we used this list of relevant classes for test generation.

3.2.2 Automated Unit Test Generation Tools

All software projects in Defects4J are written in Java, therefore we also consid-
ered test generation tools for Java. NightHawk [9], JCrasher [35], Carfast [128],
T3 [132], and Randoop [124] are instances of random unit test generation tools.
We chose Randoop as it is the most stable and popular representative of these
random testing tools.

TestFul [18], eToc [171], and EvoSuite [51] are instances of search-based
unit test generation tools, which use meta-heuristic search techniques to optimize
test suites with respect to code coverage criteria. We chose EvoSuite as it
subsumes the other tools in terms of functionalities, and is the only actively
maintained tool out of the three.

Dynamic Symbolic Execution (DSE) testing tools for Java such as DSC [84],
Symbolic PathFinder [129], and jCute [151] require test drivers, whereas our
scenario of unit test generation assumes that the tests generated include these
test drivers – as typical unit tests do (i.e., in terms of method call sequences).
While EvoSuite has an experimental DSE extension [58], it is not yet enabled
by default, and therefore was not used in our experiments. Note that for C#,
tools such as Seeker [168] or Symstra [188] can generate method call sequences,
but the only publicly available tool – Pex [169] — has only a limited ability to
do so. However, our experimental setup based on Defects4J requires tools that
apply to Java.

Finally, there are commercial unit test generation tools for Java, of which
naturally less is known about implementation details. We tried Analytix Code-
Pro [64], Parasoft JTest [126], and AgitarOne [167]. CodePro achieved low
coverage and is no longer officially supported. Although we were able to generate
test suites with JTest, we were unable to execute the tests with our analysis

3.2 Methodology 55

framework (even with help from Parasoft’s support team) because the tests
depend on JTest’s proprietary stub generation utility. As AgitarOne exhibited
fewer problems with test dependencies compared to JTest, we chose AgitarOne
for our experiments.

Randoop [124] implements feedback-directed random test generation for
object-oriented programs. This means that it iteratively extends sequences of
method calls with randomly selected candidates until the generated sequence
raises an undeclared exception or violates a general code contract. Randoop also
executes its generated sequences and creates assertions that capture the behaviour
of the class under test. However, Randoop cannot target a specific class under
test since it uses a bottom-up approach that requires that all dependencies
of a method call (i.e., arguments) have been instantiated in a prior iteration.
Randoop therefore requires, as input, a list of all classes it should explore
during test generation. For each class under test we provided a list containing
the class under test and all its dependencies as determined by Defects4J1. We
applied Randoop for three minutes on each run, using a unique random seed
since Randoop is deterministic by default (i.e., the random seed is always 0).
For all other settings, we applied the defaults, with the exception of enabling null
values as method arguments with a probability of 0.1; this improves Randoop’s
effectiveness in our experience [90].

EvoSuite [51] applies a genetic algorithm in order to evolve a set of test
cases that maximizes code coverage. It starts with a population of test suites
of random test cases, and then iteratively applies search operators such as
selection, mutation, and crossover to evolve them. The evolution is guided by
a fitness function based on a coverage criterion, which is branch coverage by
default. Once the search ends, the test suite with the highest code coverage is
minimized with respect to the coverage criterion and regression test assertions
are added [56]. EvoSuite then checks for each test whether it is syntactically
valid by compiling it, and executes it to check whether it is stable (i.e., passing).
Any failing assertions at this point are commented out by EvoSuite. Since
EvoSuite can target a specific class under test, we generated, for each fault, a
test suite targeting only classes relevant to that fault, as reported by Defects4J.

1Defects4J dynamically determines dependencies by monitoring the class loader during the
execution of the developer-written tests.

56 Evaluating Automated Unit Test Generation Tools Using Real Faults

We used EvoSuite with its default options, except for two settings: 1) We
set the stopping criterion for the search to three minutes per class and 2) we
deactivated the mutation-based filtering of assertions such that all possible
regression assertions are included, because the filtering can be computationally
costly and caused some timeouts.

AgitarOne [167] is a commercial test generation tool for Java developed
by Agitar Technologies, which is advertised as being able to achieve 80% code
coverage or better on any class. The tool consists of a client and a server
application. According to AgitarOne’s support, the test generation is ”fairly“
deterministic, and a user should not need to generate multiple test suites for
a given program version2. The client is an Eclipse plugin that connects to the
server3 to request the generation of test cases, and the server takes a variable
amount of time to do so, depending on the class under test. As we did not
succeed in automating AgitarOne, we imported the fixed project version of
each Defects4J bug into Eclipse and manually invoked AgitarOne’s Eclipse
plugin to generate test suites. AgitarOne can target a specific class under test,
and we therefore generated a test suite for each class relevant to the fault. If
AgitarOne failed to generate tests for a class, we re-attempted the request five
times. Nevertheless, the tool was not able to generate a test suite for 34 (9.5%)
faults (Randoop and EvoSuite were not able to generate any test suites for 2
and 1 (<1%) faults). AgitarOne makes heavy use of a proprietary mocking
system that requires AgitarOne’s own test runner. As we could not integrate
this test runner in Defects4J’s infrastructure, which uses Apache Ant’s JUnit
test runner, we collected the same experimental data as for the other tools using
AgitarOne’s dedicated test runner.

3.2.3 Experiment Procedure

We applied the following procedure.
2Personal communication, August 2015
3The test generation server was deployed on a Linux computer with 64GB of RAM and 32

CPU cores @2.1GHz

3.2 Methodology 57

3.2.3.1 Test Generation

Randoop and EvoSuite are both randomized tools, capable of producing
different results on each invocation. To account for this randomness, we generated
10 test suites for each tool and fault on the fixed version as provided by Defects4J.
As AgitarOne required manual effort to generate and analyse a test suite (e.g.,
manually selecting the classes under test and starting the tool in Eclipse), we
only generated 1 test suite for each fault with AgitarOne.

3.2.3.2 Flaky Tests

In order to determine whether a test detects a fault, we require it to pass on
the fixed version and fail on the buggy version. However, tools may generate
flaky (unstable) tests, which may also fail on the fixed version. For example,
a test case that contains an assertion that refers to the system time will only
pass during generation, and will fail when re-executed later. We applied the
following automated process to remove flaky tests: First, all non-compiling test
classes were removed. Then, each compilable test suite was executed on the fixed
version five times. If any of these executions revealed flaky tests, then these tests
were removed, and the test suite re-compiled and re-executed. This process was
repeated until all remaining tests passed five times in a row.

Technically, a test may reveal its flakiness only at a later stage (e.g., if a test
depends on the current date, it might fail only after the current day is over). By
that time, the source code of the class under test might have been changed, and
one would need to spend time to understand whether a failing test has found a
fault or it is just flaky. Although possible, we did not encounter any such cases
in our experiments.

3.2.3.3 False Positives

Even if a test is not flaky, it might still fail on the buggy version for reasons
that are unrelated to the actual fault – that is, it is a false positive. Flaky tests
can technically also be false positives, but false positives mainly happen when
test generation tools break the object-oriented principle of encapsulation, for

58 Evaluating Automated Unit Test Generation Tools Using Real Faults

example by calling private methods directly through reflection, or by capturing
outdated behaviour of dependency classes with mocks.

We identified false positives as follows: For each test that failed on a buggy
version, we compared the failure message and stack trace produced by the failing
tests of the developer-written test suite included in Defects4J with that of the
generated test. If a test failed with the same exception or a similar assertion, we
considered it a true positive. If the exception or assertion differed, we manually
validated whether the failure was caused by the fault or whether it is a false
positive.

We found false positives for Randoop and AgitarOne but not for Evo-
Suite. Note that Randoop suffered false positives only for Closure, and only
with tests that executed a dependency class rather than any of the relevant classes.
For AgitarOne we identified two common types of false positives: test failures
due to mocking and accessing (missing) private class members. Consequently,
we automatically classified an AgitarOne test as false positive if it only failed
because of mocking or missing private class members (see Section 3.4.4). While
we could have prevented this problem to a certain extent by changing the faults
provided by Defects4J (i.e., inlining all changes or maintaining unused code), we
argue that this would not reflect common practice.

3.2.3.4 Fault Detection

To determine fault detection we executed the test suites against the buggy
version of each bug as provided by Defects4J. For Randoop and EvoSuite,
we executed the test suites using Defects4J’s JUnit test runner; for AgitarOne
we used its proprietary JUnit test runner. For each executed test, we collected
information on whether it passed or failed, and if it failed we logged the reason
(i.e., the failure message and stack trace).

3.2.3.5 Coverage Analysis

In order to study how code coverage relates to fault detection, we measured
statement coverage on each class relevant to the fault. Furthermore, given the
set of program statements modified by the bug fix (i.e., the difference between

3.2 Methodology 59

Table 3.1 Overall outcome of the test generation and execution process. For each
project and tool, the table shows the percentage of compilable test classes in all
test suites, the average number of generated tests in them, the percentage of how
many of these tests are flaky, the percentage of failing non-flaky tests that were
false positives, and the average code coverage ratio for all non-flaky test suites
on classes relevant to the bug. It also shows the max and average number of
bugs per project that each tool detected (excluding false positives), and details
how the bugs were detected (i.e., a failing assertion, an unhandled exception, or
a timeout). Note that for EvoSuite and Randoop, a bug might have been
detected by only a subset of the 10 generated test suites. © 2015 IEEE

Project Tool Compilable Tests Flaky False Pos. Coverage Max Bugs Avg. Bugs Assertion Exception Timeout
Chart AgitarOne 100.0% 131.2 0.2% 30.6% 84.7% 17 17.0 10.0 11.0 0.0

EvoSuite 100.0% 45.9 3.5% 0.0% 68.1% 18 9.7 5.4 5.2 0.3
Randoop 100.0% 4874.9 36.8% 0.0% 54.8% 18 14.1 7.5 9.1 0.0
Manual 100.0% 230.6 0.0% 0.0% 70.5% 26 26.0 17.0 12.0 0.0

Closure AgitarOne 100.0% 199.4 0.4% 79.3% 79.1% 25 25.0 16.0 10.0 0.0
EvoSuite 100.0% 34.9 1.7% 0.0% 34.5% 27 11.8 10.5 1.4 0.0
Randoop 98.4% 5518.4 19.8% 15.8% 9.8% 9 2.2 0.5 1.7 0.0
Manual 100.0% 3511.1 0.0% 0.0% 90.9% 133 133.0 103.0 42.0 0.0

Lang AgitarOne 100.0% 127.7 1.0% 23.5% 50.9% 22 22.0 10.0 14.0 0.0
EvoSuite 79.5% 48.6 5.4% 0.0% 55.4% 18 9.2 5.5 3.3 0.9
Randoop 68.3% 11450.7 5.7% 0.0% 50.7% 10 7.0 1.7 6.3 0.0
Manual 100.0% 169.2 0.0% 0.0% 91.4% 65 65.0 31.0 36.0 0.0

Math AgitarOne 100.0% 105.8 0.1% 8.9% 83.5% 53 53.0 34.0 25.0 0.0
EvoSuite 99.8% 29.7 0.2% 0.0% 77.9% 66 42.9 26.1 17.7 0.3
Randoop 97.8% 7371.4 15.6% 0.0% 43.4% 41 26.0 17.8 10.8 0.0
Manual 100.0% 167.8 0.0% 0.0% 91.1% 106 106.0 76.0 31.0 0.0

Time AgitarOne 100.0% 187.2 3.3% 30.9% 86.7% 13 13.0 10.0 8.0 0.0
EvoSuite 100.0% 58.0 2.8% 0.0% 86.7% 16 8.5 4.9 4.0 0.0
Randoop 81.1% 2807.1 25.3% 0.0% 43.0% 15 4.5 3.8 1.1 0.0
Manual 100.0% 2532.7 0.0% 0.0% 91.8% 27 27.0 13.0 17.0 0.0

the buggy and the fixed version), we measured bug coverage – that is, whether a
fault was 1) fully covered (all modified statements covered), 2) partially covered
(some modified statements covered), or 3) not covered.

For Randoop and EvoSuite, we used Cobertura4 to measure code coverage.
As AgitarOne’s proprietary coverage tracking mechanism conflicts with Cober-
tura, we relied on the proprietary coverage files generated by AgitarOne. To
that end, we extended Crap4j5 [150] and extracted the code coverage ratio from
the coverage files produced by AgitarOne’s test runner for each relevant class.
To determine whether a fault was fully, partially, or not covered, we manually
inspected the visual code coverage indicators of the modified statements using
AgitarOne’s Eclipse plugin.

4http://cobertura.github.io/cobertura/, accessed October 2016
5Java project quality assessment tool, originally written by the developers at Agitar

Technologies

60 Evaluating Automated Unit Test Generation Tools Using Real Faults

3.2.4 Threats to Validity

In this study, we used bugs taken from only five Java open source projects,
which may not generalise to all programming languages and different program
characteristics, and thus constitutes a threat to external validity. Our study con-
sidered three state-of-the-art test generation tools, of which one is commercially
available and actively used by developers. However, our study does not include
tools based on Dynamic Symbolic Execution or other specialised techniques, and
such tools may be more effective at some challenges we identified than the tools
used in our study (e.g., complex conditions).

A potential threat to internal validity is that not all tests that detected a
fault were manually investigated to ensure the validity of the bug detection
result. However, we mitigated this threat by using several sanity checks, such
as comparing failure reasons of generated and developer-written test suites.
Furthermore, we manually inspected a large number of test suites, in particular
the ones that exhibited an unexpected failure reason. AgitarOne may produce
different test suites when invoked on the same class several times, depending on
external factors such as available resources. Thus, there is a potential threat as
we only generated a single test suite for each bug with AgitarOne. However,
we experimentally validated the claim of Agitar’s support of the tool being fairly
deterministic by sampling 10 faults, and found that the tool is generally consistent
in whether it detects a bug. Moreover, AgitarOne spent significantly more than
three minutes on some classes, and allowing Randoop and EvoSuite more time
for test generation may produce better results. However, based on our experience,
a search budget of three minutes is sufficient for the search in EvoSuite to
converge in most cases, such that more time would not further change the tests.
For Randoop we observed that code coverage saturated already within <1 min,
and the test suites exhibit a very high degree of redundancy. Therefore, we do
not expect our choice of test generation time to affect effectiveness.

A potential threat to construct validity is the use of all bugs in the De-
fects4J dataset, as Defects4J does not distinguish the type or severity of faults.
Furthermore, each bug is represented by a minimized diff between the buggy
and a later fixed version (to reduce the number of false positive detections; for
example, if a method unrelated to the bug exists in one version but not the

3.3 Do Automated Unit Test Generation Tools Find Real Bugs? 61

other, the same method is added to the other version such that tests generated
for this method would not fail because the method simply doesn’t exists, which
is an error unrelated to the actual bug), rather than the actual code change
that introduced the bug. Given that none of the tools actually use the diff to
produce the test suites, the minimized diffs do not affect the effectiveness of
any of the tools. Nevertheless, although the bugs are real bugs, not all may be
representative for regression faults. Therefore, our study might underestimate
the effectiveness of automated test generation tools for regression testing if some
types of the undetected faults are unlikely to be inadvertently introduced by a
developer in the future. Likewise, our study might overestimate the effectiveness
if some types of the detected faults are unlikely to be inadvertently introduced in
the future. Furthermore, our study relies on the versions of code committed to a
public repository and does not include regressions that a developer identified
before committing the changes to the repository. This may underestimate the
effectiveness of test generation tools if these uncommitted changes are easier to
detect. This threat is mitigated somewhat as the bugs are taken from all stages
of the project history, including earlier stages of development.

3.3 Do Automated Unit Test Generation Tools
Find Real Bugs?

3.3.1 How Many Usable Tests Are Generated?

The left-hand side of Table 3.1 reports the outcome of the test generation. Unlike
AgitarOne, both EvoSuite and Randoop generated test classes that did not
compile. Non-compilable tests are generated often due to bugs internal to the
tools (e.g., when a tool has an internal representation of the test case, but when
this representation is transformed to a JUnit test suite, the produced code is
not valid Java code). Unsurprisingly, Randoop generated the largest number of
tests for all projects as it does not target a specific class under test. In contrast,
EvoSuite and AgitarOne generate tests specifically for the selected classes
under test, resulting in substantially fewer tests. For reference, we also include
the number of tests in the developer-written test suites (manual). Note that
these numbers refer to all relevant tests, as reported by Defects4J: A test is

62 Evaluating Automated Unit Test Generation Tools Using Real Faults

considered relevant if it directly or indirectly covers any of the classes relevant
to the fault.

AgitarOne generated the lowest ratio of flaky tests overall, with a maximum
of 3.3% for Time. As Time makes heavy use of the system time, this is not
surprising. EvoSuite suffered between 0.2%–5.4% flaky tests, but interestingly
fewer for Time – presumably due to its built-in test isolation and check for flaky
tests. Unlike AgitarOne and EvoSuite, Randoop does not isolate tests from
the environment, and as a result suffered between 5.7%–36.8% flaky tests. We
mainly observed false positives for AgitarOne, in particular for Closure, due
to the use of mocking and reflection to increase code coverage.

Out of the three test generation tools, AgitarOne generally achieved the
highest code coverage ratio, except for Lang. EvoSuite and Randoop struggled
to achieve code coverage on Closure – most likely because of the large number
of private methods. In comparison to the developer-written test suites, the test
generation tools achieved lower code coverage overall, except for Chart. Yet, all
tools achieved higher code coverage than developer-written test suites for some
classes.

EvoSuite and Randoop generated 3.4% and 8.3% non-compilable test suites
on average. Moreover, on average, 21% of Randoop’s tests were flaky, and

46% of AgitarOne’s failing tests were false positives.

3.3.2 How Many Bugs Are Found?

Overall, the generated test suites found 199 out of the 357 bugs (55.7%). On the
face of it, finding more than half of the bugs sounds like an encouraging result.
However, consider Table 3.3, which gives a visual overview of the bug-finding
results of the analyzed tools on the complete set of bugs: Found bugs are denoted
with filled boxes, there is one row for each bug, and one column for each execution
of a test generation tool. Clearly, the filled boxes are sparse in this table as only
19.9% of all executions detected a bug.

Considering tools individually, EvoSuite, AgitarOne, and Randoop
found 145, 130, and 93 bugs, respectively. That is, the number of bugs found
by each tool is comparable – around one third of all bugs, which is already

3.3 Do Automated Unit Test Generation Tools Find Real Bugs? 63

substantially less than the overall number of bugs found (199). However, as the
sparsity of black boxes in Table 3.3 shows — even for bugs that were found –
tools like Randoop and EvoSuite use randomized algorithms, so the properties
of the generated tests differ for each run. Consequently, a bug may be found
in one run, but not in the next. If we say a bug is “likely to be found” if it
was found in more than half of the executions of the tool, the number of bugs
found for Randoop and EvoSuite changes to 54 and 83, respectively. If we
consider a bug as found only if all executions of a tool detected the bug, then
these numbers decrease to a sobering 28 and 38.

Regarding the effectiveness of the tools per project, there are some distinct
differences: The part of Table 3.3 for the Chart project is quite densely populated,
whereas the Closure project seems to be generally more problematic for test
generation tools. Table 3.1 summarizes the visual presentation of Table 3.3 in
numbers, and confirms this intuition: For the Chart project, Randoop and
AgitarOne found more than half of the bugs on average (only EvoSuite
struggled and only detected 9.7 out of 26 bugs on average). For the Closure
project, even AgitarOne discovered only 25 out of 133 bugs, and Randoop
found just 2.2 bugs on average. The bug detection results for the Lang and Time
project look similarly grim. The Math project seems to be slightly better suited
for test generation, with AgitarOne finding half of the bugs, and EvoSuite
coming close to this result.

The picture painted overall is that if one wants to find all bugs, one should not
rely solely on an automated unit test generation tool. This suggests that plenty
remains to be done to improve automated test generation tools. Nevertheless,
the fact that 199 bugs were found fully automatically does showcase the potential
of such tools for widely used practices such as regression testing. The results
also show that none of the test generation approaches is strictly superior to the
other two.

Automated test generation tools found 55.7% of the bugs we considered, but no
tool alone found more than 40.6%.

64 Evaluating Automated Unit Test Generation Tools Using Real Faults

Table 3.2 The percentage of detected bugs, categorized by whether the bug in
question was found by the developer-written test suite with either an assertion,
an exception, or both. © 2015 IEEE

Project Tool Assertions Exceptions Both
Chart AgitarOne 64.3% 55.6% 100.0%

EvoSuite 57.1% 77.8% 100.0%
Randoop 57.1% 77.8% 100.0%

Closure AgitarOne 18.7% 16.7% 25.0%
EvoSuite 17.6% 30.0% 16.7%
Randoop 3.3% 16.7% 8.3%

Lang AgitarOne 31.0% 35.3% 50.0%
EvoSuite 20.7% 29.4% 100.0%
Randoop 6.9% 23.5% 0.0%

Math AgitarOne 42.7% 70.0% 0.0%
EvoSuite 56.0% 80.0% 0.0%
Randoop 34.7% 50.0% 0.0%

Time AgitarOne 30.0% 71.4% 0.0%
EvoSuite 80.0% 42.9% 66.7%
Randoop 40.0% 64.3% 66.7%

3.3.3 How Are the Bugs Found?

There are two important aspects to unit test generation, which are typically
treated separately: Generating the code that constitutes the setup and exercises
the target method, and generating the assertions that capture the expected
behaviour (which in the case of our experiment, they were generated based on
the behaviour of the correct/fixed version). Bugs are then found by a unit test
if any of the assertions fail, or if an unexpected exception is thrown. Some
automated test generation tools explicitly target unexpected exceptions [35],
while others integrate techniques for efficient generation of assertions (e.g., the
work of Fraser and Zeller [56]).

Overall, the generated test suites detected more bugs with an assertion (146)
than with an exception (109). Note that 56 bugs were detected with both an
assertion and an exception, by different tests. EvoSuite is the only tool that
detected 5 bugs via timeout; we treat this as a case of exception in the following
discussion. The right-hand side of Table 3.1 details the results and shows how
effective assertions and exceptions are for each project.

Assuming that a developer-written test that reveals a bug is indicative of
whether an assertion or an exception is required for that bug, we can determine
if the tools are better at detecting bugs requiring an assertion or an exception.

3.3 Do Automated Unit Test Generation Tools Find Real Bugs? 65
Table 3.3 Summary of bug-finding results for each bug, tool, and execution.
For each tool execution, if a compilable test suite was generated, a bug may have been detected (∎), fully
covered but not detected (⊞), partially covered but not detected (⊡), or not covered at all (◻). Otherwise,
the test suite was not compilable (★), resulted in configuration errors in our evaluation framework (⊖), or it
was not even generated (◯). Bugs that were either never found, always found, or found by only one tool, are
highlighted with different colours
(no tool, all tools, only AgitarOne , only EvoSuite , or only Randoop) © 2015 IEEE

Bug AgitarOne EvoSuite Randoop Bug AgitarOne EvoSuite Randoop Bug AgitarOne EvoSuite Randoop

Chart-1 ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ∎ ∎ ∎ ∎ ⊞ ⊞ ◻ ◻ ◻ ◻ Closure-94 ⊡ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ Math-15 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Chart-2 ∎ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ◻ ◻ ◻ Closure-95 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-16 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Chart-3 ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Closure-96 ⊞ ⊞ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-17 ⊡ ⊡ ⊡ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞

Chart-4 ◯ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ⊖ Closure-97 ◻ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Math-18 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ★ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-5 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-98 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ Math-19 ◻ ⊡

Chart-6 ∎ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Closure-99 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-20 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◯ ◯ ◯ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-7 ⊞ ◻ Closure-100 ∎ ∎ ⊡ ◻ ◯ ◯ ◯ ◯ ◯ ◯ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-21 ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ◯ ◯ ◯ ◯ ◯ ◯ ◯

Chart-8 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-101 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Math-22 ∎

Chart-9 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊖ ⊖ ⊖ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ Closure-102 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Math-23 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Chart-10 ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-103 ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-24 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-11 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-104 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊖ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-25 ◻ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ★

Chart-12 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Closure-105 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-26 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞

Chart-13 ⊡ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Closure-106 ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-27 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞

Chart-14 ∎ Closure-107 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-28 ⊡ ◻

Chart-15 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-108 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-29 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Chart-16 ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-109 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-30 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-17 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-110 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-31 ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-18 ∎ Closure-111 ◻ Math-32 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Chart-19 ◯ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ Closure-112 ⊞ ◻ Math-33 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Chart-20 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Closure-113 ⊞ ◻ Math-34 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Chart-21 ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Closure-114 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-35 ∎

Chart-22 ∎ Closure-115 ⊡ ◻ Math-36 ⊡ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ★ ★ ★ ★

Chart-23 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ Closure-116 ⊞ ◻ Math-37 ◯ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊡

Chart-24 ⊞ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Closure-117 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-38 ⊡ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Chart-25 ⊡ ◻ Closure-118 ⊞ ◻ Math-39 ∎ ◻

Chart-26 ⊡ ◻ Closure-119 ◻ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-40 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-1 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Closure-120 ⊞ ◻ Math-41 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-2 ⊡ ◻ Closure-121 ⊞ Math-42 ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

Closure-3 ⊡ ◻ Closure-122 ⊡ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-43 ⊞ ◯

Closure-4 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-123 ⊞ ◻ Math-44 ⊡ ◻

Closure-5 ⊞ ⊡ Closure-124 ⊞ ◻ Math-45 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-6 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Closure-125 ⊞ ◻ Math-46 ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ◻ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-7 ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-126 ⊡ Math-47 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ⊖ ⊡ ⊡ ◯ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-8 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-127 ⊡ ◻ Math-48 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊖

Closure-9 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-128 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-49 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡

Closure-10 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-129 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-50 ◻ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-11 ◻ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-130 ⊞ ◻ Math-51 ⊡ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-12 ∎ ◻ Closure-131 ◯ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-52 ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊡ ⊡ ⊡ ◻ ⊖ ⊖ ⊖ ⊖

Closure-13 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Closure-132 ◻ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-53 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖

Closure-14 ◻ Closure-133 ⊡ ◻ Math-54 ◻ ◻ ◻ ◻ ◻ ◻ ◯ ◯ ◯ ◯ ◯ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-15 ◻ Lang-1 ∎ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ Math-55 ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-16 ⊞ ◻ Lang-2 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-56 ⊞ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ⊞ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-17 ◻ Lang-3 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-57 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-18 ⊞ ◻ Lang-4 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-58 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊡

Closure-19 ⊞ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-5 ∎ ⊡ Math-59 ◯ ∎

Closure-20 ⊞ ◻ Lang-6 ⊞ Math-60 ⊞ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-21 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ Lang-7 ◯ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-61 ∎

Closure-22 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ⊖ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-8 ⊡ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-62 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ◻

Closure-23 ⊞ ◻ Lang-9 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-63 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-24 ⊞ ◻ Lang-10 ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-64 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-25 ⊞ ◻ Lang-11 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ Math-65 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-26 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-12 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Math-66 ∎

Closure-27 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Lang-13 ⊡ Math-67 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖

Closure-28 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-14 ◯ ⊡ Math-68 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-29 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-15 ⊡ Math-69 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◯ ◯ ◯ ◯ ◯ ◯ ◯

Closure-30 ⊞ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-16 ◯ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-70 ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◯ ◯ ◯

Closure-31 ⊞ Lang-17 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-71 ∎ ⊡

Closure-32 ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-18 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-72 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-33 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ Lang-19 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-73 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-34 ⊞ ⊡ Lang-20 ◯ ◻ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-74 ◯ ◻

Closure-35 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-21 ⊞ Math-75 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ◻

Closure-36 ⊞ ⊡ Lang-22 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-76 ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻

Closure-37 ⊞ ⊡ Lang-23 ∎ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-77 ∎ ⊞

Closure-38 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-24 ◯ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Math-78 ∎ ◻

Closure-39 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ Lang-25 ◯ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-79 ⊞ ⊡

Closure-40 ⊡ ◻ Lang-26 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-80 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ◻ ★ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-41 ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-27 ∎ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ∎ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-81 ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊡ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-42 ⊞ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-28 ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-82 ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-43 ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-29 ∎ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-83 ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-44 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Lang-30 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-84 ⊞ ◻

Closure-45 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-31 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-85 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞

Closure-46 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-32 ∎ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-86 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞

Closure-47 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Lang-33 ∎ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ Math-87 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-48 ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Lang-34 ∎ ⊞ Math-88 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-49 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ⊖ Lang-35 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-89 ∎ ⊡

Closure-50 ⊞ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Lang-36 ◯ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-90 ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊡ ⊡

Closure-51 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ⊖ ⊖ ⊖ Lang-37 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Math-91 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ◻ ◻ ★ ★ ★ ★ ★ ★

Closure-52 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Lang-38 ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-92 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ⊖ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-53 ◻ Lang-39 ◯ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-93 ◯ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡

Closure-54 ⊡ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ Lang-40 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-94 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞

Closure-55 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-41 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Math-95 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

Closure-56 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ⊖ Lang-42 ⊞ ⊡ Math-96 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞

Closure-57 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-43 ◯ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-97 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-58 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Lang-44 ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-98 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-59 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ Lang-45 ∎ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-99 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-60 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-46 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ Math-100 ◯ ⊡

Closure-61 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Lang-47 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-101 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-62 ◻ ⊞ Lang-48 ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-102 ◯ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ◯ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-63 ◻ ⊞ Lang-49 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Math-103 ∎

Closure-64 ⊡ ∎ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ Lang-50 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ◻ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ Math-104 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎

Closure-65 ∎ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Lang-51 ◯ ⊞ Math-105 ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

Closure-66 ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-52 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ★ Math-106 ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻

Closure-67 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Lang-53 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-1 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ⊖ ⊖ ⊖

Closure-68 ◯ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ Lang-54 ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Time-2 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ★ ★ ★ ★ ⊖ ⊖

Closure-69 ⊞ ⊡ Lang-55 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-3 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖

Closure-70 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ Lang-56 ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ Time-4 ⊞ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ∎ ◻ ◻ ◻ ★ ★ ⊖ ⊖ ⊖ ⊖

Closure-71 ◻ ⊖ Lang-57 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ Time-5 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖

Closure-72 ⊡ ∎ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-58 ◯ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-6 ◻ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ∎ ∎ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-73 ⊞ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Lang-59 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-7 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖

Closure-74 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-60 ⊞ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-8 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊡ ⊖ ⊖

Closure-75 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ Lang-61 ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-9 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊖ ⊖ ⊖ ⊖

Closure-76 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Lang-62 ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ★ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ Time-10 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ◻ ∎ ⊞ ⊞ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-77 ◻ ∎ ∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ∎ ∎ ∎ ∎ ◻ ◻ ◻ ⊖ ⊖ ⊖ Lang-63 ∎ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-11 ◻ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖

Closure-78 ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ Lang-64 ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-12 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ★ ★ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-79 ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ Lang-65 ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Time-13 ∎ ∎ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡

Closure-80 ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ Math-1 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ Time-14 ⊡ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ∎ ⊞ ⊞ ⊞ ◻ ★ ★ ★ ⊖ ⊖

Closure-81 ⊡ ∎ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ Math-2 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ◻ ⊖ Time-15 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-82 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ Math-3 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ Time-16 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ★ ⊖ ⊖

Closure-83 ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ Math-4 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ◻ Time-17 ⊞ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊡ ⊖ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-84 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-5 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ◻ Time-18 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-85 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-6 ∎ Time-19 ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-86 ◻ Math-7 ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Time-20 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-87 ⊡ ◻ Math-8 ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Time-21 ⊡ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡

Closure-88 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ Math-9 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ∎ ∎ ⊞ ⊞ ◻ ◯ ◯ ◯ Time-22 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ∎ ∎ ⊡ ⊡ ⊡ ⊡ ★ ★ ★ ★

Closure-89 ⊡ ⊡ ⊡ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ Math-10 ⊞ ∎ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◯ ⊞ ⊞ ⊞ ◯ ◯ ◯ ◯ ◯ ◯ ◯ Time-23 ◯ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞

Closure-90 ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊡ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ Math-11 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ ⊖ ⊖ Time-24 ⊞ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ★ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Closure-91 ⊞ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-12 ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊞ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ Time-25 ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ∎ ⊡ ⊡ ⊡ ⊡ ⊡ ⊖ ⊖ ⊖ ⊖

Closure-92 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-13 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ★ ◯ ◯ ◯ ◯ ◯ ◯ Time-26 ⊡ ⊞ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ⊡ ★ ★ ⊖ ⊖ ⊖ ⊖

Closure-93 ⊞ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ⊖ ⊖ Math-14 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊖ ∎ ∎ ∎ ∎ ∎ ◻ ◯ ◯ ◯ ◯ Time-27 ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊖ ∎ ∎ ∎ ∎ ⊞ ⊞ ⊞ ⊞ ⊞ ★

66 Evaluating Automated Unit Test Generation Tools Using Real Faults

0%

20%

40%

60%

80%

(0−25%] (25−50%] (50−75%] (75−100%]
Average bug detection rate of all tools

R
at

io
 o

f
d
et

ec
te

d
 b

u
g
s

Detected by
Assertion
Exception

Fig. 3.2 Ratio of bugs that were detected by an assertion or an exception, grouped
by the intervals of the average bug detection rate of all tools. The total number
of bugs is 199 and 46, 77, 46, and 30, respectively for each interval. Note that a
bug may be detected by both an assertion and an exception. © 2015 IEEE

Table 3.2 shows how many of the bugs (detected by the developer-written
test suites with an assertion or an exception) were detected by the generated
test suites. In the majority of cases, clearly more of the bugs that trigger an
exception were found than of those that require an assertion. The main exception
is EvoSuite for the Time project, where 80% of the bugs requiring an assertion
were found, compared to only 42.9% of the bugs requiring an exception.

Figure 3.2 shows the ratio of bugs detected by assertion or exception for
different intervals of the average bug detection rate of all tools. Note that the
average bug detection rate is computed as the mean across tools rather than
the mean across all test suites because the numbers of generated test suites
differ for the tools. The plot suggests that hard to find bugs (i.e., bugs with a
low average detection rate) are more often detected by an assertion than by an
exception. Furthermore, bugs that are easier to find are more often detected by
an exception than bugs that are harder to find.

More bugs were detected with a test assertion than with an exception (146 vs.
109), but the detection ratio is lower for bugs requiring assertions (37.34% vs.

49.4% avg. per tool).

3.3 Do Automated Unit Test Generation Tools Find Real Bugs? 67

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●
●●●
●●
●
●●

●

●

●
●
●●

●●●

●

●●●●
●

●
●
●

●●●●●●●●●●

●

●●●

●
●

●●●●●●●

●

●

●

●

●
●●●●●●●●●●

●
●●
●
●●

●

●●●

●●

●
●

●

●

●

●●●●

●

●

0%

25%

50%

75%

100%

EvoSuiteAgitarOne Randoop

C
o
d
e

co
v
er

ag
e

ra
ti

o
Bug detection

Found
Not found

Fig. 3.3 Code coverage ratios for generated test suites that found a bug and
generated test suites that did not. The differences are significant for all tools
(Mann-Whitney U test, p < 0.001). © 2015 IEEE

Table 3.4 Bug coverage of test suites that did not detect the bug. For each
project and tool, Total gives the number of bugs that were not always detected
by all generated test suites. © 2015 IEEE

Project Tool Total Not Partially Full
Chart AgitarOne 7 28.6% 28.6% 42.9%

EvoSuite 22 36.0% 18.6% 45.4%
Randoop 15 29.8% 30.0% 40.2%

Closure AgitarOne 47 44.7% 31.9% 23.4%
EvoSuite 130 50.0% 30.7% 19.3%
Randoop 133 73.2% 17.6% 9.2%

Lang AgitarOne 30 66.7% 0.0% 33.3%
EvoSuite 61 42.0% 23.7% 34.4%
Randoop 61 37.2% 34.1% 28.7%

Math AgitarOne 46 28.3% 21.7% 50.0%
EvoSuite 83 23.4% 27.2% 49.3%
Randoop 93 54.8% 25.4% 19.8%

Time AgitarOne 11 27.3% 36.4% 36.4%
EvoSuite 23 5.8% 27.4% 66.8%
Randoop 27 52.1% 25.3% 22.6%

3.3.4 Are Bugs That Are Covered Usually Found?

Figure 3.3 compares the code coverage ratios of generated test suites that detected
a bug and generated test suites that did not, clearly showing that code coverage
matters when it comes to detecting faults. This is also confirmed by a strong
correlation between code coverage and bug detection (Pearson correlation of 0.40
on average per tool).

However, a high code coverage ratio does not necessarily indicate that the
bug was covered. Table 3.4 therefore reports the bug coverage (as described in
Section 3.2.3.5) for all test suites that did not detect a bug. In general, fewer

68 Evaluating Automated Unit Test Generation Tools Using Real Faults

than 50% of the undetected bugs are fully covered by the test suites. A bug
that is fully covered but not detected is indicative of a problem in generating an
assertion since a test suite very likely detects a fully covered bug, even without
an assertion, if that bug raises an exception. A notable exception in terms of
fully covered bugs is given by EvoSuite for the Time project, where 66.8% of
the undetected bugs are fully covered. We surmise that in these cases EvoSuite
removed assertions while checking for unstable tests. Although full bug coverage
is not sufficient to trigger the bug (as discussed in Section 2.1.1.2), the tools
struggled to achieve full bug coverage for the majority of bugs.

Of all test suites that did not reveal a fault, 46.8% did not fully cover it, and
26.6% did not even cover it partially.

3.4 How Can the Tools Be Improved?

Table 3.3 shows that the majority of the generated test suites did not detect the
corresponding fault. The faults that were always detected by all generated test
suites6 are simple faults, such as a NullPointerException caused by a missing
input validation, or easily executable and observable changes, such as Math-22:

1 public boolean isSupportLowerBoundInclusive() {

2 - return true;

3 + return false;

4 }

Note that in this and all following code snippets, ’+‘ indicates an added line and
’-‘ a removed line, in the fixed version.

However, most bugs are not this trivial. To gain insights on how to increase
the fault detection rate of test generation tools, we investigated the challenges
that prevent fault detection. To this end, we first looked at the 12 faults that
no tool managed to cover (not even partially) and the 4 undetected faults that
were fully covered. We then looked at the 76 faults that only one tool managed
to detect – 28 by AgitarOne, 35 by EvoSuite, and 13 by Randoop; these

6Chart-{14, 18, 22}, and Math-{6, 22, 35, 61, 66, 103}

3.4 How Can the Tools Be Improved? 69

reveal strengths of a particular tool that others are missing. Finally, we studied
the root causes for flaky and false-positive tests. The remainder of this section
presents our findings.

3.4.1 Improving Coverage

A test has to cover a fault to detect it, and Figure 3.3 shows that test suites
that detect a fault achieve significantly higher code coverage. We identified
four challenges that inhibit test generation tools from achieving such high code
coverage.

3.4.1.1 Creation of Complex Objects

Out of the 12 faults7 that were not covered by any of the generated test suites,
the majority (9) of them are from the project Closure. For these 9 faults, reaching
the buggy code requires the creation of a complex data structure (e.g., a control
flow graph). This is a highly complex and challenging task for an automated
test generation tool since it requires a certain sequence of method calls prior to
exercising the target method. This task is also demanding for human testers,
as evident in Closure’s developer-written tests that detect the fault: The tests
create a complex string (i.e., program text) and re-use the compiler infrastructure
to create an appropriate data structure. For an automated test generation tool,
however, generating such a complex input string is as challenging as initializing
a complex data structure. Consider the following fault (Closure-14):

1 for (Node finallyNode : cfa.finallyMap.get(parent)) {

2 - cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);

3 + cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

4 }

Covering this fault requires constructing a control flow graph in advance, with
an edge connecting two consecutive finally blocks. The developer-written test
achieves this by constructing a control flow graph object from a complex input
string:

7Closure-{14, 15, 17, 32, 53, 66, 71, 86, 111}, Lang-24, and Math-31

70 Evaluating Automated Unit Test Generation Tools Using Real Faults

1 String src = "X:while(1){try{while(2){try{var a;break X;}" + "

finally{}}}finally{}}";

2 ControlFlowGraph<Node> cfg = createCfg(src);

3 assertCrossEdge(cfg,Token.BLOCK,Token.BLOCK,Branch.ON_EX);

In contrast, no coverage guidance exists for generating such complex strings
within an automated test generation tool.

Some bugs requiring the creation of complex objects were found; for example,
for Closure-80, an AgitarOne test created a mocked instance of a particular
Node, and for Closure-109, a Randoop test managed to create a valid control flow
graph from a complex input string, reusing a string constant from a dependent
class. Randoop also succeeded in detecting several faults8 by indirectly testing
the class under test through dependencies. In these cases, Randoop overcame
the object creation problem by exploiting existing logic in classes that are clients
of the class under test.

Some viable solutions (which are not implemented in the used tools) exist
to address the generally acknowledged problem of complex objects [185]. For
example, seeding objects observed at runtime [85], mining of common usage
patterns of objects [55] to guide object creation, or carving of complex object
states from system tests [41]. However, in the absence of example information
the problem is unsolved.

3.4.1.2 String Optimization

Complex strings not only occur in the developer-written test suites for Closure,
but are also a recurring pattern in the generated test suites for faults that are
only detected by one tool. AgitarOne detected the string-related fault in
Closure-155, and EvoSuite detected several faults9 that require a specific input
string. For example, consider Lang-16, a fault whose detection requires the
satisfaction of the following condition:

1 if (str.startsWith("0x") || str.startsWith("-0x")

2 + || str.startsWith("0X") || str.startsWith("-0X")) {

3 return createInteger(str);

4 }

8Math-{2, 9, 54}, Time-{10, 22}, and Lang-56
9Lang-{16, 36, 44, 44, 58, 60}, Time-24, and Closure-73

3.4 How Can the Tools Be Improved? 71

EvoSuite generates strings using its genetic algorithm and seeded values [49],
taken from string constants and runtime observations. The following test detects
the fault above:

1 public void test085() throws Throwable {

2 String string0 = "-0XeD";

3 int int0 = NumberUtils.createNumber(string0);

4 assertEquals((-237), int0);

5 }

Search-based tools are capable in principle of generating string inputs [4], but
doing so with a search algorithm can take very long. Symbolic approaches using
string solvers [59] or dedicated solvers for regular expressions [173] are generally
restricted to fixed length strings. If an input grammar is known, then this can
be used to generate test data more efficiently [22]. The results of web queries
can also serve as useful test data [112]. Nevertheless, our experiments showed
that state-of-the-art tools still struggle with string optimization.

3.4.1.3 Complex Conditions

Lang-24, a fault that no tool detected, is an example for a complex condition
that needs to be satisfied to detect the fault:

1 if (chars[i] == ’l’ || chars[i] == ’L’) {

2 - return foundDigit && !hasExp;

3 + return foundDigit && !hasExp && !hasDecPoint;

4 }

Detecting this fault is challenging for two reasons: First, a randomly initialised
character array (chars) is unlikely to satisfy the outer condition. Second, search-
based tools like EvoSuite suffer from boolean flags such as foundDigit, hasExp,
and hasDecPoint, which provide no guidance to the search. This problem of
boolean flags is well known, and testability transformation [74] is generally
accepted as solution. Note that DSE would not suffer from this problem [61, 58].

Lang-48 a fault that only EvoSuite detected, exemplifies a problem related
to complex conditions involving subtyping:

72 Evaluating Automated Unit Test Generation Tools Using Real Faults

1 public EqualsBuilder append(Object lhs, Object rhs) {

2 ...

3 Class lhsClass = lhs.getClass();

4 if (!lhsClass.isArray()) {

5 - isEquals = lhs.equals(rhs)

6 + if (lhs instanceof java.math.BigDecimal) { ... }

7 + else { isEquals = lhs.equals(rhs) }

8 } ...

9 }

In principle, when creating an input value for a parameter of type Object, any
class can be used. EvoSuite addresses this challenge by explicitly using classes
that are used in casts or type comparisons, and therefore generates a test case
that passes an object of type BigDecimal as argument to the append method.

3.4.1.4 Private Methods/Fields

Many of the faults in the Closure project, in particular those not detected by
any tool, exist in private methods. This presents an additional challenge for
an automated test generation tool, which usually tests using only the public
interface of a class under test. For instance, in Closure-1, a simple change is
introduced in a private method:

1 private void removeUnreferencedFunctionArgs(Scope fnScope) {

2 + if (!removeGlobals) {

3 + return;

4 + }

5 Node function = fnScope.getRootNode();

6 ...

It is, however, difficult to (indirectly) test this method due to the complex class
hierarchy and data structures of this project.

AgitarOne tries to sidestep this problem by accessing private fields and
methods. While it may not generally be desirable to explicitly call private
methods, it enables AgitarOne to cover methods that are hard to reach through
the public API of the class. Covering the removeUnreferencedFunctionArgs

3.4 How Can the Tools Be Improved? 73

method, AgitarOne triggers a NullPointerException by setting the value of
the private field removeGlobals to false, and passing in null as fnScope:

1 RemoveUnusedVars removeUnusedVars = (RemoveUnusedVars)

2 Mockingbird.getProxyObject(RemoveUnusedVars.class, true);

3 setPrivateField(removeUnusedVars, "removeGlobals", Boolean.FALSE);

4 Mockingbird.enterTestMode(RemoveUnusedVars.class);

5 callPrivateMethod("com.google.javascript.jscomp.RemoveUnusedVars", "

removeUnreferencedFunctionArgs", new Class[] {Scope.class},

removeUnusedVars, new Object[] {null});

Although the test does find the bug, it is unclear whether such a change could
be triggered without modifying the state through private fields and methods.
Similarly, AgitarOne detected Closure-{45, 83, 102} and Math-{18, 33, 78} by
asserting the value of private fields using reflection. Whether or not accessing pri-
vate methods and fields is a good approach is debatable but, as shown, it has the
potential to reveal faults. However, it can cause false positives, as will be discussed
in Section 3.4.4. This problem can only be overcome by improving test generation
tools to achieve coverage of private methods fully through the public API.

3.4.2 Improving Propagation and Detection

Even if covered, a fault might not propagate or, if it does, the test oracle might
not be able to detect the change in the outcome. Recall that a third of the
undetected faults were fully covered and many more were partially covered
(Table 3.4). This section details challenges in revealing those covered faults.

3.4.2.1 Propagation

Across all projects and test suites, we found five faults (Closure-{31, 70, 121}
and Math-{12, 30}) that were always fully covered but never detected.

Unlike Closure-{31, 70, 121} and Math-30, Math-12 represents a unique
case not directly related to propagation, where the fault is simply a forgotten
implementation of the Serializable interface. This fault is trivially covered,
but in order to detect it, a test would need to serialise an object of that class
using an ObjectOutputStream.

74 Evaluating Automated Unit Test Generation Tools Using Real Faults

Math-30 is an integer overflow error, which means that not only does the code
need to be covered, but it also has to be executed with values that lead to an
overflow. Closure-31, 70, and 121 have a potential influence on private members
of the faulty class. However, these private members are complex objects, and a
change to them can only be observed by involving the faulty object in further
complex interactions, rather than simply writing an assertion on a return value
of a public method. To some extent, this is the result of focusing on simple
structural criteria such as branch coverage, rather than aiming to exercise more
complex intra-class data flow dependencies [80].

3.4.2.2 Assertion Generation

Considering that more faults are detected with an exception, but the majority of
faults require an assertion (Table 3.2), a key challenge for test generation tools
is generating adequate assertions (i.e., test oracles).

Assertions are typically generated based on observations of the public
API [186, 56, 124] during execution. However, our experiments revealed some
particular cases where only AgitarOne was able to generate the appropriate
assertions: For Chart-6, Closure-{12, 21, 22, 129}, and Math-48, AgitarOne
detected the fault by asserting on the object state in the catch clause. In contrast,
EvoSuite and Randoop only verify that an expected exception is thrown. For
example, Closure-129 is a fault for which both the buggy and the fixed version
throw a NullPointerException, but differ in where it is thrown. AgitarOne
detected this change as follows:

1 try {

2 prepareAnnotations.visit(t, n, parent);

3 fail("Expected NullPointerException to be thrown");

4 } catch (NullPointerException ex) {

5 ...

6 assertThrownBy(PrepareAst.PrepareAnnotations.class, ex);

7 }

3.4 How Can the Tools Be Improved? 75

3.4.3 Flaky Tests

It is important for regression tests to be deterministic and to produce the same
outcome in consecutive runs. Recall that we automatically removed 15.2% of
flaky tests to achieve this goal. However, removing such a large portion of tests
also means losing any additional coverage gained by such tests.

3.4.3.1 Environment Dependencies

Flaky tests are frequently caused by environmental dependencies of the software
under test, such as the current time/date of the system. This problem is
particularly frequent for Time, but also occurs in the other projects. For
example, detecting the fault in Lang-8 requires a call to the method format of
the FastDatePrinter class, which takes a Calendar as input – by default, a
Calendar will be initialised to the current time.

EvoSuite addresses this problem by using a mocked version of the concrete
implementations [14]. This means that if the program accesses the current
time on the system, then EvoSuite provides a mocked time, so that any
assertion that depends on the time value will deterministically pass or fail
when executed at a later time. The following gives an example for a test,
generated with EvoSuite, which uses a mocked version of the concrete class
GregorianCalendar, MockGregorianCalendar:

1 String string0 = "Z,~jsZ/7’{p!wd";

2 int int0 = 0;

3 SimpleTimeZone simpleTimeZone0 = new SimpleTimeZone(int0, string0);

4 Locale locale0 = Locale.GERMAN;

5 String string1 = "*z";

6 FastDatePrinter fastDatePrinter0 = new FastDatePrinter(string1,

simpleTimeZone0, locale0);

7 MockGregorianCalendar mockGregorianCalendar0 = new

MockGregorianCalendar(locale0);

8 String string2 = fastDatePrinter0.format((Calendar)

mockGregorianCalendar0);

9 assertEquals("*GMT", string2);

76 Evaluating Automated Unit Test Generation Tools Using Real Faults

In contrast, Randoop does not use mocking, and for the 10 runs on the same
fault, it generated 84% flaky tests. AgitarOne also applies mocking, but was
not able to detect this fault, which additionally requires a specific constraint to
hold: the time zone represented by the SimpleTimeZone instance (line 3) must
differ from the time zone used in the Calendar instance (line 7).

The faults Time-12, Time-14, and Lang-65 pose similar challenges to the
test generation tools. Note that the problem of environment dependencies is not
restricted to objects generated explicitly by the test generator, as other classes
may refer to the system time or other external resources directly. EvoSuite
tries to overcome this problem using bytecode instrumentation, such that the
environment dependencies can be controlled when directly accessed by the code
under test.

3.4.3.2 Static State

A local dependency on the static state of the system under test can also result
in flaky tests, such that any changes to the state with one test can affect the
outcome of the remaining tests. EvoSuite explicitly tracks changes to static
variables, and resets the static state before test execution [14], and as a result
was the only tool to detect Time-11, where class ZoneInfoCompiler uses a static
variable cVerbose. The issue of static state has been raised in the context of
test generation previously [35], and has recently also been verified in the context
of manually written test suites [201, 102, 21].

3.4.4 False Positives

During our evaluation, in particular during the validation of the test results,
we encountered a number of false positives. The Randoop tests contained a
few false positives due to non-deterministic failures unrelated to the fault. In
particular, these tests caused an IllegalStateException by manipulating the
threading behaviour in Closure. While these tests are technically flaky tests, their
likelihood of failing is very low, explaining why they never failed on the original
version when checking for flaky tests. The majority of false positives observed
are caused by AgitarOne’s access of private fields/methods/classes through

3.4 How Can the Tools Be Improved? 77

Java reflection, which breaks object-oriented principles such as encapsulation,
and AgitarOne’s use of aggressive mocking,

3.4.4.1 Accessing Private Fields/Methods

To maximize coverage, AgitarOne uses Java reflection to access the private API
of the class under test. However, developers may add, remove, or change private
fields or methods to improve code quality or optimize the existing implementation.
These changes do not affect any client of the class under test as its public API
remains unchanged. Detecting regressions that are purely related to the private
API therefore increases the likelihood of false positive test results.

Closure-3 is an example of a change of a private method, including its
signature:

1 - private boolean canInline() {

2 + private boolean canInline(final Scope scope) {

3 ...

4 + case Token.NAME:

5 + Var var = scope.getOwnSlot(input.getString());

6 + if (var != null && var.getParentNode().isCatch()) {

7 + return true;

8 + } ...

While AgitarOne generated a test that detects this change with a
NoSuchMethodException, the test does not fail because of the root cause —
that is, the test does not cover the Token.NAME case and would therefore pass if
the method signature would remain unchanged. Overall, AgitarOne suffered
26 (12%) false positives caused by the use of reflection.

3.4.4.2 Aggressive Mocking

Another example for breaking encapsulation is AgitarOne’s aggressive mocking,
which monitors and asserts on the internal state (e.g., the order of method calls)
of the class under test, rather than testing the class on what its public method
returns, and on the side effects it has on its input parameters once its methods
have completed to execute. How such input objects are manipulated is an

78 Evaluating Automated Unit Test Generation Tools Using Real Faults

internal detail that is not part of the public interface specification. As such,
it can change without modifying the semantics of the methods. Consider the
following example:

1 public int sum(Foo foo){

2 - return foo.getX() + foo.getY();

3 + return foo.getY() + foo.getX();

4 }

If getY and getX are pure (i.e., no side effects), then that function can be
refactored as shown, and the order in which the function sum calls the methods
in Foo is irrelevant. However, an aggressive mocking strategy would check the
order in which the mocks are used, and fail if a different one is encountered.

For example, consider Closure-5, where the developers added a check to
handle the special case of a deleted property:

1 + if (gramps.isDelProp()) {

2 + return false;

3 + }

A valid way to detect this bug would be by using an assertion on the return
value. However, with AgitarOne’s aggressive mocking, adding such a method
call would lead to a failure without even evaluating isDelProp, as the method is
unexpected and thus triggers a TestException, indicating an error originating
in AgitarOne’s mocking framework. Similarly, deleting the method call would
trigger a TestException for any subsequent method call on the same object –
in neither case would the actual return value be considered.

For 67 faults, AgitarOne generated a test that failed with a TestException
and a failure message referring to an “unexpected method”. Such a mocking
error may be a true positive if there is a specification on the order of method
calls when communicating with external classes/resources. However, manual
investigation of the bug descriptions of these 67 faults suggests that none of
them are related to such a specification. We therefore consider each test that
fails due to a TestException as a false positive caused by mocking.

Applying this interpretation, 31% of all test suites generated by AgitarOne
suffered from false positives due to the use of aggressive mocking (10 of these test
suites additionally include false positives due to accessing private methods/fields

3.5 Related Work 79

with reflection). However, note that this may be an over-approximation because
a mocking exception could be caused by a state change induced by the bug.

3.5 Related Work

The most closely related work to ours is that of Xiao et al. [185], who identify
two main problems when aiming to achieve high code coverage with generated
tests, external method calls and complex object creation. The external method
call problem is related to the environment dependencies issue (Section 3.4.3.1)
that we saw in terms of relation to date and time. Just like EvoSuite uses
mocking to overcome dependencies on time or files [14], this is also possible, for
example, for database applications [165]. We also saw several instances of the
complex object creation problem in the faults we analysed. Xiao et al. [185]
propose a collaborative approach between the tools and the developers, such that
the underlying coverage problems is reported back to the developer to provide
further guidance to the tool. The aim of our analysis is to identify problems
that prevent automated test generation tools from finding faults rather than just
covering code, with the hope to improve these tools in the future to find more
faults.

There have been studies of the effectiveness of various software defect detection
techniques, e.g., [183, 146, 118]. Generally, these studies showed that different
techniques are complementary and dependent on the underlying faults; we saw
similar results in our study: The individual performance of each of the tools in
our study lies beneath the potential of combining all the tools.

3.6 Conclusions

Automated unit test generation tools are typically evaluated in terms of the
code coverage that they can achieve on open source software projects. This
chapter contributes a systematic study of the fault detection potential of the
generated test suites, using three state-of-the-art test generation tools and the
Defects4J dataset. The results show that 1) The test generation tools find 55.7%
of faults, but no tool alone finds more than 40.6% of faults. 2) Despite the tools

80 Evaluating Automated Unit Test Generation Tools Using Real Faults

finding more than half the faults, only 19.9% of all the test suites generated
as part of our experiments detected the fault – that is, we cannot be confident
that tools will always detect the fault they once revealed 3) Achieving code
coverage remains a problem: 16.2% of the faults were never even executed by the
generated tests, and 26.6% of the test suites that did not reveal a fault did not
even cover the fault partially; however, 4) 63.3% of the non-found faults were
covered by automatically generated tests at least once, suggesting problems that
go beyond code coverage (i.e., state-infection and propagation are not tackled
by the tools). Another specific issue is that 15.2% of all tests were flaky.

In order to guide future research on automated unit test generation, we
investigated the challenges that need to be addressed in order to improve fault
detection, and our qualitative analysis of difficult to find faults reveals specific
challenges that prevent tools from achieving the required code coverage and
generation of test oracles. Some of these challenges however relate to the fact that
none of the techniques have been designed from the ground up to detect faults.
In fact, a large number of automated unit test generation techniques purely
target code-coverage metrics (i.e., generate tests that can cover as much of the
CUT as possible). In the following chapter we look at designing such a technique
that is targeted for regression testing: given two versions of a program, generate
tests that reveals the difference between the two programs, as we described
earlier in Chapter 1, and use the framework presented in this chapter to evaluate
it on real faults.

Chapter 4
Differential Testing Using a
Search-Based Approach

This chapter extends work undertaken during this PhD by the author, which
has been published elsewhere [155, 153].

4.1 Introduction

As discussed and evaluated in the earlier chapters, automated test generation
tools can help developers by creating tests that can detect regression faults early.
An example of such regression faults is when a developer makes a change to a
program, while at the same time unintentionally breaks an original functionality
of the program. If the developer in this scenario does not already have access to
a test suite which can reveal the regression, he/she may assume the version to
be correct and make it available to the users. Therefore, having access to tests
which can validate the correct functionality of the program can be beneficial to
the developers to detect such regressions early.

However, as we reported earlier in the previous chapters, current techniques
face challenges such as: they do not target test generation specifically for
regression testing, they aim to reach the fault but do not propagate it to the
output (as evident in Chapter 3), they require existing tests, or they suffer
scalability limitations. Moreover, API changes across different versions of a

82 Differential Testing Using a Search-Based Approach

program may lead to large number of false-positive failures and/or flaky tests.
To address the previous shortcomings, in this chapter we propose and evaluate
a technique we name EvoSuiteR for automatically generating regression test
suites that a) aims to simultaneously reach and propagate changes between two
versions of a program, and b) does not require existing tests. Our approach takes
two versions of a class under test as input, and uses a search-based algorithm
to optimise for multiple objectives at the same time. In this approach, we use
Genetic Algorithms (GAs) as a search technique which relies on the biological
theory of evolution by Darwin [81].

In short, similar to search-based algorithms reviewed previously in Sec-
tion 2.1.5.3, the algorithm works by initially generating a population of random
individuals (test suites). Throughout each stage of the search, individuals in the
population are evaluated for different metrics by the fitness function, and the
better performing individuals are selected for the next generation. In the course
of the search, the individuals may also be mutated and crossed over to increase
the diversity among the population. The search continues until either a solution
is found or the search budget is depleted. After the search is finished, the tests are
compiled again and are executed against both versions of the software. At this
stage (or during the search), if the tests observe any different execution results,
assertions validating the original behaviour of the program are added. These
steps are discussed in detail over the following section. A thorough evaluation of
the work then follows in Section 4.3. The contributions of this chapter are as
follows:

• A search-based technique for automatically generating regression unit tests
to reveal differences across two versions of a program

• A multi-objective fitness function for GA-based differential testing

• Empirical evaluation of the search-based differential testing technique on
finding real faults

4.2 Search-based Regression Test Generation 83

4.2 Search-based Regression Test Generation

4.2.1 Representation and Fitness Function

Since our approach requires automated test generation, EvoSuiteR was devel-
oped on top of the state-of-the-art test generation platform EvoSuite. While
the EvoSuite platform is able to generate test suites for a single class with the
aim of achieving high structural coverage, it was not built for testing and running
multiple versions of a piece of software simultaneously. This required making
changes to the platform’s internal structure to support additional representations
of the system under test.

As mentioned earlier, EvoSuiteR relies on a genetic algorithm (GA), where
a population of individual chromosomes evolve over time. Initially, based on
the structure of the system under test, a population of random regression chro-
mosomes is generated. Conceptually, the representation of these chromosomes
has not been changed to that of EvoSuite, except with respect to their ability
to run on two versions of a class simultaneously, while keeping their respective
execution results. When these chromosomes are evaluated against the fitness
function, a score named fitness value is associated with them, which measures
how far the candidate solution is from an optimal solution. In each generation,
the fitness of all individuals in the population is calculated, which is then used
to determine which individuals will find their way to the next generation. An
individual with a better fitness value is more likely to be included in the future
generation, or to be used in reproduction.

Similar to EvoSuite, the evolution happens using the search functions
mutation and crossover (as described in Section 2.1.5 and [47]). When evolving
regression chromosomes, as new generations of individuals are created, before
being evaluated by the fitness function, they are executed on both versions of
the software, and the execution traces are stored for each individual. These
execution traces are then given to the fitness function to calculate their fitness
value. Afterwards, the fitness value is attached to the individuals. To avoid
re-executing the same chromosomes twice (to increase performance), we also
cache these values internally for the given chromosomes. As such, in the event

84 Differential Testing Using a Search-Based Approach

Fig. 4.1 Overview of the approach. Given two versions of a Java class,
EvoSuiteR aims to generate a test suite which passes on one version of the
class, and fails on the other.

of an individual remaining unchanged, EvoSuiteR will re-use the fitness value
without having to re-calculate the fitness.

The fitness function aims to guide the search towards revealing differences
between the two versions of the program. The problem of reaching potential
regression faults in the program, and propagating the state changes to the
output comprises of many different sub-problems. As mentioned in Section 2.1,
according to the PIE model, to detect a fault it is required for the fault to be
first executed, and execution alone does not necessarily result in propagating of
the fault to an observable output. Given that the objective of our approach is to
execute the regression faults and propagating any differences in the behaviour
to an observable difference, we propose a multi-objective fitness function, which
simultaneously guides individuals towards multiple goals. Our multi-objective
fitness function allows us to optimise towards maximising structural coverage,
while at the same time maximising the differences in the state and behaviour
between the two versions. An overview of the approach is shown in Figure 4.1.

The metrics used in the fitness function are presented in the following sections.

4.2.1.1 Structural Coverage

Before being able to propagate the state resulted from executing regression
faults to an observable difference in the output, it is important to reach and
execute the faulty code, so as to solve the reachability aspect of regression testing.
Particularly, in Chapter 3 we saw that reachability is not a solved issue for test
generation tools, especially considering the fact that the tools only aim to cover

4.2 Search-based Regression Test Generation 85

one version of the program. Therefore, our proposed structural coverage metric
for EvoSuiteR aims to cover the structure of both versions of the program.

Considering that any part of the class might have been affected by the change,
or may be necessary in order to propagate the infected state to the output, we
aim to cover the whole structure of the class under test, and not only the changed
area of code. To guide the search towards achieving high code coverage, we
measure and use the level of coverage achieved as our first fitness objective.
Therefore, the higher the level of coverage is, the fitter is the individual as a
result.

Structural coverage in EvoSuiteR is measured by running the generated
test suite on both the old and new versions of the software, and measures the
level of branch coverage achieved. The values are then added together to create
the final sum. The level of coverage is increased during the search by maximizing
the value of this measurement.

Let C be the class under test, with two versions of versionA and versionB,
the coverage parameter can be achieved using the function below. Each individual
coverage value is taken using the measurements explained in Section 2.1.5.3,
which also relies on the distance of the uncovered branches towards being covered.

Coverage(C) = coverage(versionA) + coverage(versionB)

4.2.1.2 State Difference

It is expected that while executing a regression fault, if the two versions of
the software are reaching different states (either internally inside the objects or
externally as observable return values), increasing such state difference between
the two versions of a software would raise the chance of the fault to propagate
to an observable output (i.e., the public API of the class) – we also refer to this
metric as state distance. Therefore, the next measurement used in calculating
the fitness is the observable difference between the behaviour of the two versions
of the program. The level of state difference between the two versions of the
software is increased by maximising the value of this measurement. The intuition
of this measurement is similar to previous work, where difference between return
values were calculated [56].

86 Differential Testing Using a Search-Based Approach

To measure this, at a high level, the two versions of the program are in-
strumented and the traces of execution are logged. Later, during the execution
of each chromosome (which is a test suite) on each version of the program,
pairs of execution traces for the two versions of the program are compared.
State difference is measured by comparing the state of the test suite objects
between the pairs of execution traces. To compare the objects, first all public
and private objects are recursively inspected using Java Reflection and their
values are recorded. Then, the numerical object distance [33] is calculated.

To compute a numerical value for the comparisons, for each test case, for each
different type of object (i.e., based on the Class of the object) the differences
are compared, and the highest measured difference is stored. To compare the
differences, the resulting state after executing each test statement is stored, and
then the states are respectively (respective to the test statement) compared
across the two versions of the programs. Afterwards, the sum of all the highest
differences per Classname are added together (sum) for each test case. And
finally the mean of the values is calculated. The reason we use the mean distance
value between the test-cases is that taking a sum would incentivise an increase
in the number of test cases, and taking the maximum would result in the sub-
optimal test cases being ignored, therefore resulting in a lower diversity among
the solutions. Moreover, the reason for collecting and comparing distances after
each statement execution – as opposed to at the end of the test case – is to
avoid cases of fault-masking (see Section 2.1.1.2). A formal definition of this
measurement is provided below.

To achieve the final state difference metric, first, the maximized distance
between all the objects of the same class type is taken (denoted as Cmax), and
added together for the class under test (denoted as C); and afterwards divided
by the number of tests (denoted as numTests). Secondly, considering that our
final fitness function is minimizing, and we are aiming to maximize the state
difference, we use the inverse of the state difference. To keep a similar weighting
compared to coverage and other metrics, we multiply the inverse of distance by
the maximum value the coverage metric can achieve. In the following formulas,
O and R respectively refer to the original (i.e., pre-change) and regression (i.e.,
post-change) versions of the program under test.

4.2 Search-based Regression Test Generation 87

distance(C) = ∑
m
i=1(Cmaxn

j=1(∣objO − objR∣))
numTests

maxCoverage(C) = maxCoverageO + maxCoverageR

stateDifference(C) = 1
(1 + distance(C))) ∗ (maxCoverage(C)

State Difference in Action

To illustrate the effect of state difference (as measured in Section 4.2.1.2), this
section demonstrates how state difference works using a non-trivial example. In
this example, simply reaching and executing the changed code (which in our
scenario contains a regression fault) modifies the state of the program internally,
however, it does not result in immediate propagation of the internal change to
an observable difference in the output between the two versions of the program.
Instead, a certain method call has to be called a number of times before the
different states of the program can propagate to the output.

The class CreditCard, as shown in Figure 4.2, considers a scenario in which a
credit card company allows a customer to withdraw as long as their minimum
repayment reaches a certain amount. The minimum payment is calculated
as a fixed amount that increases based on the number of withdrawals. Over
time, the credit card company decides to double the minimum repayment rate,
however the developers forget to respectively raise the withdrawal limit (as in
the canWithdraw() method). As a result, the change made by the developers
creates a regression in the original functionality of the program, such that when
the withdraw() method is called between 21 and 40 times consecutively, the
program behaves differently compared to the old version of the program.

The challenge with detecting such a regression fault is that the fault does not
occur until the withdraw() method is called for more than 20 times. The state-
difference measurement tries to address such problems by trying to increase the
chance of the internal state difference propagating to the output, by maximizing
the state difference between the two versions of the program. Table 4.1 illustrates
what happens internally during the execution of the withdraw() method, and

88 Differential Testing Using a Search-Based Approach

1 public class CreditCard {
2

3 private int minRepayment = 0;
4 private int balance = 0;
5

6 public boolean withdraw(int amount) {
7 if(canWithdraw() == false)
8 return false;
9

10 minRepayment+= 5 * 2 ;
11 balance += amount;
12 return true;
13 }
14

15 public boolean canWithdraw() {
16 return (minRepayment <= 200);
17 }
18 }

Fig. 4.2 Credit Card example class. A change is made to the class to increase
the amount of minimum repayment after each withdraw. The highlighted area of
code indicates the change that is applied to the class. In the CreditCard class, the
highlighted change will not immediately affect the program behaviour. However,
after 21 calls to withdraw(), canWithdraw() would return false, resulting in
a difference in the behaviour between the two programs.

how the state-difference measurement can guide the search towards propagating
the fault.

In order to show how our technique captures such state differences from test
suites generated during the search, we present below an investigation of it in the
context of the earlier example class CreditCard.

Tracking the state of test objects: Our state difference implementation
starts by looking at the generated test cases in the population. Consider Fig-
ure 4.3 which shows two sample test cases generated for the CreditCard class.
In the context of these test cases, there are three objects in the scope of the test
cases which we keep track of:

• Variable c: An object of type CreditCard, containing two private fields:
minRepayment and balance.

4.2 Search-based Regression Test Generation 89

Table 4.1 The variable minRepayment is changed internally every time the
method withdraw() is called. However, the bug is not found only until after 21
consecutive withdrawals.

withdraw()
called for

Old Version New Version Bug
Found?

1 time minRepayment is 5 minRepayment is 10 ✘

2 times minRepayment is 10 minRepayment is 20 ✘

3 times minRepayment is 15 minRepayment is 30 ✘

⋮

21 times minRepayment is 105 minRepayment is 210 ✔

• Variable canWithdraw: A primitive boolean value.

• Output result of the withdraw() method – which is discarded and not
allocated to a any variables. A primitive boolean value, that we also keep
track of and internally associate with a variable.

Recording and comparing the values: During the search, to evaluate
the fitness of the individual chromosomes (i.e., test suites) in the population,
EvoSuiteR executes the test suites on both versions of the software and stores
the values of all objects in the scope of each test (as illustrated earlier) for
both versions of the software. The values are then compared using the formula
presented earlier in this section to produce the final fitness value.

In the context of our examples, all values of type boolean and CreditCard
in the scope are compared, and the highest difference for each type is stored.
As mentioned earlier, complex objects such as CreditCard are compared using
their numerical object distance (which in turn uses the numerical distance of the
internal fields within the objects), and for each object type, the object distance
is normalised between 0 and 1, with 1 indicating the highest difference possible
and 0 indicating the objects to be identical. For example, for a pair of boolean

90 Differential Testing Using a Search-Based Approach

1 @Test
2 public void Test1(){
3 CreditCard c = new CreditCard();
4 c.withdraw(150);
5 c.withdraw(350);
6 c.withdraw(50);
7 c.withdraw(100);
8 boolean canWithdraw = c.canWithdraw();
9 }

10

11 @Test
12 public void Test2(){
13 CreditCard c = new CreditCard();
14 c.withdraw(50);
15 c.withdraw(100);
16 boolean canWithdraw = c.canWithdraw();
17 }

Fig. 4.3 Example test suite for the CreditCard class, containing two test cases,
created internally in EvoSuite to be used for measuring fitness values.

primitive values (true, false), the distance is 1, and for the tuple (true, true)
the distance is 0.

Although the test cases in our example are both unable to detect the fault,
the object c which internally has the field minRepayment will have different
values across the two versions during each execution of the withdraw() method
as demonstrated in Table 4.1. Therefore, to calculate the state-difference between
the two test cases after executing them on both versions of the program, initially,
the c object is compared. That is, the maximum observed distance value of
minRepayment will be summed with the maximum observed distance value of
balance, normalised into one value. Then, the normalised distance value of c is
added to the normalised distance value of the other class variables canWithdraw.
Finally, the result is divided by two, which is the number of test cases in the
test suite. Therefore, according to the equation presented earlier, the distance is
calculated as follows:

distance(C) = ∣20 − 40∣ +∣10 − 20∣
2 = 15

4.2 Search-based Regression Test Generation 91

4.2.1.3 Control-flow Distance

In order to further increase the chance of state infection, we identified another
measurement to better guide the search. Generally during the execution, if a test
case results in a diversion at a particular branch between different versions of a
program, it raises the chance of the two programs to reach different states due
to the change in the control flow. A diversion means that for a given branching
condition, in one version of a program the true branch is executed (i.e., the
condition evaluates to true), and in the other version of the program, the false
branch is executed (i.e., the condition evaluates to false). Since each difference
in the control flow during execution may contribute towards propagation, we
aim to incentivise any diversion in the control flow at all branches. Thus, we
implemented a control-flow distance measure, which works at branch-level, and
measures the distance of the branch to diverge across the two versions. In this
measurement, the higher the distance value, the further the branches are from
diverging. As a result, minimizing this measurement brings the branches closer
to the point of diversion.

Control-flow distance is composed of two separate values: a) The comparison
of the branch distance values across the two version of the program, and b) the
actual branch distance values. The first value is computed by measuring the
level of difference for each branch between the two versions of the program. To
obtain this value, for each branch, the distance of the branch to becoming true
or false is first calculated and then compared across the two versions of the
program (after executing a test case). The minimum difference for each branch
across the whole test suite is selected, normalised and then value of all branches
are summed together. The second value of control-flow distance is the minimum
raw distance of each branch to true/false across the test suite, which is calculated
for each branch, summed together and then normalised.

The first control-flow distance value aims to differentiate the branch distance
values across the two versions of the program. Maximising this difference
increases the chance of branch diversion across the two versions of the program.
By minimizing the branch distance values themselves (the second value), the
branches will move closer to the point of diversion. As a result, the combination
of the two measurements will increase the difference of the branch distance across

92 Differential Testing Using a Search-Based Approach

the two versions while at the same time bringing the branches to the point of
diversion. By minimizing the control flow distance, we will be maximizing the
difference between the two branches, while at the same time minimizing the
current distance to true / false at the branch. Therefore, if branches have any
difference at the point of divergence, the control flow would diverge between the
two versions of the program.

Let TrueDistO and TrueDistR respectively be the distance of branch to true
(i.e., distance of the branch to becoming true) for the original (pre-change) and
regression (post-change) class under test. And let FalseDistO and FalseDistR
be their false distance counterparts. ω calculates the current value of the branch
(denoted by B), and takes the mean between the two versions. The control flow
distance for the class under test C, is then calculated by summing the minimum
inverse of branch distance (in order to maximize the branch distance) added
to the current branch value. Since the main fitness function is minimizing, by
maximizing the control flow distance, we aim to maximize the difference of
branch distance between the two versions, while aiming to lower the branch
distance value. A diversion is expected if there is a difference between two
versions, while the actual branch distance values approach zero.

distance(C, B) = ∣TrueDistO − TrueDistR∣ +∣FalseDistO − FalseDistR∣

ω(C, B) = TrueDistR + FalseDistR + TrueDistO + FalseDistO
2

cfgDistance(C) =
m

∑
i=1
(minm

j=1(2 × (1 − distance(cj, bi)) + ω(cj, bi)))

Limitations of Measuring Control-Flow Distance

This metric however suffers several limitations. First, the branch distance
value works best on conditions relying on numerical comparisons, and so boolean
conditions such as if(var==true) or if(foo(var)) provide no guidance towards
causing a diversion between the two version of the program (more on this
in Chapter 5). Secondly, since we compute this measurement for all branches,

4.2 Search-based Regression Test Generation 93

classes with large number of branches can impose a high overhead on our
technique. Thirdly, if the control-flow-graph (CFG) of the class under test
has been modified across the two versions of the program (e.g., one version of
the two programs contains more or different branches than the other), there
may not be a one-to-one matching of the branches. Although such one-to-one
mapping of branches across the two versions of the program can be approximated
heuristically using techniques such as JDiff [10], several challenges remain: a)
automatically inferring a mapping between two different versions of a program
may be impossible in some cases, b) our internal evaluation of existing techniques
such as JDiff revealed significant inaccuracies with the mapping; an incorrect
mapping can exacerbate the problem by misguiding the search.

The latter limitation is in particular the most challenging. While much
research has been done on creating matchings of program elements across two
versions of a program, all existing work come with certain limitations [92]. These
limitations are mainly due to the fact that a change to a program may ultimately
turn it into an arbitrarily different program, which cannot be mapped heuristically
to the previous version. Due to these challenges, some researchers even resorted
to manual mapping of program elements when an incorrect mapping would
negatively affect the outcome of the technique (e.g., [125]). In the case of our
approach, although an incorrect mapping can result in misguiding the search
when measuring control-flow distance, it does not mean that use of control-flow
distance measurement is not practical. That is, the measurement can be applied
when there are no changes in the branching structure across the two programs.

4.2.1.4 Exception Distance

Changes made to software may also alter the exceptional behaviour of the
program. Therefore, different exceptions being thrown across the two versions of
the program indicates a difference in the behaviour of the software, which can
be due to underlying differences between the two versions. By increasing the
number of different exceptions thrown, we expect to increase the likelihood of
the change being propagated to the output.

This measurement is achieved by measuring and comparing the number of
thrown exceptions during the execution of both versions of the software. Since the

94 Differential Testing Using a Search-Based Approach

main fitness function is minimizing, while we are aiming to maximize exception
difference, the inverse of the value is added to the final fitness value.

excptDis(C) = 1/(1 + (∣exceptionsThrownO − exceptionsThrownR∣))

Given that different exceptional behaviour of a program immediately indicates
an observable difference in the behaviour of the two versions of the program, we
consider this measurement a minor metric in our fitness function. Therefore,
since the objective of this work is to guide the search towards propagating changes
to the output, and exception distance does not provide such guidance and only
ensures that solutions with different exceptional behaviour have a better fitness
value, we do not evaluate this metric as a separate measurement and include it
during all experiments involving the GA.

4.2.1.5 Secondary Objective

During the search process, the length of the test suite and test cases will continue
to increase. However, it is deemed to be undesirable to keep a longer test suite
if it results in the same fitness value as a shorter test suite. Moreover, longer
test suites increase the test execution time, in addition to being less convenient
for the developers to read. Therefore, during the search, shorter test suites are
preferred over longer solutions with identical fitness values.

4.2.1.6 Summary of Fitness Function

The fitness function overall combines the following measurements: Structural
Coverage, State Difference, Control-Flow Distance1, and Exception Distance.
Moreover, between two individuals with the same fitness value, the one with the
smaller test suite size is preferred. The overall minimizing fitness function is
provided below:

Fitness(C) = Coverage(C)+stateDifference(C)+cfgDistance(C)+excptDis(C)
1If the branching structure between the versions of programs are identical

4.2 Search-based Regression Test Generation 95

4.2.2 Generating Assertions

After the search finishes, EvoSuiteR selects the test suite with the best fitness
value from the population, and analyses the test suite on both versions. At this
stage, the test statements will be executed on both versions of the class under
test, and if the test can reveal a difference in the output between the two versions,
EvoSuiteR adds assertions to the test based on the original version of the
program. This means that the generated test suite passed on the original version
of the program, while one or more test cases may fail on the modified version
of the program. This indicates a difference in the behaviour to the developer,
and they can use this test to investigate whether or not the failure is due to a
regression [56].

The assertion generation is based on observed return values from the test
statements. To process the observed values and generate different types of
assertions for the program, several different assertion generators observe the
outputs during the execution, and process them due to their specific requirements
as below (notice that we named the following categories based the type of assertion
that more closely reflect JUnit assertion types):

• Primitive assertions: Method calls’ return values of primitive type in
Java (e.g., integers, doubles, floats, etc.) are compared against each other,
and in case of any difference, an assertion for the original value is added
to the test suite.

• Same assertions: Objects and values that are already in the test cases
are compared against each other in the same test case, and if they are
exactly the same in one version, but differ in the other version of the class
under test, an assertion is be added.

• Null assertions: All object variables in the test suite are checked against
null values. If a variable is null in one version, but it is not for the other
version, a null assertion is added.

• Inspector assertions: While for primitive values it is easy to compare
their equality, for objects a simple object comparison would only compare
their reference pointer values. Inspector assertions compare the resulting
values of executing all publicly available methods for the object variable,
in addition to comparing the values of the objects’ publicly available fields.

96 Differential Testing Using a Search-Based Approach

If method executions’ return values or fields’ values differ across the two
versions, an assertion is added.

• Comparison assertions: If the comparison value of two variables differ
from each other between the two versions of a class, compare assertions
are added. For instance, if variable a is bigger than b, in one version, but
it is smaller in the other version of a class, the assertion will be added.
For non-primitive objects, if the objects have available comparators, the
compareTo() value is considered.

• Exception assertions: If an exception is thrown in the original version
that is not thrown any more in the modified version, an assertion is
generated such that it expects the original exception to be thrown. In
case of the reverse of this scenario happening – that is, an exception is
thrown in the modified version which is not thrown in the original version
– a comment is added to the test suite indicating that the test will fail on
the modified version due to the exception, while it passes on the original
version since no exceptions are thrown.

While this step is essential to the regression test generation process, it is
possible that during the search a candidate solution can already detect an
observable difference in the output between the two versions of the program.
Thus, it may not be necessary to wait until after the search to check whether a
candidate solution has been identified. As a result, on EvoSuiteR, the assertion
generation step is performed after every generation of the GA, and the search
stops as soon as a candidate solution is found that reveals a behavioural difference
between the two versions of the program.

4.2.3 Isolation of Changes

A main challenge towards the adoption of any automated test generation tech-
nique by the industry is the overhead of time and effort required by developers to
utilise the software testing technique. That is, even if there exists a tool that can
successfully generate tests which reveal all behavioural differences, if inspection
and maintenance of these tests is time consuming and so increasing the backlog,
it is less likely to be adopted by industry. To address this concern, we apply a

4.3 Evaluation of the Search Objectives 97

post-processing step to isolate the changes and report a unique set of actionable
tests in the generated test suite.

Our solution works such that once the search is finished and a test a suite is
generated, we minimise the generated test suite for the sole purpose of differential
testing. To achieve this, we take the following steps: first, we execute each test
case of the generated test suite and remove all tests which do not satisfy our
objective of differential testing – that is, the test should pass on one version and
fail on the other one. Second, we collect the unique set of identified changes based
on a set of multiple variables such as the type of failure, the type of assertion (if
failure is due to an assertion failure), the method-call and/or the class-type of
the variable involved. After this, all duplicate assertions are removed. If any of
the resulting tests no longer reveal a difference, they are removed as well. Third,
we remove all test statements that do not affect the outcome of the test. This
is done by repeatedly removing each statement of a test case and validating
whether the test still reveals a behavioural difference. Statements that do not
contribute to the outcome of the test are then removed. Finally, we remove any
remaining test cases that are no longer failing after applying the third step.

This approach significantly reduces the length of the test suite (e.g., over
90% reduction in test suite length) while at the same time removing duplicate
failures. Although it is possible that some of the remaining failures can still be
due to the same underlying changes in the code, we believe that this can be
beneficial to the developers since they can see different types of side-effects of
their changes.

4.3 Evaluation of the Search Objectives

To evaluate the approach presented in Section 4.2, initially, we evaluated the
effectiveness of the approach on an example program with a complex issue,
such as Figure 4.3. In our initial study, the multi-objective fitness function of
EvoSuiteR was found to be significantly more effective compared to using
branch coverage as the only guidance metric; while the currently available state-
of-the-art tool for regression test generation completely failed to identify the
fault [155].

98 Differential Testing Using a Search-Based Approach

As a next step, we conducted a large empirical study to measure the effective-
ness of the approach and individual measurements on real-world programs. In
this section, first we present our research objectives (i.e., research questions), then
we outline the test generation techniques we want to evaluate and the subjects
used for the experiments. In Section 4.3 we describe the applied methodology to
answer our research questions, and finally in Section 4.3.8 we present the results.

4.3.1 Research Questions

In order to further evaluate our approach, we aim to answer the following
questions:

• RQ4.1. Which measurement is the most effective for propagating changes?

• RQ4.2. How effective is EvoSuiteR at detecting real faults?

• RQ4.3. How does EvoSuiteR compare with the state-of-the-art test
generation techniques?

RQ4.1 aims to find the best performing measurement in guiding the search
towards a test suite that is able to propagate the regression faults. In a nutshell,
it aims to answer whether the multi-objective fitness function is indeed more ef-
fective than using the individual metrics such as branch coverage, state difference,
or control-flow-distance. To answer this question, we look at the effectiveness of
individual metrics in comparison to the combined fitness function.

While EvoSuiteR proposes a systematic approach to generating test cases
that can propagate software changes, it comes at a significant processing cost.
RQ4.2 aims to find out whether in a controlled experiment in which only the
search algorithm differs, using our proposed GA can outperform a random search
algorithm, given the same search budget. Therefore, to answer this question, we
built a random test generation tool on top EvoSuiteR. In this technique, instead
of using a genetic algorithm to search for the optimal solution, it constantly
generates a random test case, runs it on both versions of the software, and
compares their execution traces for differences. A similar approach is used by
the current state of the art regression test generation tool BERT, however in

4.3 Evaluation of the Search Objectives 99

Table 4.2 Numbers of bugs in each project in Defects4J, along with the number
of bugs used in this study.
*All experiments excluding the experiments involving control-flow-distance.

Project Bugs
Total All Experiments* Control-flow-distance

Apache Commons Lang 65 65 5
Apache Commons Math 106 96 25
Google Closure Compiler 133 120 7
JFreeChart 26 24 9
Joda-Time 27 22 4
Total 357 327 50

their original implementation the test generation is performed by Randoop
rather than EvoSuite [123].

With RQ4.3 we aim to understand how well the technique compares to the
state-of-the-art test generation techniques. To answer this, we compare the
effectiveness of our technique with 3 popular test generation tools EvoSuite,
AgitarOne, and Randoop.

4.3.2 Subject Programs

In order to answer our research questions and to evaluate our technique’s
effectiveness in detecting real regression faults in practice, we needed a set of
subjects for which we would have access to the followings: a) Two versions of
the program for each subject are available, b) There exists a change between
the two versions, c) The change is not semantically equivalent, d) The change
represents a real fault, and e) Preferably, state-of-the-art techniques have already
been evaluated on those subjects. The Defects4J repository of real faults [89]
contains 357 real faults taken from 5 open source repositories, and satisfies the
requirements above. Particularly, in Chapter 3 we evaluated the effectiveness of
three state-of-the-art test generation techniques on the same set of subjects.

Given that EvoSuiteR detects changes at class-level, to ensure that a change
exists between each pair of classes, we excluded subjects where more than one
class was modified, resulting in 327 subjects. This was done to simplify and
standardise our evaluation infrastructure setup across all subjects. Given that

100 Differential Testing Using a Search-Based Approach

only a small subset (30) of the Defects4J repository subjects were excluded,
we do not believe that this would influence the conclusion of any of our reported
results. Moreover, as mentioned in Section 4.2.1.3, the Control-flow-distance
measurement can only be used on pairs of versions where there is a one to one
matching between all branches of the program. Therefore, to evaluate techniques
including this measurement, we selected a subset of the faults that contain a one-
to-one matching between the branches, resulting in 50 subjects. The matching
was performed based on two conditions: 1) the two versions of the program
contain the same number of branches, and 2) the matched branches between
the two versions are of the same bytecode comparison family (as discussed
in Section 5.2). Table 4.2 details the subjects selected for this study.

4.3.3 Evaluated Techniques

To find out the effectiveness of the measurements proposed in Section 4.2.1, we
conducted experiment with the following algorithms, to which from hereon we
will refer to as the text in bold:

1. GA-Comb: Combination of GA-Coverage and GA-State

2. GA-Coverage: Coverage on both versions

3. GA-State: State difference

4. GA-CFD: Control-flow distance

5. GA-ALL: All three measurements combined

6. Random: Random testing

As we mentioned in Section 4.2.1.3 and Section 4.3.2, CFD can only be
used on subjects where there is a one-to-one matching between the control-flow
branches of the two versions of the program. As such, the configurations GA-ALL
and GA-CFD can be applied to subjects that satisfy this requirement. GA-Comb
however does not have this limitation.

To implement the random test generation technique, we extended EvoSuiteR
such that instead of using a genetic algorithm, test generation is performed

4.3 Evaluation of the Search Objectives 101

randomly. That is, as long as the search budget has not been exhausted, new
tests are generated randomly and evaluated on both versions. The search stops
as soon as a difference in the behaviour is detected.

4.3.4 Experiment Procedure

In this section we present our applied procedure to answer each research question:

4.3.4.1 RQ4.1: Comparison of fitness functions

In order to compare the different measurements used in our multi-objective
fitness function, and to ensure that our combined fitness function is the most
effective, we applied EvoSuiteR using different fitness functions and compared
their effectiveness at fault finding. In particular, we applied and compared all 5
different versions of our fitness function as reported in Section 4.3.3.

To apply each technique for the purpose of test generation, we used pairs
of subjects taken from the Defects4J repository, where each pair consists of
a buggy and fixed version. We then applied EvoSuiteR on the pair such that
it generates tests which pass on the fixed version and fail on the buggy one.
Although once EvoSuiteR is finished generating tests it can report on whether
or not it has identified a difference between the two versions, to increase our
confidence in the data and to lower threats to the internal validity of our technique,
we followed methodology from Chapter 3 and applied the same rigorous procedure
to validate the generated tests (e.g., by removing false positives and flaky tests),
and executed the tests using JUnit outsde the EvoSuiteR framework.

We consider a fault to be found or detected if a test suite successfully passes
on the fixed version of the program, while one or more test cases from the test
suite fail on the buggy version of the program. To detect whether a generated
test suite has detected a fault, we executed each generated JUnit test suite on
each respective pair of programs as follows:

• Execution on Fixed version: Since either of the generated test suite or
the system under test may have non-deterministic behaviour, it is possible
that some test cases can have flaky behaviour; that is, when a test case is

102 Differential Testing Using a Search-Based Approach

executed on the same version multiple times the outcome of the test may
differ. Therefore, to ensure that the generated tests are not failing due
to flaky behaviour, we followed methodology in previous work [156] and
executed each test suite on the fixed version (i.e., the version the test suite
was generated on) repeatedly until all tests within the generated test suite
pass for at least 5 consecutive runs. We removed any failing tests during
this process.

• Execution on Buggy version: After executing the test suite on the
fixed version, we executed the resulting test suite on the buggy version,
and recorded the following outcomes: a) The number of tests failing due
to assertion failures, b) The number of failing tests due to errors caused by
unexpected exceptions, c) In case of any failures, we recorded the execution
report containing the reason for the failure of each test case, in addition to
the respective stack trace. In a real software development scenario, these
three outcomes are available to developers as well.

We then compared the different measurements in terms of the number of
bugs they can detect. However, not all measurements were directly comparable.
In particular, as we mentioned earlier, the techniques involving Control-flow
distance require a one-to-one matching between the control-flow branches across
the two versions of the program. As such, we conducted two separate set of
experiments using two different sets of faults as reported in Section 4.3.2: 1) we
compared the effectiveness of the GA-Comb against GA-Coverage and GA-State,
2) we compared the effectiveness of GA-All against GA-CFD and GA-Comb.
The first set of experiments enables us to compare the combined fitness function
against its individual components. The second set of experiments enables us to
compare the combined fitness function with CFD, and answers whether or not
using CFD is beneficial to the combined fitness function.

4.3.4.2 RQ4.2: Effectiveness of the technique

To answer our second research question, we compared the effectiveness of
EvoSuiteR using the combined fitness function (GA-Comb) against a baseline of
random testing. We used the same methodology as in RQ4.1 for test-generation
and execution.

4.3 Evaluation of the Search Objectives 103

4.3.4.3 RQ4.3: Comparison with the state-of-the-art

We answer this research question by comparing our approach EvoSuiteR against
the evaluation framework we presented in Chapter 3 and [156]. Specifically, we
compare the effectiveness of EvoSuiteR using the combined fitness function
against the three state-of-the-art test generation techniques AgitarOne, Evo-
Suite and Randoop. For this comparison, we use the dataset from RQ4.1 for
EvoSuiteR, and the dataset from our evaluation framework [156] (Chapter 3)
for the other techniques.

4.3.5 Experiment setup

Testing environment: The experiments were conducted on the High Perfor-
mance Computing Cluster named iceberg at the University of Sheffield. Each
node on the cluster has a Sandy-bridge generation Intel Xeon processing, and
we allocated each experiment 3GB of real and 6GB of virtual memory.

Search budget: Given that in this study we are evaluating an evolutionary
algorithm, and considering the large overhead of our technique, we used a budget
of 10 minutes for all experiments.

Number of repetitions: Considering that our approach is based on random-
ized algorithms, to lower the effect of randomness and also to lower the influence
of the noise on the cluster, we repeated all experiments for 30 times.

4.3.6 Data Collection

During our preliminary evaluations of our approach, in order to record and
analyse the search process, and to monitor the progress and impact of each of the
measurements, we kept track of several measurements during the execution, as
presented in Table 4.3. These measurements are calculated after each generation
of the GA for the best individual in the population, and stored in a unique CSV
file. After the search is completed, the relevant CSV file and generated test suite
are stored separately for each individual run of EvoSuiteR.

104 Differential Testing Using a Search-Based Approach

Table 4.3 List of tracked measures during the search

Generation Age Fitness Value Test Count Test Size

Exception
Difference Value

Total Number of
Exceptions

State Difference
Value

Branch
Difference Value

Coverage Value Coverage
Percentage on
Old Version

Coverage
Percentage on
New Version

Number of
Executed
Statements

Number of
Assertions

Time Since Start
(ms)

Duration of Test
Execution

Duration of
Assertions

Duration of
Coverage
Calculation

Duration of State
Difference
Calculation

Duration of
branch difference
calculation

Duration of
Object Collection

To further assist the analysis of the data, we developed a web-based plat-
form [152] to help us aggregate and compare the large amount of data collected.
The system takes the data collected during the execution as CSV files and
stores all the data in a database for analysis. Using the web interface, we could
then analyse and compare the performance and effectiveness of EvoSuiteR
on any of the chosen configurations. Users can view graphs of how each of the
measurements evolve during the search, enabling them to better evaluate the
approach. The generated test suites are also available for inspection, along with
embedded assertions demonstrating the observed change.

The comparison tools on the system enable the user to quickly compare
individual subjects across different experiments and presents the results using
colour coding for easier inspection. Due to the scalable design of the system,
it allowed us to quickly aggregate, visualise, and analyse over 200 million gen-
erations. Therefore, we believe such visualisations can be helpful during the
development of search-based techniques in general.

4.3 Evaluation of the Search Objectives 105

4.3.7 Threats to Validity

External Validity: In this study, we studied the effectiveness of the tools on
only five open-source subjects taken from open source repositories. As such,
our results may not generalise to other types of programs. Moreover, we only
used single-class changes (i.e., only a single class was modified between the two
version of the program) in our evaluation. While this was done deliberately since
our technique works at class-level, the effectiveness of the technique may differ
when multiple classes are modified, and especially if finding the bug requires
testing multiple classes at the same time.

For measuring the effectiveness of control-flow-distance, we only used a
smaller subset of 50 subjects compared to the 327 subjects when comparing
other techniques. While this was done such that our technique would be able
to match control-flow branches across the two versions of the program, this can
pose a threat to the level in which this data generalises.

Internal Validity: We implemented our proposed technique on top of Evo-
Suite, and as such, the effectiveness of the technique may be affected by the
limitations of EvoSuite itself, such as the type of test statements it can gen-
erate, the performance bottlenecks of the code instrumentation and execution,
etc., and as a result may not generalise to other tools. Moreover, bugs in our
implementation, our experiment setup, or in EvoSuite may contribute towards
our technique reporting false-positives (i.e., reporting a subject as detected while
it was not), or on the other hand failing to report on subjects that were not
detected, thus underestimating the effectiveness of the tool. In order to mitigate
false positives, we followed the methodology in [156] for preventing flaky tests
and removing false positives by manual inspection. However, due to the large
number of tests, manually inspecting all tests was not feasible and only a sample
of the generated tests were inspected.

Construct Validity: A threat to the validity of our comparison against the
state-of-the-art tools (RQ4.3) is the difference in the search budget allocated
to the techniques. That is, while we used a search-budget of 10 minutes for
the EvoSuiteR-Comb technique, a smaller budget of 3-minute was used for

106 Differential Testing Using a Search-Based Approach

EvoSuite and Randoop– but not for AgitarOne– in our earlier study [156].
Therefore, it is possible that the effectiveness of the two state-of-the-art tech-
niques may differ, given more time. This decision was made in consideration of
a number of different factors: a) EvoSuiteR-Comb is currently a prototype
implementation of the aforementioned algorithm, and inefficiencies in the current
implementation of the approach reduce the speed of the technique. This is
while the other techniques used in the comparison are relatively mature, and
their implementations have been optimised over the past several years, b) this
evaluation is only a preliminary comparison against the state-of-the-art tech-
niques, to better understand where EvoSuiteR stands – or can potentially
stand by optimising the implementation – compared to other techniques, c)
to avoid repetition of previous evaluations – which in turn involved significant
manual and computational effort such as investigation and removal of flaky
and false-positive tests –, we used data from RQ4.1 and Chapter 3, d) this
difference in the allocated time only affected 2 of the 3 techniques, for which we
do not believe that the allocation of an extra search budget would increase their
effectiveness.

For EvoSuite we observed only a minimal difference when a larger search
budget was used – this is confirmed in Chapter 5 [157]. Moreover, since EvoSuite
aims to cover all branches with the smallest test suite, therefore, when coverage
cannot be further improved, a smaller test suite with the same level of global
coverage is preferred by the technique. Therefore, test suites generated by
EvoSuite shrink in size when given a larger search budget, if the tool is unable
to cover further goals. However, our previous experiments and recent work [60]
have shown that these smaller test suites are less diverse and therefore, may be
less effective at fault finding. While this problem does not exist for Randoop, we
have observed that test suites generated by Randoop already saturate the code
coverage in < 1 minute, and the newly generated tests are heavily redundant [156].
Therefore, we believe that our conclusions should not be affected by this choice.

The type of bugs used in this study also pose a threat to the accuracy of this
report on the effectiveness of the techniques. In particular, the bugs were taken
from actively-maintained open source projects where developers have access
to high quality and high coverage test suites. Moreover, the bugs were taken
from publicly available commits taken from these repositories, and it is likely

4.3 Evaluation of the Search Objectives 107

that a number of regression faults were caught during the development process
by the developers. Therefore, it is likely that our report underestimates the
effectiveness of the tools. Another threat related the subjects used in this study
is the nature of the bugs themselves. While we look at a regression that would
occur by moving from a fixed version of the program to a buggy version, it is
possible that a number of such cases do not represent real regression faults that
may occur in practice.

4.3.8 Results

RQ4.1: Which measurement is the most effective for propagating
changes? Although in our preliminary evaluation of the technique [155] we
found the combined fitness measurement to be the most effective on toy examples,
this research question investigates whether the individual measurements used
for guiding the search are effective in practice on real faults. Moreover, it aims
to answer whether the combined fitness function is the most effective overall,
for the purpose of detecting changes – which can be regression faults. As such,
we evaluated the effectiveness of our approach using each individual metric for
the fitness function, in addition to the combined metric. Since different set of
faults were investigated for techniques with or without control-flow distance, we
first present the results on all subjects, and thereafter present the results for
control-flow distance using subjects with equally matching branches.

Overall, out of 327, GA-Comb managed to find 162 bugs at least once, GA-
Cov found 138, and GA-State found 152. While more bugs were found by the
combined fitness function, not all bugs found by the individual measurements
were also found by GA-Comb. For instance, 6 and 10 bugs were found by GA-Cov
and GA-State respectively that were not found by GA-Comb. Moreover, out of
30 repetitions, the techniques had different success rates at detecting the same
faults. In Figure 4.4 we compare the success rate of the combined technique
against when individual metrics are used alone at detecting the faults. Moreover,
in the same figure we present the number of subjects for which one technique
had a significantly higher success rate at detecting the fault than the other.
To compare significance, we used Fisher’s Exact test [46, 13], and report on a
subject to have a significantly higher success rate if the p-value of the test is

108 Differential Testing Using a Search-Based Approach

Comb vs Coverage 54 61 176 34 2

Comb vs State 18 58 179 56 16

Comb Significantly Higher Comb Higher Equivalent Comb Lower Comb Significantly Lower

Fig. 4.4 Comparing the effectiveness of EvoSuiteR using the combined fitness
function (Comb), against EvoSuiteR with only branch-coverage measurement,
and EvoSuiteR with only state-distance measurement.

less than 0.05. Observe that the combined metric achieved a significantly higher
success in more subjects than the other two measurements. It is noteworthy to
point out the little difference observed between GA-Comb and GA-State. This
indicates that while the addition of GA-Cov is beneficial, it provides only a small
improvement to GA-State.

The combined fitness function is more effective than the individual components
such as “Coverage” and “State-distance”. However, on a majority of subjects,

state-distance alone is equally effective.

Our second set of experiments evaluate the effectiveness of the Control-flow
distance measurement when applied alone, or when applied in combination
to all measurements. As such, we present our evaluation by first comparing
GA-CFD against GA-All, and then comparing GA-All against GA-Comb (i.e.,
without CFD). Out of 50 bugs, both GA-All and GA-CFD found 33 bugs at
least once. Moreover, GA-CFD did not detect any faults that GA-Comb was
unable to detect. Figure 4.5 summarizes the comparison of the success rate of the
techniques at detecting the fault. Notice that while CFD alone can be similarly
as effective as GA-All, the combined measurement GA-All was not better than
GA-Comb. In fact, for one subject, the technique had a lower success rate, likely
due to the additional overhead of CFD calculations.

While using CFD alone is an effective way to propagate faults, it does not
provide any additional improvements to GA-Comb.

In summary, in this research question we presented a comparison of the
different measurements proposed in this chapter for the purpose of differential
test suite generation using a search-based approach. Our results show that of the
three proposed measurements each individual metric is effective way to guide the

4.3 Evaluation of the Search Objectives 109

All vs CFD 6 10 21 11 2

All vs Comb 12 22 15 1

All Significantly Higher All Higher Equivalent All Lower All Significantly Lower

Fig. 4.5 Comparing the effectiveness of EvoSuiteR using the combined fitness
function (ALL), against EvoSuiteR with CFD alone, and EvoSuiteR with all
measurements excluding CFD (Comb).
Legend: “Significantly higher” is the number of classes for which a technique generated a test that detected the
change in a significantly higher number of runs than the other; “Higher” refers to the number of classes where
a technique generated a test detecting the change in a (non-significant) higher number of runs; “Equivalent”
is where the change was detected by both techniques for the same number of runs.

search towards generating differential tests that can detect potential regression
faults. However, in our experiment we found control-flow distance to not provide
any further guidance compared to the combination of coverage and state-distance.
Moreover, we found state-distance alone to be surprisingly effective, even when
no guidance exists towards reaching the fault. Therefore, our results indicate
that maximising state-infections can be an effective way to propagate changes.

RQ4.1: The combination of “Coverage” and “State-distance” is the most
effective, compared to using individual measurements. Although Control-flow

distance was effective alone, it did not provide any extra improvement towards
guiding the search.

RQ4.2: How effective is EvoSuiteR at detecting real faults?

To answer this research question we compare EvoSuiteR using the combined
GA-Comb fitness function against random search. Out of 327, random testing
found 160 bugs at least once while GA-Comb found 162. However, only 143 of
these bugs were found by both techniques, and each technique finds different
sets of bugs. Although GA-Comb finds a slightly higher number of faults at
least once, random search has a larger number of subjects for which it achieves a
significantly higher success rate at detecting the fault. Figure 4.6 summarises the
statistical significance of the comparison of the success rate of the two techniques.

Observe that except for 33 subjects, random search is equally or more effective
than our combined GA approach. This outcome can be particularly surprising
given the high success rate of the random approach, and especially considering

110 Differential Testing Using a Search-Based Approach

Random vs Comb 43 41 171 39 33

Chart 9 4 10 1

Closure 5 12 90 8 5

Lang 20 11 23 8 3

Math 1 8 44 19 24

Time 8 6 4 3 1

Random Significantly Higher Random Higher Equivalent Random Lower Random Significantly Lower

Fig. 4.6 Comparing EvoSuiteR using random search, against EvoSuiteR
using GA-Comb (combined measurements).
Legend: “Significantly higher” is the number of classes for which a technique generated a test that detected the
change in a significantly higher number of runs than the other; “Higher” refers to the number of classes where
a technique generated a test detecting the change in a (non-significant) higher number of runs; “Equivalent”
is where the change was detected by both techniques for the same number of runs.

the high popularity of evolutionary techniques in test generation techniques.
Moreover, each of the techniques was more effective on a different set of projects.
In particular, as can be seen in Figure 4.6, for projects Chart, Lang and Time
random search appears to outperform GA, while on Math – short for Apache
Commons Mathematics Library – the GA was more effective. The results indicate
that there exists an underlying characteristic difference across the projects, that
makes one technique better suited to detect the change than the other.

To ensure that the combined fitness function is still more effective than
random search compared to the individual metrics used, Figure 4.7 summarizes
the comparison of the effectiveness of individual metrics of the fitness function
alone against random testing. This further confirms our observation in RQ4.1
that the combined fitness function is the most effective. Nevertheless, the
successful outcome of random search presents interesting results that raise new
questions – see Chapter 5

RQ4.2: Differential testing using a random heuristic was significantly more
effective at fault finding than differential testing using our combined GA in 43

subjects, while being significantly worse in only 33.

4.3 Evaluation of the Search Objectives 111

Random vs Coverage 67 46 175 34 5

Random vs State 44 39 179 38 27

Random Significantly Higher Random Higher Equivalent Random Lower Random Significantly Lower

Fig. 4.7 Comparing the effectiveness of EvoSuiteR using random search,
against EvoSuiteR with only branch-coverage measurement, and EvoSuiteR
with only state-distance measurement.
Legend: “Significantly higher” is the number of classes for which a technique generated a test that detected the
change in a significantly higher number of runs than the other; “Higher” refers to the number of classes where
a technique generated a test detecting the change in a (non-significant) higher number of runs; “Equivalent”
is where the change was detected by both techniques for the same number of runs.

RQ4.3: How does EvoSuiteR compare with the state-of-the-art
test generation techniques?

To answer our third research question we compare our approach against the state
of the art test generation tools, using the evaluation framework we developed
earlier in Chapter 3. In Figure 4.8 we summarize the comparison of the success
rate of EvoSuiteR using GA-Comb against the three state of the art tools
AgitarOne, EvoSuite, and Randoop. Notice that compared to EvoSuite
and Randoop, EvoSuiteR was significantly more effective in a larger number
of subjects.

Given our findings in Chapter 3, we were not surprised by AgitarOne’s
performance. AgitarOne takes advantage of several different techniques in
order to generate high coverage and sensitive tests. These techniques include:
1) aggressive mocking: AgitarOne generates mock objects which test the
internal coupling and dependencies between the methods and objects inside the
program, 2) existing code/test: AgitarOne takes advantage of any existing
tests manually written by the developers, or from existing code written in other
classes in order to instantiate hard-to-create objects. These techniques however
do not come without caveats, for instance, aggressive mocking can lead to a
large number of failures due to false positive tests, or a lower success rate if the
developers do not have access to an existing test suite.

In our earlier study, AgitarOne found 130 bugs at least once, EvoSuite
found 145, and Randoop found 93. In this study, EvoSuiteR using the GA-
Comb fitness function found 162 bugs at least once. While our technique finds

112 Differential Testing Using a Search-Based Approach

Comb vs AgitarOne 9 72 149 66 31

Comb vs EvoSuite 47 55 150 49 26

Comb vs Randoop 76 54 158 21 18

Comb Significantly Higher Comb Higher Equivalent Comb Lower Comb Significantly Lower

Fig. 4.8 Comparing the effectiveness of EvoSuiteR using the combined fitness
function (Comb), against three state of the art test generation techniques:
AgitarOne, EvoSuite, and Randoop.
Legend: “Significantly higher” is the number of classes for which a technique generated a test that detected the
change in a significantly higher number of runs than the other; “Higher” refers to the number of classes where
a technique generated a test detecting the change in a (non-significant) higher number of runs; “Equivalent”
is where the change was detected by both techniques for the same number of runs.

more faults than the others, we should note that the techniques find different set
of faults, and each technique alone finds fault that are not detected by others.

RQ4.3: EvoSuiteR found more faults than the three state-of-the-art
techniques. However, while it was more effective than EvoSuite and

Randoop at finding the same faults, for 31 subjects, it was less successful
than AgitarOne.

4.4 Summary

In this section we presented a search-based approach for the purpose of differ-
ential test suite generation, and presented a large empirical study evaluating
its effectiveness in practice – which was done according to the framework we
presented earlier in Chapter 3. Our large-scale evaluation consisted of running
different configurations of our technique on 327 real bugs taken from open source
repositories, resulting in more than 50,000 test suites with a serial execution
time of close to 9,000 hours.

Overall, the evaluation results show that tests generated using EvoSuiteR
can be effective at detecting real faults, and that a combined measurement (i.e.,
our proposed multi-objective GA) approach is the most effective configuration,
compared to any of the individual measurements. However, while the control-flow
distance objective was effective at guiding the search when applied alone, it
did not provide any additional benefit towards finding more faults. The similar

4.4 Summary 113

results of EvoSuiteR using the combined measurement as opposed to using
state difference alone shows that the success of the approach relies heavily on
maximising the state difference of the program.

In contrast to our expectations, for a considerable portion of the faults,
EvoSuiteR using GA-Comb did not achieve a significantly better result than
random search. Our conjecture for this outcome is that a) random-search does
not have the fitness function overhead of the GA, and therefore can evaluate a
larger portion of the search space given the same time budget, b) small differences
in the underlying characteristics of the two versions of the program under test
results in a relatively flat search landscape for the evolutionary technique (GA),
and so, a higher diversity in the population is necessary to better explore
this landscape (something in which random search can always outperform a
systematic approach); we investigate this problem further in Chapter 5, to
understand whether this problem is specific to generating regression tests and
finding changes (e.g., changes represent needles in a haystack), or a wider problem
that applies to search-based test generation techniques in general. Nevertheless,
it is worth noting that our technique was able to detect faults that random
search failed to – EvoSuiteR using GA-Comb in fact found more faults than
any other approach we evaluated so far. Moreover, for a number of faults, our
GA managed to achieve significantly better results compared to random testing.

When compared to three state-of-the-art test generation techniques, we
found our technique to perform equally or better for a majority of subjects.
The state-of-the-art techniques aim to generate tests for individual classes,
rather than a pair of classes, which can be beneficial to revealing behavioural
differences. However, while for a small number of subjects AgitarOne achieved
a significantly higher success rate, we believe our generated test suites to be
superior due to the size, length and complexity of the generated test suites. Our
findings also suggest that using differential testing (e.g., using EvoSuiteR) can
be a complementary approach for regression testing alongside existing practices
such as coverage-driven testing (e.g., using EvoSuite), which we will investigate
further in Chapter 6.

We have made our GA-based differential test generation tool EvoSuiteR
open source and publicly available at http://www.evosuite.org/evosuiter.
Appendix A provides the details on how to use and configure the tool.

Chapter 5
Comparing Random and Genetic
Algorithm Search for Generating
High-Coverage Test Suites

The content of this chapter is based on work undertaken during this PhD
by the author, which has been published elsewhere [157].

5.1 Introduction

In the previous chapter, we proposed a search-based approach specifically targeted
at the problem of regression testing. Briefly, our multi-objective algorithm aimed
to reach and propagate changes between two versions of a program at the same
time. While our evaluation found the technique to be more effective than current
state-of-the-art techniques, a surprising observation was that when compared
to a similar technique with the algorithm replaced with random search – while
the rest of the tooling remaining identical – for a large majority of subjects,
random-search was as effective. Although on one hand we may conjecture that
this is a problem specific to regression testing – that is, the search landscape
for regression problems is mostly flat (i.e., needles in the haystack) —, on the
other hand our results indicated that this may be a bigger problem in general
for automated test generation using search-based algorithms on object-oriented

116 Random vs. GA Search for Generating High-Coverage Test Suites

programs. As a result, it is essential to know which of the two is the case. For
instance, if the latter is the case, then improvements to the GA and tooling may
be beneficial to both techniques. Our results may also help us to predict which
algorithm to use for which set of programs.

As we reported in Chapter 2, many different techniques and algorithms for
different types of software testing problems have been proposed. One particular
application area where search-based techniques have been successfully applied
is the unit testing of object-oriented programs, where test cases are sequences
of object constructor and method calls. There are various tools available for
languages such as Java and .NET, ranging from tools based on random search
such as Randoop [124], JCrasher [35], JTExpert [147], NightHawk [9], T3 [132],
or Yeti-Test [121], to tools based on evolutionary search such as EvoSuite [48],
eToc [170] or Testful [18]. Systematic approaches such as JWalk [160] also exist,
which perform exhaustive search with the objective of visiting new states.

Although the tools based on evolutionary search techniques are commonly
thought to be superior, it is unclear whether this is actually the case in practice.
It could be that differences in performance across tools may be accounted for by
the differences in the programming language that they target, or in the way they
have been engineered, as opposed to any specific benefits of the particular search
algorithm that they apply. In order to shed more light on these questions, in this
chapter we report on experiments to contrast the use of a Genetic Algorithm
(GA) against random search. The GA algorithms optimize unit test suites for
code coverage while the random search algorithm optimizes code coverage by
adding random tests to a test suite.

To allow for a fair comparison, we use the GA and a common version of
random test generation implemented in the same tool – EvoSuite, which
generates branch covering test suites for Java classes. We run our experiments
on a random sample of 1,000 classes from the SF110 corpus of open source
projects [52] and evaluate the techniques in terms of the achieved code coverage.
Specifically, we make the following contributions in this chapter:

• We report on the effectiveness of using a GA compared to an algorithm
based on random search for the purpose of generating test suites with high
branch coverage for object-oriented programs.

5.2 Types of Branches in Java Bytecode 117

• We investigate the influence of certain types of branches within the classes
under test on the performance of each technique.

• In order to better understand the effect of the search budget on the
performance of each technique, we study the effectiveness of the GA and
random search over time with an extended search budget.

In the following sections, first in Section 5.2 we introduce the concept of
“branch types” in Java bytecode and discuss the influence it can have on the search
algorithms. Next, in Section 5.3 we present the setup used in our experiment
and the research questions this work is aiming to address. Thereafter we present
the result of our experiments followed by a discussion of the results. Finally we
discuss some related work done in this area, followed by a conclusion of this
work.

5.2 Types of Branches in Java Bytecode

In this chapter, we study the application of evolutionary and random search
to automatic test suite generation, as implemented in the EvoSuite tool.
EvoSuite (as previously discussed in Section 2.1.5.3) aims to generate unit
test suites that cover as many branches of a Java class as possible, while also
executing all methods that are devoid of branches, referred to as “branchless”
methods. Given that covering branchless methods can be trivial, this section
looks at how the branches are represented and how they can be used for guidance.

Considering that this study uses EvoSuite (a Java test generation tool)
and evaluates the technique on Java programs, in this chapter we look at the
representation of branches in the Java programming language. However, this
is not limited to the Java language and set-aside a small set of differences,
it should generalise to other object-oriented languages (e.g., .NET languages
compile to Common Intermediate Language (CIL)). Java programs are compiled
to bytecode for execution on a Java Virtual Machine (JVM), and it is at the level
of the bytecode at which EvoSuite works – branch distances are computed by
instrumenting and monitoring bytecode instructions. Different types of bytecode
instruction can therefore give rise to different types of fitness landscape that
may or may not be useful in guiding the search.

118 Random vs. GA Search for Generating High-Coverage Test Suites

void m(int a) {
if (a == 1) {

// uncovered branch
}

}

void m(int);
0: iload_1
1: iconst_1
2: if_icmpne 7

[uncovered branch]
7: return

0

1

2

3

4

5

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(i) Source code (ii) Bytecode (iii) Raw branch distance

(a) Int-Int Branch

void m(int a) {
boolean x = false;
if (a == 1)

x = true;
if (x) {

// uncovered branch
}

}

void m(int);
0: iconst_0
1: istore_2
...
9: iload_2

10: ifeq 15
[uncovered branch]

15: return

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(i) Source code (ii) Bytecode (iii) Raw branch distance

(b) Int-Zero Branch

void m(int a) {
Object x = null;
if (a == 1)

x = this;
if (this == x) {

// uncovered branch
}

}

void m(int);
0: aconst_null
1: astore_2
...
9: aload_0

10: aload_2
11: if_acmpne 16

[uncovered branch]
16: return

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(i) Source code (ii) Bytecode (iii) Raw branch distance

(c) Ref-Ref Branch

void m(int a) {
Object x = null;
if (a != 1)

x = new Object();
if (x == null) {

// uncovered branch
}

}

void m(int);
0: aconst_null
1: astore_2
...

15: aload_2
16: ifnonnull 21

[uncovered branch]
21: return

0

1

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(i) Source code (ii) Bytecode (iii) Raw branch distance

(d) Ref-Null Branch

Fig. 5.1 Examples of different branch types (denoted “uncovered branch”)
and their effect on the respective fitness landscape for the GA through raw
(unnormalised) branch distance values. We show both the original Java source
and the compiled bytecode, as processed by EvoSuite. Note that the target
true/false evaluation of the branches is inverted by the Java compiler. The first
column gives an example of a “gradient” branch, providing true guidance to the
search. Conversely, the remaining examples do not provide good guidance, with
the majority of inputs to the method resulting in the same distance value, and
consequently a fitness landscape that is flat other than for the value required to
execute the branch of concern.

5.2 Types of Branches in Java Bytecode 119

Given that the fitness function is one of the key differences between the
evolutionary and random search, and that a major component of the fitness
function is the calculation of distances for the branches in the class under test,
we now classify the four types of branches that occur in the bytecode of Java
programs, and discuss the level of guidance they can potentially afford the
evolutionary search in EvoSuite.

This is important because it has been long known that not all branch
predicates give “good” guidance, the archetypal example being that involving
the boolean flag [73, 16]. Boolean conditions in branch predicates can only ever
evaluate to true or false, offering one of only two distance values. Since one of
these values corresponds to execution of the branch, no guidance is given to
the search. Nevertheless, several branch predicates (e.g., integer comparisons,
double comparisons, float comparisons, etc.) do indeed provide guidance, and
result in a smooth “gradient” in the fitness landscape that a guided search can
use to easily find test inputs.

5.2.1 “Integer-Integer” Branches

“Integer-Integer” branches involve the comparison of two integer values. The
range of values possible for this comparison can potentially create a gradient
for the search. Figure 5.1a shows an example of such a comparison, in which a
method receives an integer parameter “a”, and has a conditional statement on
the parameter (“a == 1”) (Figure 5.1a-i). The bytecode (Figure 5.1a-ii) shows
this is compiled to a “if_icmpne” instruction, which compares the last two
integers pushed to the stack, performing a jump to some other instruction in
the bytecode if those two integers are not equal. Figure 5.1a-iii shows how the
distance value decreases as the chosen input value gets closer to the value that
would execute the uncovered branch.

Of course, “Integer-Integer” branches may not always result in a gradient: it
depends on the underlying program. One example of this is where two boolean
values are compared, since boolean values are represented as the integer values
0 and 1 in Java bytecode. Therefore, source code comparisons involving two
boolean values are compiled to an integer comparison involving the usage of the

120 Random vs. GA Search for Generating High-Coverage Test Suites

if_icmpne instruction. However, and as already discussed, boolean conditions
do not induce any useful landscape gradient.

Furthermore, EvoSuite’s special handling of switch statements falls into
the “Integer-Integer” category. Java switch statements are compiled to either a
tableswitch or lookupswitch bytecode instruction. These instructions pop the
top of the stack to look up a “jump” target instruction in a map data structure,
for which the keys are the values originally used in each case of the switch.
For ease of fitness computation, EvoSuite simply instruments the bytecode by
adding an explicit if_icmpeq for each case before the original tableswitch or
lookupswitch instruction, comparing the top of the stack to each case value.

5.2.2 “Integer-Zero” Branches

“Integer-Zero” branches involve the comparison of an integer value with zero. One
type of “Integer-Zero” branch occurs when boolean predicates are evaluated1, for
example as shown by Figure 5.1b. Here the branch involves the evaluation of the
boolean value x (Figure 5.1b-i). The corresponding bytecode evaluates x, pushing
the result (an integer, 0 or 1) to the stack. The ifeq bytecode instruction then
pops this value, performing a jump if it is zero. Such a condition can only be
either true or false, and as such can only have one of two distance values, which,
as shown by Figure 5.1b-iii, are not useful to guiding the GA to covering the
branch. The “right” input must therefore be discovered purely by chance.

A further type of “Integer-Zero” branch occurs as result of comparisons
involving values of float, double and long primitive Java types. Figure 5.2
shows an example of a double comparison. The original source (Figure 5.2a)
performs the comparison in the branch predicate. This is decomposed into a
sequence of bytecode instructions shown by Figure 5.2b. The comparison is
performed by the dcmpl in relation to the top two double values pushed to the
stack. The dcmpl instruction pushes an integer to the stack: -1 if the first value
is greater than the second, 1 if the first is less than the second, else 0 if they are
equal. The ifne then performs a jump if the top of the stack is not 0.

1Note that boolean predicate evaluations in branches differ in bytecode from comparing
two boolean values – the latter type of branch falls into the “Integer-Integer” category.

5.2 Types of Branches in Java Bytecode 121

void m(double a) {
if (a == 1.0) {

// uncovered branch
}

}

(a) Source code

void m(double);
0: dload_1
1: dconst_1
2: dcmpl
3: ifne 10
[uncovered branch]

10: return

(b) Bytecode

0.0e+00

5.0e+08

1.0e+09

1.5e+09

−2 −1 0 1 2 3 4 5 6
input value

br
an

ch
 d

is
ta

nc
e

(r
aw

)

(c) Raw branch distance

Fig. 5.2 An example of handling a double comparison, showing the source
code (a) and the bytecode (b). Although these branches fall into the “Int-Zero”
category, EvoSuite instruments the bytecode so that distances are recovered,
resulting in a gradient landscape (c).

Since the original numerical comparison in the source code is transformed to
a boolean comparison in the bytecode, a significant amount of useful distance
information is “lost” in the compilation process that would have been useful
in guiding the search. EvoSuite therefore instruments the bytecode so that
distance information can be recovered. The branch distance plot for the example,
shown by Figure 5.2, therefore restores a gradient that can be used to optimize
input values towards execution of the uncovered branch.

5.2.3 “Reference-Reference” branches

“Reference-Reference” branches are where two object references are compared
for equality. Since references are not ordinal types, no meaningful distance
metric can be applied, and the situation is similar to boolean flags – either the
references are the same or they are not. Figure 5.1c shows an example of this.
The original source code conditional is “if (this == x)” (Figure 5.1c-i), which
Java compiles to the bytecode instructions 9–11 in Figure 5.1c-ii. Instructions
9 and 10 push the references onto the stack. Instruction 11 is the branching
point in the bytecode, with “if_acmpne” popping the top two stack references
and performing a jump if they are not equal. The resulting plot of branch
distances (Figure 5.1c-iii) shows the resulting plateau, providing no guidance to
the required input that makes the references equal and executes the uncovered
branch.

122 Random vs. GA Search for Generating High-Coverage Test Suites

5.2.4 “Reference-Null” branches

“Reference-Null” branches are similar to “Reference-Reference” branches, except
one side of the comparison is null. Again, no meaningful distance metric can be
applied. Figure 5.1d shows an example. The source code compares x with null.
In the bytecode, x is pushed onto the stack by instruction 15. Instruction 16 is
the branching point, where the ifnonnull instruction performing the jump if
the element popped off the top of the stack is not null.

5.2.5 Summary

We have summarized and classified the different types of branches that can
occur in Java bytecode. Some of these instructions will potentially give rise to
a “gradient” in the fitness landscape, while others will not. We now study the
prevalence of these types of branches in real-world code, whether they potentially
involve a gradient, and their potential impact on the relative performance of
random search and fitness-guided GA search.

5.3 Experimental Setup

We designed an empirical study to test the relative effectiveness of test case
generation using random, GA search, with the aim of answering the following
research questions:

RQ5.1: Is the use of an evolutionary algorithm, such as GA, more effective at
generating unit tests than random search?

RQ5.2: How do the results of the comparison depend on the types of branches
found in the code under test?

RQ5.3: How do the results of the comparison depend on the time allowed for
the search?

5.3 Experimental Setup 123

Table 5.1 Statistics for the sample of 980 classes.

Min Avg Max Sum SD
Total Branches 0 26.87 1,016 26,336 79.3
Branchless Methods 0 7.18 155 7,041 11.5
Total Goals 1 34.06 1,026 33,377 84.1

5.3.1 Subjects

In order to compare and contrast the relative effectiveness and performance of
random and evolutionary search, we needed a large set of classes from real-world
projects – as opposed to a large set of bugs which we used in the previous
chapters. As such, we selected a sample of classes from the SF110 corpus of open
source projects [52]. The SF110 corpus is made up of 110 open source projects
from the SourceForge open source repository (http://sourceforge.net), where 10
of the projects were the most popular by download at the time at which the
corpus was constructed (June 2014) and the remaining 100 projects selected at
random. Due to the large variation in the number of classes available in each
project, we stratified our random sampling over the 110 projects, such that our
sample involved at least one class from each of the 110 projects in the corpus,
and comprised 1000 classes in total. However, 20 classes were removed from the
sample for reasons such as not having any testable methods (e.g., they consisted
purely of enumerated types, or did not have any public methods) or test suites
could not be generated for some other reason that would allow us to sensibly
compare the techniques (e.g., the class contained a bug or other issue that meant
it could not be loaded independently without causing an exception).

The final number of classes in the study therefore totalled 980, comprising
small classes with just a single coverage goal to larger classes with over 1,000
coverage goals, as shown by Table 5.1. In this table, Branchless Methods indicates
the number of methods without conditional statements that can be covered by
simply calling the method concerned.

http://sourceforge.net

124 Random vs. GA Search for Generating High-Coverage Test Suites

5.3.2 Collation of Branch Type Statistics

So that we could answer RQ5.2, we collated a series of statistics on the types of
branches in the bytecode of each class.

First, we simply collected the numbers of branches that fall into each of
the categories detailed in Section 5.2 (i.e., “Integer-Integer” etc.) by statically
analysing the bytecode of each class in turn.

Secondly, we attempted to classify each branch as either potentially having
a gradient distance landscape (“Gradient Branches”), or, a plateau landscape
(“Plateau Branches”). We programmed EvoSuite so that during test suite
generation it would monitor the distance value of the predicate leading to the
branch. If in any of the executions of a search algorithm in the experiments, a
value other than 0 or 1 is observed, we assume a wider range of distance values
is available for fitness computation and label the branch as a “Gradient Branch”.
Otherwise the search is labelled as a “Plateau Branch”. Clearly, this analysis is
only indicative (but helps in understanding our results, as we will show in the
answer to RQ5.2). This is because a range of values does not necessarily imply
a gradient that will be useful for guiding the search. Nor does only finding the
distances 0 and 1 for a branch mean that there are not further distance values
that could be encountered. For instance, given a branch predicate x > 5, if for
the whole duration of the search only the values x ∈ {4, 5, 6} are used, then this
will result in the distance values of 1, 0, and 1 respectively; and the branch will
be incorrectly classified as a plateau branch. However, it is quite unlikely that
the branch would only be attempted with these values over the course of several
executions of a search algorithm.

5.3.3 Experimental Procedure

We applied EvoSuite to conduct our experiments, with implementations of the
genetic algorithm (GA), and the two random search algorithms (Random+ and
Pure Random) as described in Section 2.1.5.3.

We use all four algorithms in RQ5.1 only. Pure Random features only in
RQ5.1 in order to analyse for possible effects with Random+ due to its seeding
mechanism.

5.3 Experimental Setup 125

For RQ5.1 we applied each technique with a search time of two minutes
(which has been shown to be a suitable stopping condition in previous work
[52]). To answer RQ5.2, we investigated the influence of the type of conditional
predicates on the outcome of each technique. To do so, we used the statistics on
branch types, collected as we described in the last section. To better understand
the influence of the search budget over the outcome of the techniques for RQ5.3,
we executed EvoSuite using the GA and Random+ configurations with an
increased search time of ten minutes and measured the level of coverage at one
minute intervals.

We conducted the University of Sheffield’s HPC Cluster (http://www.shef.
ac.uk/wrgrid/iceberg). Each node has a Sandy-bridge Intel Xeon processor with
3GB real and 6GB virtual memory. We used EvoSuite’s default configuration
and ran it under Oracle’s JDK 7u55.

5.3.4 Threats to Validity

Threats to the internal validity of our study include its usage of only one test
generation tool (EvoSuite). While this was deliberate to facilitate a more
controlled, fair comparison, it is plausible that specific implementation choices
made in EvoSuite may limit the extent to which our results generalise (an
associated external threat). The size of the test suites, for example, may influence
the comparison; whereas Random+ has no constraint in the test suite size, GA
evolves test suites with limited size (100 test cases by default) which imposes
boundaries in the search space.

The initial population of individuals and their evolution depend on the values
of several parameters for GA. Results might thus be affected by the specific
parameter values that we used in the experiments. This threat is relatively
relevant for GA. In fact, GA has been used for long time in EvoSuite and all
the parameters are well optimized to address test case generation.

Another threat to internal validity stems from the branch-classification
analysis described in Section 5.3.2, which can mis-categorize branches in certain
cases. We acknowledge the results of this analysis may only be approximate, but
while testing the experimental setup we validated that the analysis categorized
all branches correctly. Furthermore, chance can affect the results of randomized

http://www.shef.ac.uk/wrgrid/iceberg
http://www.shef.ac.uk/wrgrid/iceberg

126 Random vs. GA Search for Generating High-Coverage Test Suites

113 36 683 56 92GA vs Random+

235 40 609 29 61GA vs Pure Random

 GA Significantly Higher GA Higher Equivalent GA Lower GA Significantly Lower

Fig. 5.3 Comparing GA performance with Pure Random and Random+ over
the 980 SourceForge classes.
(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage than
Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same, etc.)

search algorithms. To mitigate this threat, we repeated all experiments 100
times.

Threats to external validity affect the generalisation of our results. While we
used a randomly selected sample of Java classes as subjects, our results may not
generalise beyond the SourceForge project repository or to other programming
languages/paradigms. Furthermore, we also used branch coverage as a proxy
measure of the quality of the resulting test suites: results may vary for other
test suite properties (e.g., size, length or fault detection ability).

5.4 Random or Genetic Algorithm Search for
Test Suite Generation?

5.4.1 RQ5.1: Coverage Effectiveness.

On average over the 100 repetitions of the experiments, GA attains 67.59% branch
coverage, Random+ 67.12%, while Pure Random obtains 65.22%. Figure 5.3
summarizes the number of classes for which GA achieved a significantly higher or
lower level of coverage than Pure Random and Random+ over the 100 repetitions
of the experiments. (We computed significance using the Mann-Whitney U test
at a level of α = 0.05.)

When comparing GA to Random+, there are 113 classes for which the GA
achieves significantly higher coverage, and 92 classes on which Random+ attains
significantly higher coverage than GA. Figure 5.4a plots the p-values for the

5.4 Random or Genetic Algorithm Search for Test Suite Generation? 127

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.01

0.02

0.03

0.04

0.05

GA Random+
Technique with significance

p
−

va
lu

e

0.00

0.25

0.50

0.75

1.00

GA vs Random+

E
ff
e
c
t
S

iz
e

(a) Box Plot (b) Violin Plot

Fig. 5.4 Comparing the performance of GA with Random+. (a) Box plot of
p-values for classes where a significantly higher level of coverage was achieved
with either the GA or Random+. (b) Violin plot of the effect sizes obtained
using Vargha-Delaney’s Â12 statistic, here computing the proportion of the 100
repetitions for which the GA scores a higher level of coverage than Random+
for each class; thereby reflecting their relative effectiveness.

significant cases for the GA and Random+ comparison showing that the majority
of cases are highly significant (particularly in the GA case) and thus unlikely to
represent type-I errors.

We observe further similarities in the coverage achieved by GA against
Random+ with Figure 5.4b, which shows effect sizes computed with Vargha-
Delaney’s Â12 statistic [172]. Here, the effect size estimates the probability that
a run of GA achieves higher coverage than Random+. A value of Â12 = 0.5
indicates that both search strategies perform equally, Â12 = 1 indicates that
all runs of GA will achieve higher coverage than Random+, and vice versa for
Â12 = 0. The overall average effect size amounts to 0.51, which indicates that
GA is only very marginally more effective.

For 683 classes GA and Random+ achieve identical coverage. To a large
extent, this can likely be attributed to the simplicity of these classes: GA
achieves 100% coverage on 385 classes, and Random+ on 398 classes. Classes
with lower but identical coverage are likely classes where the possible coverage

128 Random vs. GA Search for Generating High-Coverage Test Suites

is maximized, but less than 100% because of problems that EvoSuite cannot
overcome regardless of search algorithm (e.g., due to environmental factors such
as classes depending on databases or web services that were not available during
the experiments).

The comparison between GA and Pure Random shows larger differences,
with 235 classes where GA achieves significantly higher coverage. This indicates
that optimizations such as constant and dynamic seeding, which are used in
Random+, are effective and help covering non-trivial classes.

RQ5.1. Our experiments showed no significant difference between GA and
Random+ in 79% of the classes.

RQ5.2: Influence of Branch Types. Although the comparison between GA
and Random+ showed 683 classes with no difference in coverage, there were
also 205 classes with significant differences. RQ5.2 aims to shed light on these
differences by studying the influence of different types of branches in a class on
the effectiveness of the search algorithms.

Figure 5.5a shows the distribution of different branch types as taken from
the bytecode of the classes. In total, there are 11,696 branches in the 980
classes. “Reference-Reference” branches are rare: this is not surprising as in
most cases in Java a comparison is performed using the equals method on
the objects, rather than comparing references. “Reference-Null” comparisons
are more common accounting for approximately one quarter of the branches.
Almost half of the branches (5, 745) are “Integer-Zero” branches, from which
only 303 involve double, float or long comparisons. Only these 303 branches,
along with the 3, 338 “Integer-Integer” branches have the potential to provide
gradients.

Effectiveness on Gradient Branches. Intuitively, one would expect that the
evolutionary algorithms should achieve higher coverage on gradient branches,
as the branch distance values will influence the search operators and guide the
search towards covering additional branches. Figure 5.6a compares GA against
Random+ in terms of the coverage achieved when only considering gradient
branches; that is, the coverage is only calculated for classes that have at least
one gradient branch, and the coverage values exclude non-gradient branches.
There are 99 classes where GA achieves significantly higher coverage of the

5.4 Random or Genetic Algorithm Search for Test Suite Generation? 129

225935457453338

 Integer−Integer Integer−Zero Reference−Reference Reference−Null

(a) Numbers of Branches Classified by Bytecode Branch Type

5080

4548

3519

3765

GA

Random+

 Covered Gradient Branches Covered Plateau Branches

(b) Numbers of Covered Branches Classified as “Gradient” or “Plateau”

Fig. 5.5 Numbers of different branch types in the classes under test.

gradient branches, with only 20 classes where the coverage is significantly lower.
Figure 5.5b shows that overall the GA covered 5,080 gradient branches, whereas
Random+ covered only 4,548. This confirms that the GA benefits from the
branch distances provided by the gradient branches.

The 20 cases where Random+ has significantly higher coverage than GA can
be explained by their large number of branches (73 total goals and 23 gradient
branches on average): The fitness function that guides the GA considers all
branches at the same time; this means that a test suite that is close to covering
many gradient branches may have a better fitness value than a test suite that
fully covers fewer branches. In these cases, the GA would simply require more
time to eventually fully cover all these branches.

Effectiveness on Plateau Branches. Figure 5.6b compares GA against Random+
when only considering the coverage of plateau branches. There are 109 classes
in which the GA has significantly lower coverage compared to Random+, and 92
classes with significantly higher coverage. Figure 5.5b shows that overall the GA
covered 3,519 plateau branches respectively, whereas Random+ covered 3,765;
that is, even though the GA covered more branches overall, they covered fewer
plateau branches. Since the branch distance for these branches only has two
values there is no guidance that the GA could exploit – a plateau branch is either
covered or it is not covered. A possible conjecture is a loss of diversity of the
evolutionary search algorithms compared to the random search: While Random+
continuously creates independent new objects and call sequences, GA spends
more time exploring the neighbourhood if existing individuals. In addition, the
GA in EvoSuite prefers smaller test suites (when two test suites have the same

130 Random vs. GA Search for Generating High-Coverage Test Suites

fitness value, they are ranked by size) and thus further exacerbating the removal
of random “noise”, focusing the search operators on the exploitation of achieved
coverage and mutating existing objects.

Effectiveness on Branchless Methods. Branchless methods represent a special
case similar to plateau branches, and intuitively they are simple to cover – they
just require test cases to call the method, without any need to search for specific
parameter values. Figure 5.6c compares GA against Random+ with respect to
the coverage of methods. Although GA achieves significantly higher coverage
than Random+ in 24 cases, there are 63 classes where the GA results in lower
coverage, which is similar in proportions to the plateau branches. It is maybe
surprising that there can be a difference in so simple coverage goals in the first
place. Our conjecture is that this is because Random+ has a higher probability
of inserting new method calls: GA only mutates a test suite with a certain
probability, and then each test in turn is only mutated with a certain probability,
and finally insertion of new statements again does not always happen. In contrast,
Random+ generates tests by repeatedly adding new statements. Again it would
only be a matter of time for evolutionary search to fully cover all branchless
methods, although possibly more time than for Random+. Interestingly, classes
on which the GA achieved more than 90% coverage have a median proportion of
100% branchless methods out of all coverage goals, providing further evidence
that many classes in practice are trivial.

RQ5.2. Our experiments show that GA achieves higher coverage of
gradient branches compared to Random+, but lower coverage of plateau
branches, which constitute the majority of branches.

5.4.2 RQ5.3: Effects of the Time Allowed For the Search.

The results so far have shown that GA and Random+ perform similarly for
the majority of classes after two minutes of search, with some differences in
performance on plateau and gradient branches. This raises the question whether
the results are influenced by the allocated search budget – given more time, do
the results change?

5.4 Random or Genetic Algorithm Search for Test Suite Generation? 131

99 38 161 34 20

(a) “Gradient” Branches Only

92 41 319 62 109

(b) “Plateau” Branches Only

24 46 740 90 63

(c) Branchless Methods

 GA Significantly Higher GA Higher Equivalent GA Lower GA Significantly Lower

Fig. 5.6 Comparing GA performance with Random+ for different types of branch
and with branchless methods.
(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage than
Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same, etc.)

To analyse the impact of the search budget, we repeated the experiments
with GA and Random+ using an increased search budget of 10 minutes, and
measured the coverage values at one minute intervals. Figure 5.7 compares the
average coverage per class for each interval: There is a slight increase of coverage
for both GA and Random+ over time, and after 10 minutes GA achieves an
overall average of 69.81% branch coverage, while Random+ achieves 68.95%.

Given more time, GA will catch up on branchless methods and plateau
branches covered compared to Random+. Figure 5.8 compares GA with Random+
after 10 minutes, and shows that the GA has significantly lower coverage on
only 83 classes after 10 minutes, compared to 92 after two minutes (Note that
the number of classes with coverage data after 10 minutes is only 974, as there
were 6 additional classes for which EvoSuite did not produce any data after 10
minutes). The GA will also continue to optimize gradient branches; however,
the dynamic seeding used in EvoSuite will also help Random+ in many cases
to cover gradient branches. Figure 5.8 shows that there are 131 classes where
GA has higher coverage after 10 minutes, compared to 113 after two minutes.
For 760 classes the coverage is identical, which is likely because the maximum
achievable level of coverage has been reached by both algorithms.

132 Random vs. GA Search for Generating High-Coverage Test Suites

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

Coverage Timeline (minutes)

C
o
ve

ra
g

e
 (

%
)

Technique:
●

●

GA

Random+

Fig. 5.7 Branch coverage comparison between GA vs. Random+ over 10 minutes
with one minute intervals. Dots represent mean averages.

131 39 664 57 83

Fig. 5.8 Comparing branch coverage performance of GA against Random+ using
a search budget of 10 minutes. (Legend is as for Figure 5.6.)

RQ5.3. The coverage increase is higher for GA than for Random+ over
time, suggesting that the disadvantage on plateau branches is overcome,
although the coverage increase is small in absolute terms.

5.5 The Impact of Branch Types

Our results indicate that, while the techniques have a similar outcome for the
majority of classes, there are differences that influence the effectiveness. However,
the fact that Random+ can outperform the GA in a number of subjects raises
the question of why this happens in practice. In this section we look at some of
the factors in the search algorithms that may be the cause of these surprising
results.

The analysis of RQ5.2 also suggests that the search operators of the GA
have an effect on the diversity: The GA has a lower probability of generating

5.6 Related Work 133

new tests, and may thus be slower at covering plateau branches or branchless
methods (compare Figure 5.6, part b and c).

A further influencing factor is that a test suite produced by the GA may not
cover all branches that were covered throughout the search. This is because the
fitness function aims to maximize coverage: For instance, given a test suite T1

that covers goals {A, B}, and another test suite T2 that covers goals {B, C, D},
assuming T2 has a better fitness value it will be selected as the best solution.
As a result, although goal A was covered by T1, it remains uncovered in the
resulting test suite. In contrast, Random+ generates a new test case on each
iteration, and if the new test covers any new goals, it is added to the test suite.
This suggests that creating an archive of solutions that cover new coverage goals
would be important for the GA.

The large number of plateau branches could potentially be reduced by intro-
ducing testability transformations [74]; although EvoSuite implements certain
transformations (e.g., on floating point numbers or string comparisons) it does
not apply a transformation of boolean flags.

5.6 Related Work

There have been several papers that have compared GAs with random search
in the procedural domain (e.g. [76], [177]). This work has found guided search
to always outperform random. In general, procedural code tends to consist
of larger functions than methods in object oriented code, and each function
tends to involve more parameters. While random search typically covers a large
percentage of the branches involved, the GA covers significantly more.

Sharma et al. [158] showed on 13 examples that random testing of object
oriented container classes achieves the same coverage as shape abstraction, a
systematic technique specific for container classes. The results of our experiments
suggest that in practice, many object oriented classes are, similarly to container
classes, simple in nature and thus well suited for random testing.

Earlier experiments with EvoSuite on the SF100 corpus [52] showed that a
large number of classes are either trivially covered, or uncoverable without pro-
viding the test generator with additional features (e.g. to handle environmental

134 Random vs. GA Search for Generating High-Coverage Test Suites

inputs such as web services or databases). This finding is in line with our results;
however, a comparison with Randoop [124] in the same study suggested a large
improvement of GA over random testing. The results of our experiments suggest
that this improvement is largely due to the engineering of the tool rather than
the search algorithm; for example, Randoop does not use seeding.

Eler et al. [44] analysed the SF100 corpus from the point of view of test
data generation using dynamic symbolic execution. They also reported the
large number of reference comparisons and the challenges of handling those in a
constraint solver. They further reported the relatively low number of branches
involving integer comparisons, which result in constraints that DSE is typically
strong at handling. These findings are in-line with our general observations from
SF110, despite the fact that we only used a sample of 1,000 classes in this study.

5.7 Conclusion and Future Work

In this chapter, we presented an empirical study comparing the effectiveness of
evolutionary and random search-based algorithms for generating branch coverage
test suites for real-world Java classes. One might expect algorithms such as a GA
to vastly outperform random search for this task, but surprisingly we observed
that all algorithms behaved similarly on the majority of classes, in particular
when applying optimizations such as seeding of constant values, which applies
to random search just as well as to evolutionary search in the domain of test
generation. Although evolutionary search algorithms can exploit the guidance
provided by certain types of branches, in practice there are many more branches
that provide no such guidance, and on some classes with many such branches
GA resulted in lower coverage than random search – even when a large search
budget was used.

These results are in-line with our observations in Chapter 4. For instance,
in Section 4.3.8 we saw that on the Apache Commons Math – a mathematics li-
brary with a large proportion of numerical comparisons – our GA-based approach
was significantly more effective. Therefore, as we conjectured in the previous
chapter, the high success rate of random-search is not specific to the problem of
regression testing, but further generalises to other search-based testing techniques

5.7 Conclusion and Future Work 135

such as evolutionary algorithms on object-oriented programs. Therefore, it is
likely that further improvements on the GA will also result in an improvement
in fault detection ability, for our search-based approach in Chapter 4.

Our findings suggest several specific areas for future work in order to improve
the effectiveness of evolutionary search algorithms for the task of unit test
generation:

• Our experiments with EvoSuite’s GA used a basic implementation of the
search algorithm. However, there are various attempts to extend this GA
to a memetic algorithm, such as by applying dynamic symbolic execution
as a type of local search [58], or using specifically designed local search
operators [53]. While these local search operators would mainly benefit the
search on gradient branches, the overall effects in comparison to a random
search would need to be studied in detail.

• The high number of plateau branches suggests that testability transfor-
mation [74] could be used to convert some of these branches to gradient
branches. While initial experiments on EvoSuite [100] showed the poten-
tial of this approach, a significant engineering effort remains to be done
before the effects can be studied at large scale.

• The analysis of RQ5.2 suggests that the search operators of the GA have
an effect on the diversity: While random search constantly generates new
tests, these evolutionary search algorithms spend more time exploring the
neighbourhood of existing tests through mutation, which may lead to less
diversity, and negative effects on covering plateau branches or branchless
methods (cf. Figures 5.6b and 5.6c).

• Future work could also explore the possibility of adapting the search to the
specific fitness landscape of the problem at hand, and controlling search
parameters such as the mutation rate. For instance, if a class appears to
have mainly plateau branches, then the mutation rate could be increased.

From a practical point, however, if the objective is simply to quickly achieve
a decent level of branch coverage on object-oriented classes, then our results
suggest that using random search with seeding may be sufficient.

Chapter 6
Disposable Testing:
Detecting Changes during
Software Evolution without
Keeping and Maintaining
Generated Test Suite

The content of this chapter is based on work undertaken during this PhD
by the author, parts of which have been published elsewhere [154].

6.1 Introduction

In Chapter 1 we set out with the idea of assisting developers with their regression
testing efforts by automatically generating change-revealing tests on demand.
We also evaluated this idea in Chapter 4. In this chapter, we look at how one can
apply such techniques in practice, and whether what we envisioned in Chapter 1
is actually feasible.

As we discussed in the previous chapters, a standard approach to applying
automated test generation techniques in practice is to take a version of a class
as input, generate a set of tests that capture its behaviour with assertions, and

138 Disposable Testing

then to repeat the execution of these tests after a change has been made. If a
test passes on one version but fails after a change, then it exposes a difference
in behaviour. An example of such a generate-and-maintain approach to testing
is Coverage-driven testing, where tests are generated with the aim of covering
the code of the class. Resulting tests need to be maintained alongside the
evolving program, just like manually written tests, but maintaining tests can
be tedious and challenging, in particular for the often lengthy and non-familiar
automatically generated tests.

We propose disposable testing as an alternative approach to eliminate the
need for maintaining tests: Completely new tests are generated every time the
program under test is changed. Developers are only shown those generated tests
that actually reveal a behavioural difference caused by the program change, and
decide whether this difference is intended or not. After this, the generated tests
are thrown away.

However, throwing away tests may counter the objective of maximizing
coverage, as automated test generation benefits from being applied incrementally
over time [29]. This raises the question of whether Differential testing [108, 45]
is better suited to implement disposable testing: With differential testing, a test
generator receives two program versions, before and after a change, as input,
and derives tests that demonstrate behavioural differences. We implemented a
differential testing approach in the EvoSuite [48] framework, and conducted
a set of experiments to compare it with EvoSuite’s coverage-driven testing
approach — with coverage-driven testing as an example of a traditional generate-
and-maintain approach and differential testing as an example of disposable
testing. We evaluated the approaches with the Defects4J [89] dataset of real
faults, based on the framework we presented in Chapter 3.

The concept of disposable testing may at first seem counter-intuitive to
developers, who usually like to keep as many as possible tests, resulting in huge
and ever growing test suites. Indeed the idea of disposable testing raises several
questions: When throwing away all tests rather than maintaining them, do
we run the risk of missing some bugs? To answer this question, we compare
coverage-driven testing and differential testing in terms of how well they perform
at identifying bug-inducing changes.

6.1 Introduction 139

RQ6.1: How do coverage-driven testing and differential testing perform at
detecting changes?

For disposable testing to be a viable approach, a key requirement is that
the generated tests would not be effective at finding future faults, and as such,
can be thrown away. However, considering that code that changes often is more
likely to contain faults [66], would tests that reveal faults not be particularly
important to keep around and serve as valuable regression tests? To answer this
question, we evaluate whether keeping tests generated by coverage-driven testing
and differential testing is helpful in identifying subsequent changes using mutants
as well as developer changes taken from the commit history of the programs
under test.

RQ6.2: How do test suites generated by coverage-driven testing and differential
testing perform at revealing subsequent changes?

Although no human effort is needed for test maintenance in disposable testing
(i.e., generated tests are discarded rather than maintained), effort is required to
inspect the generated tests before they are discarded. That is, developers need
to inspect whether the test has detected a regression fault or an intended change.
The question is, therefore, will the effort not spent on test maintenance merely
be eclipsed by the additional effort that must be spent inspecting the generated
tests? To answer this question, we compare the number of tests that need to be
manually inspected during maintenance with coverage-driven testing and during
disposable testing with differential testing.

RQ6.3: How does the maintenance effort of tests generated by DT for disposable
testing compare to those evolved using coverage-driven testing?

The contributions of this chapter are as follows:

• We propose disposable testing as an alternative to the traditional generate-
and-maintain approach.

• We evaluate whether differential testing can be used to implement dispos-
able testing. This is the first large-scale evaluation of the effectiveness
of differential testing, using the real faults taken from the Defects4J
repository.

140 Disposable Testing

• We empirically and qualitatively compare coverage-driven testing and
differential testing in detail in terms of fault finding ability and effectiveness
of the generated tests during regression testing.

• We study the implications on human inspection effort when applying
coverage-driven testing and differential testing.

The rest of this chapter is structured as follows: first we detail the methodol-
ogy used for the study. Thereafter, the answer to the three research question we
reviewed earlier follows. Finally, in Section 6.6 we conclude this chapter.

6.2 Methodology

In order to answer our three research questions on disposable testing, we con-
ducted an elaborate empirical study, comparing coverage-driven testing, a stan-
dard approach of generate-and-maintain test generation, with differential testing,
which we conjecture is most suitable for disposable testing. In this section, we
describe the details of the experimental setup and methodology.

6.2.1 Test Generation Techniques

As a representative test generation tool for coverage-driven testing approaches,
we used EvoSuite [48], which is a state-of-the-art test generation tool that uses
search algorithms to generate coverage-optimized unit test suites, and is effective
at fault-finding[144].

To be able to compare this to differential testing, we extended EvoSuite as
follows: We added a second Java class loader which gives EvoSuite access to
two different versions of the same class. Tests are then simultaneously executed
on both versions of the same class. In line with previous work on behavioural
regression testing [123], we then used random search [157] to find behavioural
differences. The search operators in EvoSuite were modified slightly to make
use of these two versions: First, only the intersection of the public interfaces of
the two versions of the class are used for testing, such that any generated test
would be syntactically valid on both classes. That is, if a method was added

6.2 Methodology 141

Table 6.1 The total number of bugs in each Defects4J project and the number
applicable to and used in each research question

Project Bugs
Total RQ6.1/6.2-M RQ6.2-D/6.3

Apache Commons Lang 65 65 31
Apache Commons Math 106 96 37
Google Closure Compiler 133 120 93
JFreeChart 26 24 3
Joda-Time 27 22 19
Total 357 327 183

or removed as part of the change, it was not included in the test generation,
as it would be trivial to show a difference between the two versions of the
class. Second, EvoSuite’s use of constant seeding, which helps with the tool’s
efficiency [49, 137], was modified to include values from both versions of the
Class Under Test (CUT). The search objective was defined by comparing the
test executions on the two versions of the class; any differences in return values,
publicly visible state changes (e.g., by querying object states through inspector
methods), or differences in the exception behaviour, are considered as revealing
a difference. Any such difference is captured in a regression assertion, and at the
end the search returns all tests found throughout the search that successfully
show a difference between the two versions.

To more closely match the behaviour of EvoSuite, tests returned are
minimized with respect to the regression assertions. That is, a test is minimal if
removing any of its statements would lead to the change no longer being revealed
by the test (i.e., the test passes on one version but fails on the other). Given that
differential testing relies on random test generation and several failing tests may
be generated for the same behavioural change, similar to existing techniques [35]
we grouped/filtered failures. However, our implementation is more basic and
only limited to grouping assertions that check the output of method calls.

6.2.2 Subject Programs

To be able to experimentally answer the research questions, we required a set of
program pairs with known, semantically non-equivalent changes. In particular,

142 Disposable Testing

to increase the practicality of our results, we were interested in changes that
represent real faults. Therefore, we chose the Defects4J [89] dataset, which is
a collection of 357 real bugs taken from five open source projects, as detailed in
Table 6.1.

6.2.3 Experiment Procedure

To answer RQ6.1 (How do coverage-driven testing and differential testing
perform at detecting changes?), we needed to ensure that all modified classes
contained a detectable change. Therefore, we first selected those bugs out of the
Defects4J dataset in which only one class was modified. This resulted in a
total of 327 bugs (i.e., changes) to analyse for this research question overall. We
then applied test generation to each pair of (buggy, fixed) classes as provided
by Defects4J. The fixed version in Defects4J is the version following a bug
fix (i.e., in the version history, the fixed version is committed after the buggy
version). Therefore, there may be code or branches present in one version but
not in the other version. While this would not be problematic for differential
testing given that it takes both versions of the class as input, coverage-driven
testing only aims to generate tests covering one version of the program under
test. To address this, we evaluated coverage-driven testing in two different ways,
for each bug in Defects4J considering a buggy version of a class A and the
fixed version B:

1. “A to B” (denoted by CT →). Tests were generated on A, and the tests
were executed on B, to see if the change could be detected. This is test
generation based on the actual temporal order of versions of the classes
underlying the Defects4J bugs.

2. “B to A” (denoted by CT ←). Tests were generated on B and executed on
A, to see if the change could be detected. This is a standard regression
testing scenario, where the version on which tests are generated represents
the correct behaviour, and the tests are checked on the “buggy” version to
see if that bug is detected.

For RQ6.2 (How do test suites generated by coverage-driven testing and
differential testing perform at revealing subsequent changes?), we conducted

6.2 Methodology 143

two experiments: (RQ6.2-M) aims to answer this using mutations applied
to the same area of code that was previously modified, and (RQ6.2-D) using
subsequent changes made by developers.

To answer RQ6.2-M, in order to understand the effectiveness of the tests
generated by the techniques at detecting other changes in the area modified
between the pair of classes, we looked at mutations that can be applied to
the modified lines of code. To achieve this, we used the Major Mutation
Framework [88] (v1.2.1) to generate all mutants on all classes used in RQ6.1.
We then selected all mutants that were applied on the lines changed between
the two versions of the classes and discarded mutants related to lines of code
that were not modified between the two versions of the program. Thereafter, we
selected all test suites generated in RQ6.1 which were effective at revealing the
original change (i.e., between the buggy and fixed versions of the program), and
applied the test suites on the mutants to assess their effectiveness at killing the
mutants.

To answer RQ6.2-D, we considered a scenario in which test generation is
applied throughout software evolution, such that the test suite is augmented with
additional tests after every change made by the developers. To select suitable
classes, we referred to the open source projects themselves, and from their online
version control repositories, we extracted all versions of the programs prior to the
buggy version. Thereafter, we selected subjects which had at least 10 commits
changing the faulty class (i.e., the class containing the fault between the buggy
and fixed versions). This resulted in a smaller number of 183 bugs to analyse for
this particular research question. Our decision to choose 10 commits was mainly
to balance out the number of subjects and commits, that is, a large number of
commits such as 20 would result in a considerably smaller number of subjects
(112). The resulting test suites were also used to answer RQ6.3. Test generation
was then applied for each technique as follows:

a) For coverage-driven testing, the objective is to increase coverage over time,
such that when the program is modified, new tests are generated to cover the
new changes. Campos et al. [29] extended EvoSuite to support this: After
each commit to a version control system, EvoSuite is invoked on a subset of
classes (e.g., classes that have been modified, or classes without full coverage)
using previously generated test suites as the starting point of the generation.

144 Disposable Testing

Using this, we applied continuous test generation using EvoSuite to generate
and augment test suites up to, but not including, the commit prior to the bug
fix.

b) Since differential testing has not previously been used in the context of
software evolution, we adapted the coverage-based strategy: After each change
(i.e., commit to the version control system) we applied the differential testing
extension of EvoSuite to each pair of classes before and after the change. Any
resulting tests by definition reveal a change between two versions of the program
(i.e., the tests pass on one version and fail on the other one). We repeated this
on all pairs of commits up to, but not including, the fixed version – otherwise
the change may have been revealed by executing differential testing on the last
pair (buggy, fixed) as in RQ6.1 – and collected all generated tests along the way
in a common test suite.

During the test generation process, as we evolved the test suites after each
commit, we executed the test suite generated so far on the new commit, and
discarded any failing tests. This is necessary as manually inspecting every failing
test would make the experiment infeasible; this results in a worst case scenario
where all changes are intended and the tests are always “wrong” and need to be
fixed or deleted. However, this is a reasonable scenario as in our experimental
setting the deleted tests are usually replaced with new tests improving coverage,
or revealing the behavioural difference. Finally, we evaluated the effectiveness of
the resulting test suites at detecting the difference between the buggy and fixed
version.

To answer RQ6.3 (How does the maintenance effort of tests generated
by DT for disposable testing compare to those evolved using coverage-driven
testing?), we again assumed a scenario where all changes are intended (i.e., all
failing tests need to be fixed), and to eliminate the threat of over-estimating
the maintenance cost we assumed that the developers pick the easiest choice
for maintaining the test: removing any failing test. This makes the number of
failing tests the lower bound of the number of tests developers need to inspect;
in practice, tests that are repaired may lead to additional failures later, requiring
additional inspection effort. We then applied disposable testing using differential
testing during software evolution using the subjects from RQ6.2-D, and compared

6.2 Methodology 145

the number of failing tests by differential testing with the number of tests thrown
away by coverage-driven testing during test suite evolution (RQ6.2-D).

Test Execution and Flaky Tests: Because both test generation techniques
are based on randomized algorithms, we repeated all experiments 30 times, and
allocated two minutes for each run. Given that tests generated by coverage-
driven testing may propagate the change to the output but not report it with
an oracle, we followed previous methodology [156] and enabled coverage-driven
testing to generate all assertions. We conducted the experiments on University
of Sheffield’s HPC Cluster1. Each node has a Sandy-bridge Intel Xeon processor,
and each experiment was allocated 3GB real and 6GB virtual memory. We used
EvoSuite’s default configuration and ran it under Oracle’s JDK 8u71.

Occasionally, some tests generated by automated test-generation tools either
do not compile, or their passing/failing behaviour is “flaky” (unstable). The flaky
outcome of the test can be due to reasons such as environment dependencies
(e.g., system time). To ensure that any reported failures are not due to flaky
tests, we followed the methodology used in previous experiments [156], such that
after removing non-compiling tests, we repeatedly executed all test cases on
the version they were generated on until every test case passed at least 5 times
consecutively. Any failing tests during the repeated executions were removed.

6.2.4 Experiment Analysis

After the execution of each test case on the second version of the program, we
collected the number of failing tests for each generated test suite. We assume a
test suite has detected the change if any test exists that passes on one version
and fails on the other version of the program.

We recorded the number of runs in which a technique detected a change
in each of the 30 repetitions. We then performed statistical tests to determine
whether one technique was significantly more successful than another by using
Fisher’s Exact test [46, 94]. We say a technique successfully detects a change in
a significantly higher number of runs if the p-value of the test is less than 0.05.

1 http://www.shef.ac.uk/wrgrid/iceberg, accessed August 2016.

http://www.shef.ac.uk/wrgrid/iceberg

146 Disposable Testing

For the mutation analysis, to calculate the significance of the difference
between the mutation score achieved by the techniques, we used the Mann
Whitney U test with α = 0.05.

To better understand the relationship between the coverage of the modified
code across the two versions by the test suites and the effectiveness of the
technique at detecting the change, for both RQ6.1 and RQ6.2-D, we executed all
generated test suites on the two versions of each subject, and measured whether
or not the changed lines were covered by the test suites. We also measured the
level of branch coverage achieved by the tests on the CUT using Cobertura2 on
all generated tests, including the intermediate tests generated during test suite
evolution in RQ6.2-D.

6.2.5 Threats to Validity

There are several threats to validity that are naturally inherent to a study such
as this, which we detail as follows.

External Validity: Our subjects were selected from only five open source
projects, and as such our results may not generalise to other projects. Only
single-class changes were considered, and the techniques may perform differently
when several classes are changed or a large number of changes are introduced.
For our RQ6.3, only 10 commits were considered, and it is possible that with a
larger number of commits, one technique may generate more robust regression
test suites than the other. Another threat to the validity of the continuous
experiment is that differential testing only generates tests when it can detect
a difference, while there can be many commits that either do not change the
code (e.g., documentation, styling changes), or that the changed code is a simple
refactoring which is semantically equivalent. In comparison, executing coverage-
driven testing on the same semantically equivalent code is likely to result in a
higher-coverage test suite. To lower this threat we analysed the commit history
on the CUT, and removed commits that contained only documentation or white-
space changes, and selected only commits that modified the code. However, it
is still possible that some commits in the history are semantically equivalent
changes.

2http://cobertura.github.io/cobertura, accessed August 2016.

http://cobertura.github.io/cobertura

6.2 Methodology 147

The different algorithms used by the techniques to generate the tests (i.e.,
coverage-driven testing using a genetic algorithm while differential testing using
random test generation) also poses a potential threat. To mitigate this, we
looked at and report on the coverage of the code that was modified between the
two versions of the program, which can indicate whether or not the lack of effec-
tiveness is due to the lack of coverage (especially for the case of coverage-driven
testing). The different approaches taken by the techniques for generating oracles
(i.e., assertions) is also a threat, especially for RQ6.2 and RQ6.3. Specifically,
considering that other strategies [56] may reduce the effectiveness of coverage-
driven testing, we are using oracle generation strategy intended for regression
testing [187], as also used in other test generation tools such as Randoop [124]
and also in previous studies [156].

Internal Validity: One threat to the internal validity of this study is the use
of only one tool—EvoSuite. While this decision was deliberate to have a more
controlled comparison, the results may not generalise to other coverage-driven
test generation tools. Furthermore, due to the large number of tests (close to
150, 000), not all tests and their execution results could be manually inspected
to avoid false positives. To mitigate this, we followed the approach in [156] and
compared the failure reason of the generated test suites with the test suites
written by the developers of the projects, and in cases they differed, we manually
inspected the tests. It is also possible that some test failures were false positives
due to bugs in our automated setup or our extension of EvoSuite, which we
tried to mitigate by testing the software in addition to manual and automated
sanity checks. Inaccuracies or bugs within the tools used during this study (e.g.,
Cobertura, EvoSuite, Major) may also pose threats to the validity of this study.
However, we believe that given that the tools have been standardized in the
research community, and also considering the large number of subjects along
with the 30 repetitions mitigates this threat to some extent.

Construct Validity A threat to the construct validity is that we only used
bugs from Defects4J, which consists of two versions: a version containing a
bug, and another where the bug is fixed, and these pairs of versions may not
represent real regression faults. Moreover, given that the bugs were collected from
open source repositories, the bugs may not represent the regression faults that
the developers may have fixed before publishing their changes to the repositories.

148 Disposable Testing

Overall 18 19 162 31 97

Chart 2 5 2 15

Closure 6 6 91 6 11

Lang 11 24 9 30

Math 11 7 35 11 32

Time 3 7 3 9

CT
→

 Significantly Higher CT
→

 Higher Equivalent DT Higher DT Significantly Higher

Fig. 6.1 Comparing CT → and differential testing in regard to their effectiveness
at detecting the change between the buggy and fixed versions of classes in
Defects4J.
Legend: “Significantly higher” is the number of classes for which a technique generated a test that detected the
change in a significantly higher number of runs than the other; “Higher” refers to the number of classes where
a technique generated a test detecting the change in a (non-significant) higher number of runs; “Equivalent”
is where the change was detected by both techniques for the same number of runs.

Specifically, the developers of the projects in Defects4J have access to large
regression test suites that may have helped them to avoid trivial regression faults.
Therefore, the effectiveness of the techniques may be underestimated.

6.3 Answers to RQ6.1
(Detection of Changes To Classes)

The first research question considers the performance of coverage-driven testing
and differential testing in isolation; that is, when given a pair of program versions.
Evaluated on the 327 bugs from Defects4J that only change an individual
class, differential testing managed to detect 152 bugs at least once (46%), while
coverage-driven testing based on the pre-change version (buggy version, CT →)
found 124 (38%) bugs at least once in all repetitions of the experiment.

Although the numbers of bugs found by the techniques at least once seem close,
the techniques differ in how consistent they are at finding the bugs. Figure 6.1
summarizes the number of subjects for which one technique detected the change
in a significantly higher number of experiment repetitions than the other. Both

6.3 Answers to RQ6.1 (Detection of Changes To Classes) 149

8 26 179 61 53

CT
→

 Significantly Higher CT
→

 Higher Equivalent CT
←

 Higher CT
←

 Significantly Higher

Fig. 6.2 Comparing CT → and CT ← in regard to their effectiveness at detecting
the change between the buggy and fixed versions of classes in Defects4J.
(Please refer to Figure 6.1 for an explanation of the legend.)

techniques performed equally well on a large fraction of the bugs: 212 out of 327.
However, out of these, 155 were not found by either of the techniques, while
only 7 were always found by both. On the one hand, for the subjects that the
techniques achieved statistically different outcomes, coverage-driven testing was
significantly more successful than differential testing for 18 (6%) of the bugs. On
the other hand, differential testing achieved a significantly higher number of runs
in which the change was detected for 97 (30%) of the bugs. This indicates that,
although neither of the techniques subsumes the other, for a sizeable portion of
the bugs, differential testing is more successful.

RQ6.1: While both techniques managed to detect complementary sets of bugs,
differential testing was more effective at detecting 30% of them.

Seeing that differential testing was more effective than coverage-driven testing
on close to a third of subjects leads us to more questions: What is enabling
differential testing to be more effective? Is it the types of the changes in
Defects4J that are influencing the outcome of the coverage-driven testing?
Are the changes that are not detected by coverage-driven testing covered? Even
if coverage-driven testing can cover the changes, why is it not as effective as
differential testing in detecting them? We investigate the answer to these
questions in the following sections.

6.3.1 The Influence of Testing Pairs of Classes

The nature of bugs in Defects4J is such that the pre-change version is the
buggy version, and the post-change version is the fixed version. It might be the
case that coverage-driven testing is influenced by this (e.g., intuitively, the fixes
may more often add code such as input validation checks). To see whether this is

150 Disposable Testing

the case and how this influences coverage-driven testing, we look at the data on
coverage-driven testing based on the fixed version of the Defects4J bugs. That
is, tests are generated on the fixed version, and a change is detected if a test fails
on the buggy version. Figure 6.2 shows the results of this analysis: coverage-
driven testing based on the changed version (fixed version) was significantly
more effective than coverage-driven testing based on the pre-change version on
53 subjects. A possible conjecture for this result is that, in Defects4J, the
fixed versions more often contain additional branching structure that leads to
more tests when targeting branch coverage.

To validate this conjecture we studied some of the bugs where the result differs
for coverage-driven testing depending on the “direction” of the change (A to B,
or B to A). For example, consider Math-33, which was found by coverage-driven
testing based on the fixed version (CT ←), but never found when generating tests
for the buggy version. In this subject, two arrays each with one element need to
be passed to the method in order to trigger the change:

1 public static double linearCombination(final double[] a, final

double[] b)

2 ...

3 + if (len == 1) {

4 + // Revert to scalar multiplication.

5 + return a[0] * b[0];

6 + }

Given that coverage-driven testing based on the pre-change version has no
incentive to generate this specific scenario, it would be unlikely for it to use such
inputs for the method, whereas coverage-driven testing based on the changed
version is guided towards producing these inputs.

Although the results suggest that on the whole coverage-driven testing applied
to the post-changed version may be more effective, there are also 12 bugs in
Defects4J that were never found by test suites generated from the changed
version, but found when generating tests based on the pre-change version. There
were also 8 cases where coverage-driven testing on the pre-change version was
better than using the post-change version. For instance, on Math-100 from

3In Defects4J, the notion “Math-3” indicates the bug with the ID 3 from the Apache
Commons Math project.

6.3 Answers to RQ6.1 (Detection of Changes To Classes) 151

the same project as the earlier example, coverage-driven testing based on the
pre-change version always finds the fault, but not in the opposite direction. In
this subject, no new branches are added or removed, however, a different method
getUnboundParameters() is called on the input argument:

1 public double[][] getCovariances(EstimationProblem problem)

2 ...

3 - final int cols = problem.getAllParameters().length;

4 + final int cols = problem.getUnboundParameters().length;

The key difference between the two methods is that for the test generation
tool it is more difficult to generate a problem object which does not result
in a NullPointerException for the new method call. As a result, coverage-
driven testing based on the changed version always faces this exception and
generates the shortest test that results in the exception being thrown. Conversely,
coverage-driven testing based on the pre-change version constructs an object
which does not result in an exception within getAllParameters(), and thus
gains a higher coverage by proceeding further down the getCovariances method,
which propagates to a different outcome. Therefore, coverage-driven testing
based on the pre-change version is more effective in this particular case.

The higher effectiveness of coverage-driven testing when applied on the post-
change version also changes the comparison between coverage-driven testing
and differential testing: As summarized in Figure 6.3, differential testing was
significantly more successful on 65 subjects, while being significantly worse on
23 subjects – compared to 97 and 18 respectively when applying coverage-driven
testing in the other direction, as shown earlier. It is difficult to conclude whether
the difference between pre-change and post-change result for coverage-driven
testing generalises; this might be an artifact of how Defects4J is organized,
and it may be that in practice not all changes performed on software may be
similar to the bug fixes represented by Defects4J.

The strength of differential testing comes from looking at both versions, since
coverage-driven testing is affected by which of the two versions it is applied to.

152 Disposable Testing

Overall 23 38 167 34 65

Chart 4 6 3 11

Closure 4 12 91 6 7

Lang 4 8 26 9 18

Math 14 12 36 11 23

Time 1 2 8 5 6

CT
←

 Significantly Higher CT
←

 Higher Equivalent DT Higher DT Significantly Higher

Fig. 6.3 Comparing CT ← and differential testing in regard to their effectiveness
at detecting the change between the buggy and fixed versions of classes in
Defects4J.
(Please refer to Figure 6.1 for an explanation of the legend.)

6.3.2 Influence of Optimization for Coverage on Test
Suite Generation

Analysis of the branch coverage ratio of the test suites generated by the techniques
shows that, on average, coverage-driven testing achieved a coverage ratio of 53%,
more than an order of magnitude higher than the 4% attained by differential
testing. However, notice that despite the higher coverage achieved by coverage-
driven testing, it achieved a lower success rate than differential testing. Given
that the overall coverage ratio may be irrelevant to the coverage of the changed
area of code between the two version of the program, we investigated whether in
our case the higher level of coverage achieved overall translates to covering the
changed area of code as well.

To answer this, we first selected the subjects where differential testing detected
the change at least once. Then for these subjects, we looked at all test suites
generated by coverage-driven testing which failed to detect the change, and
observed whether these tests covered the change area of the code. That is,
whether the lines modified between the two version of the program were covered.
To our surprise, 67% of these test suites which did not find the fault, fully covered
the code containing the defect, and another 25% covered it partially. Looking
broadly at all subjects, as shown in Table 6.2, except for Closure, more than

6.3 Answers to RQ6.1 (Detection of Changes To Classes) 153

Table 6.2 Coverage of the changed area of code, based on the outcome of the
test suite at detecting the change. (e.g. For all test suites that detected the
change, whether they fully or partially covered the changed lines between the
two versions.)

Bug Detected Bug Not Detected
Project Config. Full Partial Full Partial Not
Chart CT → 80.9% 19.1% 69.0% 8.0% 23.1%

CT ← 83.0% 17.0% 66.1% 15.6% 18.2%
differential 67.2% 32.8% 6.2% 0.0% 93.8%

Closure CT → 66.9% 27.6% 24.2% 13.8% 62.0%
CT ← 66.8% 17.8% 24.6% 11.5% 63.9%
differential 68.4% 31.6% 11.3% 0.9% 87.8%

Lang CT → 76.6% 20.2% 53.7% 32.1% 14.2%
CT ← 76.5% 21.2% 59.0% 28.1% 12.9%
differential 58.1% 41.9% 12.2% 0.1% 87.7%

Math CT → 90.3% 9.7% 54.4% 21.4% 24.2%
CT ← 76.6% 23.4% 54.2% 20.2% 25.5%
differential 62.3% 37.7% 3.6% 2.1% 94.4%

Time CT → 90.6% 9.4% 62.7% 30.1% 7.2%
CT ← 81.1% 18.9% 66.6% 26.6% 6.8%
differential 54.3% 45.7% 7.1% 0.0% 92.9%

50% of test suites generated by coverage-driven testing that failed to detect the
change, fully covered it. This indicates that for the majority of the test suites
generated by coverage-driven testing, the changed code was executed, yet the
change did not propagate to the output. Therefore, the lower effectiveness of
coverage-driven testing is not due to uncovered changes. In fact, for subjects
detected by differential testing, 67% of test suites generated by coverage-driven
testing fully covered the change, yet they failed to detect it.

To better understand the underlying reason behind the lower effectiveness
of coverage-driven testing despite it fully covering a majority of undetected
changes, we studied these changes in more detail. For example, Math-30 is a bug
where differential testing was always successful at detecting the change, while
coverage-driven testing applied in either direction failed. In this subject, a simple
change is made in the method responsible for calculating p-values, where the
type of the n1n2prod variable is changed from int to double to fix an integer
overflow bug when large data sets are used:

154 Disposable Testing

1 private double calculateAsymptoticPValue(final double Umin,

2 final int n1, final int n2) ... {

3 - final int n1n2prod = n1 * n2;

4 + final double n1n2prod = n1 * n2;

Although coverage-driven testing fully covered this method, it did not have
any incentive to create tests for the method with both large and small input
values. Conversely, differential testing detected a difference in the output of the
two versions of the program when a large input value was provided.

As a further example, consider Chart-6, where coverage-driven testing applied
in either direction is significantly less successful than differential testing. In this
subject, the equals method is modified to work based on a ShapeList. While
in the pre-change version the equals method of the superclass was used, in the
changed version the objects in the ShapeList are expected to be instances of
Shape, as evident on line 5:

1 public boolean equals(Object obj) { ...

2 + ShapeList that = (ShapeList) obj;

3 + int listSize = size();

4 + for (int i = 0; i < listSize; i++) {

5 + if (!ShapeUtilities.equal((Shape) get(i), (Shape) that.get(i)

)) {

6 + return false;

7 + }

8 + }

9 + return true;

10 - return super.equals(obj);

11 }

Differential testing finds the fault by setting a ShapeList object as an element of
the list, which triggers a ClassCastException as evident in the test case below.
Although the changes for this bug add new branches, coverage-driven testing
never detects the fault, since providing a ShapeList on line 6 would trigger the
ClassCastException which results in covering neither the true or false branch
of the condition, thus resulting in a lower coverage. This could be countered by
using stronger or multiple coverage criteria [135]; however, as our experiments

6.4 Answers to RQ6.2 (Detection of Subsequent Changes) 155

targeted only branch coverage, the coverage-driven testing had no incentive to
retain a fault triggering test.

1 @Test public void test0() {

2 ShapeList shapeList0 = new ShapeList();

3 ShapeList shapeList1 = (ShapeList)shapeList0.clone();

4 shapeList0.set(0, shapeList1);

5 // The following line throws java.lang.ClassCastException:

6 // java.lang.String cannot be cast to java.awt.Shape

7 shapeList0.equals(shapeList1);

8 }

It is interesting to note that, as shown in Figure 6.1 and Figure 6.3, differential
testing always performed statistically better or equal compared to coverage-driven
testing on bugs in project Chart, whereas there are no notable differences for
the other projects. A likely explanation is that achieving branch coverage in this
project is relatively simple, but branch coverage tests do not capture the faults
in this project well in general, as in the presented examples.

Optimizing for coverage can lead to omission of change-revealing tests.

6.4 Answers to RQ6.2
(Detection of Subsequent Changes)

We have seen that both coverage-driven testing and differential testing can be
used to detect differences (changes) between a pair of classes. The question
now is, would retaining these tests build an effective regression test suite? In a
real software development scenario, in which developers apply automated test
generation techniques over time to generate and augment test suites as their
system under test evolves, are these generated tests sensitive enough to detect
newly introduced changes of the same class? We answer this by considering two
different sets of changes: a) future changes to the same area of code (i.e., of an
earlier change), b) future changes made to the same class by the developers.

156 Disposable Testing

Table 6.3 Overall outcome of test generation and execution. For each project and
technique the table shows the average number of generated tests, the percentage of which that were flaky,
and the time taken on average to generate tests including post-processing steps such as minimization and
oracle generation. The table also shows the maximum number of bugs detected by the techniques for each
project, and the average number of detected bugs over the 30 repetitions.

Project Config. Tests Flaky Time Max Bugs Avg. Bugs
Chart CT → 30.3 0.0% 170s 15 4.2

CT ← 29.9 0.0% 170s 17 8.0
differential 0.6 0.0% 98s 18 14.4

Closure CT → 14.5 0.4% 170s 21 6.7
CT ← 14.4 0.4% 171s 26 7.3
differential 0.2 0.0% 140s 19 9.9

Lang CT → 66.9 0.0% 147s 31 9.8
CT ← 66.3 0.0% 148s 42 21.1
differential 0.5 0.0% 80s 42 30.0

Math CT → 25.3 0.2% 140s 44 22.7
CT ← 25.5 0.2% 140s 59 31.8
differential 0.5 0.0% 76s 57 39.2

Time CT → 37.9 0.0% 159s 13 3.4
CT ← 38.7 0.0% 158s 12 6.6
differential 0.5 0.0% 97s 16 9.0

6.4.1 RQ6.2-M: Detection of Mutants

To simulate subsequent fault-introducing changes that may occur in the future,
we considered all mutants of the changed lines between the two versions of each
bug in Defects4J. We then applied all test suites generated in RQ6.1 which
were successful at detecting the change between the two versions of the class,
on the generated mutants. Considering that changes between two versions of a
program usually involve lines of code that are added or removed in either version,
we report on the mutation results based on the two versions A and B, where
mutations are applied on the lines of code changed in one version with respect
to the other. In the context of Defects4J, A and B respectively refer to buggy
and fixed versions.

Table 6.4 shows the overall outcome of the techniques at detecting the
mutants. In this table, we report on two different mutation score values: the
number of mutants killed by the techniques out of all generated mutants (of
the changed lines), and the normalised mutation score, that is, the number
of mutants killed out of all mutants (of the changed lines) that the test suite
covered. Notice that both the overall and normalised mutation scores achieved

6.4 Answers to RQ6.2 (Detection of Subsequent Changes) 157

by coverage-driven testing are consistently higher than differential testing on
either version for all projects.

Comparing the statistical significance of the difference between the effec-
tiveness of the techniques, for 82 subjects, coverage-driven testing achieved a
significantly higher mutation score than differential testing, while being signif-
icantly lower in 5. This outcome can be surprising, especially considering the
higher success rate of differential testing in RQ6.1. The results suggest that tests
generated by differential testing are over-specified to the specific change they
were generated on, and may not be effective enough at detecting future changes
to the same area.

To support our conjecture, we further investigated some of the mutants.
In Section 6.3.2 we showed Chart-6 as an example of a case where differential
testing was more effective than coverage-driven testing. However, when applying
the generated tests by the techniques on the mutants of the subject, coverage-
driven testing was significantly more effective at detecting the following mutant:

1 - return super.equals(obj);

2 + return false;

As it can be seen from the generated test case shown in Section 6.3.2,
differential testing does not attempt to generate tests that cover both scenarios
in which the equals method returns true and false, neither does it validate
the output of the method, as it has no incentive to do so (i.e., such validations
do not relate to change differential testing was aiming to reveal). As a result,
while the generated test may be effective at triggering the ClassCastException,
the test is not equipped to detect other changes to the CUT.

Considering the different nature of the tests generated by the two techniques,
we were also interested to understand how these generated tests compared with
manually written tests by the developers. In Table 6.4, we also report on the
mutation data for the developer-written tests. Looking at the results of the tests
written by developers after fixing the bug (i.e., version B), it is clear that across
all the projects the manually written tests have both a higher coverage and
higher mutation score than both techniques. This indicates that in contrast to
differential testing, test sets written by developers are less specific to individual
changes. Our general observation is that in terms of effectiveness the manually

158 Disposable Testing

Table 6.4 Mutation outcome of the fault revealing test suites generated by each
technique per project. A and B indicate the version of the program on which
mutation was performed. Subjects shows the number of subjects for which all
configurations had at least one fault-revealing test suite, Mutants shows the
number of mutants generated for each version, Mutants Covered shows the
average ratio of the mutants that the test suites were able to cover, Mutation
Score shows the average number of mutants killed with respect to the generated
mutants, and Normalised M.S. shows the mutation score normalised with respect
to the number of mutants covered by the test suites.

Subjects Mutants Mutants Covered Mutation Score Normalised M.S.
Project Config. version A version B version A version B version A version B version A version B version A version B
Chart Coverage 9 14 51 180 88.9% 85.5% 64.0% 59.6% 72.0% 68.6%

Differential 9 14 51 180 70.4% 64.8% 27.0% 43.9% 34.8% 60.7%
Manual 9 14 51 180 58.7% 87.5% 44.4% 66.5% 66.7% 76.9%

Closure Coverage 10 14 51 91 75.7% 75.7% 39.1% 51.5% 43.4% 68.9%
Differential 10 14 51 91 54.9% 66.4% 18.3% 30.9% 30.6% 50.6%
Manual 10 14 51 91 88.0% 89.8% 50.4% 76.4% 56.0% 86.0%

Lang Coverage 19 37 190 707 90.9% 86.2% 66.6% 58.5% 73.7% 67.8%
Differential 19 37 190 707 71.2% 69.2% 43.2% 31.5% 59.9% 46.1%
Manual 19 37 190 707 82.2% 88.0% 56.0% 68.1% 65.8% 76.4%

Math Coverage 25 47 303 1016 99.1% 94.9% 66.6% 65.4% 67.4% 68.5%
Differential 25 47 303 1016 71.3% 77.7% 35.8% 40.1% 50.2% 52.0%
Manual 25 47 303 1016 66.2% 96.6% 48.8% 76.8% 72.6% 79.2%

Time Coverage 8 11 106 322 90.8% 87.0% 44.6% 60.6% 46.3% 67.0%
Differential 8 11 106 322 60.7% 66.8% 22.0% 34.9% 33.0% 44.7%
Manual 8 11 106 322 91.7% 91.4% 51.7% 74.6% 51.7% 80.4%

written tests by the developers differ from tests generated by either techniques,
however, the underlying reason behind this remains an open question for further
research.

RQ6.2-M: Test suites generated by differential testing overfit to the change
they are generated on, and are less effective at finding subsequent changes.

6.4.2 RQ6.2-D: Detection of Developer Changes to
Classes with Continuous Augmentation

To answer RQ6.2 in terms of real changes, we applied coverage-driven testing
and differential testing once per commit over 9 consecutive commits on the same
class, and executed the resulting test suite on the 10th commit – which in the
case of Defects4J is the change that represents the bugfix – to understand
whether the generated tests can be effective at detecting this change.

Overall, out of 183 subjects, coverage-driven testing found 64 (35%) changes
at least once, while differential testing found 24 (13%). Although there is a large

6.4 Answers to RQ6.2 (Detection of Subsequent Changes) 159

Overall 30 28 114 8 3

Chart 2 1

Closure 6 9 75 3

Lang 10 6 13 1 1

Math 9 6 17 4 1

Time 5 7 7

Cont. CT Significantly Higher Cont. CT Higher Equivalent Cont. DT Higher Cont. DT Significantly Higher

Fig. 6.4 Comparing coverage-driven testing and differential testing tests evolved
over 9 commits in regard to their effectiveness at detecting the change between
the buggy and fixed versions of classes in Defects4J.
(Please refer to Figure 6.1 for an explanation of the legend.)

overlap between the changes found, 7 out of 24 changes found by differential
testing were never found by coverage-driven testing. Conversely, of the 64 bugs
found by coverage-driven testing, 47 were never found by differential testing.
This provides further evidence towards the fundamental difference between the
test suites generated by the two techniques.

Figure 6.4 shows the comparison of differential testing and coverage-driven
testing in more detail. Observe that differential testing detected changes on a
significantly higher number of runs compared to coverage-driven testing on 3
subjects, while it was significantly less effective on 30 subjects.

RQ6.2-D: Test suites augmented using differential testing were significantly
less effective than coverage-driven testing at detecting developer changes.

Given that overall test suites evolved by differential testing were less effective
than coverage-driven testing and found fewer changes, in the following two
sections we further investigate the underlying reasons.

160 Disposable Testing

6.4.2.1 The Influence of the History of Changes

The effectiveness of differential testing is dependent on the history of changes
leading up to the one under consideration: If the previous edits are unrelated
to this change, then differential testing is unlikely to have generated relevant
tests in the past. For example, Figure 6.4 shows that there are several cases
in the Time and Chart projects where differential testing is significantly worse
at detecting the change than coverage-driven testing. A manual analysis of
five bugs in Time which were not detected at all by differential testing (Time-4,
Time-7, Time-11, Time-23, Time-25) reveals that in none of these five cases the
lines of code changed in the bug fix were edited in any of the past 9 commits.
On the other hand, Figure 6.4 suggests that in projects Lang and Math there
are subjects for which the effectiveness of differential testing is higher than that
of coverage-driven testing. A closer look at these bugs shows that, as expected,
in these cases there are previous commits in the version history that modified
the same lines as in the bug fix.

For example, consider Math-48, for which differential testing is more effective
than coverage-driven testing at detecting the change. In this subject, developers
have added a condition to throw an exception when the algorithm is stuck instead
of waiting for the algorithm to exceed the limit of maximum iterations:

1 case REGULA_FALSI:

2 + // Detect early that algorithm is stuck, instead of waiting

3 + // for the maximum number of iterations to be exceeded.

4 + if (x == x1) {

5 + throw new ConvergenceException();

6 + }

7 break;

The reason differential testing finds the change is due to an earlier commit
in the class that modified the code within the same case block. One commit
earlier, the developers had emptied the code in the case block; two commits
earlier, they had the same x == x1 conditional block, however with a different
set of instructions inside which did not throw a ConvergenceException. For
coverage-driven testing, generating tests for the REGULA_FALSI case block often

6.4 Answers to RQ6.2 (Detection of Subsequent Changes) 161

resulted in reaching the resource limit related to the program and provided no
additional coverage gain to keep the test.

However, cases like Math-48 were rare in the set of subjects we examined,
and for a majority of subjects, either the changed area was not modified in
the past, or differential testing failed to generate tests for the earlier changes.
For instance, Closure-46 is a change that is always found by coverage-driven
testing and never found by differential testing. In this subject, the overridden
getLeastSupertype method is removed to fix a bug:

1 - @Override

2 - public JSType getLeastSupertype(JSType that) {

3 - if (!that.isRecordType()) {

4 - return super.getLeastSupertype(that);

5 - }

6 - ...

7 - }

While this appears like a simple case for coverage-driven testing to detect, for
differential testing it is necessary to first have changes in the history that modified
the method, and second, for it to have detected the earlier change. Although one
commit earlier, the same method was modified after line 5, differential testing
was not able to detect that change. As a result, it failed to produce a test to
detect the change applied in the later commit.

In our experiments, cases for which differential testing could benefit from the
changes in history were rare.

6.4.2.2 The Influence of Coverage on Detecting Changes Made in
the Future

To better understand the underlying reason behind the low detection rate of
differential testing (13%) compared to coverage-driven testing (35%), we looked
at the level of coverage obtained by the techniques, as the test suites evolved
along with the program.

Figure 6.5 shows the number of branches covered by each technique over
time. A clear difference is apparent between the level of coverage achieved by the

162 Disposable Testing

techniques. In particular, after 9 commits, coverage-driven testing on average
obtained 53% branch coverage whereas differential testing only achieved 9%.
This outcome can be surprising, considering that differential testing achieved 6
times less coverage than coverage-driven testing while performing statistically
better or equal in 84% of the subjects. The results suggests that for the subjects
where differential testing was less effective than coverage-driven testing, it may
relate to the lack of full coverage of the changed area of code.

To further investigate the influence of coverage on detecting future changes,
we looked at the coverage of the change applied in the last commit (i.e., the 10th
commit). Out of 183 subjects, for only 28 bugs differential testing fully covered
the change at least once, 5 of which it managed to always cover. This indicates
that the low detection rate of differential testing can indeed be explained by the
lack of coverage.

To better demonstrate the reason behind this lack of coverage, consider the
change in Lang-7 as shown below. In this subject, the createNumber method is
modified by removing a redundant sanity check that is addressed later in the
same method (after line 4, omitted for brevity). Instead, when the input str
satisfies the condition in line 2, a NumberFormatException is thrown later in
the code.

1 public static Number createNumber(String str) ...

2 - if (str.startsWith("--")) {

3 - return null;

4 - }

However the modified area of code was not changed earlier in the history, as
such, differential testing did not have any incentive to generate a test to cover
the condition.

Augmented over 9 commits, coverage-driven testing achieved a coverage of 53%
(on average), 6 times higher than the coverage obtained by differential testing.

6.5 Answers to RQ6.3 (Comparison of the Maintenance Overhead) 163

0

25

50

75

100

125

1 2 3 4 5 6 7 8 9
Commit ID

A
v
g
.
#
 o

f
B

ra
n
c
h
e
s
 C

o
ve

re
d

Configuration: Coverage Driven (CT) Differential (DT)

Fig. 6.5 The average number of covered branches at each commit when evolving
test suites using coverage-driven testing and differential testing.

6.5 Answers to RQ6.3
(Comparison of the Maintenance Overhead)

Evolving a regression test suite alongside the software involves effort to inspect
and maintain all failing test cases over time. When applying disposable testing,
this effort does not exist, but there still is effort to inspect tests that demonstrate
behavioural differences. Although we cannot directly compare the human effort
involved in maintaining or inspecting tests without running a study involving
human participants, we can compare the effort in terms of the number of tests
that needs to be inspected in both approaches.

To make this comparison, we assume a scenario where every inspected test in
coverage-driven testing reveals intended behaviour and the maintenance action
consists of deleting this test. Although in practice tests may be fixed and retained,
this scenario gives us a lower bound on the maintenance effort of coverage-driven
testing. If tests would be fixed rather than deleted, then test suites would grow
bigger over time, thus increasing the potential maintenance effort.

For disposable testing, we assume a scenario where developers apply differen-
tial testing for the whole duration of the search budget and have to inspect all
behavioural differences. The number of failing tests in this case should provide an
upper bound for the maintenance effort of disposable testing, as our minimization
technique is only basic, and developers may in practice stop inspecting further
tests once they have identified an error in the program that needs to be fixed.

164 Disposable Testing

1

2

3

4

5

6

7

8

9

0 20 40 60
Subjects

C
o

m
m

it
 I

D

 CT Sig. Higher CT Higher Equal DT Higher DT Sig. Higher

Fig. 6.6 Comparing coverage-driven testing (maintained) and differential testing
(disposable) with regards to the number of tests developers need to inspect, for
the changes found by both techniques, over each commit.
Legend: “Sig. higher” is the number of classes for which a technique generated a significantly higher number of

failing tests than the other (i.e., developers need to inspect more tests); “Higher” refers to the number of classes

where a technique generated a higher number of failing tests on average than the other, but not significantly

so; “Equivalent” is where test suites generated by both techniques had the same number of failures.

Comparing this against the lower-bound of the maintenance effort of coverage-
driven testing tests provides us a conservative indication on the extent of effort
that disposable testing can potentially reduce. To achieve this, we compare the
number of failing tests from differential testing applied consecutively to the pairs
of commits as in RQ6.2-D (without keeping the generated tests), against the
number of tests thrown away during test suite evolution using coverage-driven
testing in RQ6.2-D.

Figure 6.6 compares the number of subjects where one technique had sig-
nificantly higher number of failing test cases (i.e., test cases that need to be
inspected) compared to the other – significance calculated using the Mann
Whitney U test. Our results show that for the 450 changes detected by both
techniques across 9 commits (from 158 unique subjects), for 123 subjects, a sig-
nificantly higher number of failing tests need to be inspected for coverage-driven
testing, while for 91 subjects, a significantly higher number of tests need to be
inspected for differential testing. The number of tests to inspect ranged from 1
to 141, and we did not observe a pattern in the number of failing tests across

6.6 Conclusions 165

the commit history we investigated. For instance, while after the first commit
on average 5.3 differential testing tests were failing when a change was found, for
coverage-driven testing 3.8 tests were failing; these numbers for the 7th commit
were respectively 2.9 and 7.6.

Our analysis shows that for the majority (80%) of changes, differential testing
either reduces the number of tests to inspect, or does not result in an increase.
Nevertheless, we manually investigated the subjects for which developers would
need to inspect a larger number of tests. We found that for all investigated
test suites, the large number of failing test cases was due to our naïve filtering
mechanism failing to group duplicate failures into one test case. In particular, our
implementation does not support grouping tests by exception errors, or expected
exceptions. Therefore, we believe that improving test suite minimization can
reduce the number of tests to inspect across all subjects.

RQ6.3: Disposable testing eliminates the maintenance effort, and does not
increase inspection effort for most changes.

6.6 Conclusions

As developers develop and evolve their programs, they write unit tests to ensure
that changes in the future will not break intended functionality. Automated test
generation techniques can support developers by producing tests to enhance or
replace their own testing efforts. However, these generated tests still need to
be maintained along with the program. In this chapter we proposed disposable
testing as an alternative approach, where a completely new test suite is generated
each time a program is changed, but these tests are thrown away after a developer
has inspected those tests that reveal a behavioural change.

We used differential testing as a means to implement disposable testing, and
compared its effectiveness against a traditional generate-and-maintain approach
such as coverage-driven testing on a large set of real faults taken from the
Defects4J repository. We also evaluated the benefit of keeping these tests in
the test suite, and assessed whether they can be effective at finding changes in
the future.

166 Disposable Testing

Our results show that generating tests using differential testing is more
effective than using coverage-driven testing. However, tests generated with
differential testing are less effective at detecting future changes as they are
over-fitted to the specific change they originally targeted – that is, these tests
are actually disposable. We also showed that in addition to removing the effort
required to maintain the tests, using differential testing does not result in an
increase in the number of tests that need to be inspected by the developers
compared to the maintenance effort for a coverage-oriented test suite. For all
these reasons, disposable testing is a viable alternative for automated regression
testing.

Although our experiments have suggested clear benefits to using disposable
testing, research remains to be done on developing techniques better suited to
generate such tests. For instance: a) in this chapter we apply differential testing
using random test generation – which was based on our findings in Chapter 4
and Chapter 5 –, while more systematic techniques may be more effective, b)
although the generated test suites shown to the developers can be thrown away,
the input values and knowledge gained by generating the previous test suites
can be kept and seeded to the test suite generator to increase effectiveness and
performance, c) readability of the generated tests can be improved to lower the
overhead of manual inspection.

Developers may wish to use the insights provided in this chapter to better
decide which automated techniques to use, and what to do with the resulting
tests. In practice, this may not be an either-or choice: Because test generation
takes time, regression test suites may be important to provide quick feedback.
Thus, an optimal solution may combine traditional and disposable testing in
order to benefit from the best from both.

We have made our extension of EvoSuiteR open source and publicly avail-
able. See Appendix A for details on how to run the tool.

Chapter 7
Conclusions and Future Work

7.1 Summary of Contributions and
Achievements

In this thesis, we investigated various aspects related to the idea of automatically
testing programs as they evolve. In particular, in Chapter 1 we set out with the
idea of automatically and effectively generating change-revealing tests after a
change has been made. To this end, we explored and investigated a number of
research questions during the course of this work, which we summarise below.

• Effectiveness on Real Faults: Are automated test-generation tools effective
at finding real faults?

• Limitations of Existing Techniques: How do existing state-of-the-art test
generation techniques find real faults? What are the limitations and
shortcomings?

• Search-Based Propagation of Regression Faults: Given that generating
change-revealing tests involves tackling multiple problems at the same time,
can we use a multi-objective search-based approach to generate these tests?
Is it effective at finding real faults? Do the individual objectives guide the
search? How does it compare with state-of-the-art techniques?

168 Conclusions and Future Work

• Search Algorithm: Do we really need a GA to help us generate our desired
tests? What does the search landscape look like? In which cases using a
GA can help us as opposed to a naïve random search approach?

• Search Budget: Is the result obtained earlier heavily influenced by the
search budget?

• Usability in Practice: Can automatically generated change-revealing tests
be effective in practice, as opposed to common coverage-driven approaches?

• Maintenance: What shall we do afterwards with the generated tests? Does
it really help if we keep and maintain them over time?

In the following sections, we summarise our answers to the questions above,
resulting in the contributions of this thesis.

7.1.1 Effectiveness of Tools on Detecting Real Faults

In Chapter 2 we showed that while many different techniques have been proposed
in the literature for automated test generation, a large-scale evaluation and
comparison of these techniques on real faults is not available. Such an evaluation
framework is however essential to understanding where we stand in terms of
effectively revealing real faults, if we use these techniques in practice. Moreover,
to make progress on the existing state, insight into the shortcomings of the
current approaches is necessary to focus research in the right directions. Finally,
a clear evaluation of future techniques would not be possible without involving
an in-depth comparison with the state-of-the-art techniques.

Therefore, in Chapter 3, we evaluated the effectiveness of three state-of-the-
art automated test generation tools, on a set of 357 real bugs taken from open
source repositories. To achieve this, we developed a framework consisting of our
methodology to generate, filter (removing flaky and non-compiling tests), and
execute tests. We also report on how the resulting outcome should be evaluated,
based on the types of failures, and to detect the set of false-positives that need
to be excluded — which can be challenging given the large scale of the study.

Our results showed that while tools overall detected more than half of the
faults, several big challenges remain: 1) the techniques do not reliably find the

7.1 Summary of Contributions and Achievements 169

faults, 2) problems such as generating false-positive and flaky tests hinder the
potential of the techniques to be used by developers, 3) while tools can often
achieve high levels of code-coverage, this still needs improving, 4) a majority of
undetected faults were covered by the tests, suggesting that state infection and
propagation also remain as major challenges. Using the evaluation framework and
insight gained from it, we describe how we proceeded to propose our search-based
approach in the next section.

7.1.2 Search-Based Differential Testing

Seeing the shortcomings of existing approaches in Chapter 2 and Chapter 3, we
saw opportunities to improve on the state-of-the-art techniques. First, seeing
the low success rate of the techniques at finding the fault, and considering the
fact that a large number of generated tests failed to cover the changed code, we
conjectured these to be due to not targeting both versions of the program (before
and after the change is made). As such, we considered our technique to use two
versions of the program for test generation. Second, seeing the high number of
false-positives and non-compiling tests, and in contrast to differential-testing
techniques such as BERT [123], we considered our technique to generate tests
that compile and execute correctly on both versions (e.g., if a method has been
removed, it is likely intended, and non-compiling failures or mocking failures are
false positives). Third, and most importantly, we have seen both from literature
and our evaluation that fault propagation is a significant challenge, and simply
reaching the code is not enough. To address this, we proposed a multi-objective
search-based approach named EvoSuiteR, which simultaneously aims to cover
the program, as well as increasing the chance for the fault to propagate to the
output — this was done by increasing the differences in the state and control-flow
across the two programs.

We evaluated the technique based on the evaluation framework we devised ear-
lier on detecting real faults. Our results showed that our proposed multi-objective
GA was similarly or more effective than the techniques we evaluated earlier.
Moreover, the multi-objective fitness function was more effective than when
individual objectives were set, such as only guiding for increased code-coverage.
Moreover, the technique was more reliable than the tools we investigated earlier:

170 Conclusions and Future Work

when a change was detected, more than half of all generated tests detected the
fault in 30 repetitions. This is in contrast to 15% for Randoop and close to
20% for EvoSuite. Therefore, our technique had a higher success rate, found
more bugs and found them more frequently, and generated no false-positives or
non-compiling classes. However, when we compared our GA-based approach
against a naïve random search using the same tooling, we found an interesting
result: for the majority of subjects, random search is as effective at detecting the
bug. This leads to the question of whether this insight generalises to search-based
test generation techniques in general. We investigate this in the following section.

7.1.3 Random or GA for Search-Based Test Generation

In Chapter 4 we observed that on a majority of subjects, using random search can
be equally as effective as an advanced algorithm as GA. While in the literature
evolutionary techniques have been shown to be superior, such evaluations often
use different tooling for each technique. Moreover, the search landscape on
real object-oriented programs is often ignored. For instance, theoretically, if all
software branches provide guidance, then GAs can more effectively guide the
search towards covering all branches. But is this the case for real programs?
Lastly, can our findings be simply influenced by the search budget?

To answer these questions, in Chapter 5 we first provide an in-depth insight
into the types of branches in object oriented programs, specifically, those based
on the bytecode from the Java Virtual Machine (JVM). We show the type of
branches that can provide guidance to the search (gradient branches), and those
that do not provide such guidance (plateau branches). Then we conduct a
large-scale evaluation, comparing GA and random search for the problem of
coverage-driven test generation – as in EvoSuite– on 1,000 classes, while at
the same time we observed the type of covered and uncovered branches. We also
investigate the effectiveness of the algorithms when given an extended budget.

Our results show that overall, for a majority of subjects, random search can
be as effective as GA. Moreover, the search budget does not seem to affect this
insight: extending the search budget resulted in only marginal improvements by
the GA. We found the reason for this outcome to be due to the fitness landscape
provided by the different type of branches. Our findings show that for the object

7.1 Summary of Contributions and Achievements 171

oriented programs we investigated, the majority of branches do not provide any
guidance to the search. As such, evolutionary approaches suffer from the lack of
guidance to the fitness function. We also find that random techniques are better
suited to covering plateau branches — and in-fact cover more of these branches

—, while as expected, GA covers more gradient branches. These findings provide
practical insights for researchers and developers.

7.1.4 Maintaining Automatically Generated Tests

Maintaining unit-tests can be a tedious task as programs evolve, and this is
exacerbated by automatically generated tests. If we aim to help developers
with their regression testing efforts using automated techniques (as we aimed to
achieve in Chapter 1), using the technique during software development should
also be practical. The traditional approach towards generated tests is to keep
and maintain them – the same way as manually written ones. However, is this
also the case for automatically generated change-revealing tests? In Chapter 6,
we propose an alternative, such that these tests are thrown away. Our approach
named “disposable testing” involves generating tests once a change has been
made — to reveal the behavioural difference between the two versions – and
once developers have verified whether or not a regression fault has occurred –
where in case of the former, they would use the test to fix the bug – the tests
are thrown away.

To assess whether such a technique can be practical, we need a technique that
can effectively generate change-revealing tests, otherwise, keeping the tests could
lead to detection of more changes. We take differential testing as an example
of such a technique, and based on our findings in Chapter 4 and Chapter 5 we
use a random search algorithm to reveal changes. We compare this against the
traditional approach of generating coverage-driven tests, and use the framework
we devised in Chapter 3 to evaluate it. We also evaluate the number of tests one
needs to inspect after a change has been made.

Our results show that disposable testing using differential testing can be
more effective than coverage-driven testing at revealing changes. At the same
time, keeping these tests does not help with finding more faults, and as such,
there is no need to maintain these tests. Besides removing the maintenance

172 Conclusions and Future Work

effort, the inspection effort is lowered, given that fewer failing test cases need
to be inspected when a test suite detects a change. In sum, while disposable
testing may appear as a controversial approach, it is both feasible and effective
compared to the traditional keep and maintain approach. In the next section we
look at future work that can build on top of the contributions of this thesis.

7.2 Future Work

The work in this thesis explored a number of different techniques and approaches
to test programs as they evolve. Our investigations revealed a series of new
interesting challenges in the field to be tackled in future work.

7.2.1 Human Study of Disposable Testing

Although many techniques have been presented and studied thus far (within this
thesis, or in the literature), little attention has been given to the applicability
of such techniques in practice. For example, can automated tools actually save
development time while at least remaining equally effective? Given that many
potential users of these tools need to adapt to the new practices, is it easy to
incorporate such tools into existing development practices? Moreover, tools often
do not find the faults deterministically (see Chapter 3), thus, what approach
should developers take when using these tools? Answers to questions like these
can have a positive impact on the adoption of current state-of-the-art research in
industry, as such, research into practical usability of the techniques is essential.

Although work has been done on evaluating the use of automated test
generation tools during the software development process (e.g., [136]), little work
has been done on applying differential testing in practice. In particular, we
proposed disposable testing in Chapter 6 as an alternative to the traditional
techniques, but whether the approach can be applied in practice is a question
that can be best answered with a human study.

7.2 Future Work 173

7.2.2 Test Readability

In Chapter 3, Chapter 4 and Chapter 6 we showed that test generation tools can
be effective at fault finding, and also that even applying disposable testing can
help developers detect regression faults. However, inspecting and understanding
automatically generated unit tests is a new challenge that does not exist when
developers are using their own manually written tests. Therefore, making the
tests more readable can improve the chance of which the techniques can be
adapted by developers and industry. While this problem is an active area of study,
and work is being done on improving the readability of tests (e.g., [36, 1, 55])
in this section we discuss future work more related to the problem of testing
evolving programs (e.g., using differential testing).

7.2.2.1 Test Clustering

When a test suite reveals a change between two versions of a program, often
more than one failing test is revealing the change. This is often the case when
applying integration testing (e.g., one broken module causes all tests involving
that module to fail), or when automatically generating tests (see Chapter 3 and
Chapter 6). When developers starts to manually inspect these failing tests, they
first need to identify the location of the bug – this practice is also referred to as
fault localisation [181]. We believe that this technique can applied to improve
the readability of automatically generated differential tests.

By finding the location of the fault, if the root cause of the failures can be
automatically determined, we can reduce the number of failing tests (e.g., by
clustering similar tests) as well as further minimising the tests. For instance, if
four tests are failing due to the same underlying reason, then only one of them
can be shown to the developer. Furthermore, the generated test can be further
minimised by removing code unrelated to the root cause of the failure.

7.2.2.2 Utilising Test Patterns

Even if test readability techniques become ultimately successful such that au-
tomatically generated tests become as readable as manually written ones, if a
technique such as disposable testing is applied, then inspecting these tests will

174 Conclusions and Future Work

always involve the effort of re-learning and re-familiarising. One solution to
tackle this is to increase the similarity of new tests with the previously generated
tests. For instance, the structural pattern of the previously generated tests can
be learned using machine learning techniques, and the newly generated tests can
mimic or adapt to the same pattern. This can automatically make developers
familiar with the newly generated tests.

7.2.3 Detecting Non-Functional Regressions Using Dif-
ferential Testing

Although this thesis mainly focuses on testing programs’ functional behaviour,
non-functional regressions such as usability, security and performance can often
be equally or more important in practice. Considering performance testing as an
example, while much has been done on helping developers detect such regressions
(e.g., applying performance benchmarks before Linux kernel releases to avoid
performance regressions [31]), the techniques often assume that existing testing
infrastructures are in place (e.g., [82]). Work has also been done on generating
such tests automatically (e.g., [200], [67]). However, in the context of automated
differential testing, revealing performance differences between a pair of programs
remains an open problem. This has been investigated in the literature (e.g.,
Pradel et al. [131] look at differential performance testing for thread-safe classes),
but whether this can be done in the context of disposable unit-testing remains
an open problem.

7.2.4 Addressing State Infection in Differential Testing

As mentioned in Section 2.1, to reveal a fault, a test has to reach the fault,
infect the state and then propagate it. The GA-based approach we presented
in Chapter 4 aims to reach/execute changes (by maximizing the coverage), while
at the same time aiming to propagate the infected state to the output (using
the state-distance/control-flow-distance metrics). However, the state infection
is left to chance. As such, simply the order in which statements are executed
may not affect the fitness value (i.e., it may not increase the coverage value),
but is important for detecting behavioural changes. For instance, in a test that

7.2 Future Work 175

even fully covers the class under test, to infect the state, the order in which the
statements are executed is important. Consider the class Foo below:

1 public class Foo{

2 private int value = 1;

3

4 public void setValue(int newValue){

5 - value = newValue;

6 + value = 2 * newValue;

7 }

8

9 public int getValue(){

10 return value;

11 }

12 }

Observe that the setValue method has been changed to set the private field
value to twice the provided input. A simple test can detect the change:

1 public test0(){

2 Foo foo = new Foo();

3 f.setValue(1);

4 int value = f.getValue();

5 assertEquals(value, 1);

6 }

In the test case above, the assertion fails on the changed version – and thus
detects the change, since value now equals to 2. However, if the lines 3 and
4 in the test case above are swapped, the coverage remains at 100%, yet the
test is unable to identify any changes. One way to overcome this would be to
derive symbolic conditions that can result in state infections. Currently, none
of the measurements used in the fitness function of the GA reward the use of
different data-flows in the test suites. As a result, for instance, if a branch is
already covered by any test in the test suite, the search can get stuck in a local
optimum, since any new solution that covers the same branch in a different way
is discarded. Work has been done in the literature to increase the diversity in
the population, where the researchers found this to improve the efficiency and

176 Conclusions and Future Work

effectiveness of the search [91]. We also propose looking at metrics to increase
the diversity of data-flows involved in covering the same code.

7.2.5 Hyper-heuristics Search and Adaptive Approaches

When using search algorithms to a solve a problem, we often need to specifically
design the algorithm and tune it to make the technique effective at tackling
the problem, however, despite this effort, when considering the wider range
of problems in the search space, another algorithm simply outperforms our
specifically design-and-tuned technique. Holistically, this is what the no-free-
lunch theorem states [179]. In particular, we saw in Chapter 4 and Chapter 5
that a simple random testing technique can not only be equally effective on a
majority of the subject programs (which were randomly selected from a large
corpus of open-source programs, thus it is likely that they span across a wide
range of the problem space), but also, in some instances it can outperform guided
techniques.

A possible alternative is dynamically adapting the technique to the problem
[72]. For instance, in Chapter 5 we saw that for certain type of programs, the
fitness landscape is flat for the GA, and as such, guiding the search towards
covering plateau branches can be difficult. A self-adaptive technique can au-
tomatically devise the best function and search parameters to overcome the
problem. The methodologies and approaches to design such search heuristics
that are more generally applicable, are also known as “Hyper-heuristics” [25]. In
the field of software testing, hyper-heuristic search techniques have been applied
with strong positive result (e.g., [86]). We believe that using such approaches
can provide significant benefit to the problem of differential testing, and to help
with designing more generic techniques for automatically generating tests that
can reveal regression faults.

7.3 Final Remarks

Software programs are ever evolving, and ensuring that their intended func-
tionality is unaffected by the new changes is a tedious and expensive task. As
software engineers, we strive to reduce “tedious and expensive” tasks, and aim

7.3 Final Remarks 177

to automate them. As such, this thesis explored the problem of automatically
testing programs as they evolve. First, a number of existing state-of-the-art
test generation tools were evaluated on real faults, to create a better picture
of where automated techniques stand against real faults in practice. Then an
alternative approach was presented and evaluated to generate change-revealing
tests using a multi-objective search-based approach. Although the resulting
technique was successful and more effective than existing tools, for a majority
of subjects, a naïve random search approach was found to be equally effective.
Further investigation of this claim suggested that it holds for the problem of test
generation in general, when applied to object-oriented programs. Finally, based
on the observations made so far, a test generation approach named “disposable
testing” was proposed to use automated generation of change-revealing tests in
practice. Overall, this thesis contributes a new framework for evaluating test
generation tools, and provides an effective technique to generate differential unit
tests, in addition to presenting a validated approach for using it in practice which
requires less effort to be used alongside existing testing practices by the develop-
ers. Automated testing techniques have come a long way over the past decades,
and the findings of this thesis show that these techniques are on the verge of
enabling us to fully automate the testing process. Perhaps, in the future, writing
and maintaining regression tests can be a thing in the past with techniques such
as disposable testing, such that developers can be immediately made aware of
the implications of their changes within their development environment, without
having to write a single line of test code.

References

[1] Afshan, S., McMinn, P., and Stevenson, M. (2013). Evolving readable string
test inputs using a visceral language model to reduce human oracle cost. In
Proceedings of the International Conference on Software Testing, Verification
and Validation (ICST), pages 352–361. IEEE.

[2] Agitar (2013). JUnit Factory URL: http://www.agitar.com/developers/
junit_factory.html. Last visited on 24.04.2013.

[3] Alshahwan, N. and Harman, M. (2011). Automated web application testing
using search based software engineering. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 3–12.

[4] Alshraideh, M. and Bottaci, L. (2006). Search-based software test data
generation for string data using program-specific search operators. Software
Testing, Verification and Reliability (STVR), 16(3):175–203.

[5] Ammann, P. and Offutt, J. (2008). Introduction to software testing. Cam-
bridge University Press.

[6] Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp,
W., Harman, M., Harrold, M. J., McMinn, P., et al. (2013). An orchestrated
survey of methodologies for automated software test case generation. Journal
of Systems and Software, 86(8):1978–2001.

[7] Andreessen, M. (2011). Why software is eating the world. Wall Street Journal,
20.

[8] Andrews, J. H., Briand, L. C., and Labiche, Y. (2005). Is mutation an
appropriate tool for testing experiments? In Proceedings of the International
Conference on Software Engineering (ICSE), pages 402–411. IEEE.

[9] Andrews, J. H., Li, F. C., and Menzies, T. (2007). Nighthawk: A two-level
genetic-random unit test data generator. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 144–153. ACM.

http://www.agitar.com/developers/junit_factory.html
http://www.agitar.com/developers/junit_factory.html

180 References

[10] Apiwattanapong, T., Orso, A., and Harrold, M. (2007). Jdiff: A differ-
encing technique and tool for object-oriented programs. Automated Software
Engineering, 14(1):3–36.

[11] Apiwattanapong, T., Santelices, R., Chittimalli, P. K., Orso, A., and
Harrold, M. J. (2006). Matrix: Maintenance-oriented testing requirements
identifier and examiner. In Testing: Academic Industrial Conference - Practice
And Research Techniques (TAIC PART’06), pages 137–146. IEEE.

[12] Arcuri, A. and Briand, L. (2011). Adaptive random testing: An illusion
of effectiveness? In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pages 265–275. ACM.

[13] Arcuri, A. and Briand, L. (2014). A Hitchhiker’s Guide to Statistical Tests
for Assessing Randomized Algorithms in Software Engineering. Software
Testing, Verification and Reliability (STVR), 24(3):219–250.

[14] Arcuri, A., Fraser, G., and Galeotti, J. P. (2014). Automated unit test
generation for classes with environment dependencies. In Proceedings of the
International Conference on Automated Software Engineering (ASE), pages
79–90. ACM.

[15] Arcuri, A., Iqbal, M. Z., and Briand, L. (2012). Random testing: Theoretical
results and practical implications. IEEE Transactions on Software Engineering
(TSE), 38(2):258–277.

[16] Baresel, A. and Sthamer, H. (2003). Evolutionary testing of flag conditions.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pages 2442–2454. Springer.

[17] Baresel, A., Sthamer, H., and Schmidt, M. (2002). Fitness function design
to improve evolutionary structural testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 1329–1336.

[18] Baresi, L., Lanzi, P. L., and Miraz, M. (2010). Testful: an evolutionary test
approach for java. In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST), pages 185–194. IEEE.

[19] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and Yoo, S. (2015).
The oracle problem in software testing: A survey. IEEE Transactions on
Software Engineering (TSE), 41(5):507–525.

[20] Beizer, B. (2002). Software testing techniques. Dreamtech Press.

[21] Bell, J. and Kaiser, G. (2014). Unit test virtualization with VMVM. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 550–561. ACM.

[22] Beyene, M. and Andrews, J. H. (2012). Generating string test data for code
coverage. In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 270–279. IEEE.

References 181

[23] Böhme, M., Oliveira, B. C. d. S., and Roychoudhury, A. (2013). Partition-
based regression verification. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 302–311. IEEE Press.

[24] Bühler, O. and Wegener, J. (2008). Evolutionary functional testing. Com-
puters & Operations Research, 35(10):3144–3160.

[25] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
and Qu, R. (2013). Hyper-heuristics: A survey of the state of the art. Journal
of the Operational Research Society, 64(12):1695–1724.

[26] Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S., Sen, K., Tillmann,
N., and Visser, W. (2011). Symbolic execution for software testing in practice:
preliminary assessment. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 1066–1071. ACM.

[27] Cadar, C. and Palikareva, H. (2014). Shadow symbolic execution for better
testing of evolving software. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 432–435. ACM.

[28] Cadar, C. and Sen, K. (2013). Symbolic execution for software testing:
three decades later. Communications of the ACM, 56(2):82–90.

[29] Campos, J., Arcuri, A., Fraser, G., and Abreu, R. (2014). Continuous test
generation: enhancing continuous integration with automated test genera-
tion. In Proceedings of the International Conference on Automated Software
Engineering (ASE), pages 55–66. ACM.

[30] Chen, H. Y., Tse, T., and Chen, T. Y. (2001). Taccle: a methodology
for object-oriented software testing at the class and cluster levels. ACM
Transactions on Software Engineering and Methodology (TOSEM), 10(1):56–
109.

[31] Chen, T., Ananiev, L. I., and Tikhonov, A. V. (2007). Keeping kernel
performance from regressions. In Linux Symposium, volume 1, pages 93–102.

[32] Chen, T. Y., Leung, H., and Mak, I. (2004). Adaptive random testing. In
Advances in Computer Science-ASIAN 2004. Higher-Level Decision Making,
pages 320–329. Springer.

[33] Ciupa, I., Leitner, A., Oriol, M., and Meyer, B. (2006). Object distance
and its application to adaptive random testing of object-oriented programs.
In Proceedings of Workshop on Random testing, pages 55–63. ACM.

[34] Clark, D. and Hierons, R. M. (2012). Squeeziness: An information theoretic
measure for avoiding fault masking. Information Processing Letters, 112(8):335–
340.

[35] Csallner, C. and Smaragdakis, Y. (2004). JCrasher: an automatic robustness
tester for java. Software: Practice and Experience (SP&E), 34(11):1025–1050.

182 References

[36] Daka, E., Campos, J., Fraser, G., Dorn, J., and Weimer, W. (2015). Mod-
eling readability to improve unit tests. In Proceedings of the International
Symposium on the Foundations of Software Engineering (FSE), pages 107–118.
ACM.

[37] Daniel, B., Jagannath, V., Dig, D., and Marinov, D. (2009). Reassert:
Suggesting repairs for broken unit tests. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 433–444. IEEE.

[38] De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer.

[39] Di Penta, M., Bruno, M., Esposito, G., Mazza, V., and Canfora, G. (2007).
Web services regression testing. In Test and Analysis of web Services, pages
205–234. Springer.

[40] Díaz, E., Tuya, J., and Blanco, R. (2003). Automated software testing
using a metaheuristic technique based on tabu search. In Proceedings of the
International Conference on Automated Software Engineering (ASE), pages
310–313. IEEE.

[41] Elbaum, S., Chin, H. N., Dwyer, M. B., and Dokulil, J. (2006). Carving
differential unit test cases from system test cases. In Proceedings of the
International Symposium on the Foundations of Software Engineering (FSE),
pages 253–264. ACM.

[42] Elbaum, S., Malishevsky, A. G., and Rothermel, G. (2000). Prioritizing test
cases for regression testing. SIGSOFT Software Engineering Notes, 25(5).

[43] Elbaum, S., Rothermel, G., and Penix, J. (2014). Techniques for improving
regression testing in continuous integration development environments. In
Proceedings of the International Symposium on the Foundations of Software
Engineering (FSE), pages 235–245. ACM.

[44] Eler, M., Endo, A., and Durelli, V. (2014). Quantifying the characteristics
of Java programs that may influence symbolic execution from a test data
generation perspective. In Proceedings of the International Conference on
Computer Software and Applications Conference (COMPSAC), pages 181–190.
IEEE.

[45] Evans, R. B. and Savoia, A. (2007). Differential testing: a new approach to
change detection. In The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering: Companion Papers, pages 549–552. ACM.

[46] Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables,
and the Calculation of P. Journal of the Royal Statistical Society, 85(1):pp.
87–94.

References 183

[47] Fraser, G. and Arcuri, A. (2011a). Evolutionary generation of whole test
suites. In Proceedings of the International Conference on Quality Software
(QSIC), pages 31–40. IEEE.

[48] Fraser, G. and Arcuri, A. (2011b). EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the International Symposium
on the Foundations of Software Engineering (FSE), pages 416–419. ACM.

[49] Fraser, G. and Arcuri, A. (2012). The seed is strong: Seeding strategies in
search-based software testing. In Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), pages 121–130. IEEE.

[50] Fraser, G. and Arcuri, A. (2013a). Handling test length bloat. Software
Testing, Verification and Reliability (STVR), 23(7):553–582.

[51] Fraser, G. and Arcuri, A. (2013b). Whole test suite generation. IEEE
Transactions on Software Engineering (TSE), 39(2):276–291.

[52] Fraser, G. and Arcuri, A. (2014). A large-scale evaluation of automated unit
test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology (TOSEM), 24(2).

[53] Fraser, G., Arcuri, A., and McMinn, P. (2014). A memetic algorithm for
whole test suite generation. Journal of Systems and Software, 103(0).

[54] Fraser, G., Staats, M., McMinn, P., Arcuri, A., and Padberg, F. (2013).
Does automated white-box test generation really help software testers? In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 291–301. ACM.

[55] Fraser, G. and Zeller, A. (2011). Exploiting common object usage in test
case generation. In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST), pages 80–89. IEEE.

[56] Fraser, G. and Zeller, A. (2012). Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering (TSE), 38(2):278–292.

[57] Freedman, R. S. (1991). Testability of software components. IEEE Trans-
actions on Software Engineering (TSE), 17(6):553–564.

[58] Galeotti, J. P., Fraser, G., and Arcuri, A. (2013). Improving search-based
test suite generation with dynamic symbolic execution. In Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE), pages
360–369. IEEE.

[59] Ganesh, V., Kieżun, A., Artzi, S., Guo, P. J., Hooimeijer, P., and Ernst,
M. (2011). Hampi: A string solver for testing, analysis and vulnerability
detection. In Proceedings of the International Conference on Computer Aided
Verification (CAV), pages 1–19. Springer.

184 References

[60] Gay, G. (2017). The fitness function for the job: Search-based generation
of test suites that detect real faults. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). IEEE.

[61] Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: directed automated
random testing. ACM Sigplan Notices, 40(6):213–223.

[62] Godefroid, P., Levin, M. Y., Molnar, D. A., et al. (2008). Automated
whitebox fuzz testing. In Proceedings of Network and Distributed Systems
Security.

[63] Godlin, B. and Strichman, O. (2009). Regression verification. In Proceedings
of the 46th Annual Design Automation Conference, pages 466–471. ACM.

[64] Google (2014). Analytix CodePro URL: https://web.archive.org/web/
20150906113523/https://developers.google.com/java-dev-tools/codepro/.
Last visited on 26.08.2016.

[65] Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and Rothermel,
G. (1998). An empirical study of regression test selection techniques. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 188–197. IEEE Computer Society.

[66] Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting
fault incidence using software change history. IEEE Transactions on Software
Engineering (TSE), 26(7):653–661.

[67] Grechanik, M., Fu, C., and Xie, Q. (2012). Automatically finding perfor-
mance problems with feedback-directed learning software testing. In Proceed-
ings of the International Conference on Software Engineering (ICSE), pages
156–166. IEEE.

[68] Grechanik, M., Xie, Q., and Fu, C. (2009). Maintaining and evolving
gui-directed test scripts. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 408–418. IEEE.

[69] Groce, A., Holzmann, G., and Joshi, R. (2007). Randomized differential
testing as a prelude to formal verification. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 621–631. IEEE.

[70] Harman, M. (2007). The current state and future of search based software
engineering. In 2007 Future of Software Engineering, pages 342–357. IEEE
Computer Society.

[71] Harman, M. and Alshahwan, N. (2008). Automated session data repair
for web application regression testing. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
298–307. IEEE.

https://web.archive.org/web/20150906113523/https://developers.google.com/java-dev-tools/codepro/
https://web.archive.org/web/20150906113523/https://developers.google.com/java-dev-tools/codepro/

References 185

[72] Harman, M., Burke, E., Clark, J. A., and Yao, X. (2012a). Dynamic adaptive
search based software engineering. In Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–8. IEEE.

[73] Harman, M., Hu, L., Hierons, R., Baresel, A., and Sthamer, H. (2002).
Improving evolutionary testing by flag removal. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO). MK Pub.

[74] Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A.,
and Roper, M. (2004). Testability transformation. IEEE Transactions on
Software Engineering (TSE), 30(1).

[75] Harman, M. and Jones, B. F. (2001). Search-based software engineering.
Information and Software Technology, 43(14):833–839.

[76] Harman, M. and McMinn, P. (2010). A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering (TSE), 36(2):226–247.

[77] Harman, M., McMinn, P., de Souza, J. T., and Yoo, S. (2012b). Search
based software engineering: Techniques, taxonomy, tutorial. In Empirical
Software Engineering and Verification, pages 1–59. Springer.

[78] Harrold, M. and Souffa, M. (1988). An incremental approach to unit
testing during maintenance. In Proceedings of the International Conference
on Software Maintenance (ICSM), pages 362–367.

[79] Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings, M.,
Sinha, S., Spoon, S. A., and Gujarathi, A. (2001). Regression test selection for
java software. In ACM SIGPLAN Notices, volume 36, pages 312–326. ACM.

[80] Harrold, M. J. and Rothermel, G. (1994). Performing data flow testing on
classes. ACM SIGSOFT Software Engineering Notes, 19(5):154–163.

[81] Holland, J. H. (1975). Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control, and artificial intelligence.
U Michigan Press.

[82] Huang, P., Ma, X., Shen, D., and Zhou, Y. (2014). Performance regression
testing target prioritization via performance risk analysis. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 60–71.
ACM.

[83] Inozemtseva, L. and Holmes, R. (2014). Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 435–445. ACM.

[84] Islam, M. and Csallner, C. (2010). Dsc+Mock: A test case + mock class
generator in support of coding against interfaces. In Proceedings of the
International Workshop on Dynamic Analysis (WODA), pages 26–31. ACM.

186 References

[85] Jaygarl, H., Kim, S., Xie, T., and Chang, C. K. (2010). OCAT: object
capture-based automated testing. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), pages 159–170. ACM.

[86] Jia, Y., Cohen, M. B., Harman, M., and Petke, J. (2015). Learning combi-
natorial interaction test generation strategies using hyperheuristic search. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 540–550. IEEE Press.

[87] Jia, Y. and Harman, M. (2011). An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering (TSE),
37(5):649–678.

[88] Just, R. (2014). The major mutation framework: Efficient and scalable
mutation analysis for java. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 433–436. ACM.

[89] Just, R., Jalali, D., and Ernst, M. D. (2014a). Defects4J: A database
of existing faults to enable controlled testing studies for java programs. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 437–440. ACM.

[90] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser,
G. (2014b). Are mutants a valid substitute for real faults in software testing?
In Proceedings of the International Symposium on the Foundations of Software
Engineering (FSE), pages 654–665. ACM.

[91] Kifetew, F. M., Panichella, A., De Lucia, A., Oliveto, R., and Tonella,
P. (2013). Orthogonal exploration of the search space in evolutionary test
case generation. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pages 257–267. ACM.

[92] Kim, M. and Notkin, D. (2006). Program element matching for multi-version
program analyses. In Proceedings of the International Workshop on Mining
Software Repositories (MSR), pages 58–64. ACM.

[93] King, J. C. (1976). Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394.

[94] Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis Techniques
for Censored and Truncated Data. Springer Science & Business Media.

[95] Korel, B. (1990). Automated software test data generation. IEEE Transac-
tions on Software Engineering (TSE), 16(8):870–879.

[96] Korel, B., Tahat, L., and Vaysburg, B. (2002a). Model based regression
test reduction using dependence analysis. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 214–223.

[97] Korel, B., Tahat, L. H., and Vaysburg, B. (2002b). Model based regression
test reduction using dependence analysis. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 214–223. IEEE.

References 187

[98] Le Traon, Y., Jéron, T., Jézéquel, J.-M., and Morel, P. (2000). Efficient
object-oriented integration and regression testing. IEEE Transactions on
Reliability, 49(1):12–25.

[99] Leitner, A., Oriol, M., Zeller, A., Ciupa, I., and Meyer, B. (2007). Efficient
unit test case minimization. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages 417–420. ACM.

[100] Li, Y. and Fraser, G. (2011). Bytecode testability transformation. In
Symposium on Search-Based Software Engineering (SSBSE), pages 237–251.
Springer.

[101] Li, Z., Harman, M., and Hierons, R. M. (2007). Search algorithms for
regression test case prioritization. IEEE Transactions on Software Engineering
(TSE), 33(4):225–237.

[102] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. (2014). An empirical
analysis of flaky tests. In Proceedings of the International Symposium on the
Foundations of Software Engineering (FSE), pages 643–653. ACM.

[103] Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., and Ramler, R.
(2015). Grt: Program-analysis-guided random testing. In Proceedings of the
International Conference on Automated Software Engineering (ASE).

[104] Marinescu, P., Hosek, P., and Cadar, C. (2014). Covrig: a framework
for the analysis of code, test, and coverage evolution in real software. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 93–104. ACM.

[105] Marinescu, P. D. and Cadar, C. (2012). make test-zesti: A symbolic
execution solution for improving regression testing. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 716–726.
IEEE Press.

[106] Marinescu, P. D. and Cadar, C. (2013). Katch: high-coverage testing
of software patches. In Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pages 235–245. ACM.

[107] Marré, M. and Bertolino, A. (2003). Using spanning sets for coverage
testing. IEEE Transactions on Software Engineering (TSE), 29:974–984.

[108] McKeeman, W. M. (1998). Differential testing for software. Digital
Technical Journal, 10(1):100–107.

[109] McMinn, P. (2004). Search-based software test data generation: a survey.
Software Testing, Verification and Reliability (STVR), 14(2):105–156.

[110] McMinn, P. (2011). Search-based software testing: Past, present and
future. In Proceedings of the International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 153–163. IEEE.

188 References

[111] McMinn, P., Harman, M., Fraser, G., and Kapfhammer, G. M. (2016).
Automated search for good coverage criteria: moving from code coverage to
fault coverage through search-based software engineering. In Proceedings of
the 9th International Workshop on Search-Based Software Testing (SBST),
pages 43–44. ACM.

[112] McMinn, P., Shahbaz, M., and Stevenson, M. (2012). Search-based test
input generation for string data types using the results of web queries. In
Proceedings of the International Conference on Software Testing, Verification
and Validation (ICST), pages 141–150. IEEE.

[113] Memon, A., Nagarajan, A., and Xie, Q. (2005). Automating regression
testing for evolving gui software. Journal of Software Maintenance and
Evolution: Research and Practice, 17(1):27–64.

[114] Memon, A. M. (2008). Automatically repairing event sequence-based gui
test suites for regression testing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(2):4.

[115] Memon, A. M. and Soffa, M. L. (2003). Regression testing of guis. ACM
SIGSOFT Software Engineering Notes, 28(5):118–127.

[116] Mirzaaghaei, M., Pastore, F., and Pezze, M. (2010). Automatically re-
pairing test cases for evolving method declarations. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 1–5. IEEE.

[117] Mirzaaghaei, M., Pastore, F., and Pezze, M. (2012). Supporting test suite
evolution through test case adaptation. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
231–240. IEEE.

[118] Mouchawrab, S., Briand, L. C., Labiche, Y., and Di Penta, M. (2011). As-
sessing, comparing, and combining state machine-based testing and structural
testing: a series of experiments. IEEE Transactions on Software Engineering
(TSE), 37(2):161–187.

[119] Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software
testing. Wiley.

[120] Ng, S., Murnane, T., Reed, K., Grant, D., and Chen, T. (2004). A
preliminary survey on software testing practices in australia. In Proceedings
of Software Engineering Conference, 2004 Australian, pages 116–125. IEEE.

[121] Oriol, M. and Tassis, S. (2010). Testing. net code with yeti. In Proceedings
of IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), pages 264–265. IEEE.

[122] Orso, A., Harrold, M. J., Rosenblum, D., Rothermel, G., Soffa, M. L., and
Do, H. (2001). Using component metacontent to support the regression testing
of component-based software. In Proceedings of the International Conference
on Software Maintenance (ICSM), pages 716–725. IEEE.

References 189

[123] Orso, A. and Xie, T. (2008). Bert: Behavioral regression testing. In
Proceedings of the International Workshop on Dynamic Analysis (WODA),
pages 36–42. ACM.

[124] Pacheco, C. and Ernst, M. D. (2007). Randoop: feedback-directed random
testing for Java. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 815–816. ACM.

[125] Palikareva, H., Kuchta, T., and Cadar, C. (2016). Shadow of a doubt:
testing for divergences between software versions. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 1181–1192.
ACM.

[126] Parasoft (2014). Parasoft JTest URL: http://www.parasoft.com/jtest.
Last visited on 01.08.2014.

[127] Pargas, R. P., Harrold, M. J., and Peck, R. R. (1999). Test-data genera-
tion using genetic algorithms. Software Testing, Verification and Reliability
(STVR), 9(4):263–282.

[128] Park, S., Hossain, B. M. M., Hussain, I., Csallner, C., Grechanik, M.,
Taneja, K., Fu, C., and Xie, Q. (2012). CarFast: achieving higher state-
ment coverage faster. In Proceedings of the International Symposium on the
Foundations of Software Engineering (FSE), pages 35:1–35:11. ACM.

[129] Păsăreanu, C. S. and Rungta, N. (2010). Symbolic PathFinder: symbolic
execution of Java bytecode. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 179–180. ACM.

[130] Pinto, L. S., Sinha, S., and Orso, A. (2012). Understanding myths and
realities of test-suite evolution. In Proceedings of the International Symposium
on the Foundations of Software Engineering (FSE), page 33. ACM.

[131] Pradel, M., Huggler, M., and Gross, T. R. (2014). Performance regression
testing of concurrent classes. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 13–25. ACM.

[132] Prasetya, I. W. B. (2014). T3, a combinator-based random testing tool for
java: benchmarking. In Future Internet Testing, pages 101–110. Springer.

[133] Qi, D., Roychoudhury, A., and Liang, Z. (2010). Test generation to expose
changes in evolving programs. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages 397–406. ACM.

[134] Roest, D., Mesbah, A., and Van Deursen, A. (2010). Regression testing
ajax applications: Coping with dynamism. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
127–136. IEEE.

[135] Rojas, J. M., Campos, J., Vivanti, M., Fraser, G., and Arcuri, A. (2015a).
Combining multiple coverage criteria in search-based unit test generation. In
Search-Based Software Engineering, pages 93–108. Springer.

http://www.parasoft.com/jtest

190 References

[136] Rojas, J. M., Fraser, G., and Arcuri, A. (2015b). Automated unit test
generation during software development: A controlled experiment and think-
aloud observations. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pages 338–349. ACM.

[137] Rojas, J. M., Fraser, G., and Arcuri, A. (2016a). Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability
(STVR).

[138] Rojas, J. M., Vivanti, M., Arcuri, A., and Fraser, G. (2016b). A detailed
investigation of the effectiveness of whole test suite generation. Empirical
Software Engineering, pages 1–42.

[139] Rothermel, G. and Harrold, M. J. (1997). A safe, efficient regression
test selection technique. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):173–210.

[140] Rothermel, G., Harrold, M. J., Ostrin, J., and Hong, C. (1998). An
empirical study of the effects of minimization on the fault detection capabilities
of test suites. In Proceedings of the International Conference on Software
Maintenance (ICSM), pages 34–43. IEEE.

[141] Rothermel, G., Harrold, M. J., Von Ronne, J., and Hong, C. (2002).
Empirical studies of test-suite reduction. Software Testing, Verification and
Reliability (STVR), 12(4):219–249.

[142] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (1999). Test
case prioritization: An empirical study. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 179–188. IEEE.

[143] Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algo-
rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[144] Rueda, U., Just, R., Galeotti, J. P., and Vos, T. E. (2016). Unit testing tool
competition: round four. In Proceedings of the 9th International Workshop on
Search-Based Software Testing (SBST), pages 19–28. ACM.

[145] Runeson, P. (2006). A survey of unit testing practices. IEEE software,
23(4):22–29.

[146] Runeson, P., Andersson, C., Thelin, T., Andrews, A., and Berling, T.
(2006). What do we know about defect detection methods? Software, IEEE,
23(3):82–90.

[147] Sakti, A., Pesant, G., and Guéhéneuc, Y.-G. (2015). Instance generator
and problem representation to improve object oriented code coverage. IEEE
Transactions on Software Engineering (TSE), 41(3):294–313.

[148] Santelices, R., Chittimalli, P., Apiwattanapong, T., Orso, A., and Harrold,
M. (2008). Test-suite augmentation for evolving software. In Proceedings
of the International Conference on Automated Software Engineering (ASE),
pages 218–227. IEEE.

References 191

[149] Santelices, R. and Harrold, M. (2011). Applying aggressive propagation-
based strategies for testing changes. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
11–20.

[150] Savonia, A. and Evans, B. (2014). Crap4J URL: http://www.crap4j.org/.
Last visited on 19.01.2015.

[151] Sen, K. and Agha, G. (2006). CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools. In Proceedings of the International
Conference on Computer Aided Verification (CAV), pages 419–423. Springer.

[152] Shamshiri, S. (2014). Evosuiter result processor. http://evosuiter.sina.sh.

[153] Shamshiri, S. (2015). Automated unit test generation for evolving software.
In Proceedings of the Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pages 1038–1041. ACM.

[154] Shamshiri, S., Campos, J., Fraser, G., and McMinn, P. (2016). Disposable
testing: Avoiding maintenance of generated unit tests by throwing them
away. In Companion Proceedings of the International Conference on Software
Engineering (ICSE-C). IEEE.

[155] Shamshiri, S., Fraser, G., McMinn, P., and Orso, A. (2013). Search-
based propagation of regression faults in automated regression testing. In
Proceedings of the International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 396–399. IEEE.

[156] Shamshiri, S., Just, R., Rojas, J. M., Fraser, G., McMinn, P., and Arcuri, A.
(2015a). Do automatically generated unit tests find real faults? an empirical
study of effectiveness and challenges. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 201–211. IEEE.

[157] Shamshiri, S., Rojas, J. M., Fraser, G., and McMinn, P. (2015b). Random
or genetic algorithm search for object-oriented test suite generation? In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pages 1367–1374. ACM.

[158] Sharma, R., Gligoric, M., Arcuri, A., Fraser, G., and Marinov, D. (2011).
Testing container classes: Random or systematic? In Proceedings of the
International Conference on Fundamental Approaches to Software Engineering
(FASE). Springer.

[159] Simons, A. J. H. (2006). A theory of regression testing for behaviourally
compatible object types. Software Testing, Verification and Reliability (STVR),
16(3):133–156.

[160] Simons, A. J. H. (2007). Jwalk: a tool for lazy, systematic testing of
java classes by design introspection and user interaction. Automated Software
Engineering, 14(4):369–418.

http://www.crap4j.org/
http://evosuiter.sina.sh

192 References

[161] Simons, A. J. H. and Thomson, C. D. (2008). Benchmarking effectiveness
for object-oriented unit testing. In Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages
375–379. IEEE.

[162] Skoglund, M. and Runeson, P. (2004). A case study on regression test
suite maintenance in system evolution. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 438–442. IEEE.

[163] Taneja, K. and Xie, T. (2008). Diffgen: Automated regression unit-test
generation. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 407–410. IEEE.

[164] Taneja, K., Xie, T., Tillmann, N., and de Halleux, J. (2011). express:
guided path exploration for efficient regression test generation. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA),
pages 1–11. ACM.

[165] Taneja, K., Zhang, Y., and Xie, T. (2010). Moda: Automated test
generation for database applications via mock objects. In Proceedings of the
International Conference on Automated Software Engineering (ASE), pages
289–292. ACM.

[166] Tassey, G. (2002). The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, pages 02–3.

[167] Technologies, A. (2014). Agitar One URL: http://www.agitar.com/
solutions/products/agitarone.html. Last visited on 20.10.2016.

[168] Thummalapenta, S., Xie, T., Tillmann, N., De Halleux, J., and Su, Z.
(2011). Synthesizing method sequences for high-coverage testing. ACM
SIGPLAN Notices, 46(10):189–206.

[169] Tillmann, N. and De Halleux, J. (2008). Pex–white box test generation
for .NET. In Tests and Proofs, pages 134–153. Springer.

[170] Tonella, P. (2004a). Evolutionary testing of classes. ACM SIGSOFT
Software Engineering Notes, 29(4):119–128.

[171] Tonella, P. (2004b). Evolutionary testing of classes. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), pages
119–128. ACM.

[172] Vargha, A. and Delaney, H. D. (2000). A critique and improvement of
the “CL” Common Language Effect Size Statistics of McGraw and Wong.
Educational and Behavioral Statistics, 25(2).

[173] Veanes, M., De Halleux, P., and Tillmann, N. (2010). Rex: Symbolic
regular expression explorer. In Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST), pages 498–507. IEEE.

http://www.agitar.com/solutions/products/agitarone.html
http://www.agitar.com/solutions/products/agitarone.html

References 193

[174] Voas, J. (1992). Pie: A dynamic failure-based technique. IEEE Transac-
tions on Software Engineering (TSE), 18(8):102–112.

[175] Voas, J. M. and Miller, K. W. (1993). Semantic metrics for software
testability. Journal of Systems and Software, 20(3):207–216.

[176] Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and Roos, R. S. (2006).
Timeaware test suite prioritization. In Proceedings of the International Sym-
posium on Software Testing and Analysis (ISSTA), pages 1–12. ACM.

[177] Wegener, J., Baresel, A., and Sthamer, H. (2001). Evolutionary test
environment for automatic structural testing. Information and Software
Technology, 43(14).

[178] White, L. J. (1996). Regression testing of gui event interactions. In
Proceedings of the International Conference on Software Maintenance (ICSM),
pages 350–358. IEEE.

[179] Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82.

[180] Wong, W., Horgan, J., Mathur, A., and Pasquini, A. (1997). Test set
size minimization and fault detection effectiveness: a case study in a space
application. In Proceedings of the International Conference on Computer
Software and Applications Conference (COMPSAC), pages 522–528.

[181] Wong, W. E., Gao, R., Li, Y., Abreu, R., and Wotawa, F. (2016). A survey
on software fault localization. IEEE Transactions on Software Engineering
(TSE), 42(8).

[182] Wong, W. E., Horgan, J. R., London, S., and Mathur, A. P. (1995). Effect
of test set minimization on fault detection effectiveness. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 41–41.
IEEE.

[183] Wood, M., Roper, M., Brooks, A., and Miller, J. (1997). Comparing and
combining software defect detection techniques: a replicated empirical study.
ACM SIGSOFT Software Engineering Notes, 22(6):262–277.

[184] Woodward, M. R. and Al-Khanjari, Z. A. (2000). Testability, fault size
and the domain-to-range ratio: An eternal triangle. ACM SIGSOFT Software
Engineering Notes, 25(5):168–172.

[185] Xiao, X., Xie, T., Tillmann, N., and De Halleux, J. (2011). Precise
identification of problems for structural test generation. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 611–620.
ACM.

[186] Xie, T. (2006). Augmenting automatically generated unit-test suites
with regression oracle checking. In European Conference on Object-Oriented
Programming (ECOOP), pages 380–403. Springer.

194 References

[187] Xie, T., Marinov, D., and Notkin, D. (2004). Rostra: A framework
for detecting redundant object-oriented unit tests. In Proceedings of the
International Conference on Automated Software Engineering (ASE), pages
196–205. IEEE Computer Society.

[188] Xie, T., Marinov, D., Schulte, W., and Notkin, D. (2005). Symstra: A
framework for generating object-oriented unit tests using symbolic execution.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 365–381. Springer.

[189] Xie, T., Taneja, K., Kale, S., and Marinov, D. (2007). Towards a framework
for differential unit testing of object-oriented programs. In Proceedings of the
Second International Workshop on Automation of Software Test, page 5. IEEE
Computer Society.

[190] Xu, L., Dias, M., and Richardson, D. (2004). Generating regression tests via
model checking. In Proceedings of the International Conference on Computer
Software and Applications Conference (COMPSAC), pages 336–341. IEEE.

[191] Xu, L., Xu, B., Chen, Z., Jiang, J., and Chen, H. (2003). Regression testing
for web applications based on slicing. In Proceedings of the International
Conference on Computer Software and Applications Conference (COMPSAC),
pages 652–656. IEEE.

[192] Xu, Z., Cohen, M. B., Motycka, W., and Rothermel, G. (2013). Continuous
test suite augmentation in software product lines. In Proceedings of the 17th
International Software Product Line Conference, pages 52–61. ACM.

[193] Xu, Z., Cohen, M. B., and Rothermel, G. (2010a). Factors affecting the use
of genetic algorithms in test suite augmentation. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), pages 1365–1372, New
York, NY, USA. ACM.

[194] Xu, Z., Kim, Y., Kim, M., and Rothermel, G. (2011). A Hybrid Directed
Test Suite Augmentation Technique. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), pages 150–159.

[195] Xu, Z., Kim, Y., Kim, M., Rothermel, G., and Cohen, M. B. (2010b).
Directed test suite augmentation: techniques and tradeoffs. In Proceedings
of the International Symposium on the Foundations of Software Engineering
(FSE), pages 257–266. ACM.

[196] Xu, Z. and Rothermel, G. (2009). Directed test suite augmentation. In
Proceedings of Asia-Pacific Software Engineering Conference (APSEC), pages
406 –413.

[197] Yau, S. S. and Kishimoto, Z. (1987). A method for revalidating modified
programs in the maintenance phase. In Proceedings of the International
Conference on Computer Software and Applications Conference (COMPSAC),
volume 87, pages 272–277.

References 195

[198] Yoo, S. and Harman, M. (2012). Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability
(STVR), 22(2):67–120.

[199] Yu, Y., Jones, J. A., and Harrold, M. J. (2008). An empirical study of
the effects of test-suite reduction on fault localization. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 201–210.
ACM.

[200] Zhang, P., Elbaum, S., and Dwyer, M. B. (2011). Automatic generation
of load tests. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 43–52. IEEE Computer Society.

[201] Zhang, S., Jalali, D., Wuttke, J., Muşlu, K., Lam, W., Ernst, M. D., and
Notkin, D. (2014). Empirically revisiting the test independence assumption. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 385–396. ACM.

[202] Zhu, H., Hall, P. A., and May, J. H. (1997). Software unit test coverage
and adequacy. Acm computing surveys (csur), 29(4):366–427.

Appendix A
Generating Differential Test
Suites Using EvoSuiteR

A.1 Introduction

This appendix presents details of the EvoSuiteR tool as first described in
Chapter 4, and provides information on how the tool can be used for the purpose
of regression test suite generation in practice, or to replicate the data presented
in this thesis. We made differential test generation using EvoSuite (a.k.a.
EvoSuiteR) available as a built-in feature in EvoSuite, which is open source1

and available on http://www.evosuite.org.

In this appendix, we first present the command-line version of the tool along
with the available configuration options, and then present different use-cases of
the tool along with example commands.

A.1.1 Requirements

In order to use EvoSuiteR, please make sure you have the latest version of
Java Development Kit (JDK) 1.8 installed and available on your environment
path. Additionally, the tool requires two versions of either the whole program or
class(es) under test available, and compiled. EvoSuite operates at bytecode-

1Github Repository for EvoSuite: https://github.com/EvoSuite/evosuite

198 Generating Differential Test Suites Using EvosuiteR

level (i.e., using compiled .class files), therefore, access to the source code is
not required in order to generate unit tests.

A.2 Command-line and Configuration Options

At the time of this publication, EvoSuiteR is only available as a command-
line tool. Therefore, we first look at the command-line arguments and the
optional configuration options that are available to the users. Considering that
EvoSuiteR is built on top of the EvoSuite test suite generation framework,
it inherits a large number of different configuration options. For instance, users
have the option to minimise a test suite after it has been generated. Although
the minimisation process is performed differently for EvoSuiteR, it shares
the same configuration property minimize with EvoSuite. For the purpose
of brevity, in this section we present only the additional configuration options
available on EvoSuiteR.

Before providing extra arguments to EvoSuiteR, it has to be executed under
the regression testing mode. This can be enabled by passing -regressionSuite
as the first parameter in the command line. In default settings, executing
EvoSuiteR is similar to that of EvoSuite as below:

$ java -jar evosuite.jar -regressionSuite <target> [options]

In the command above, the EvoSuite’s packaged jar is executed using Java,
and the runtime argument -regressionSuite executes the framework under
the regression testing mode – that is, the intention of the user is to generate
a regression unit test suite. In the following two sections we look at how the
target and options can be set.

Target: The target refers to the set of commands dedicated to setting the
target program – or versions of the program in the case of EvoSuiteR – to
be tested. In particular, EvoSuiteR can be executed on a particular pair of
classes, or on all class-pairs across the two versions of the project.

A.2 Command-line and Configuration Options 199

Essentially, EvoSuiteR requires two sets of Java class paths2 to be provided
to the tool. The first one is projectCP which refers to the original class path
of the program under test, and the second one is regressioncp which refers
to the alternate class path. Given these two paths, EvoSuiteR will aims to
generate tests that pass on the projectCP (e.g., the original version) and fail on
the regressioncp (e.g., the changed version). Here is an example of how these
class paths can be provided to the program on the command line:

$ java -jar evosuite.jar -regressionSuite -projectCP "original/

build/classes" -Dregressioncp="modified/build/classes" <target>

[options]

Notice that the regressioncp requires a property indicator -D as a prefix and
an equal (=) sign to set the property value. This is due to the fact that projectCP
is a shared property with EvoSuite. Also notice that we still have <target>
in the command above. That is due the fact that the target program/class to be
tested is still not specified. To test a class users can pass the -class property
along with the full classname (e.g., -class my.package.Foo), and to test all
class pairs across two versions of the program the -target property should be
provided along with the name of the jar file containing the program under test
(e.g., -target my_program.jar). More details of these two target properties
will follow in this chapter.

Options: Custom configurations can also be applied on EvoSuiteR, such
as setting parameters useful for the search, duration of the search, algorithm
used for the search, and so forth. As mentioned earlier, EvoSuiteR is built
upon and available as a native part of EvoSuite, and as such, it shares a
majority of configurations available on EvoSuite. In this section we only discuss
configurations and options specific to EvoSuiteR; the rest of the options can
be found on EvoSuite’s documentation.

All tool configurations can be set by providing -Dproperty_name =value .
The property_name refers to the name of the configuration property name. The
most important configuration of EvoSuiteR is the search algorithm or the

2For more details on Java class path, please refer to the official documentation available
at: https://docs.oracle.com/javase/8/docs/technotes/tools/unix/classpath.html.
Please note that multiple classpath entries are separated by a semicolon ; on Windows-
based operating systems, and by a colon : on unix-based operating systems.

200 Generating Differential Test Suites Using EvosuiteR

Fitness Function Description
ALL_MEASURES The combined EvoSuiteR GA*

STATE_DIFFERENCE State Difference
BRANCH_DISTANCE Control-Flow Distance

COVERAGE Coverage – on both versions
COVERAGE_OLD Coverage – on the original version
COVERAGE_NEW Coverage – on the new/modified version

RANDOM [default] By default, EvoSuiteR uses a random search for
regression test suite generation. This option disables the GA
mode.

Table A.1 Configuration options for EvoSuiteR’s Genetic Algorithm.
*As mentioned in Chapter 4, by default, only Coverage and State-difference are included.

fitness function of the GA used for generating the differential tests. The property
for this configuration is regression_fitness, and Table A.1 lists the possible
values this property can have. By default, EvoSuiteR uses a random search
algorithm for generating the tests. GA can be selected by providing the fitness
function, e.g., -Dregression_fitness=ALL_MEASURES.

Other notable options available on EvoSuiteR are listed in Table A.2. All
the listed options in the table are optional, boolean (can only have a value of
true or false), and disabled (false) by default. Although some of these options
will be discussed later in this appendix, it is worth noting that in order to use
branch-distance measurement during the search, both of the configuration options
regression_branch_distance and regression_skip_different_cfg need to
be enabled. The former enables the calculation of branch-distance (affecting the
first and third fitness functions in Table A.1), and the latter ensures that classes
with different control-flow graphs are skipped – otherwise, the fitness function
may produce incorrect values.

A.3 Differential Test Suite Generation

In this section we demonstrate how to generate a differential test suite for a
Java class Thesis, under the package shef.phd – thus making the fully qualified
name of the class: shef.phd.Thesis. For the sake of this example, we assume
that we have access to the compiled .class file of two versions this class,
stored respectively on a/build/classes and b/build/classes directories. To

A.4 Generating Test Suites for Whole Projects 201

Configuration Description
regression_branch_distance Enable/Disable control-flow distance calculation

regression_skip_different_cfg Skip running EvoSuiteR on pairs of classes when the control-
flow graph of the program is different between the two versions
of the program

regression_skip_similar Skip running EvoSuiteR on pairs of classes where the code
inside the methods are unchanged between the two versions of
the program

regression_statistics Generate EvoSuiteR statistics
serialize_regression_test_suite Serialise the generated test suite

Table A.2 Optional feature flags on EvoSuiteR. Each flag is a boolean parameter
(TRUE|FALSE) and is by default disabled (FALSE).

generate a differential test suite to reveal the change between the two classes,
the following command can be used:

$ java -jar evosuite.jar -regressionSuite -projectCP "a/build/

classes" -Dregressioncp="b/build/classes" -class shef.phd.Thesis

This will generate a test suite for the given class and the test suite can be
found under new directories that will be created by the tool. At the time of
this writing, the default search budget is 60 seconds, and the default search
algorithm for test generation is random test. The budget can be modified
using the -Dsearch_budget property – more details on this can be found on
EvoSuite’s documentation – and the algorithm can be set using the property
mentioned in the previous section.

A.4 Generating Test Suites for Whole Projects

While so far we have discussed and shown differential test suite generation for
single classes, large Java projects may contain hundreds of thousands of classes,
and executing EvoSuiteR individually for each class after a change has been
made may be tedious. As a result, the tool has a functionality to generate test
suites for all class pairs in the program. To achieve this, the user only needs
access to two .jar files containing the two versions of the project. EvoSuiteR
will then automatically generate tests for each pair of classes across the two jar
files.

202 Generating Differential Test Suites Using EvosuiteR

Assuming we have a thesis.jar in directory a and a new version of this
program in directory b, and the two programs have different set of dependencies
– which for the sake of brevity, we only include one dependency, but as many
dependencies can be put on the classpath – the following command can be used
to generate a test suite for all pairs of classes across the two versions:

$ java -jar evosuite.jar -regressionSuite -projectCP "a/thesis.jar:

a/dependency.jar" -Dregressioncp="b/thesis.jar:b/dependency.jar"

-target thesis.jar

When generating differential tests across two versions of a program, it is likely
that not all classes have been modified across the two versions. EvoSuiteR has a
functionality to only generate tests for pairs of classes where the underlying code
has been changed. To enable this, you can add the property -Dregression_-
skip_similar=true.

A.5 Visualisation of the Search Outcome

To aid with analysing the outcome of the techniques, and help with the develop-
ment of new search-based algorithms targeted at finding regression faults, we de-
veloped and make available a separate web-based tool. By enabling EvoSuiteR’s
individual statistics reporting using -Dregression_statistics=true, a sepa-
rate statistic file is generated, which can then be uploaded to the tool for analysis
and visualisation. Using this tool, users can observe the effectiveness of the
technique at revealing changes on their specific problem over time, as well as
observing the improvement of individual GA components over time. The service
is currently available at: http://evosuiter.sina.sh/.

A.6 Summary

In this appendix we presented details of the EvoSuiteR tool and described
how the tool can be interacted with. Particularly, we presented how the tool
can be used to generate differential tests using different algorithms, as detailed
earlier in this thesis. We also showed how the tool can be used in different
scenarios such as generating tests for single classes or whole projects. Given

A.6 Summary 203

the fact that EvoSuite and EvoSuiteR are work under progress and the fact
that the usage guideline detailed in this thesis may grow outdated with the
software, up-to-date documentation on the tool can be found on the project’s
wiki: https://github.com/EvoSuite/evosuite/wiki.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Overview
	1.2 Regression Testing
	1.2.1 Motivation for Automated Regression Testing
	1.2.2 Summary

	1.3 Structure and Contributions of this Thesis

	2 Literature Review
	2.1 Software Testing
	2.1.1 Test Adequacy Criteria
	2.1.2 Automated Test Generation
	2.1.3 Random Testing
	2.1.4 Testing Using Symbolic Execution
	2.1.5 Testing Using Search Based Software Engineering
	2.1.6 Summary

	2.2 Regression Testing
	2.2.1 Test Minimisation, Selection and Prioritisation
	2.2.2 Test Suite Augmentation
	2.2.3 Automated Regression Test Generation
	2.2.4 Differential Testing
	2.2.5 Regression Verification
	2.2.6 The Oracle Problem
	2.2.7 Maintaining Regression Test Suites
	2.2.8 Summary

	3 Evaluating Automated Unit Test Generation Tools Using Real Faults
	3.1 Introduction
	3.2 Methodology
	3.2.1 Subject Programs
	3.2.2 Automated Unit Test Generation Tools
	3.2.3 Experiment Procedure
	3.2.4 Threats to Validity

	3.3 Do Automated Unit Test Generation Tools Find Real Bugs?
	3.3.1 How Many Usable Tests Are Generated?
	3.3.2 How Many Bugs Are Found?
	3.3.3 How Are the Bugs Found?
	3.3.4 Are Bugs That Are Covered Usually Found?

	3.4 How Can the Tools Be Improved?
	3.4.1 Improving Coverage
	3.4.2 Improving Propagation and Detection
	3.4.3 Flaky Tests
	3.4.4 False Positives

	3.5 Related Work
	3.6 Conclusions

	4 Differential Testing Using a Search-Based Approach
	4.1 Introduction
	4.2 Search-based Regression Test Generation
	4.2.1 Representation and Fitness Function
	4.2.2 Generating Assertions
	4.2.3 Isolation of Changes

	4.3 Evaluation of the Search Objectives
	4.3.1 Research Questions
	4.3.2 Subject Programs
	4.3.3 Evaluated Techniques
	4.3.4 Experiment Procedure
	4.3.5 Experiment setup
	4.3.6 Data Collection
	4.3.7 Threats to Validity
	4.3.8 Results

	4.4 Summary

	5 Random vs. GA Search for Generating High-Coverage Test Suites
	5.1 Introduction
	5.2 Types of Branches in Java Bytecode
	5.2.1 ``Integer-Integer'' Branches
	5.2.2 ``Integer-Zero'' Branches
	5.2.3 ``Reference-Reference'' branches
	5.2.4 ``Reference-Null'' branches
	5.2.5 Summary

	5.3 Experimental Setup
	5.3.1 Subjects
	5.3.2 Collation of Branch Type Statistics
	5.3.3 Experimental Procedure
	5.3.4 Threats to Validity

	5.4 Random or Genetic Algorithm Search for Test Suite Generation?
	5.4.1 RQ5.1: Coverage Effectiveness.
	5.4.2 RQ5.3: Effects of the Time Allowed For the Search.

	5.5 The Impact of Branch Types
	5.6 Related Work
	5.7 Conclusion and Future Work

	6 Disposable Testing
	6.1 Introduction
	6.2 Methodology
	6.2.1 Test Generation Techniques
	6.2.2 Subject Programs
	6.2.3 Experiment Procedure
	6.2.4 Experiment Analysis
	6.2.5 Threats to Validity

	6.3 Answers to RQ6.1 (Detection of Changes To Classes)
	6.3.1 The Influence of Testing Pairs of Classes
	6.3.2 Influence of Optimization for Coverage

	6.4 Answers to RQ6.2 (Detection of Subsequent Changes)
	6.4.1 RQ6.2-M: Detection of Mutants
	6.4.2 RQ6.2-D: Detection of Developer Changes

	6.5 Answers to RQ6.3 (Comparison of the Maintenance Overhead)
	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Summary of Contributions and Achievements
	7.1.1 Effectiveness of Tools on Detecting Real Faults
	7.1.2 Search-Based Differential Testing
	7.1.3 Random or GA for Search-Based Test Generation
	7.1.4 Maintaining Automatically Generated Tests

	7.2 Future Work
	7.2.1 Human Study of Disposable Testing
	7.2.2 Test Readability
	7.2.3 Detecting Non-Functional Regressions using Diff. Testing
	7.2.4 Addressing State Infection in Differential Testing
	7.2.5 Hyper-heuristics Search and Adaptive Approaches

	7.3 Final Remarks

	References
	Appendix A Generating Differential Test Suites Using EvosuiteR
	A.1 Introduction
	A.1.1 Requirements

	A.2 Command-line and Configuration Options
	A.3 Differential Test Suite Generation
	A.4 Generating Test Suites for Whole Projects
	A.5 Visualisation of the Search Outcome
	A.6 Summary

